## Resonance Evaluation for FENDL-3 at ORNL



## L. Leal, H. Derrin, K. Guber, D. Wiarda, and G. Arbanas

#### FENDL-3 Meeting November 2011



# 50,52,53,54Cr Resonance Evaluation at ORNL



#### L. Leal, H. Derrien

Nuclear Data Group Oak Ridge National Laboratory

#### FENDL-3 Meeting November 2011



## **Cr** isotope evaluation

- Transmission and capture cross section measurements done at ORELA for <sup>53</sup>Cr and natural Cr for energy below 500 keV (Guber);
- Early high resolution transmission measurements done by Harvey at ORELA above 100 keV for all Cr isotopes;
- Evaluation performed with SAMMY;
- Preliminary resolved resonance parameters determined for all Cr isotopes;



## **Computer Code SAMMY**

- •Used for analysis of neutron, charged-particle crosssection data.
- •Uses Bayes' method (generalized least squares) to find parameter values.
- •Uses R-matrix theory, Reich-Moore approximation (default) or multi- or single-level Breit-Wigner theory.
- •Generates covariance and sensitivity parameters for resonance region.



## **Cr** isotope evaluation

# Energy Range for <sup>52</sup>Cr Resolved (OLD): $10^{-5} \text{ eV} - 1.2 \text{ MeV}$ Resolved (ORNL): $10^{-5} \text{ eV} - 1.43 \text{ MeV}$ Energy Range for <sup>53</sup>Cr Resolved (OLD): 10-5 eV - 245 keVResolved (ORNL): $10^{-5} \text{ eV} - 564 \text{ keV}$



### <sup>52</sup>Cr Resonance Evaluation



6 Managed by UT-Battelle for the Department of Energy

## <sup>52</sup>Cr Resonance Evaluation



## <sup>53</sup>Cr Resonance Evaluation



### <sup>53</sup>Cr Resonance Evaluation



9

## <sup>52</sup>Cr thermal cross section compared to the values listed in the Atlas of Neutron Resonances

| Cross<br>Section | ORNL        |        | Atlas       |
|------------------|-------------|--------|-------------|
|                  | Resonance   | Direct |             |
| Capture          | 0.75+/-0.02 | 0.82   | 0.86+/-0.02 |
| Total            | 3.82+/-0.01 | 3.93   | 3.82+/-0.03 |
| Scattering       | 3.07+/-0.07 | -      | 2.96+/-0.02 |



## <sup>53</sup>Cr thermal cross section compared to the values listed in the Atlas of Neutron Resonances

| Cross<br>Section | ORNL         |        | Atlas        |
|------------------|--------------|--------|--------------|
|                  | Resonance    | Direct |              |
| Capture          | 18.09+/-0.42 | 18.41  | 18.60+/-0.60 |
| Total            | 26.07+/-0.51 | 26.39  | 26.38+/-0.62 |
| Scattering       | 7.98+/-0.28  | -      | 7.78+/-0.20  |



<sup>50,54</sup>Cr isotope evaluation Energy Range for <sup>50</sup>Cr Resolved (OLD): $10^{-5} \text{ eV} - 600 \text{ keV}$ Resolved (ORNL):  $10^{-5} \text{ eV} - 783 \text{ keV}$ Energy Range for <sup>54</sup>Cr Resolved (OLD): 10-5 eV – 750 keV Resolved (ORNL):  $10^{-5} \text{ eV} - 834 \text{ keV}$ 



## <sup>58,60</sup>Ni Resonance Evaluation at ORNL



## H. Derrien and L. Leal

Nuclear Data Group

**Oak Ridge National Laboratory** 



Managed by UT-Battelle for the Department of Energy

## INTRODUCTION

- PREVIOUS EVALUATION by C. M. Perey et al., for ENDF/B-V, VI
  - not modified for B-VII-0
  - no COVARIANCE DATA available
  - <sup>58</sup>Ni thermal to 800 keV
  - <sup>60</sup>Ni thermal to 450 keV
- HIGH RESOLUTION NEUTRON TRANSMISSION at GELINA
  - Brusegan, 1994
- NEW CAPTURE CROSS SECTION MEASUREMENT at ORELA Guber, 2008
- RE-EVALUATION NEEDED by UPDATING THE DATA BASE
- **RPCM and CSCM CALCULATION**



## **EXPERIMENTAL DATA BASE**

- OLD ORELA TRANSMISSION DATA by Harvey, Larson, Perey
  - <sup>58</sup>Ni Flight path 78 m, Sample 0.0764 at/b Low Energy
  - <sup>58</sup>Ni Flight path 201 m, Sample 0.172 at/b High Energy
  - <sup>60</sup>Ni Flight path 80 m, Sample 0.029 and 0.084 at/b E < 200 keV</li>
  - $^{60}$ Ni Flight path 80 m, Sample 0.0744 at/b E > 200keV



## **EXPERIMENTAL DATA BASE**

- **GELINA TRANSMISSION DATA by Brusegan et al.** 
  - 58Ni Flight path 388 m Sample 0.044 at/b
  - 60Ni Flight path 388 m Sample 0.0744 at/b
- ORELA CAPTURE DATA by Guber
  - 58Ni Flight path 40 m Samples 0.360 at/b
  - 60Ni Flight path 40 m Samples 0.364 at/b



Resonance Parameters

|                  | ENDF/B.VII.0             | ORNL                                   |
|------------------|--------------------------|----------------------------------------|
|                  | (keV)                    | (keV)                                  |
| <sup>58</sup> Ni | 10 <sup>-2</sup> – 812.0 | 10 <sup>-2</sup> – 812.0               |
| <sup>60</sup> Ni | 10 <sup>-2</sup> – 450.0 | <b>10</b> <sup>-2</sup> <b>– 812.0</b> |



• <sup>58</sup>Ni effective capture cross section in the energy range 175 keV to 200 keV from Guber et al. The smooth curve represents the effective cross section calculated by SAMMY from the resonance parameters



• <sup>60</sup>Ni effective capture cross section in the energy range 164 keV to 176 keV from Guber et al. The smooth curve represents the effective cross section calculated by SAMMY from the resonance parameters



19 Managed by UT-Battelle for the Department of Energy

# • <sup>58</sup>Ni average capture cross sections. The cross sections are given in mb

| Energy keV    | Present     | B-VII-0 | Perey[1]  | Froehner[10] |
|---------------|-------------|---------|-----------|--------------|
| 6.31-7.94     | 13.28±3.17  | 13.38   | 13.0±1.0  | 2.6±0.3      |
| 7.94-10.00    | 6.46±1.34   | 4.80    | 3.3±0.6   | 3.3±3.3      |
| 10.00-12.59   | 8.87±1.51   | 6.86    | 6.2±1.6   | 6.6±1.0      |
| 12.59-15.85   | 179.35±11.5 | 193.86  | 196.0±19. | 195.0±25.    |
| 15.85-20.00   | 23.63±2.71  | 21.43   | 20.9±4.0  | 26.3±3.2     |
| 20.00-25.10   | 42.08±4.24  | 42.68   | 45.8±1.9  | 35.2±4.4     |
| 25.10-31.60   | 28.83±2.28  | 33.63   | 36.3±1.5  | 26.2±3.9     |
| 31.60-39.80   | 62.13±3.72  | 75.21   | 78.6±3.2  | 55.7±5.0     |
| 39.80-50.10   | 12.75±0.87  | 13.89   | 14.5±0.6  | 10.6±1.3     |
| 50.10-63.10   | 31.01±1.97  | 39.59   | 41.7±2.2  | 31.4±2.3     |
| 63.10-79.40   | 10.79±1.13  | 13.66   | 14.2±1.5  | 9.8±0.7      |
| 79.40-100.00  | 19.93±1.27  | 24.43   | 25.5±1.0  | 17.3±1.7     |
| 100.00-125.90 | 25.82±0.88  | 34.11   | 35.2±1.5  | 22.0±2.1     |
| 125.90-158.50 | 16.35±0.60  | 20.78   | 21.3±1.5  | 12.6±1.0     |
| 158.50-199.50 | 16.80±0.59  | 22.73   | 23.6±1.0  | 16.5±2.4     |
| 199,50=251.20 | 12.36±0.45  | 18.77   | 19.3±0.5  | 13.1±3.3     |



# • <sup>60</sup>Ni average capture cross sections. The cross sections are given in mb

| Energy keV  | Present mb | Uncertainties | ENDF/B-VII-0 | Ratio |
|-------------|------------|---------------|--------------|-------|
| 1.0-2.0     | 9.85       | 5.50          | 10.57        | 1.07  |
| 2.0-3.0     | 106.25     | 7.53          | 109.58       | 1.03  |
| 3.0-5.0     | 9.02       | 4.50          | 9.57         | 1.06  |
| 5.0-10.0    | 27.55      | 3.80          | 27.24        | 0.99  |
| 10.0-15.0   | 167.82     | 9.15          | 163.60       | 0.97  |
| 15.0-20.0   | 15.11      | 2.70          | 14.17        | 0.94  |
| 20.0-27.0   | 22.85      | 2.41          | 23.70        | 1.04  |
| 27.0-38.0   | 21.91      | 2.11          | 27.06        | 1.23  |
| 38.0-47.0   | 15.86      | 2.01          | 17.22        | 1.09  |
| 47.0-70.0   | 15.32      | 1.82          | 17.52        | 1.14  |
| 70.0-100.0  | 13.47      | 1.61          | 15.56        | 1.16  |
| 100.0-150.0 | 12.57      | 1.11          | 14.35        | 1.14  |
| 150.0-200.0 | 8.75       | 0.91          | 13.66        | 1.33  |
| 200.0-250.0 | 8.05       | 0.90          | 9.61         | 1.19  |
| 250.0-300.0 | 8.63       | 0.81          | 9.55         | 1.11  |
| 300.0-350.0 | 9.88       | 0.81          | 11.27        | 1.14  |
| 350.0-400.0 | 8.28       | 0.71          | 10.37        | 1.25  |
| 600.0-450.0 | 8.06       | 0.61          | 8.86         | 1.10  |

#### **RESONANCE EVALUATION OF 46,47,48,49,50 Ti INCLUDING COVARIANCE FOR CRITICALITY SAFETY APPLICATIONS**



L. Leal and K. Guber

**ORNL** 

A. Kahler

LANL



Managed by UT-Battelle for the Department of Energy

## **Titanium Data**

| Isotope<br>Name  | Abundance<br>(%) | σ <sub>γ</sub><br>(thermal) | $\delta \sigma_{\gamma /} \sigma_{\gamma}$ (%) |
|------------------|------------------|-----------------------------|------------------------------------------------|
| <sup>46</sup> Ti | 8.25             | $0.59 \pm 0.18$             | 30.5                                           |
| <sup>47</sup> Ti | 7.44             | $1.63 \pm 0.04$             | 2.4                                            |
| <sup>48</sup> Ti | 73.72            | $8.32 \pm 0.16$             | 1.9                                            |
| <sup>49</sup> Ti | 5.41             | $1.87 \pm 0.04$             | 2.2                                            |
| <sup>50</sup> Ti | 5.18             | $0.18 \pm 0.03$             | 16.7                                           |



## Method of Analyze

- Nuclear data base used in the evaluation
  - High-resolution transmission and capture cross section measurements for enriched <sup>48</sup>Ti done at ORELA;
  - High-resolution transmission and capture cross section measurements done for natural Ti done at ORELA;
- Initial set of resonance parameters from ENDF/B-VII.0;
- Thermal cross section and resonance integral listed in the Atlas of Neutron Resonances (ANR);
- Use of Reich-Moore formalism and the Bayes' methodology of the SAMMY code to fit the experimental data;
- > Evaluation done in the energy region 10<sup>-5</sup> eV to 400 keV;



## **Experimental Data**

| Data Set     | Energy Range<br>(keV) | Flight Path<br>(m) | Density<br>(at/b)   |
|--------------|-----------------------|--------------------|---------------------|
|              | Natural               | Fitanium           |                     |
|              |                       |                    |                     |
| Transmission | 0.01 – 500.0          | 79.827             | 0.052966<br>(thick) |
| Transmission | 0.01 - 500.0          | 79.827             | 0.008785<br>(Thin)  |
| Capture      | 0.01 - 500.0          | 40.116             | 0.035158            |
|              |                       |                    |                     |



## **Experimental Data**

| Energy Range<br>(keV) | Flight Path<br>(m)                                                              | Density<br>(at/b)                                                                                                          |
|-----------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Enrich                | ed <sup>48</sup> Ti                                                             |                                                                                                                            |
|                       |                                                                                 |                                                                                                                            |
| 0.01 - 500.0          | 79.827                                                                          | 0.028185<br>(Thick)                                                                                                        |
| 0.01 - 500.0          | 79.827                                                                          | 0.0011821<br>(Thin)                                                                                                        |
| 0.01 - 500.0          | 40.116                                                                          | 0.0091386                                                                                                                  |
|                       | Energy Range<br>(keV)<br>Enrich<br>0.01 – 500.0<br>0.01 – 500.0<br>0.01 – 500.0 | Energy Range<br>(keV)Flight Path<br>(m)Flight Path<br>(m)Enrich 48Ti0.01 - 500.079.8270.01 - 500.079.8270.01 - 500.040.116 |



27 Managed by UT-Battelle for the Department of Energy



28 Managed by UT-Battelle for the Department of Energy

paradigm shift

National Laboratory



for the Department of Energy

## **Covariance Results for <sup>48</sup>Ti**



30 Managed by UT-Battelle for the Department of Energy

National Laboratory

## <sup>48</sup>Ti thermal cross sections and uncertainties

| <b>Cross Section</b> | ENDF/B-VII.0 | ANR                               | This Work        |
|----------------------|--------------|-----------------------------------|------------------|
|                      | (barns)      | (barns)                           | (barns)          |
| Capture              | 7.84         | $8.32 \pm 0.16$                   | $8.32 \pm 0.23$  |
|                      |              |                                   |                  |
| Total                | 12.16        | $12.42 \pm 0.25$                  | $12.35 \pm 0.30$ |
|                      |              |                                   |                  |
| Scattering           | 4.32         | $\textbf{4.10} \pm \textbf{0.20}$ | $4.03 \pm 0.20$  |
|                      |              |                                   |                  |



**Benchmark Calculation and Uncertainty Propagation** 

- ✓ Uncertainty propagation in  $k_{eff}$  calculation
- ✓ ICSBEP benchmark: HEU-MET-MIXED-001
- ✓ Uncertainty processed with PUFF-IV
- ✓ Error propagation to  $k_{eff}$  done with TSUNAMI



## Sensitivity of the multiplication factor to the capture cross sections of <sup>48</sup>Ti and <sup>235</sup>U for the HEU-MET-MIXED-001 benchmark system



33 Managed by UT-Battelle for the Department of Energy

lational Laboratory

## **Benchmark Calculation and Uncertainty Propagation**

|                                      | k <sub>eff</sub> | Total<br>uncertainty in<br>the <i>k<sub>eff</sub></i> | Uncertainty in<br>the k <sub>eff</sub> due to<br><sup>48</sup> Ti |
|--------------------------------------|------------------|-------------------------------------------------------|-------------------------------------------------------------------|
| ENDF/B-VII.0                         | 1.0083           |                                                       |                                                                   |
|                                      | ±                | 1.1880                                                | 0.1139                                                            |
|                                      | 0.0001           | ±                                                     | ±                                                                 |
| ENDF/B-VII.1                         | 1.0053           | 0.0001                                                | 0.0001                                                            |
| (including                           | ±                |                                                       |                                                                   |
| ORNL <sup>48</sup> Ti<br>evaluation) | 0.0001           |                                                       |                                                                   |

The uncertainty in  $k_{eff}$  due to <sup>48</sup>Ti is ~11% of the total uncertainty



## <sup>46,47,49,50</sup>Ti Resonance Covariance Generation



L. Leal Nuclear Data Group

**Oak Ridge National Laboratory** 



Managed by UT-Battelle for the Department of Energy

## **Resonance Parameter Covariance Generation**

- Resolved resonance parameters of the ENDF/B.VII.0 were converted from MLBW into the RM representation. The resonances were checked against the resonance parameters given in the Atlas of Neutron Resonances.
- For Ti-46 a resonance at 55.67 keV with j=1/2 (l=1) was repeated. According to the Atlas it should be at the energy 56.66 with gt=0.48 eV, gn=0.1 eV and gg=0.38.
- Resonance fit with SAMMY.

## COVARIANCE:

Resolved resonance covariance data were generate with the SAMMY code for Ti isotopes.



## Concluding Remarks

- Resonance parameter and covariance evaluation have been performed at ORNL;
- New transmission and capture cross section measurements done at ORNL used in the evaluation;
- Evaluation done with the SAMMY code using the Reich-Moore formalism;
- > Thermal cross section and uncertainties well represented;
- > Evaluation adopted in the recently released ENDF/B-VII.1

