Data assessment of ¹²C(p,p)¹²C cross sections from 3.5 to 5 MeV

I. Bogdanović Radović Rudjer Boskovic Institute Zagreb, Croatia

Summary

IBANDL reports only two databases for ¹²C(p,p) differential cross sections in the energy region from 3.5 − 5 MeV. Tosaki data from original publication [1] were transferred to IBANDL without errors. Second database reported in IBANDL is from Jackson et al.[2]. They reported cross sections from 400 keV up to 4360 keV for several c.m scattering angles 169.2°, 148.9°, 127.8° and 106.4° that corresponds to 168.2°, 146.3°, 123.8° and 101.7° laboratory angles. Differential cross sections are reported only in graphical for and in center-of-mass system. IBANDL reports only data for 168.2° from ref. [2]. Data for three other angles (146.3°, 123.8° and 101.7°) need to be digitized and transferred to IBANDL.

I have found two other references not mentioned in IBANDL, which report differential cross sections in the 3.5 – 5.0 MeV energy region. First one is Reich et al. [3]. Authors report center-of-mass differential cross sections (barn/sr) at few different c.m. scattering angles. Only scattering angles larger than 100° are considered here. At the moment, data from [3] are not included to IBANDL. In the original publication they are presented only in the graphical form for following c.m. scattering angles: 125.2°, 140.5°, 131.2°, 137°, 149.3°, 164° that corresponds to 121°, 137.3°, 127.4°, 133.6°, 146.7°,162.6° laboratory angles respectively.

Another recently published data set is from Cacciolli et al. Their work is accepted for publishing in Nucl. Inst. And Meth. [4]. Authors from [4] report about proton elastic scattering cross-sections on F, C and Li from 3 to 7 MeV for 150° scattering angle. Data are presented only in graphical form. As one of co-authors is a member of this CRP group (M. Chiari) he will be asked to add those data to IBANDL.

As a conclusion, there are only four available publications about 12 C(p,p) scattering in the energy range from 3500 - 5000 keV. Available data from two old publications [2,3] are given only in the graphical form. Major part of those data is not included to IBANDL and should be digitized. Recent measurements performed at 150° are given in the paper accepted for publishing. As data are presented only in graphical form, authors will be asked to submit them to IBANDL.

Angle	energy	Author	Comment
Lab	(keV)		
179.2°	4000-	M. Tosaki et al., Nucl. Instr.	Data in IBANDL are in agreement with
	6000	and Meth. B168 (2000) 543	data published in original publication
		Ref. [1]	
168.2°	400-	H.L. Jackson et al., Phys. Rev.	Digitized data transferred to IBANDL
	4360	89 (1953) 365	
		Ref. [2]	
146.3°	400-	Ref. [2]	Need to be digitized
	4360		Not included to IBANDL
123.8°	600-	Ref. [2]	Need to be digitized
	4360		Not included to IBANDL
101.7°	600-	Ref. [2]	Need to be digitized
	4360		Not included to IBANDL
121°	4100-	Reich et al., Phys. Rev. 104	Need to be digitized
	5600	(1956) 143	Not included to IBANDL
		Ref. [3]	
137.3°	4100-	Ref. [3]	Need to be digitized
	5000		Not included to IBANDL
127.4°	4600-	Ref. [3]	Need to be digitized
	5000		Not included to IBANDL
133.6°	4600-	Ref. [3]	Need to be digitized
	5000		Not included to IBANDL

146.7°	4100-	Ref. [3]	Need to be digitized
	5000		Not included to IBANDL
162.6°	4800-	Ref. [3]	Need to be digitized
	5600		Not included to IBANDL
150°	3000-	A. Caciolli et al.	Not included to IBANDL
	7000	Ref. [4]	

Table 1: Comparison between data from original publications and data published in IBANDL

References:

- [1] M. Tosaki et al., Nucl. Instr. and Meth. B168 (2000) 543
- [2] H.L. Jackson et al., Phys. Rev. 89 (1953) 365
- [3] Reich et al., Phys. Rev. 104 (1956) 143
- [4] A. Caciolli et al. accepted for publishing in Nucl. Instr. and Meth.