Neutron, Proton, Deuteron activation-transmutation files: n,p,d-FENDL-3/A

Jean-Christophe Sublet

CCFE, Culham Centre for Fusion Energy Culham Science Centre, Abingdon United Kingdom

EAF-2010 = FENDL-3.0/A

87 simple particles reactions = MT's

MT	Particles	MT Particles	MT Particles	MT Particles	
2	n	45 npα	159 2npα	<u>182 dt</u>	
4	n'	102 g	160 7n	183 n′pd	
5	anything	103 p	161 8n	184 n′pt	
11	2nd	104 d	162 5np	185 n´dt	
16	2n	105 t	163 6np	186 n'ph	
17	3n	106 ³ He	164 7np	187 n´dh	
18	fission	107 α	165 4nα	188 n'th	
22	nα	108 2α	166 5nα	189 n′tα	Only 6 of the new
23	n3α	109 3α	167 6nα	190 2n2p	channels do not
24	2nα	111 2p	168 7nα	<u>191 ph</u>	output a neutron
25	3nα	112 ρα	169 4nd	<u>192 dh</u>	output a neutron
28	np	113 t2α	170 5nd	<u>193 hα</u>	
29	n2α	114 d2α	171 6nd	194 4n2p	
30	2n2α	115 pd	172 3nt	195 4n2α	
32	nd	116 pt	173 4nt	196 4npα	
33	nt	117 dα	174 5nt	<u>197 3p</u>	
34	n ³ He	152 5n	175 6nt	198 n´3p	
35	nd2α	153 6n	176 2nh	199 3n2pα	
36	nt2α	154 2nt	177 3nh	200 5n2p	
37	4n	<u>155 tα</u>	178 4nh		black (20)
41	2np	156 4np	179 3n2p	ACTUALIVI I DIACK (39)	
42	3np	157 3nd	180 3n2α	lew MT g	reen (48)
44	n2p	158 n′dα	181 3npα		

Approved during the Nov. 2010 CSWEG meeting ENDF-6 Format Manual - xxx 2011 Revision

MT Values

- Grid of reactions including all (old) **37 MT numbers** previously defined and some recently added, **+ 49 MT**

	N-7	N-6	N-5	N-4	N-3	N-2	N-1	Ν	N+1
Z	(n,8n)	(n,7n)	(n,6n)	(n,5n)	(n,4n)	(n,3n)	(n,2n)	(n,n')	(n,γ)
	161	160	153	152	37	1 /	16	4	102
Z-1					(n,2nt)	(n,nt), (n,2np)	(n,t), (n,nd)	(n,d), (n,np)	(n,p)
					154	33,42	105,32,41	104, 28	103
Z-2	(n,6na)		(n,4na)	(n,3na)	(n,2na)	(n,n'a)	(n,a), (n,nh)	(n,h), (n,pd)	(n,2p)
	167		165	25, 200	24	22	107,34,116	106,44,115	111
Z-3					(n,2npa)	(n,da),(n,npa)	(n,pa)		(n,3p)
					159	117,45	112		197
Z-4			(n,2n2a)	(n,n2a)	(n,2a)				
			30	29	108				
Z-5		(n,nt2a)	(n,t2a)	(n,d2a)					
		36	113,35	114					
Z-6		(n,n3a)	(n,3a)						
		23	109						

EAF2ENDF processes

- Transforms EAF-format into ENDF-6 format
- Modified to handle branching ratio
- Modified to handle the recently defined MT's
- Groups partial channels in a complete data file for each of the 816 target isotopes
- Main transformation: MF3 (EAF) --> MF3/8/9/10 (ENDF-6)
 - ➤ add MF-1 and MF-2
- All cross sections up to 60 MeV
- ➢ Automatically starts CHECKR, FIZCON, and PSYCHE

➢ Allow the use of all ENDF utility code, PREPRO-2011 and NJOY-99.364

➤ The IAEA (V. Zerkin) merged EAF-2010 in ENDF-6 format and EAF-2010_UN → MF33/40

Final release, bug correction; mid November

EAF-2010 into ENDF-6 = n-FENDL-3.0/A

- MF-1 General information, comments
 - » Including the original EAF comments lines
- MF-2 Resonance parameters
 - » skeleton ; r = $1.35x(A^{1/3})$
 - » all resonant channels in PENDF (293.6 K)
- MF-3 Total cross section channels
- MF-8 Flag, file pointer, dictionary (for NJOY only)
 - » either to MF-3/9 or MF-10
- MF-9 Isomeric branching ratio
 - » energy dependant
- MF-10 Split threshold reaction channels
 - MF-33 Cross section covariance
 - MF-40 Radionuclide production covariance

MF-3 and MF-10 cannot be populated simultaneously, total reaction channels are not stored when partials exist

Unified ENDF-6 file frame

MF Description

- 1 General information, comments
- 2 Resonance parameter, scattering radius
- 3 Total reaction channels
- 6 Radionuclide yields for MT-5
- 8 Flag, file pointer, dictionary
- 9 Isomeric branching ratio, for non threshold reaction
- 10 Split threshold reaction channels
- 33 Covariance of neutron cross sections
- 39 Covariance for radionuclides production yields
- 40 Covariance for production of radioactive nuclei

Toward a unified ENDF-6 formatted file frame

A. J. Koning ,D. Rochman ,J-Ch C. Sublet CCFE-R(11) 16 (November 2011)

Processing sequences

- ① Format checks: moder, dictin, fixup, calendf, crectj6
- ② MF-2 parameters: recent, linear, reconr, calendf
- ③ Doppler: sigma1, broadr, calendf
- 4 Heating, damage: heatr
- 5 RR & URR: calendf, groupie, purr
- 6 Gas production: gaspr
- 7 Activation: activate, groupr, sixpak
- 8 Multigroup : **groupie**, **groupr**
- Graph checks: evalplot, plotr, viewr, complot and ZVView

All this is done respecting the ENDF-6 format

Evaluated and Processed files

- The end results are fully compliant ENDF-6 formatted evaluated and processed files.
- All processing steps, sequences can be easily relaunched to account for any changes, modification, updates.
- Many intermediary steps, output listing or preprocessed files, add to the robustness of such system.
- The basic nuclear data and the processing steps are transferred to technology in a consistent and QA manner.

LLNL Generalized Nuclear Data format

- Lawrence Livermore National Laboratory (LLNL) is releasing the third version of a new "Generalized Nuclear Data" (or GND) format, designed to replace the ENDF-6 and LLNL's ENDL formats.
- The FUDGE package, a set of routines (written in Python) convert an existing ENDF-6 formatted file into this new XML format.
- By default, this package outputs the new format in XML, however for converting to HDF5, the XML2HDF5 tool can be used.

n-FENDL-3.0/A in GND format

• The fully ENDF-6 compliant pointwise forms of EAF-2010 have been converted in GND formatand back in ENDF-6 format

Zr90.endf6.orig Zr90.endf6.xml (rather human readable format) Zr90.endf6-covar.xml Zr90.endf6 ↓ back to ENDF-6 !! Zr90.endf6.orig.noLineNumbers.cleanAndFixed Zr90.endf6.orig.noLineNumbers.clean

n-FENDL-3.0/A in GND format

- FUDGE-V.2 to FUDGE-V.3 to tackle EAF-2010
- This conversion tool pick-up 'inconsistency" the utility codes did not !! - excitation levels
- GND is more robust than ENDF, less permissive, the physics contents can and has been be tighten up during the conversion (and back !!)
- Many utilitarian, plotting tools 'plug-in' easily into such a format
- This format has a place and a future in Nuclear Data world

Thanks to Caleb Mattoon at LLNL

IAEA Web site

Incident Energy (MeV)

EAF-2010 in ENDF-6 format with PREPRO, ZVview, EXFOR

SAFEPAQ-II at CCFE

Variance and uncertainty

Data	Standard deviation	Variance
A	Δ	Δ^2
50	0.05	0.0025

• The uncertainty correspond to the error factor

f = 1 + U

• The best estimate of the cross section uncertainty is

 $\sigma/f < \sigma < \sigma f$

• Assuming that the uncertainty is 3 time the standard deviation

 $U = 3\Delta (U^2 \text{ in EAF}_UN)$

EAF uncertainty file

- Since 1994, EAF's library have been flanked by an uncertainty file, in pseudo MF-33 format.
- Prototype ENDF-6 formatted version of EAF has existed since EAF-2003, 2 to 4 groups MF-33.
- Fully compliant ENDF-6 format EAF-2010 version now includes MF-33 (cross sections) and MF-40 (radionuclide) covariance file, 60 MeV upper energy, 816 targets, 66256 channels.
- Format changes approved during the November 2010 CSWEG meeting, in the ENDF-6 Format Manual - dec 2011 Revision !!

EAF-2010 NJOY-ERRORR

60 MeV

Validated reactions - ²⁹Si(n,p)²⁹Al

Validated reactions - ²⁹Si(n,p)²⁹Al

Validated reactions – ⁸⁹Y(n,2n)⁸⁸Y

Validated reactions – ⁸⁹Y(n,2n)⁸⁸Y

Extended C/E Integral – ⁸⁹Y(n,2n)⁸⁸Y

Reactions with score 5 – ⁵⁰Cr(n,2n)⁴⁹Cr

Extended C/E integral – ⁵⁰Cr(n,2n)⁴⁹Cr

Reactions with score 5 - ⁵⁰**Cr(n,2n)**⁴⁹**Cr**

EASY-2007/2010 validation

- Validation of EASY-2001, -2003, -2005
- 'Validation of EASY-2007 using integral measurements', UKAEA FUS 547, 2007
- All reports available from CCFE web site for download
- 564 pages, graphical report
- Materials:
 - All of EASY-2007 database
 - Re, Sn from FNG; Er, La from TUD
 - Cr from Řež; Y, Mo, Ta from FNG re-analysed
 - JAERI FNS measurements re-analysed
- Use of extended (energy dependent) C/E plot
- 470 reactions plotted, 217 validated

Apply to n-FENDL-3.0/A validation

Summary

- Large database of integral data, many materials
- EASY approach, C/E for nuclide \rightarrow C/E for reaction
- Use integral + differential data \rightarrow Quality score
- Results for EASY-2007/2010 == FENDL-3.0/A

d-, p-FENDL-3.0/A

- Assembled from EAF-2007 proton and deuteron induced activation-transmutation libraries
- Improved deuteron channels from the National Institute of Physics and Nuclear Engineering, Bucarest: Cu, Al..
- The deuteron-induced library contains data for 66,864 reactions, while the proton-induced library contains data for 67,925 reactions.
- Released to the IAEA in EAF pointwise data format with no uncertainty

Conclusions

- All aspects to assemble, process, verify and validate modern transport activation-transmutation file have been outlined. It Includes file format, numerical and physical contents, each processing sequences, intermediary steps, all processing codes used, leading to a file in ENDF-6 format that can be transformed into useful forms.
- Every individual steps have already been achieved

The Autumn of 2011 is seeing the birth of a new generation of nuclear data files feeding in new generation of activation-transmutation codes

