IAEA 2nd RCM of CRP on FENDL-3.0, 23-26 Mar. 2010

S. Kunieda +

- K. Shibata
- O. Iwamoto
- A. Ichihara
- N. Iwamoto
- S. Kunieda
- S. Chiba
- T. Nakagawa
- J. Katakura

Overview

- Neutron cross-sections for <u>406 nuclei</u>
- Re-evaluation was made for <u>~300 nuclei</u> form JENDL-3.3 (337 nucleus)
 - New RP
 - Coupled-channels OM evaluation
 - Fast-energy cross-sections by new codes
- <u>70 new materials</u> were added

JENDL/AC-2008+ for MA

New Materials (70 nuclei)

- **V** -50, 51 (Isotopic evaluation)
- **Zn**-64, 65, 66, 67, 68, 70 (fusion relevant ?)
- ¹⁵⁴⁻¹⁶⁴Dy, ¹⁶⁹Tm, ¹⁶⁸⁻¹⁷⁶Yb, ¹⁸⁴⁻¹⁹²Os, ¹⁹⁷Au
- **FP/MA** ($T_{1/2} \ge 10$ days, fission yield $\ge 0.1\%$)
- Minor nuclei (e.g., Fe-59, Ni-59, W-180, ...)

Resolved RP

- Recent ORNL data with covariance (Mn,Cr)
- Recent n-TOF, LANSCE, RPI & ...
- **ATLAS-2006**
- **E**_{max} was carefully determined
- Adjust negative resonance parameter
- Updated for <u>more than 200</u> nuclei

Resolved RP

Unresolved RP

- E_{max} was extended up to 100 keV 1 MeV
 Re-evaluation for almost all nuclei
- Adopt LSSF=1

Fast-energy Region

Optical Model Evaluation

- Coupled-channels (Soft/Rigid-rotor)
 SOM+DWBA
- OMP : (nucleons)
- Kunieda-Chiba+ (2006)
- Koning-Delaroche (2000)
- Soukhovitskii+ (200X) MA

- Beta :
- Tuned values
- Raman's recommendation values
 Theoretical prediction, e.g., by FRDM

Bulk Test for CC-OM

CC is realistic

Optical Model Eval. -examples-

Optical Model Eval. -examples-

Optical Model Eval. -examples-

OMP: Koning-Delaroche

Fast-energy Region -II

CCONE / POD evaluation

- Multistep statistical decay
- Pre-equilibrium model
- Direct capture

- CC transmission coeff.
- Mengoni-Nakajima a*
- Γ_{γ}/D_0 , Determined from (n, γ)_{exp} / Atlas / Syst.

CCONE / POD Evals

CCONE / POD Evals

CCONE / POD Evals

~200 nuclei + MA

^{28,29,30}Si, ⁴⁰⁻⁴⁸Ca, ^{50,51}V, ⁵⁰⁻⁵⁴Cr, ⁶⁴⁻⁷⁰Zn, ⁷⁵As, ⁷⁴⁻⁸²Se,
⁷⁸⁻⁸⁶Kr, ^{85,86,87}Rb, ⁸⁴⁻⁸⁸Sr, ^{89,90,91}Y, ⁹²⁻¹⁰⁰Mo, ¹⁰²⁻¹¹⁰Pd,
¹⁰⁷⁻¹¹¹Ag, ¹⁰⁶⁻¹¹⁶Cd, ^{113,115}In, ¹¹²⁻¹²⁶Sn, ¹²⁴⁻¹³⁶Xe,
¹³³⁻¹³⁷Cs, ¹⁴⁰⁻¹⁴⁴Ce, ¹⁴²⁻¹⁵⁰Nd, ¹⁴⁷⁻¹⁵¹Pm, ¹⁴⁴⁻¹⁵⁴Sm,
¹⁵¹⁻¹⁵⁵Eu, ¹⁵²⁻¹⁶⁰Gd, ^{159,160}Tb, ¹⁵⁴⁻¹⁶⁴Dy, ¹⁶²⁻¹⁷⁰Er, ¹⁶⁹Tm,
¹⁶⁸⁻¹⁷⁶Yb, ¹⁷⁴⁻¹⁸²Hf, ¹⁸⁰⁻¹⁸⁶W, ¹⁸⁴⁻¹⁹²Os, ¹⁷⁹Au, ²⁰⁴⁻²⁰⁸Pb,
²⁰⁹Bi, +MA

Microscopic Approaches

Faddeev calculation by S. Chiba

ACM calculation by N. Itagaki

FNS Fe Benchmark

FNS Pb Benchmark

Full-evaluation was performed for JENDL-4

FNS V Benchmark

There is an inconsistency in this case ...

Summary

- > JENDL-4.0 is now ready to release
 - RRP&URP were updated
 - Adopt CC optical model with recent potential
 - CCONE / POD evaluations (DDX, γ-spectra)
 - Microscopic models were partially applied to
 - FNS benchmarks shows some improved effects

Back up

¹H, ⁷⁰⁻⁷⁶Ge : ENDF/VII.0

CCONE / POD evaluation

^{28,29,30}Si, ⁴⁰⁻⁴⁸Ca, ^{50,51}V, ⁵⁰⁻⁵⁴Cr, ⁶⁴⁻⁷⁰Zn, ⁷⁵As, ⁷⁴⁻⁸²Se, ⁷⁸⁻⁸⁶Kr,
^{85,86,87}Rb, ⁸⁴⁻⁸⁸Sr, ^{89,90,91}Y, ⁹²⁻¹⁰⁰Mo, ¹⁰²⁻¹¹⁰Pd, ¹⁰⁷⁻¹¹¹Ag, ¹⁰⁶⁻¹¹⁶Cd,
^{113,115}In, ¹¹²⁻¹²⁶Sn, ¹²⁴⁻¹³⁶Xe, ¹³³⁻¹³⁷Cs, ¹⁴⁰⁻¹⁴⁴Ce, ¹⁴²⁻¹⁵⁰Nd, ¹⁴⁷⁻¹⁵¹Pm,
¹⁴⁴⁻¹⁵⁴Sm, ¹⁵¹⁻¹⁵⁵Eu, ¹⁵²⁻¹⁶⁰Gd, ^{159,160}Tb, ¹⁵⁴⁻¹⁶⁴Dy, ¹⁶²⁻¹⁷⁰Er,
¹⁶⁹Tm, ¹⁶⁸⁻¹⁷⁶Yb, ¹⁷⁴⁻¹⁸²Hf, ¹⁸⁰⁻¹⁸⁶W, ¹⁸⁴⁻¹⁹²Os, ¹⁷⁹Au, ²⁰⁴⁻²⁰⁸Pb, ²⁰⁹Bi

Light Nuclei

- 1 H : ENDF/VII.0
- ${}^{9}\text{Be}$: (n,n), (n,2n)
 - C : (n,n) was modified
- 14 N : (n,p) with covariance
- ¹⁶O : New R-matrix analysis, (n,α)
- ²³Na : Covariance data were modified

Better results were achieved in typical (reactor/FNS) benchmarks