Date: Dec 2013 - Jan 2019

Available Experimental (recommended or individual) Spectrum Averaged Cross Sections (SPA) in Cf-252(s.f.) field sorted by E(50%)

Ν	N Reaction Name			E(50%)	SPA SPA Uncertainty		Uncertainty	Reference to	Ref. to Original Experiment	it
Ν	Ζ	full	short	MeV	mb	%	mb	Recommended data	Author	EXFOR
1	21	Sc-45(n,γ)Sc-46	sc45g	0.568	NOT measu	ired yet				
2	3	Li-6(n,t)He-4	li6t	0.662	NOT measu	ured yet				
3	41	Nb-93(n,y)Nb-94	nb93g	0.678	NOT measu	ured yet				
1	79	Au-197(n,γ)Au-198	au197g	0.725	7.679E+01	1.59	1.221E+00	W. Mannhart 2002		
					7.550E+01	0.13	1.000E-01	S. Manojlovic 2011		
4	26	Fe-58(n,γ)Fe-59	fe58g	0.734	NOT measu	ired yet				
5	47	Ag-109(n,γ)Ag-110m	ag109g	0.735	NOT measu	ured yet				
6	92	U-235(n,y)U-236	u235g	0.736	NOT measu	ured vet				
2	25	Mn-55(n.v)Mn-56	mn55a	0.751	2.960E+00	7.09	2.100E-01		J.Csikai*	30400.024
3	73	Ta-181(n v)Ta-182	ta181g	0.819	8 730E+01	1 37	1 200E+00	S. Manoilovic 2011		
7	5	B-10(n a) i-7	h10a	0.010	NOT measu	ured vet	1.2002.00	<u>5. Manopović 2011</u>		
1	27	D = 10(11, a)LI = 7	0100	0.903			2 4005 01		L Coikoi*	20400 026
4	21		C0599	0.904	0.970E+00	4.00	3.400E-01	C. Maria Havia 2011	J.CSIKAI	<u>50400.020</u>
5	90	In-232(n,γ)In-233	th232g	0.911	8.700E+01	1.84	1.600E+00	S. Manojiovic 2011		10557.003
8	92	U-238(n,γ)U-239	u238g	0.920	NOT measu	ired yet				
6	11	Na-23(n,y)Na-24	na23g	0.963	3.350E-01	4.48	1.500E-02		J.Csikai*	<u>30400.016</u>
7	29	Cu-63(n,γ)Cu-64	cu63g	0.965	1.044E+01	3.24	3.383E-01	W. Mannhart 2002		
					1.030E+01	2.91	3.000E-01	<u>S. Manojlovic 2011</u>		
8	49	ln-115(n,γ)ln-116m	in115g	1.013	1.230E+02	2.10	2.580E+00	K.Zolotarev, INDC(NDS)-0657		
					1.256E+02	2.23	2.801E+00	W. Mannhart 2002	Mannhart's 1.256E+1 is a ty	/po ?
9	74	W-186(n,γ)	w186g	1.024	NOT measu	ired yet				
10	49	In-113(n,γ)In-114m	in114g	1.144	NOT measu	ired yet				
9	92	U-235(n,f)	u235f	1.700	1.210E+03	1.20	1.452E+01	W. Mannhart 2008		
10	94	Pu-239(n,f)	pu239f	1.780	1.812E+03	1.37	2.482E+01	W. Mannhart 2008		
11	93	Np-237(n,f)	np237f	2.080	1.361E+03	1.59	2.164E+01	W. Mannhart 2008		
11	95	Am-241(n,t)	am241f	2.228	NOT measu	ired yet				
12	45	Rh-103(n,n')Rh-103m	rh103n	2.380	7.390E+02	2.98	2.200E+01		G.Lamaze	<u>13142.002</u>
					7.570E+02	7.00	5.300E+01		A.Pazsit	<u>30266.004</u>
					6.470E+02	10.82	7.000E+01		G.Kirouac	<u>10985.007</u>
13	49	In-115(n,n')In-115m	in115n	2.680	1.974E+02	1.37	2.704E+00	W. Mannhart 2008		
14	41	Nb-93(n,n')Nb-93m	nb93n	2.686	1.475E+02	1.69	2.500E+00	K.Zolotarev, INDC(NDS)-0193		
15	49	In-113(n,n')In-113m	in113m	2.731	1.612E+02	2.04	3.290E+00	K.Zolotarev, INDC(NDS)-0657		
16	92	U-238(n,f)	u238f	2.780	3.257E+02	1.64	5.341E+00	W. Mannhart 2008		
17	90	Th-232(n,f)	th232f	3.005	8.470E+01	5.79	4.900E+00		J.Csikai by fission chamber	<u>30415.004</u>
					8.900E+01	10.11	9.000E+00		M.Buczko by track detector	<u>31731.008</u>
					8.940E+01	3.02	2.700E+00		J. Grundl by fission chambe	12821.002
					7.460E+01	4.96	3.700E+00		J. Deen by track detector	13334.004
18	80	Ha-199(n.n')Ha-199m	ha199n	3,100	2.984E+02	1.81	5.401E+00	W. Mannhart 2002		1000 1100 1
19	22	Ti-47(n.p)Sc-47	ti47p	3.850	1.927E+01	1.66	3.199E-01	W. Mannhart 2008		
12	15	P-31(n.p)Si-31	p31p	3.969	NOT measu	red vet				
20	16	S-32(n.p)P-32	s32p	4.080	7.254E+01	3.49	2.532E+00	W. Mannhart 2008		
21	28	Ni-58(n,p)Co-58	ni58p	4.130	1.175E+02	1.30	1.528E+00	W. Mannhart 2008		
22	30	Zn-64(n,p)Cu-64	zn64p	4.160	4.059E+01	1.65	6.697E-01	W. Mannhart 2008		
23	26	Fe-54(n,p)Mn-54	fe54p	4.280	8.684E+01	1.34	1.164E+00	W. Mannhart 2008		
					8.662E+01	1.35	1.170E+00	K.Zolotarev, INDC(NDS)-0657		
					7.872E+01	3.90	3.070E+00		M.Schulz	31786.009
13	30	Zn-67(n,p)Cu-67	zn67p	4.709	NOT measu	red vet				
24	82	Pb-204(n.n')Pb-204m	pb204n	5.042	2.090E+01	5.75	1.202E+00		J.Csikai	30400.053
					2 085E+01	4 4 1	9 200F-01		K Kobavashi	21950 006
25	12	Mo_92(n n)Nb_92m	mo02n	5 302	1.517E+01	1.11	6.670E-01	K Zolotarev (NDC(NDS)-0657		30400.035
20	74 07	$C_0 = 50(n n) = 0.50$	00E0~	5.382	1.6005+00	7. 1 0	4 101E 00	W. Mannhart 2009	u.usikai	<u>30+00.033</u>
26	21	00-09(11,p)re-09	cosab	0.700	1.0902+00	∠.40 0.50	4.191E-02			
	40		-107	F 000	1.816E+00	3.50	6.356E-02	M. Maarkart 2000	IVI.SCNUIZ 2019	
27	13	AI-27(n,p)Mg-27	al27p	5.960	4.880E+00	2.14	1.044E-01	vv. Mannhart 2008		
	a -	T (0))C :-			4.976E+00	3.50	1.742E-01		M.Schulz 2018	<u>31786.008</u>
28	22	Ti-46(n,p)Sc-46	ti46p	6.010	1.407E+01	1.77	2.490E-01	W. Mannhart 2008		
29	23	v-51(n,p)11-51	v51p	6.440	6.488E-01	1.97	1.278E-02	vv. Mannart 2008		00/4000 007
30	28	Ni-60(n,p)Co-60	ni60p	6.817	2.390E+00	5.44	1.300E-01	W. Mannhart 1987	W.Mannhart NUREG/CP-00	29(1982)637 <u>21817</u>
31	29	Cu-63(n,a)Co-60	cu63a	7.019	6.887E-01	1.96	1.350E-02	W. Mannhart 2008		
32	14	Si-28(n,p)	si28p	7.226	6.900E+00	1.96	4.370E-01	K.Zolotarev 2014	Z.Dezso	<u>30641.003</u>
14	26	Fe-54(n,a)Cr-51	fe54a	7.430	NOT measu	ired yet	<u>(see also)</u>			
32	26	Fe-56(n,p)Mn-56	fe56p	7.540	1.465E+00	1.77	2.593E-02	W. Mannhart 2008		
33	12	Mg-24(n,p)Na-24	mg24p	8.250	1.996E+00	2.44	4.870E-02	<u>vv. Mannhart 2008</u>		
34	92	U-238(n,2n)	u2382	8.276	1.920E+01	9.90	1.900E+00		M.Blinov	<u>40996.002</u>
					1.220E+01	12.30	1.500E+00		G.Shani	<u>30658.004</u>
35	27	Co-59(n,a)Mn-56	co59a	8.350	2.218E-01	1.88	4.170E-03	W. Mannhart 2008		
36	22	Ti-48(n,p)Sc-48	ti48p	8.390	4.247E-01	1.89	8.027E-03	W. Mannhart 2008		
37	13	Al-27(n,a)Na-24	al27a	8.640	1.016E+00	1.47	1.494E-02	W. Mannhart 2008		
					9.851E-01	3.50	3.448E-02		M.Schulz 2018	<u>31786.007</u>
38	23	V-51(n,a)Sc-48	v51a	9.960	3.900E-02	2.21	8.619E-04	W. Mannhart 2008		
39	69	Tm-169(n,2n)Tm-168	tm1692	10.401	6.690E+00	6.28	4.201E-01	W. Mannhart 2002		
				40.000	6.358E+00	4.20	2.670E-01		M.Schulz 2019	
40	79	Au-197(n,2n)Au-196	au1972	10.630	5.506E+00	1.83	1.008E-01	<u>vv. Mannhart 2008</u>		
		NH 00/ 0 NH	1.00-		5.474E+00	3.50	1.916E-01		IVI.SCRUIZ 2019	
41	41	Nb-93(n,2n)Nb-92m	nb932	11.360	7.490E-01	5.07	3.797E-02	<u>vv. Mannhart 2008</u>		
					8.248E-01	3.90	3.217E-02		M.Schulz 2019	

Ν	Reaction Name		E(50%)	SPA	SPA	Uncertainty	Reference to	Ref. to Original Experime	nt		
Ν	Ζ	full	short	MeV	mb	%	mb	Recommended data	Author	EXFOR	_
42	53	l-127(n,2n)l-126	i1272	11.750	2.069E+00	2.73	5.648E-02	W. Mannhart 2008			
					2.044E+00	3.52	7.200E-02		M.Schulz 2018_2		
15	49	In-115(n,2n)In-114m	in1152	11.808	NOT measu	ured yet	(see also)				
16	59	Pr-141(n,2n)Pr-140	pr1412	11.846	NOT measu	ured yet					
43	29	Cu-65(n,2n)Cu-64	CU652	12.459	6.582E-01	2.22	1.461E-02	W. Mannhart 2008			
44	25	Mn-55(n,2n)Mn-54	mn552	12.850	4.075E-01	2.33	9.495E-03	W. Mannhart 2008			
					4.821E-01	4.00	1.928E-02		M.Schulz 2019		
17	33	As-75(n,2n)As-74	as752	12.913	NOT measu	ured yet	(see also)				
45	27	Co-59(n,2n)Co-58	co592	13.088	4.051E-01	2.51	1.017E-02	W. Mannhart 2008			
10	~~	000/= 0=)000		40.500	4.199E-01	3.50	1.4/0E-02		M.Schulz 2019		
46	29	Cu-63(n,2n)Cu-62	CU632	13.599	1.844E-01	3.98	7.339E-03	<u>vv. Mannhart 2008</u>		21706 004	
47	39	Y-89(n,2n)Y-88	y892	13.896	3.409E-01	3.60	1.227E-02		M.Schulz 2018	<u>31786.004</u>	(see also)
					3.506E-01	3.70	1.297E-02		M.Schulz 2019		
48	9	F-19(n,2n)F-18	f192	14.000	1.612E-02	3.37	5.432E-04	W. Mannhart 2008			
					1.561E-02	3.80	5.932E-04		M.Schulz 2018	<u>31786.006</u>	
49	40	Zr-90(n,2n)Zr-89	zr902	14.400	2.210E-01	2.89	6.387E-03	W. Mannhart 2008			
					2.162E-01	3.50	7.567E-03		M.Schulz 2018	<u>31786.003</u>	
18	24	Cr-52(n,2n)Cr-51	cr522	14.705	NOT measu	ured yet	(see also)				
50	28	Ni-58(n,2n)Ni-57	ni582	14.722	8.952E-03	3.57	3.196E-04	W. Mannhart 2008	W.Mannhart	<u>21817.009</u>	
					8.558E-03	3.62	3.100E-04	K.Zolotarev, INDC(NDS)-0657			
19	22	Ti-47(n,np)Sc-46	ti47np	14.931	NOT measu	ured yet					
51	11	Na-23(n,2n)Na-22	na232	15.403	8.700E-02	3.60	3.132E-03		M.Schulz 2018	<u>31786.002</u>	(see also)
					8.980E-03	3.56	3.200E-04		M.Schulz 2018_2		
20	22	Ti-49(n,np)Sc-48	ti49np	15.884	NOT measu	ured yet			_		
52	22	Ti-46(n.2n)Ti-45	ti462	16.026	9.300E-02	33.33	3.100E-02		J.Csikai	30400.017	
21	22	Ti-48(n np)Sc-47	ti48np	18 884	NOT measu	ired vet					
22	26	Fe-54(n.2n)Fe-53	fe542	16.484	NOT measu	ured vet	(see also)				
23	83	Bi-209(n.3n)Bi-207	bi2093	17.779	NOT measu	ured vet	(see also)				
24	69	Tm-169(n,3n)Tm-167	tm1693	18.055	NOT measu	ured yet	(see also)				
25	27	Co-59(n,3n)Co-57	co593	19.831	NOT measu	ured yet	(see also)				_
52		Number of measured									
25		Number of not measured								_	
77		Total									_

References

IRDFF-2002	Tech.Report 452., IAEA, 2006	https://www-nds.iaea.org/publications/tecdocs/technical-reports-series-452.pdf
W. Mannhart 2008	CM on Standards, 2008	http://www-nds.iaea.org/standards-cm-oct-2008/6.PDF
W. Mannhart 2002	INDC(NDS)-0435, 2002, p.59	https://www-nds.iaea.org/publications/indc/indc-nds-0435.pdf
W. Mannhart 1987	Tech.Report 273, p.413,IAEA,1	https://www-nds.iaea.org/publications/tecdocs/technical-reports-series-273.pdf
K. Zolotarev 2014	INDC(NDS)-0668, Oct 2014	28Si(n,p)28Al, 31P(n,p)31Si, and 113ln(n,γ)114mln
K. Zolotarev 2013	INDC(NDS)-0657, Dec 2013	54Fe(n,p), 58Ni(n,2n), 67Zn(n,p), 92Mo(n,p), 93Nb(n,γ), 113In(n,n'), 115In(n,γ), 169Tm(n,3n)
K. Zolotarev 2010	INDC(NDS)-0584, Nov 2010	59Co(n,3n), 89Y(n,2n), 93Nb(n,2n), 169Tm(n,2n) and 209Bi(n,3n)
K. Zolotarev 2009	INDC(NDS)-0546, Apr 2009	27Al(n,α), 55Mn(n,2n), 59Co(n,p), 59Co(n,2n) and 90Zr(n,2n)
K. Zolotarev 2008	INDC(NDS)-0526, Aug 2008	$24Mg(n,p),\ 32S(n,p),\ 60Ni(n,p),\ 63Cu(n,2n), 65Cu(n,2n),\ 64Zn(n,p),\ 115ln(n,2n),\ 127l(n,2n), 197Au(n,2n),\ 199Hg(r,2n),\ 115ln(n,2n),\ 127l(n,2n),\ 115ln(n,2n),\ 1$
K. Zolotarev 2004	INDC(CCP)-0438, Feb 2004	27Al(n,p), 56Fe(n,p) and 237Np(n,f)
K. Zolotarev 2002	INDC(CCP)-0431, Aug 2002	139La(n,γ), 186W(n,γ) and 204Pb(n,n')
K. Zolotarev 1999	INDC(NDS)-0193, Mar 1999	RRDF-98
S. Manojlović 2011	NENE-20, 307, Bovec 2011	http://www.nss.si/nene2011/htm/abs/absNENE20112903.html
M. Schulz 2018	App Rad Isot 132(2018)29	
M. Schulz 2018_2	Nucl Eng Radiat Sci (2018)	
M. Schulz 2019	App Rad Isot 143(2019)132	

Comments

	difference << sum of uncertainties
	difference < sum of uncertainties
	difference > sum of uncertainties
	only one experiment
* - (n,γ) measured by	Buczko and Csikai in 1976-1978 could be poluted by room scattered neutrons (see S. Manojlovi ć, A. Trkov, NENE-20)

Go to U-235 spectrum Go to MACS(30keV) Back to CRP web