EXFOR data in resonance region and spectrometer's response function

Consultants' Meeting "EXFOR Data in Resonance Region and Spectrometers' Response Function" was held in Vienna from 8 to 10 October 2013. Seven consultants Y. Danon, K.H. Guber, F. Gunsing, A. Kimura, G. Noguere, P. Schillebeeckx and G. Žerovnik have attended this meeting. The Meeting was organized in accordance with recommendations of the Consultants' Meeting on Further Development of EXFOR held from 6 to 9 March 2012 in Vienna (Summary Report INDC(NDS)-0614) to store sufficient information in EXFOR to allow meaningful re-evaluation of experimental data. In particular the importance of response and resolution functions of time-of-flight measurements for a correct analysis of the data was emphasised.

Information relevant to the discussions, presentations from the participants, meeting report etc. is included in the Meeting's webpage: <u>http://www-nds.iaea.org/index-meeting-crp/CM-RF-2013/</u>.

Compilation of response (resolution) functions R(E,t) is a new issue for NRDC. It is not a trivial issue to include them in the current EXFOR Format, and it would be feasible to start collection of resolution functions submitted by the participants of the Consultant Meeting on http://www-nds.iaea.org/index-meeting-crp/CM-RF-2013/.

However the participants agreed on a template that will include all essential information for neutron TOF measurements in the resonance region. An example of the template is included below:

Template for Submission of Time-of-Flight Spectra (EXFOR)

1. Main Reference		[1,2]
2. Facility	GELINA	[3]
3. Neutron production		
Neutron production beam	Electron	
Nominal average beam energy	100 MeV	
Nominal average peak current	70 µA	
Repetition rate (pulses per second)	800 Hz	
Pulse width	1 ns	
Primary neutron production target	Mercury cooled depleted uranium	
Target nominal neutron production intensity	$3.4 \times 10^{13} \text{ s}^{-1}$	
4. Moderator		
Primary neutron source position in moderator	Above and below uranium target	
Moderator material	2 H ₂ O filled Be-containers around U-target	
Moderator dimensions (internal)	2 x (14.6 cm x 21 cm x 3.9 cm)	
(thickness, height×width×depth,)		
Density (moderator material)	1 g/cm^3	
Temperature (K)	Room temperature	
Moderator-room decoupler (Cd, B,)	None	
5. Other experimental details		
Measurement type	Transmission	
Method (total energy, total absorption,)	Good transmission geometry	[4]
Flight path length (m) (moderator –detector)	L = 49.3445 m	
Flight path direction	9° with respect to normal of the moderator	
	face viewing the flight path	
Neutron beam dimensions at sample position	35 mm in diameter	
$(mm \times mm, diameter in mm,)$		
Neutron beam profile	-	
Overlap suppression	10 B overlap filter (0.008 at/b)	
(Filter material and thickness, chopper,)		
Other fixed beam filters	Na, Co, Pb (8 mm)	

A. EXPERIMENT DESCRIPTION

6.	Detector		
	Туре	Scintillator (NE912)	
	Material	Li-glass	
	Surface Dimensions	101.6 mm in diameter	
	(mm × mm. diameter in mm)		
	Thickness (mm)	6.35 mm in thick	
	Distance from samples (mm)	125 mm	
	Detector(s) position relative to neutron beam	In the beam	
	Detector(s) solid angle	-	
7.	Sample		
	Type (metal, powder, liquid, crystal)	Metal	
	Chemical composition	197 Au (100%)	
	Sample composition (at/b)	197 Au: (1:757 ± 0:004) x 10 ⁻² at/b	
	Temperature	22° C	
	Sample mass (g)	-	
	Geometrical shape (cylinder, sphere,)	Foil	
	Surface dimension $(mm \times mm \text{ diameter in } mm)$	50 mm x 50 mm	
	Nominal thickness (mm)	3 mm	
	Containment description	None	
	Additional comment	Stack of 2 foils and 1 disc	
8.	Data Reduction Procedure		[4 5]
0.	Dead time correction	Done (\leq factor 1 2)	[1, 5]
	Back ground subtraction	Black resonance technique	
	Flux determination (reference reaction)	-	
	Normalization	1.0000 ± 0.0025	
	Detector efficiency	-	
	Self-shielding	_	
	Time-of-flight hinning	Zone length hin width	
	Time of high onlining	1024 A ns	
		1024 -4.131024 $2 ns$	
		4096 1 ns	
		5120 2 ns	
		5120 21155120 4 ns	
		5120 4 lis	
		5120 8 lls	
		5120 10 115 5120 22 ns	
		5120 52105120 64 ns	
		5120 04 lls	
0	Despanse function	5120 120 115	
У .	Initial pulse	Normal distribution FWHM = 2 ns	
	Taraat / madaratar assambly	Numerical distribution from MC simulations	[6 7]
	rarget / moderator assembly	INUMERICAL DISTRUCTION FROM INC. SIMULATIONS	[0, /]
	Detector	CILLY KF.INININI	гот
	Detector	Analytical function defined in KEF11 manual	[8]
		entry RF.NNNN2	1

B. DATA FORMAT

Column	Content	Unit	Comment	
1	Energy	eV	Relativistic relation using a fixed FP length of 49.345 m and	
			average TOF	
2	t _l	ns		
3	t _h	ns		
4	T _{exp}		Transmission	
5	Total Uncertainty			
6	Uncorrelated uncertainty		Uncorrelated uncertainty due to counting statistics	
7	AGS-vector (K)		Background model ($u_K/K = 3\%$)	
8	AGS-vector (N)		Normalization ($u_N/N = 0.25\%$)	

References [1] S. Kopecky, B. Becker, J.C. Drohe, A. Moens, P. Schillebeeckx, D. Vendelbo, R.Wynants, "Results of transmission measurements for ¹⁹⁷Au at GELINA", this JRC Scientific and Policy Report, (2013)

[2] I. Sirakov, B. Becker, R. Capote, E. Dupont, S. Kopecky, C. Massimi, P. Schillebeeckx, Eur. Phys. J. A **49**, 144, (2013). DOI: 10.1140/epja/i2013-13144-2

[3] W. Mondelaers, P. Schillebeeckx, Notiziario Neutroni e Luce di Sincrotrone 11 no.2, 19 (2006).

[4] P. Schillebeeckx, B. Becker, Y. Danon, K. Guber, H. Harada, J. Heyse, A.R. Junghans, S. Kopecky, C. Massimi, M. Moxon, N. Otuka, I. Sirakov, K. Volev, Nuclear Data Sheets **113**, 3054 (2012). DOI: 10.1016/j.nds.2012.11.005

[5] B. Becker, C. Bastian, F. Emiliani, F. Gunsing, J. Heyse, K. Kauwenberghs, S. Kopecky, C. Lampoudis, C. Massimi, N. Otuka, P. Schillebeeckx, I. Sirakov, JINST 7, P11002 (2012). DOI: 10.1088/1748-0221/7/11/P11002

[6] M. Flaska, A. Borella, D. Lathouwers, L.C. Mihailescu, W. Mondelaers, A.J.M. Plompen, H. van Dam, T.H.J.J. van der Hagen, Nucl. Instr. Meth. A 531, 392–406 (2004). DOI: 10.1016/j.nima.2004.05.087

[7] D. Ene, C. Borcea, S. Kopecky, W. Mondelaers, A. Negret, A.J.M. Plompen, Nucl. Instr. Meth. A **618**, 54 - 68 (2010). DOI: 10.1016/j.nima.2010.03.005

[8] M.C. Moxon, J.B. Brisland, Technical Report AEA-INTEC-0630, AEA Technology (1991).

List of recommendations were given by the participants of the meeting to EXFOR compilers as follows:

Recommendations for NDS of IAEA, NRDC and EXFOR compilers

• Set up and maintain a repository where information can be collected on response functions of different facilities.

• No constraints on the format should be given, but an implementation in existing codes could be supplied when possible.

• The repository should foresee support for 2 dimensional histograms to report numerical response functions $R(E_n, t)$ as a function of time-of-flight and real neutron energy.

• NDS should inform the NRDC Network about decisions of the meeting in order to establish rules for compilation of all information relevant to the spectrometers' response function.

• Compilers should send a request to authors to provide information according to the template and include all data in the compilation of the experiment.