A new parameter set of fission product mass yields systematics

J. Katakura
Nuclear Data Center
Japan Atomic Energy Research Institute

In this systematics, mass yields curve $\psi(A, E)$ is expressed like Moriyama-Ohnishi systematics as follows:

$$
\begin{aligned}
\psi(A, E) & =N_{s} \psi_{s}(A, E)+N_{a} \psi_{a}(A, E) \\
& =N_{s} \psi_{s}(A, E)+N_{a}\left[\psi_{h 1}(A, E)+\psi_{l 1}(A, E)+F\left\{\psi_{h 2}(A, E)+\psi_{l 2}(A, E)\right\}\right]
\end{aligned}
$$

where $\psi_{s}(A, E)$ and $\psi_{a}(A, E)$ are symmetric and asymmetric components respectively. The asymmetric components are then divided into heavy $\psi_{h}(A, E)$ and light $\psi_{l}(A, E)$ components with two curves (1 and 2). Each component is assumed to be Gaussian. Then there are 5 Gaussians in this systematics. The three components, $\psi_{s}(A, E), \psi_{h 1}(A, E)$ and $\psi_{h 2}(A, E)$ in the above equation are then expressed as:

$$
\begin{aligned}
& \psi_{s}(A, E)=\frac{1}{\sqrt{2 \pi} \sigma_{s}} \exp \left\{-\left(A-A_{s}\right)^{2} / 2 \sigma_{s}^{2}\right\}, \\
& \psi_{h 1}(A, E)=\frac{1}{\sqrt{2 \pi} \sigma_{h 1}} \exp \left\{-\left(A-A_{h 1}\right)^{2} / 2 \sigma_{h 1}^{2}\right\}, \\
& \psi_{h 2}(A, E)=\frac{1}{\sqrt{2 \pi} \sigma_{h 2}} \exp \left\{-\left(A-A_{h 2}\right)^{2} / 2 \sigma_{h 2}^{2}\right\},
\end{aligned}
$$

and other two functions $\psi_{l 1}(A, E)$ and $\psi_{l 2}(A, E)$ for the light fragment are given by reflecting $\psi_{h 1}(A, E)$ and $\psi_{h 2}(A, E)$ about the symmetric axis $A_{s}=\left(A_{f}-\bar{v}\right) / 2$. Here $A_{s}, A_{h 1}$ and $A_{h 2}$ are the mass numbers corresponding to the peak positions of the Gaussian distribution curves, and $\sigma_{s}^{2}, \sigma_{h 1}^{2}$ and $\sigma_{h 2}^{2}$ are the dispersions of these distributions. A_{f} denotes the mass number of the fissioning nuclide. The quantity \bar{v} is the average number of prompt neutrons emitted per fission. Other N_{s}, N_{a} and F are normalization factors and determined by systematics. The normalization factors N_{s} and N_{a} are given by:

$$
\begin{aligned}
& N_{s}=200 /(1+2 R), \\
& N_{a}=200 R /\{(1+F)(1+2 R)\},
\end{aligned}
$$

where R is the ratio of the asymmetric component to the symmetric component and F the ratio of the asymmetric component 1 to the asymmetric component 2 . Then the total yield is normalized to be 200%. As seen in these equations, there are 8 parameters to be determined in this systematics, that is, $\bar{v}, A_{h 1}, A_{h 2}, \sigma_{s}^{2}, \sigma_{h 1}^{2}, \sigma_{h 2}^{2}, R$ and F.

Following are the expressions of the 8 parameters.

$$
\bar{v}=1.404+0.1067\left(A_{f}-236\right)+\left[14.986-0.1067\left(A_{f}-236\right)\right] \cdot\left[1.0-\exp \left(-0.00858 E^{*}\right)\right]
$$

where E^{*} is the excitation energy ($E^{*}=E+B N ; E$: incident energy; $B N$: binding energy). This expression of \bar{v} is the same as that proposed by Wahl at the 1999 CRP Meeting.

$$
\begin{aligned}
R & =[112.0+41.24 \sin (3.675 S)] \cdot \frac{1.0}{B N^{0.331}+0.2067} \cdot \frac{1.0}{E^{0.993}+0.0951}, \\
\sigma_{s} & =12.6, \\
\sigma_{h 1} & =\left(-25.27+0.0345 A_{f}+0.216 Z_{f}\right)\left(0.438+E+0.333 B N^{0.333}\right)^{0.0864}, \\
\sigma_{h 2} & =\left(-30.73+0.0394 A_{f}+0.285 Z_{f}\right)\left(0.438+E+0.333 B N^{0.333}\right)^{0.0864}, \\
A_{h 1} & =0.5393\left(A_{f}-\bar{v}\right)+0.01542 A_{f}\left(40.2-Z_{f}^{2} / A_{f}\right)^{1 / 2}, \\
A_{h 2} & =0.5612\left(A_{f}-\bar{v}\right)+0.01910 A_{f}\left(40.2-Z_{f}^{2} / A_{f}\right)^{1 / 2}, \\
F & =10.4-1.44 S .
\end{aligned}
$$

In the above equations, S is the shell energy formula given by Meyer and Swiatecki, which is given by:

$$
\begin{aligned}
S(N, Z) & =5.8 s(N, Z), \\
s(N, Z) & =\frac{F(N)+F(Z)}{\left(\frac{1}{2} A\right)^{\frac{2}{3}}}-0.26 A^{\frac{1}{3}}, \\
F(N) & =q_{i}\left(N-M_{i-1}\right)-\frac{3}{5}\left(N^{\frac{5}{3}}-M_{i-1}^{\frac{5}{3}}\right), \quad \text { for } M_{i-1}<N<M_{i}, \\
q_{i} & =q(n), \\
& =\frac{3}{5} \frac{M_{i}^{\frac{5}{i}}-M_{i-1}^{\frac{5}{3}}}{M_{i}-M_{i-1}}, \text { for } M_{i-1}<n<M_{i},
\end{aligned}
$$

where M_{i} are the magic numbers, which are $Z=50,82,114$ and $N=82,126,184$. The numbers of $Z=100$ and $N=164$ employed in Moriyama-Ohnishi systematics are removed in the present systematics.

