

International Atomic Energy Agency

The IAEA CRP on IRDFF validation and EXFOR

S.P. Simakov, N. Otsuka, V. Semkova, M. Verpelli, V. Zerkin

Nuclear Data Section, IAEA, Vienna, Austria

Technical Meeting on the International Network of Nuclear Reaction Data Centres 6 – 9 May 2014, Smolenice, Slovakia

Introduction: the IAEA CRP "Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF)"

https://www-nds.iaea.org/IRDFFtest/

- Dosimetry reaction cross sections (XS) as a reference library allows to
 - determine and monitor **neutron fluence and spectra in the high flux facilities** (fission and fusion reactors, accelerator driven sources)
 - predict safe operation (reactor vessel life time)

History: 1993: <u>IRDF-90 v. 2</u>, 37 reactions, IAEA-NDS-141, 1993 E < 20 MeV 2006: <u>IRDF-2002</u>, 69 reactions, Rep.452, IAEA, 2006 2012: <u>IRDFF, v. 1.00</u>, INDC(NDS)-0616, 2012 E < 60 (200) MeV 2014: <u>IRDFF, v. 1.03</u> - it is an actual version (cf. IRDF-2002: 5 new ⁶⁷Zn(n,p),¹¹³In(n,n'),¹⁶⁹Tm, ²⁰⁹Bi(n,3n), ²³⁸U(n,2n) and more than 32 updated reactions)
 now Total = 76 dosimetry + 3 absorbing (cover materials) reactions: full List

- soon will be included ²⁸Si(n,p) {+ competing ²⁹Si(n,x)²⁸Al} – Fusion community request

- 1st RCM suggested new reactions: (n,γ) on ²⁷AI, ^{94,96}Zr, ⁷⁰Zn, ⁹⁴Nb, ¹¹³In and ¹¹⁷Sn(n,n')

• The IAEA CRP on "IRDFF validation":

- expected **results** updated and validated Dosimetry XS, Decay Data & Documentation
- started 1-5 July 2013 (1st RCM), Summary Report INDC(NDS)-0639

I. IRDFF relevant data and EXFOR: missed experimental data

• IRDFF relevant data are

- SPectrum-averaged cross sections, SPA or $<\sigma>$
- point-energy cross sections, $\sigma(E)$
- neutron spectra generated by accelerator and reactor facilities

• Working List of data found as missing in EXFOR (≈ 10 articles): <u>https://www-nds.iaea.org/IRDFFtest/CrossSectionsMissed.pdf</u>

-> list for compilation: Memo <u>CP-D/838</u> "**EXFOR completeness** for neutron dosimetry application" (also WP2014-21)

-> this Memo additionally includes a list of International Symposiums on Reactor Dosimetry 1975 to 2011 (14), only partly cited in EXFOR

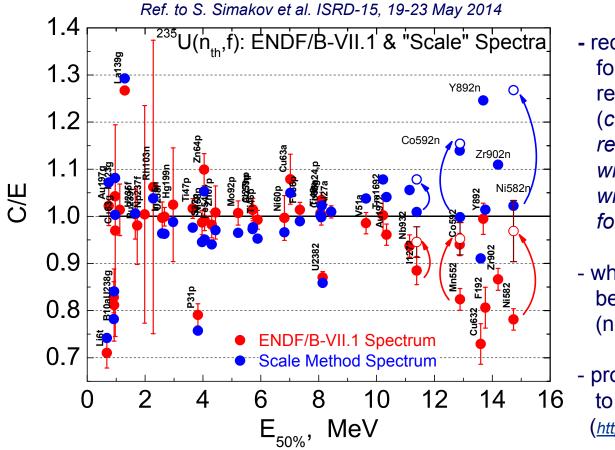
• This work goes on - examples on the next slides ->

I. SPA and EXFOR: example - status of SPA in ²³⁵U(n_{th},f) field

https://www-nds.iaea.org/IRDFFtest/SPA Exp U235.pdf

Available Experimental (evaluated or original) Spectrum Averaged Cross Sections (SPA) in U-235(ntherm,f) field sorted by E(50%)

N	Reaction Name		E(50%)	SPA	SPA Uncertainty		Reference for Recommended	Original Experiment		
N	Ζ	full	short	MeV	mb	%	mb	experimental SPA	Reference	EXFOR
1	21	Sc-45(n,γ)Sc-46	sc45g	0.591	NOT measu	ired yet				
1	3	Li-6(n,t)He-4	li6t	0.662	4.560E+02	4.39	2.000E+01	NBSIR_85-3151,1986, p.66 =	B.Oliver	23226.000
2	41	Nb-93(n,γ)Nb-94	nb93g	0.692	NOT measu	ired yet		J.Grundl,ND-1985,p.471		
2	79	Au-197(n,γ)Au-198	au197g	0.725	7.400E+01	4.05	3.000E+00		A.Fabry	20229.006
3	26	Fe-58(n,γ)Fe-59	fe58g	0.740	NOT measu	ired yet				
4	47	Ag-109(n,γ)Ag-110m	ag109g	0.750	NOT measu	ired yet				
5	92	U-235(n,γ)U-236	u235g	0.754	NOT measu	ired yet				
3	25	Mn-55(n,γ)Mn-56	mn55g	0.771	3.820E+00				D.J.Hughes	<u>13860.012</u>
6	73	Ta-181(n,γ)Ta-182	ta181g	0.840	NOT measu	ired yet				
4	5	B-10(n,a)Li-7	b10a	0.903	5.410E+02	4.44	2.400E+01	NBSIR_85-3151,1986, p.66 =	B.Oliver	23226.000
5	27	Co-59(n,γ)Co-60	co59g	0.914	1.100E+01			J.Grundl,ND-1985,p.471	D.Hughes	<u>13860.014</u>
7	90	Th-232(n,γ)Th-234	th232g	0.920	NOT measu	ired yet				
6	92	U-238(n,γ)U-239	u238g	0.929	8.500E+01	9.41	8.000E+00		A.Fabry	20264.007
7	11	Na-23(n,γ)Na-24	na23g	0.962	2.600E-01				D.Hughes	<u>30400.016</u>
8	29	Cu-63(n,γ)Cu-64	cu63g	0.968	1.080E+01	23.15	2.500E+00		A.Fabry	20264.002
9	49	ln-115(n,γ)ln-116m	in115g	1.021	1.245E+02	4.25	5.290E+00	K.Zolotarev, INDC(NDS)-0657	A.Fabry	20229.004
8	74	W-186(n,γ)	w186g	1.033	NOT measu	ired yet		_	_	
								K.Zolotarev, INDC(CCP)-		
10	57	La-139(n,y)La-140	la139g	1.294	5.300E+00		<u>-</u>	0431	-	<u>11596.011</u>
11			u235f	1.650	1.217E+03	1.12		W. Mannhart 2008	_	
12	94	Pu-239(n,f)	pu239f	1.730	1.831E+03	1.65		W. Mannhart 2008	-	
13	93	Np-237(n,f)	np237f	2.010	1.350E+03	1.78	2.403E+01	W. Mannhart 2008		


SPA available: (1) individual measurements (a few are missed in EXFOR) and (2) recommended by experience evaluators - are really used in analysis ->

Smolenice

INITED MEETING, 0-5 May 2017,

International Atomic Energy Agency

I. SPA and EXFOR: example - status of SPA in ²³⁵U(n_{th},f) field

- recommended experimental SPA for ¹²⁷I(n,2n), ⁵⁵Mn(n,2n) and ⁵⁸Ni(n,2n) reactions are different !!! (curved arrows show how replacement of W. Mannhart' SPA with K. Zolotarev' ones will increase C/E by 8-15% for both PFNS spectra)
- what could be a reason of difference between <u>recommended</u> SPA ? (next slide)
- proposal for HPRL which SPA has to be measured was formulated (<u>https://www-nds.iaea.org/IRDFFtest/HPRL.pdf</u>)
- EXFOR database has point-energy dosimetry σ(E) and corrections (from K. Zolotarev) !
 should we compile recommended spectrum-averaged <σ> and corrections ?

INRDC Meeting, 6-9 May 2014, Smolenice

I. SPA and EXFOR: example - status of SPA in ²³⁵U(n_{th},f) field

Expert opinion: "The reason for different recommended SPA could be different corrections applied. in particular, the difference in decay parameters"

Let look in EXFOR:

ENTRY 22020001 861212 20050926 0000

INSTITUTE (2GERPTB) Physikal. Techn. Bundesanst., Braunschweig, Germany

AUTHOR (W.MANNHART)

TITLE - SPECTRUM- AVERAGED NEUTRON CROSS SECTIONS MEASURED IN THE U- 235 FISSION NEUTRON FIELD IN MOL.

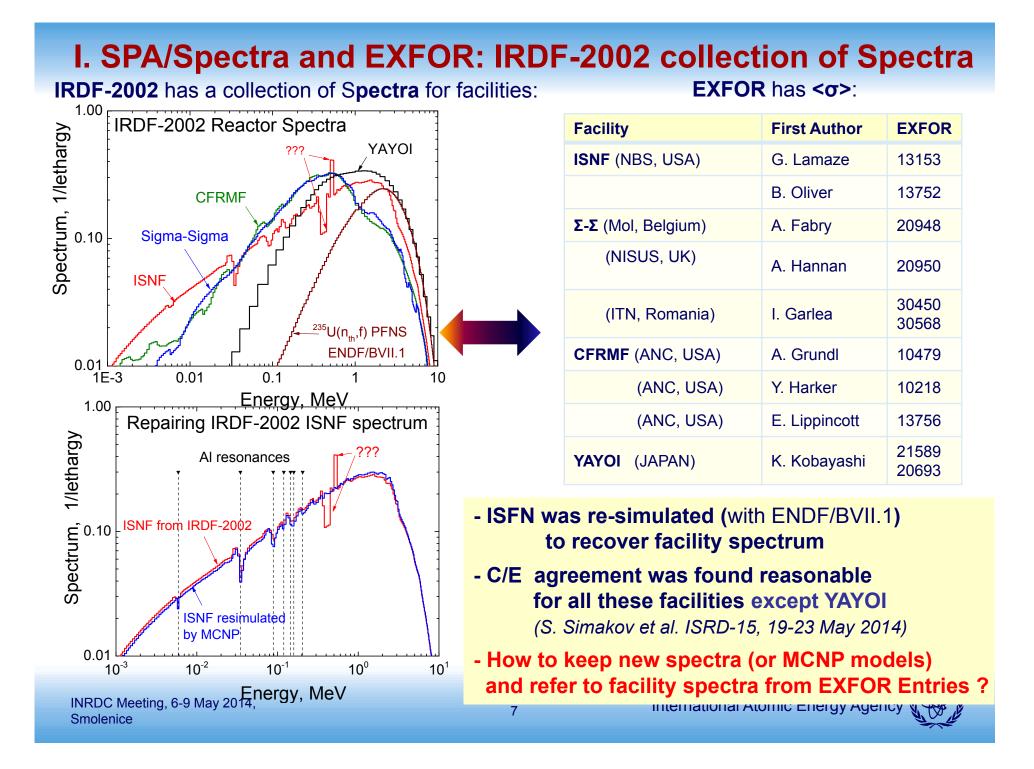
FACILITY (REAC,2BLGMOL) REACTOR BR1 AT MOL.

INC-SOURCE (REAC) THERMAL FISSION IN U-235.

REL- REF (R,,W.L.ZIJP+,R,EUR- 7164,75) DECAY PARAMETERS. (R,,W.MANNHART,C,84GEESTH,2,801,8409) DECAY PARAMETERS.

REACTION (28-NI-58(N,2N)28-NI-57,,SIG,,FIS)

 DATA
 ERR-T


 MB
 MB

 .00419
 .00022

- Entry has no numerical DECAY-DATA (only reference)

- Decay data (from author) has to be compiled for completeness and corrections afterwards

Smolenice

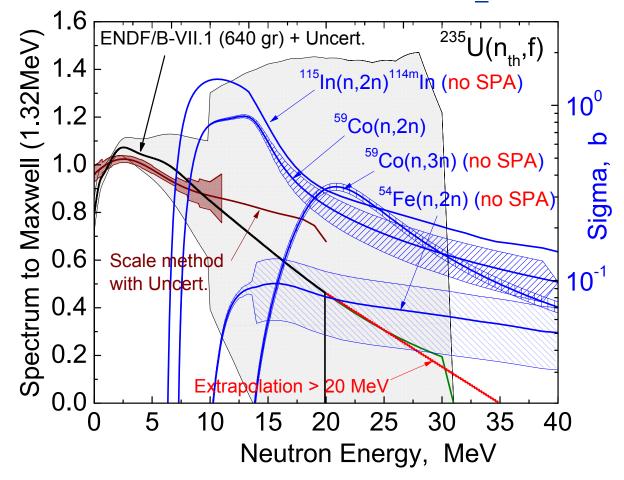
II. IRDFF Decay Data sub-library https://www-nds.iaea.org/IRDFFtest/irdffnuclideslist.htm

Reference Decay library allows: - renormalization of XS to actual reference decay data and - consistent use of same decay data in IRDFF evaluation and applications

List of Isotopes and Isomers produced by reactions included in IRDFF: version 1.00 (Oct 2012) - 82; version 1.03 (March 2014) - additional 6

#	Isotope	Decay Mode	Radiation used for detection	Producing reaction ¹	Source on Oct 2012	ENDF Mat	Latest ENSDF ² (March 2014)	IRDFF new evaluations which replace ENSDF
			Whole Decay	Library in ENDF	irdf2012.endf		IRDF	F2014.ENDF
1	1-H-3	β-	β- 18.594 keV	6Li(n,t)4He	EVAL-JUL00	131	EVAL-JUL00	Whole Decay library
2	9-F-18	β+	γ 511. keV	19F(n,2n)18F	EVAL-NOV96	922	EV/AL-NOV/06	converted from ENS
3	11-Na-22	β+,ε	γ 511. keV	23Na(n,2n)22Na	EVAL-DEC05	1122	EVAL-DEC05	to ENDF by SDF2NI
4	11-Na-24	β-	γ 1368.63 keV	23Na(n,γ)24Na 24Mg(n,p)24Na 27Al(n,α)24Na	EVAL-OCT07	1128		updated by M.Verp
5	12-Mg-27	β-	γ 843.76 keV γ 1014.44 keV	27Al(n,p)27Mg	EVAL-AUG11	1234	EVAL-AUG11	Link to LiveChart

Processing problem for ^{93m}Nb not resolved vet:


_		<u> </u>								
	36	41-Nb-93M	IT (31 keV)	X 16.6 keV X 18.6 keV	93Nb(n,n')93mNb	NOT included	????	EVAL-MAY11	RadList does not calculate properly	
Replacement of ENSDF by actual new evaluations (DDEP, V. Chechev):										

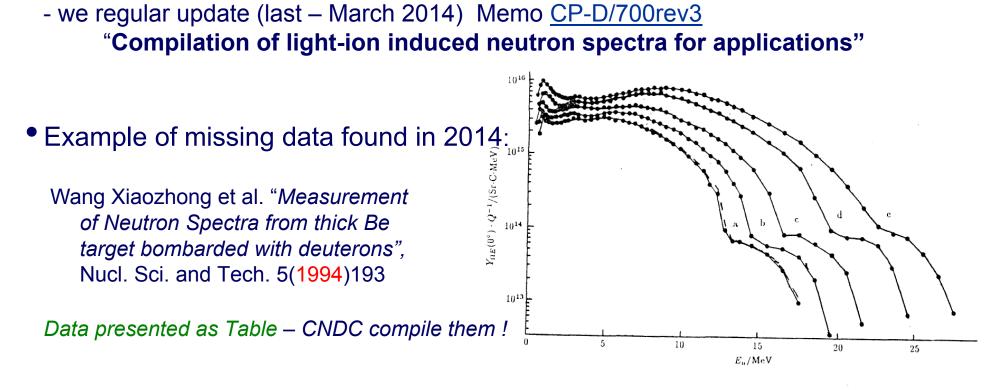
					,			
76 73-Τα-182 β- γ 1189.0 Ι		γ 1121.3 keV γ 1189.0 keV γ 1221.4 keV	.0 keV 181Ta(n,γ)182Ta E		7331	EVAL-SEP10	EVAL JAN 14 and pdf	
		35.17 (33) %/decay 16.58 (16) %/decay						
83	79-Au-198	β-	γ 411.8 keV	197Au(n,γ)198Au	EVAL-OCT09	7928	EVAL-OCT09	EVAL JAN 14 and pdf
					lγ (411	keV) =	96 (?)) 95.62 (6) %/decay

Observation: e.g. ¹⁸²Ta and ¹⁹⁸Au - no significant difference, however V. Chechev gives uncertainties INRUC MEELING, 0-9 May 2014, International Atomic Energy Agency

III. Data retrieving from IRDFF: XS and Spectra covariancies

(V. Zerkin' web-retrieval system: e.g. <u>235U(n_{th}, f) PFNS spectra</u>)

Such retrievals and plots allow:


- easy access to the ENDF-6 formatted XS and spectra (including covariancies)

 - compare model uncertainties with experimental ones and make conclusions like: too large ENDF/B-VII.1 uncertainties for ²³⁵U(n_{th},f)PFNS and TENDL(>15 MeV) for ⁵⁴Fe(n,2n)

Smolenice

IV. Neutron Source data relevant for IRDFF

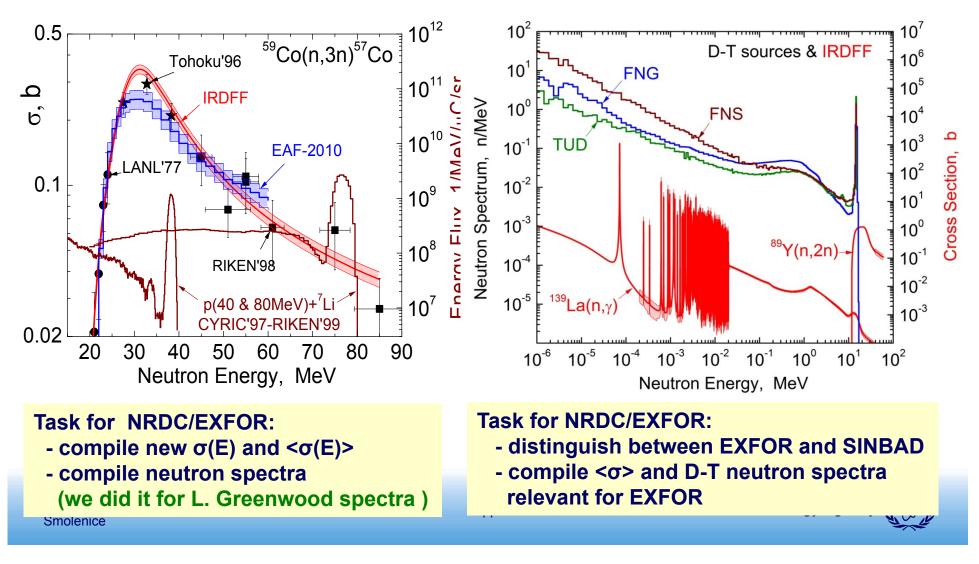
- Data for Neutron sources:
 - following IAEA Meeting "Neutron Sources Spectra for EXFOR", April 2011 https://www-nds.iaea.org/index-meeting-crp/CM-2011 web/
 - we regular update (last March 2014) Memo <u>CP-D/700rev3</u> "Compilation of light-ion induced neutron spectra for applications"

10

Fig.6 Spectral neutron yield per unit beam charge $Y_{\Omega E}(0^{\circ})/Q$ for thick Be target bombarded with deuterons of various energies Curve a,b,c,d,e correspond to $E_d = 13.5, 15, 17, 20, 22$ MeV; Previous data ^[4] at

 $E_{\rm d}$ =13.54 MeV are also shown here as a dashed line for comparison

INRDC Meeting, 6-9 May 2014, Smolenice

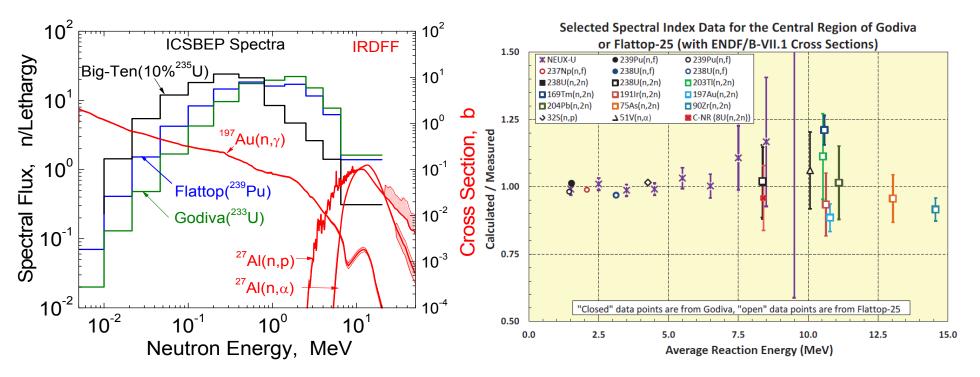

V. Other IRDFF relevant data and EXFOR

High Energy (> 15-20MeV)

(n,3-6n) on ⁵⁹Co,¹⁶⁹Tm,²⁰⁹Bi, ¹⁹⁷Au... point data and broad spectra data

D-T Fusion Energies (≤ 15 MeV):

such data were used for validation of EAF, but never for Dosimetry !


V. Other IRDFF relevant data and EXFOR

Reactors & Critical Facilities

already collected in ICSBEP and new ones will be produced during CRP

ICSBEP spectra and **IRDFF** XS

Validation: M. Chadwick et al. <u>CIELO papers</u>:

Task for NRDC/EXFOR:

- distinguish between EXFOR and ICSBEP
- should we compile $\langle \sigma \rangle$ in EXFOR, whereas spectra/MCNP-models are in ICSBEP ?

Conclusions: IRDFF relevant data and EXFOR

✓ Current work:

- compile EXFOR missed data collected in new MEMO <u>CP-D/838</u> and in updated MEMO <u>CP-D/700rev3</u>
- compile IRDFF data ($\sigma(E)$, $<\sigma>$, spectra) appearing in new publications
- compile decay parameters, check them with authors (systematic inspection of suspicious $T_{1/2}$ in EXFOR (>1,000 entries) is ongoing)

Perspective work - following the needs of IAEA CRP on IRDFF consider and eventually take a decision on relation and sharing information between:

- EXFOR (SPA) and IRDF-2002 (neutron research reactor facility spectra)
- EXFOR (XS or SPA) and SINBAD (14 MeV fusion benchmarks):
- EXFOR (SPA) and ICSBEP (critical facility benchmarks)