The Status of Nuclear Data above 20 MeV

Masayoshi SUGIMOTO, Tokio FUKAHORI Japan Atomic Energy Agency

IAEA's Technical Meeting on Nuclear Data Libraries for Advanced Systems: Fusion Devices (NuDL:FD) 31 October – 2 November 2007, Vienna

Target Nuclides and Priorites

JAPAN ATOMIC ENERGY AGENCY

JAEA

Neutron & Proton File up to 3 GeV (Total: 132 nuclides)

1 st priority (39)	<u>¹H, ¹²C, ¹⁴N, ¹⁶O, ²⁷A1, ^{50,52,53,54}Cr, ^{54,56,57,58}Fe,</u> ^{58,60,61,62,64} Ni, ^{63,65} Cu, ^{180,182,183,184,186} W, ^{196,198,199,200,201,202,204} Hg, ^{204,206,207,208} Pb, ²⁰⁹ Bi, ^{235,238} U
2 nd priority (43)	⁹ Be, ^{10,11} B, ^{24,25,26} Mg, ^{28,29,30} Si, ^{39,41} K, ^{40,42,43,44,46,48} Ca, ^{46,47,48,49,50} Ti, ⁵¹ V, ⁵⁵ Mn, ⁵⁹ Co, ^{90,91,92,94,96} Zr, ⁹³ Nb, ^{92,94,95,96,97,98,100} Mo, ^{238,239,240,241,242} Pu
3 rd priority (40)	² H, ^{6,7} Li, ¹³ C, ¹⁹ F, ²³ Na, ^{35,37} Cl, ^{35,38,40} Ar, ^{64,66,67,68,70} Zn, ^{69,71} Ga, ^{70,72,73,74,76} Ge, ⁷⁵ As, ⁸⁹ Y, ¹⁸¹ Ta, ¹⁹⁷ Au, ²³² Th, ^{233,234,236} U, ²³⁷ Np, ^{241,242,242m,243} Am, ^{243,244,245,246} Cm
4 th priority (10)	¹⁵ N, ¹⁸ O, ^{74,76,77,78,80,82} Se, ^{113,115} In

Nuclides with red color (66) : Released in March 2004 as JENDL/HE-2004 Nuclides with underline are revised for JENDL/HE-2007.

Nuclides with blue color (36): Additionally Release in 2007 as JENDL/HE-2007

Evaluation Methods and Tools

for cluster particle emission spectra.

Above are applied for ⁵⁶Fe, Zr, Nb, W, Pb and Bi.

http://www.jstage.jst.go.jp/article/jnst/44/6/44_838/_article

Deuteron Elastic Scattering

Triton Elastic Scattering

Angle (deg.)

180

Total Absorption Cross Section

Alpha Elastic Scattering

Preequilibrium Model for Cluster Particles

Emission Rate of Cluster Particles

Fe(n,xα) Spectrum

Pb(n,xα) Spectrum

Fe(n,xα) Cross Section

Isotope production cross sections : ⁵⁶Fe

19

21

Benchmark Calculation (TIARA Experiment)

"Transmission through shields of quasi-monoenergetic neutrons generated by 43- and 68-MeV proton"

> Ref.) N. Nakao et al., *Nucl. Sci. Eng.* 124, 228 (1996). H. Nakashima et al., *Nucl. Sci. Eng.* 124, 243 (1996).

Experimental arrangement @ TIARA, JAERI

units in cm 22

JENDL High Energy File (JENDL/HE)

JAPAN ATOMIC ENERGY AGENCY

Integral Experiment at TIARA

10-200 cm

Ref.) N. Nakao et al., *Nucl. Sci. Eng.* 124, 228 (1996). H. Nakashima et al., *Nucl. Sci. Eng.* 124, 243 (1996). 23

Integral Experiment at TIARA

Benchmark Calculation (TIARA Experiment - Fe)

Benchmark Calculation (TIARA Experiment - Fe)

Benchmark Calculation (TIARA Experiment - Concrete)

Benchmark Calculation (TIARA Experiment - Concrete)

Benchmark Calculation (TIARA Experiment - Concrete)

Integral Experiment at RCNP

JAPAN ATOMIC ENERGY AGENCY

Experimental Set-up

Proton Energy:250 and 350 MeVTarget:Graphite, Al, Fe, PbTarget Thickness:full stopMeasured Angle:0°Flight Distance:11.4 m and 67.8 m (250MeV proton),
11.4 m and 95 m (350MeV proton)

Integral Experiment at RCNP

JAPAN ATOMIC ENERGY AGENCY

Case1: JENDL-HE vs. LA150 Code INC model Evaluated nuclear data Proton and neutron transition energy (MeV) **PHITS** Bertini JENDL-HE 150 PHITS Bertini LA150 150 10⁻² 10^{-2} 250MeV proton on a thick graphite 250MeV proton on a thick iron 27.5 cm thick ness 7.5 cm thick ness Neutron yield (n/sr/MeV/proton) Neutron yield (n/sr/MeV/proton) 10⁻³ 10⁻³ ┊╃╃**┯**┱┯┱╃┱<u>╄</u>┱╄╋╋╋ 0-4 10⁻⁴ JENDL-HE: ^{nat}C (including ¹³C) LA150 : ¹²C Ŧ 10⁻⁵ Expt. 10⁻⁵ Expt. PHITS JENDL-HE + Bertini PHITS JENDL-HE + Bertini PHITS LA150 + Bertini PHITS LA150 + Bertini Ţ 10⁻⁶ 10⁻⁶ 50 100 150 200 250 0 150 0 50 100 200 250 Neutron energy (MeV) Neutron energy (MeV)

JAPAN ATOMIC ENERGY AGENCY

Case2: JENDL-HE with Bertini Parameterization vs. no INC

Application (Neutron Spectra Due to Cosmic-ray)

Application (Neutron Spectra Due to Cosmic-ray)

Calculated Results

Reviewed were status of method and tools of the evaluation for JENDL High Energy File (JENDL/HE-2007). Especially, improvements of cluster-particle emission spectra and production cross sections.

JAPAN ATOMIC ENERGY AGENCY

Results of some analyses using JENDL/HE were also introduced as those of benchmark calculations. The calculations using JENDL/HE show good performance.

The first version of JENDL/HE (JENDL/HE-2004) has been released in March, 2004 with neutron and proton nuclear data of 66 nuclides up to 3 GeV. Soon, the second version of JENDL/HE (JENDL/HE-2007) will be released with those of totally over 100 nuclides including actinide ones.