program linmom
c By M.B. Chadwick, LANL Los Alamos c Implements Chadwick-Oblozinsky continuum angular distribution theory c See Phys. Rev. C50, 2490 (1994). c Sample input corresponds to Figure 1 of this reference.
dimension rat(20),xs(20),g(0:20) open(unit=8,file='output',status='unknown') open(unit=7,file='input',status='unknown') pi=3.1415927
c *********************************************************************** c Input paramters as follows: (ALL FREE FORMAT) c ein, eout = incident and emission energies c bindin and bindout = sparation energies for projectile and ejectile c from the composite nucleus c efermi = Fermi energy (35 MeV) c dsde = angle-integrated preequilibrium cross section at this emiss. energy c amass = target A value c nstages = number of preequilibrium stages to be included c rat(i) = the relative contribution of the preequilibrium stage i c to the total preequilibrium spectrum, for emission energy eout. c *********************************************************************** c READ INPUT PARAMETERS:- totrat=0. read(7,*)ein,eout,bindin,bindout,efermi,dsde,amass read(7,*)nstages do 8 i=1,nstages read(7,*)rat(i) 8 totrat=totrat+rat(i)
c determine cross sections for the various preequilibrium stages c such that they sum to the inputted value dsde: do 9 i=1,nstages xs(i)=dsde*rat(i)/totrat 9 continue
c zero arrays do 20 n=1,20 20 g(n)=0.
c zeta factor to approximate effects of defraction/refraction at low c energies (only comes into play below 80 MeV) zeta=9.3/sqrt(eout) if(zeta.lt.1.)zeta=1.
do 120 nstep=1,nstages step=float(nstep) anex=2.*step write(8,*)'Angular dist. for preequilibrium stage N=',nstep,':' write(8,*)'Ang. ddxs' write(8,*)'(deg) (mb/MeV sr)' write(8,*)'----- -----------'
c establish average energy of the excitons in the res. nucleus:- np=nstep nh=nstep energy=ein+bindin-eout-bindout glev=amass/13. c glev eventually cancels call energyav(glev,np,nh,energy,efermi,eav) totnorm=0. do 100 nang=0,18 th=float(nang)
factor=sqrt((ein+bindin+efermi)*(eout+bindout+efermi))/ & (zeta*anex*eav/3.) ctheta=cos(th*pi/18.) gdist=exp(factor*ctheta) fnorm=factor/(2.*pi*( exp(factor) - exp(-factor) )) gd=gdist*fnorm gdist=gd*xs(nstep) write(8,91)th*10.,gdist totnorm=totnorm+2.*pi*sin(th*pi/18.)*(pi/18.)*gd 91 format(f5.1,3x,1p1e10.3) g(nang)=g(nang)+gdist 100 continue 120 continue
c Now normalize g(nangle) so int over 4pi=1. tot=0. do 200 nth=0,18 th=float(nth) tot=tot+(2.*pi*sin(th*pi/18.)*(pi/18.)*g(nth)) 200 continue
write(8,*)' ' write(8,*)'Angular distribution for sum of all preeq. stages:' write(8,*)'Ang. ddxs' write(8,*)'(deg) (mb/MeV sr)' write(8,*)'----- -----------'
c write out double diff x/s for all preequilibrium stages summed: do 300 nth=0,18 300 write(8,99)float(nth*10),g(nth) 99 format(f5.1,3x,1p1e10.3)
stop end
subroutine energyav(glev,np,nh,energy,efermi,eav) c Calculates average exciton energy relative to bottom of nuclear well, c within an equidistant-spacing model, see Eq. 5 in Phys Rev C50,2490 (1994).
ap=float(np) ah=float(nh) an=ap+ah t1=2.*ap*(ap+1.)/(an*glev) call rhorestr(glev,np+1,nh,energy,efermi,om1) call rhorestr(glev,np,nh,energy,efermi,om2) t1=t1*om1/om2 t2=energy/an t3=efermi eav=t1-t2+t3
return end
subroutine rhorestr(glev,nnp,nnh,energy,efermi,omega) c determined restricted p-h state density using Betak-Dobes formula dimension fact(0:30)
c generate factorials:- fact(0)=1. do 30 n=1,20 30 fact(n)=fact(n-1)*float(n)
bp=nnp bh=nnh aph=(bp*bp + bh*bh +bp - 3.*bh)/(4.*glev) tot1=0. j=-1 10 j=j+1
t1=(-1.)**float(j) t2=fact(j)/ ( fact(nnh-j)*fact(nnh) ) t3=(energy - float(j)*efermi - aph) if(t3.le.0.)t3=0. t3=t3**float(nnp+nnh-1) tot1=tot1 + (t1*t2*t3) if(j.le.h)go to 10
con=(glev**float(nnp+nnh) )/(fact(nnp)*fact(nnh)*fact(nnp+nnh-1)) omega=con*tot1
return end