Data review of ${ }^{19} \mathrm{~F}\left(\mathrm{p}, \mathrm{p}_{0}\right){ }^{19} \mathrm{~F}$ cross-sections

M. Chiari

INFN Florence - Italy

As a first step, the data sets already exisiting on IBANDL [1,3,7,8,10] were compared with the data in the original references and the agreement was good.

The second step was a thorough search in the literature and in nuclear databases for other available experimental data. Several data of interest for application in Ion Beam Analysis (i.e. for backscattering angles in the $90^{\circ}-180^{\circ}$ range) were retrieved [1,2,4,6,9]. The data appearing in graphical form in the original references were digitized using the DataThief software [11]. All the relevant quantities were converted to the laboratory frame of reference when necessary. Table 1 lists the data sets found in the literature, both already existing on IBANDL and new ones. These new data will be uploaded into IBANDL if deemed appropriate.
$\left.\begin{array}{ccccccc}\hline \text { Reference } & \begin{array}{c}\text { Data } \\
\text { source }\end{array} & \theta_{\text {lab }} & \begin{array}{c}\boldsymbol{E}_{\boldsymbol{p}} \\
(\mathbf{M e V})\end{array} & \text { Target } & \begin{array}{c}\text { Quoted } \\
\text { uncertainties }\end{array} & \begin{array}{c}\text { Data } \\
\text { presentation }\end{array} \\
\hline \hline[1] & \begin{array}{c}\text { Original } \\
\text { paper, } \\
\text { IBANDL } \\
122.8^{\circ}\end{array} & 0.55-1.80 & \text { Thick target LiF } & 6 \% & \begin{array}{c}\text { Graphical, } \\
\text { tabular }\end{array} \\
& \begin{array}{c}\text { Original } \\
\text { paper }\end{array} & \begin{array}{c}97.0^{\circ} \\
107.1^{\circ} \\
133.8^{\circ}\end{array} & 1.30-1.50 & \text { Thick target LiF } & 6 \% & \text { Graphical } \\
\hline[2] & \begin{array}{c}\text { Original } \\
\text { paper, } \\
\text { IBANDL } \\
122.8^{\circ} \\
138.8^{\circ} \\
158.7^{\circ}\end{array} & 0.50-2.06 & \text { LiF evaporated } \\
\text { on to a C } \\
\text { backing }\end{array}\right]$

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline [7] \& IBANDL

IBANDL \& 165°

153° \& $0.85-1.01$

$1.00-1.88$ \& $85 \mu \mathrm{~g} / \mathrm{cm}^{2}$
LuF_{3}, deposited
on
polycarbonate
film
$137.9 \mu \mathrm{~g} / \mathrm{cm}^{2}$
LiF, deposited
on $38 \mu \mathrm{~g} / \mathrm{cm}^{2}$
Cu, deposited

on $50 \mu \mathrm{~g} / \mathrm{cm}^{2} \mathrm{C}$ \& | 2% statistical, 3-4\% reproducibility |
| :--- |
| 2\% statistical, 3-4\% reproducibility | \& Tabular

\hline [8] \& IBANDL \& 150° \& 2.50-4.79 \& $$
\begin{gathered}
158.5 \mu \mathrm{~g} / \mathrm{cm}^{2} \\
\mathrm{CeF}_{3}
\end{gathered}
$$ \& 8\% \& Tabular

\hline [9] \& EXFOR \& 165° \& 1.40-2.71 \& 69, 45 and 78 $\mu \mathrm{g} / \mathrm{cm}^{2} \mathrm{GdF}_{3}$ on thin C foil \& 5\% \& Tabular

\hline [10] \& IBANDL \& 150° \& 3.0-7.2 \& $$
\begin{gathered}
50 \mu \mathrm{~g} / \mathrm{cm}^{2} \mathrm{LiF} \\
\text { on } 30 \mu \mathrm{~g} / \mathrm{cm}^{2} \mathrm{C}, \\
\text { coated with } 20 \\
\mu \mathrm{~g} / \mathrm{cm}^{2} \mathrm{Au} \\
\hline
\end{gathered}
$$ \& 5\% \& Tabular

\hline
\end{tabular}

Table 1: Available data in the literature on ${ }^{19} F\left(p, p_{0}\right){ }^{19} F$ cross-sections.

Figures 1-5 present in graphical form all the cross-sections listed in Table 1; data referring to similar scattering angles are shown together. In the graphs the proton energy and the differential cross-section are given in the laboratory frame of reference, with energy units in MeV and cross-section units in mbarn/sr.

Figure 1: Cross-section values of proton elastic scattering on ${ }^{19} F$ versus proton energy at scattering angles in the $90^{\circ}-107^{\circ}$ range. All the quantities are given in the laboratory frame of reference.

Figure 2: Cross-section values of proton elastic scattering on ${ }^{19} F$ versus proton energy at scattering angles in the $122^{\circ}-123^{\circ}$ range. All the quantities are given in the laboratory frame of reference.

Figure 3: Cross-section values of proton elastic scattering on ${ }^{19} F$ versus proton energy at scattering angles in the $134^{\circ}-140^{\circ}$ range. All the quantities are given in the laboratory frame of reference.

Figure 4: Cross-section values of proton elastic scattering on ${ }^{19} \mathrm{~F}$ versus proton energy at scattering angles in the $145^{\circ}-153^{\circ}$ range. All the quantities are given in the laboratory frame of reference.

Figure 5: Cross-section values of proton elastic scattering on ${ }^{19} \mathrm{~F}$ versus proton energy at scattering angles in the $159^{\circ}-165^{\circ}$ range. All the quantities are given in the laboratory frame of reference.

In general, the agreement between the data - even those referring to slightly different scattering angles - is reasonably good, except in a few cases.

In particular, data from Ouchaoui [6] appear systematically higher (up to 40\%) than the other data at similar angles [5,8,9,10], Cuzzocrea's data at 97° being the only exception.

Remarkable discrepancies appear in the data from Dearnaley [2] as well, when compared to the other data $[1,4,7,9]$, especially in correspondence of the 1.42 MeV resonance which appears also shifted in energy; an abrupt change in the cross-section values at 1.3 MeV energy is clear too, e.g. in Figures 2 and 5 (actually, this might be an effect of the digitizing process since the cross-section curves as a function of proton energy are shown in two panels, in the original reference data). For these reasons data from Dearnaley should be used critically.

References

[1] T.S. Webb et al., Phys. Rev. 99 (1955) 138
[2] G. Dearnaley, Philos. Mag. ser. 8, 1 (1956) 821
[3] G.M. Lerner and J.B. Marion, Nucl. Instr. Meth. 69 (1969) 115
[4] R. Caracciolo et al., Lettere al Nuovo Cimento 11 (1974) 33
[5] P. Cuzzocrea et al., Lettere al Nuovo Cimento 28 (1980) 515
[6] S. Ouichaoui et al., Nuovo Cimento 94 (1986) 133
[7] J.M. Knox and J.F. Harmon, Nucl. Instr. Meth. B44 (1989) 40
[8] I. Bogdanović et al., Nucl. Instr. Meth. B79 (1993) 524
[9] A.P. Jesus et al., Nucl. Instr. Meth. B174 (2001) 229
[10] A. Caciolli et al., Nucl. Instr. Meth. B249 (2006) 95
[11] http://www.datathief.org/

