

Experimental validation of FENDL-3 nuclear data library

Paola Batistoni ENEA - Fusion and Nuclear Technology Dept. Frascati - ITALY

> FENDL-3 1st Research Co-ordination Meeting IAEA Hq, Vienna, 2-5 December 2008

Radiation loads in fusion devices (e.g. ITER)

(e.g. ITER: 500 MW fusion power, $1.78 \times 10^{20} \text{ n/s}$)

Machine operation, protection, maintenance & Safety

- Nuclear heating (e.g.: < 14 KW in TFC)

- Fast neutron fluence (e.g.: $<10^{23}$ n/m² Nb₃Sn, $<5\cdot10^{21}$ n/m² insulators)
 - < 1(3) appm He-production thick (thin)
 - < 1 dpa for re-welding
- Integrated dose (e.g. <10 MGy to insulators)
- Activation (short and long term, dust and ACP estimate, waste estimate)
- Shutdown dose rates (repair, replacement maintenance)
- Decay heat (heat removal capabilities after accident)
- Shielding properties of inner components (streaming paths)
- Tritium breeding ۲

Calculations validated by experiments (nuclear data & codes) with assessment of uncertainties

QA in ITER Neutronics Analyses

Neutronic calculations and analyses shall conform to the ITER Management and Quality Program.

ITER Project Management and Quality Program: Quality Assurance in Neutronic Analyses (ITER_D_23H9A4, May 2006)

- Computer software & data must be verified and validated prior to use
- •
- The FENDL-2.1 library is the reference nuclear data library for nuclear analyses for ITER
- •
- FENDL-2.1 has been verified and validated for neutronic calculations using available fusion benchmark experiments performed during the ITER R&D activities
- Same procedure for FENDL-3

Frascati 14-MeV Neutron Generator (FNG)

- ENEA, Frascati Research Centre (Italy)
- Accelerator based
 ✓ T(d, n)α
 ✓ E_d =300 keV
- European facility for fusion neutronics
 - ✓ Shielding
 - ✓ activation
 - ✓ development of detectors
- Operating since 1992
- MAIN PARAMETERS

14-MeV neutron intensity1011 n/s14-MeV neutron flux1010 n/(cm2s)D+ beam energy / current 260 keV / 1 mATarget tritium content370 GBq

Benchmark experiments performed at FNG and used for FENDL-2.1 /MC validation :

- Stainless steel experiment
- Bulk shield experiment (inboard shield, stainless steel & water)
- **Streaming experiment** (shield with streaming channel, stainless steel & water)
- Silicon Carbide (SiC) block
- Tungsten block
- HCPB Breeder blanket (Be / Li₂CO₃) experiment
- HCLL Breeder blanket (LiPb) experiment in progress
- Shutdown dose rate

All experiments available in SINBAD Fusion benchmarks database (NEA/OECD)

Main materials in FNG experiments

Materials	FENDL-1.0	FENDL-2.0	FENDL-2.1	
Fe-56	ENDF/B-VI	EFF-3.0	JEFF-3.0 (EFF-3.1)	
Fe-54,57,58,59	ENDF/B-VI	ENDF/B-VI	ENDF/B-VI	
Cr-50,52,53,54	ENDF/B-VI	ENDF/B-VI	ENDF/B-VI.8	
Ni-58,60	ENDF/B-VI	ENDF/B-VI	JEFF-3.0 (EFF-3.0)	
Ni61,62,64	ENDF/B-VI	ENDF/B-VI	ENDF/B-VI.8	
W-182,3,4,6	ENDF/B-VI	JENDL-FF (W-nat)	ENDF/B-VI.8	
Li-6	ENDF/B-VI	ENDF/B-VI	ENDF/B-VI.8	
Li-7	ENDF/B-VI	ENDF/B-VI	ENDF/B-VI.8	
Be-9	ENDF/B-VI	JENDL-FF	JENDL-FF	
Pb	ENDF/B-VI		ENDF/B-VI.8	
C-12	ENDF/B-VI (C-nat)	JENDL-FF	JENDL-FF	
0-16	ENDF/B-VI	JENDL-FF	ENDF/B-VI.8	
Si-28	BROND-2	ENDF/B-VI.8	ENDF/B-VI.8	

Bulk Shield experiment

Mock-up of the ITER inboard first wall/ shielding blanket/vacuum vessel/ toroidal magnet

Measurements
 of the neutron
 flux as a
 function of
 depth by
 activation foils

Bulk Shield experiment

Conclusions :

Neutron and gamma fluxes (He-production, radiation damage)well predicted within \pm 15% uncertainty at the VV and \pm 30% at the TF coil

(underestimation)

Nuclear heating well predicted within ± 15% uncertainty in FW, SB and VV ± 30% in TF coils

(underestimation)

Streaming experiments

Mock-up of the ITER inboard first wall/shielding blanket /vacuum vessel/toroidal magnet with a streaming channel (3 cm diam)

 Measurements of the neutron flux as a function of depth by activation foils

 \checkmark in the channel

- \checkmark in the box
- ✓ in the shield behind

Streaming experiment

Nb-93(n,2n) E > 10 MeV

Streaming experiment

Activation measutrements in the cavity Similar results are obtained with the other activation reactions

Conclusions :

Results & uncertainties similar to those obtained in bulk shield

The presence of penetrations does not deteriorate C/E values

Siicon Carbide (SiC) experiments

Silicon Carbide block (SiC, advanced low-activation structural material) 279.4 127.0 431.8 584.2 50.0 ഹ **D-T Source** S 50.8 711.2

 Measurements of the neutron flux in four positions at different depths by activation foils

Conclusions: Significant underestimation of the fast neutron flux

Tungsten (W) experiments

DENSIMET-176 (93.2%w W, 2.6%w Fe, 4.2%w Ni, 17.70 g/cm³). DENSIMET-180 (95.0%w W, 1.6%w Fe, 3.4%w Ni, 18.075 g/cm³)

 Measurements of the neutron flux in four positions at different depths by activation foils

Conclusion: Significant improvement from FENDL-2.0 to FENDL-2.1

Dose rate experiments

Mock-up of the ITER vacuum vessel 4 gamma spectrometer 2 (NE 213 liquid scintillator) tissue-equivalent dose rate meter (NE 105 plastic scintillator) 2 4_0 -40 -20 0 20 40

Measurement of the shutdown dose rate after long irradiation with 14 MeV neutrons

• Numerical tools developed combining transport & activation codes (MCNP,FISPACT)

• Validation of different approaches of combination: D1S, R2S

Conclusions:

Shut down dose rate at the vacuum vessel level can be predicted within ±25% uncertainty up to 4 months decay time

HCPB Breeder blanket experiments

Activation foils Li2CO3 pellets

Measurements of tritium production in 4 positions P.2 - P.8 by Li_2CO_3 pellets (nat. Li)(12 pellet/position) and of the neutron flux in the central Be layer by activation foils

Conclusions:

Total uncertainty on C/E comparison $\sim 9\%$ (2 σ) C/E sligthly underestimated by 5-15%, generally within total uncertainty

Cross section sensitivity/uncertainty analysis (FZK, NEA-DB)

	cross	Li-6(n,t)			Li-7(n,n't)				
section	section	TUD 1	TUD 3	TUD 5	TUD 7	TUD 1	TUD 3	TUD 5	TUD 7
Be-9	elastic	1.999	2.091	1.784	1.672	0.048	-0.001	-0.053	-0.130
	(n,2n)	0.716	0.710	0.664	0.611	-0.016	-0.191	-0.398	-0.619
Li-6	(n,t)	0.326	0.248	0.179	0.152	0.000	0.000	0.000	0.000
Li-7	(n,n't)	0.001	0.001	0.000	0.000	0.990	0.982	0.972	0.960
C-12,O-16		< 0.1							

Sensitivities (%/%) of calculated T- production vs cross sections

Total uncertainties (2σ) on total T- production vs cross sections

	Be9	Li6	Li7	016	C12	total
TUD 1	3.5%	0.30%	0.60%	0.30%	0.10%	3.58%
TUD 3	4.3%	0.20%	0.40%	0.30%	0.03%	4.33%
TUD 5	4.0%	0.20%	0.30%	0.40%	0.03%	4.04%
TUD 7	3.5%	0.10%	0.20%	0.40%	0.03%	3.53%

Analysis of activation measurements in Beryllium

Conclusions

Neutron flux well predicted in Be within ± 5-10% uncertainty (shielding properties)

HCLL Breeder blanket experiments (2008-2009)

LiPb (15.7 at% nat-Li) 630 kg

Eurofer 11 plates, 9 mm thick

Polyethylene

Mock-up of the EU breeder blanket Helium Cooled Pebble Bed (HCPB)

Measurements of tritium production in 15 positions by

• Li₂CO₃ pellets (nat. Li & Li-6 enr.)

• TLDs (TLD-600,TLD-700) and of the neutron flux in LiPb by activation foils

(started on 26/11, in progress)

The use of two types of Li_2CO_3 pellets (nat. Li and 95% Li-6 enriched) will allow to separate contribution from Li-6 and L-7 tritium producing reactions.

Conclusions

- Shielding, activation and dose rate calculations for ITER validated for many materials / components using FENDL- 2.1 reference library
- Neutron fluxes predicted in stainless steel/water shield assemblies within ± 30% uncertainty at 1 m depth. Underestimation of fast neutron flux observed
- Significant underestimation of the fast neutron flux is found in SiC with FENDL-2.1 (20% at 50 cm)
- Significant improvement from FENDL-2.0 to FENDL-2.1 in tungsten
- Very good prediction of neutron flux in HCPB blanket mock-up (Be/ Li₂CO₃) Tritium production underestimated by 5-15%, generally within total uncertainty (± 9%, 2σ)
- •HCLL blanket experiment in progress
- •Only main structural in vessel materials investigated so far