LOSALAMOS.readme Optical model parameters (Provided by P. Young, 2 December 1997) *****************************************
Reproduced below is a full readme file prepared by P. Young:
*********************************************************************** LOS ALAMOS FILES PROVIDED FOR THE IAEA/NDS/RIPL DATA BASE ***********************************************************************
Three files are provided from LOS ALAMOS for the optical model segment of the RIPL data base, as follows:
LOSALAMOS.README = the present README file which contains (1) a brief description of the three LOS ALAMOS computer files supplied to the IAEA/NDS for the RIPL library; and, (2) three appendices that describe information in the OMLIB.DAT optical model potential library:
App. 1 - describes the format (DESC6) used for the present version of the RIPL optical potential library; App. 2 - describes the reference numbering system (Ref.System) used for the OMLIB.DAT library; App. 3 - provides a short list of the entries in the library (REFTAB1: 1-line per entry) plus a list of references for the entries (REFTAB2). Both the REFTAB1 and REFTAB2 files were made by the OMTABLE code, given in the OMCODE.FOR file.
OMLIB.DAT = (see file LOSALAMOS_OMLIB.DAT in the present directory) present version of the optical model potential library for the main RIPL optical potential library, as described by the DESC6 format description given below and utilizing the Ref.System numbering criteria given below. A short summary with references is also given below (REFTAB1 and REFTAB2).
OMCODE.FOR = (see file LOSALAMOS_OMCODE.FOR in directory OPTICAL.OTHER_FILES) a set of two utility codes and two utility subroutines for use in handling the OMLIB.DAT optical potential library, as follows:
OMIN = subroutine for retrieving data from the optical model library OMLIB.DAT. OMOUT = subroutine for writing potential data into the format of the RIPL optical model library, e.g., OMLIB.DAT. OMSUMRY = fortran code for retrieving and writing a summary of the content of the RIPL optical model library OMLIB.DAT. All information in the file on authors, reference, and descriptive information are retrieved. OMTABLE = fortran code for making an abbreviated or short summary of the content of the OMLIB.DAT potential library, that is, one summary line per entry plus a list of references. The REFTAB1 and REFTAB2 files below were made with OMTABLE using the current OMLIB.DAT library.
*********************************************************************** APPENDIX 1. DESC6: DESCRIPTION OF THE FORMAT USED FOR THE OMLIB.DAT ***********************************************************************
LIBRARY PARAMETERS (revised by Garg, received 2/20/95) (revised by Young, 3/28/95) (revised by Garg/Young, 4/6/95) (revised by Young, 5/14/96) (revised by Young, 11/13/96, 12/22/96, 4/25/97) iref author reference summary emin,emax izmin,izmax iamin,iamax imodel,izproj,iaproj
*****LOOP: i=1,5 jrange(i) *****LOOP j=1,jrange epot(i,j) (rco(i,j,k), k=1,11) (aco(i,j,k), k=1,11) (pot(i,j,k), k=1,20) *****END i AND j LOOPS
jcoul *****LOOP j=1,jcoul ecoul(j),rcoul(j),rcoul0(j),beta(j) *****END j LOOP
(1)*****SKIP TO (2)***** IF IMODEL NOT EQUAL TO 1
nisotopes *****LOOP n=1,nisotopes iz(n),ia(n),ncoll(n),lmax(n),idef(n),bandk(n),[def(j,n), j=2,idef(n),2] *****LOOP k=1,ncoll(n) ex(k,n),spin(k,n),ipar(k,n) *****END k AND n LOOPS
(2)*****SKIP TO (3)***** IF IMODEL NOT EQUAL TO 2
nisotopes *****LOOP n=1,nisotopes iz(n),ia(n),nvib(n) *****LOOP k=1,nvib(n) exv(k,n),spinv(k,n),iparv(k,n),nph(k,n),defv(k,n),thetm(k,n) *****END k LOOP *****END n LOOP
(3)*****SKIP REMAINING LINES IF IMODEL NOT EQUAL TO 3
nisotopes *****LOOP n=1,nisotopes iz(n),ia(n),beta0(n),gamma0(n),xmubeta(n) *****END n LOOP
DEFINITIONS
iref = unique fixed point reference number for this potential author = authors for this potential (up to 80 characters, 1 line)) reference = reference for this potential (up to 80 characters, 1 line) summary = short description of the potential (320 characters, 4 lines) emin,emax = minimum and maximum energies for validity of this potential izmin,izmax = minimum and maximum Z values for this potential iamin,iamax = minimum and maximum A values for this potential imodel = 0 for spherical potential = 1 for coupled-channel, rotational model = 2 for vibrational model = 3 for non-axial deformed model izproj = Z for incident projectile iaproj = A for incident projectile index i = 1 real potential (Woods-Saxon) = 2 surface imaginary potential = 3 volume imaginary potential (Woods-Saxon) = 4 real spin-orbit potential = 5 imaginary spin-orbit potential jrange = number of energy ranges over which the potential is specified = positive for potential strengths = negative for volume integrals = 0 if potential of type i not used epot(i,j) = upper energy limit for jth energy range for potential i rco(i,j,k)= coefficients for multiplying A**(1/3) for specification of radius R in fm where: R(i,j) = {abs[rco(i,j,1)] + rco(i,j,2)*E + rco(i,j,3)*eta + rco(i,j,4)/A + rco(i,j,5)/sqrt(A) + rco(i,j,6)*A**(2/3) + rco(i,j,7)*A + rco(i,j,8)*A**2 + rco(i,j,9)*A**3 + rco(i,j,10)*A**(1/3) + rco(i,j,11)*A**(-1/3)} * [A**(1/3)]
and
if rco(2,j,1) >0.0: Woods-Saxon derivative surface potential if rco(2,j,1) <0.0: Gaussian surface potential.
[Note that the A dependence of rco(i,j,11) cancels out so that rco(i,j,11) is equivalent to adding a constant of that magnitude to the radius R(i,j)].
aco(i,j,k) = coefficients for specification of diffuseness a in fm where:
a(i,j) = abs(aco(i,j,1)) + aco(i,j,2)*E + aco(i,j,3)*eta + aco(i,j,4)/A + aco(i,j,5)/sqrt(A) + aco(i,j,6)*A**(2/3) + aco(i,j,7)*A + aco(i,j,8)*A**2 + aco(i,j,9)*A**3 + aco(i,j,10)*A**(1/3) + aco(i,j,11)*A**(-1/3)
pot(i,j,k) = strength parameters, as follows:
if pot(i,j,k>17) .eq. 0, then
V(i,j) = pot(i,j,1) + pot(i,j,7)*eta + pot(i,j,8)*Ecoul + pot(i,j,9)*A + pot(i,j,10)*A**(1/3) + pot(i,j,11)*A**(-2/3) + pot(i,j,12)*Ecoul2 + [pot(i,j,2) + pot(i,j,13)*eta + pot(i,j,14)*A]*E + pot(i,j,3)*E*E + pot(i,j,4)*E*E*E + pot(i,j,6)*sqrt(E) + [pot(i,j,5) + pot(i,j,15)*eta + pot(i,j,16)*E]*ln(E) + pot(i,j,17)*Ecoul/E**2
if pot(i,j,18) .ne. 0, then
V(i,j) = pot(i,j,1) + pot(i,j,2)*eta + pot(i,j,3)*cos[2*pi*(A - pot(i,j,4))/pot(i,j,5)] + pot(i,j,6)*exp[pot(i,j,7)*E + pot(i,j,8)*E*E] + pot(i,j,9)*E*exp[pot(i,j,10)*E**pot(i,j,11)]
if pot(i,j,19) .ne. 0, then
V(i,j) = [pot(i,j,1) + pot(i,j,2)*eta]/ {1 + exp[(pot(i,j,3) - E + pot(i,j,4)*Ecoul2)/pot(i,j,5)]} + pot(i,j,6)*exp[(pot(i,j,7)*E - pot(i,j,8))/pot(i,j,6)]
if pot(i,j,20) .ne. 0, then
V(i,j) = pot(i,j,1) + pot(i,j,2)*E + pot(i,j,3)*exp[-pot(i,j,4)*(E - pot(i,j,5)*EF)] + pot(i,j,6)*[(E-EF)**pot(i,j,8)]/[(E-EF)**pot(i,j,8) + pot(i,j,7)**pot(i,j,8)] + pot(i,j,9)*exp[-pot(i,j,10)*(E-EF)]*[(E-EF)**pot(i,j,12)] /[(E-EF)**pot(i,j,12) + pot(i,j,11)**pot(i,j,12)]
where E = projectile laboratory energy in MeV eta = (N-Z)/A Ecoul = 0.4Z/A**(1/3) Ecoul2 = 1.73*Z/RC EF = Fermi energy in MeV = -0.5*[SN(Z,A) + SN(Z,A+1)] (for incident neutrons) = -0.5*[SP(Z,A) + SP(Z+1,A+1)] (for incident protons) SN(Z,A) = the neutron separation energy for nucleus (Z,A) SP(Z,A) = the proton separation energy for nucleus (Z,A).
And, continuing the definitions:
jcoul = number of energy ranges for specifying coulomb radius and nonlocality range ecoul(j) = maximum energy of coulomb energy range j rcoul(j), = coefficients to determine the coulomb radius, rcoul0(j) RC, from the expression RC = rcoul*A**(1/3) + rcoul0 beta(j) = nonlocality range. Note that when beta(j).ne.0., then the imaginary potential is pure derivative Woods-Saxon for energy range j. nisotopes = number of isotopes for which deformation parameters and discrete levels are given iz,ia = Z and A for the deformation parameters and discrete levels that follow ncoll = number of collective states in the coupled-channel rotational model for this iz, ia lmax = maximum l value for multipole expansion idef = largest order of deformation bandk = k for the rotational band def = deformation parameters, l=2,4,6,...through lmax ex = rotational level excitation energy (MeV) spin = rotational level spin ipar = rotational level parity nvib = number of vibrational states in the model for this iz, ia exv = vibrational level excitation energy (MeV) spinv = vibrational level spin iparv = vibrational level parity nph = 1 for pure 1-photon state = 2 for pure 2-photon state = 3 for mixture of 1- and 2-photon states defv = vibrational model deformation parameter thetm = mixing parameter (degrees) for nph=3 beta0 = beta deformability parameter gamma0 = gamma deformability parameter xmubeta = non-axiality parameter
*************************************************************************** APPENDIX 2. Ref.System: NUMBERING SYSTEM USED FOR OMLIB.DAT LIBRARY ***************************************************************************
REFERENCE NUMBERING SYSTEM FOR RIPL OPTICAL MODEL POTENTIALS
P. G. Young (24 April 1997)
DEFINITION ===> IREF = 1000*I + JREF
Incident Particles (leading digit, I)
IREF I Particle
1 - 3999 0 - 3 Neutrons 4000 - 5999 4 - 5 Protons 6000 - 6999 6 Deuterons 7000 - 7999 7 Tritons 8000 - 8999 8 He-3 9000 - 9999 9 He-4
Geographic Indicators (trailing 3 digits, JREF)
JREF Region
1 - 99 Los Alamos National Laboratory (LANL) 100 - 199 Other U.S. laboratories, universities 200 - 299 Japan, JAERI 300 - 399 Russia 400 - 499 Western Europe, JEF community 500 - 599 China 600 - 649 Former Soviet Union 650 - 699 India, Pakistan 700 - 799 Others 800 - 999 Reserved
*************************************************************************** APPENDIX 3A. REFTAB1: SHORT SUMMARY OF ENTRIES IN OMLIB.DAT LIBRARY ***************************************************************************
Lib. Inc. Model Z-Range A-Range E-Range Ref. First No. Part. Type (MeV) No. Author
1 n CC rot. 93-93 237-237 0.0- 30.0 1 P.G.Young 2 n vibra. 82-82 208-208 0.0-200.0 2 H.Vonach 3 n CC rot. 92-92 235-235 0.0- 30.0 1 P.G.Young 4 n CC rot. 92-92 237-237 0.0- 30.0 3 P.G.Young 5 n CC rot. 92-92 238-238 0.0- 30.0 3 P.G.Young 6 n CC rot. 94-94 242-242 0.0- 20.0 4 D.G.Madland 7 n CC rot. 94-94 239-239 0.0- 30.0 3 P.G.Young 8 n CC rot. 95-95 241-243 0.0- 30.0 5 P.G.Young 9 n spher. 90-95 230-250 0.0- 10.0 6 D.G.Madland 10 n spher. 26-26 54- 56 0.0- 52.0 7 E.D.Arthur 11 n spher. 27-27 59- 59 0.0- 27.5 8 E.D.Arthur 12 n spher. 30-30 57- 81 0.0- 20.0 9 P.G.Young 13 n spher. 39-39 89- 89 0.0- 21.0 10 E.D.Arthur 14 n spher. 40-40 90- 90 0.0- 20.0 10 E.D.Arthur 15 n spher. 6- 6 12- 12 0.0- 65.0 11 M.B.Chadwick 16 n spher. 7- 7 14- 14 0.0- 60.0 11 M.B.Chadwick 17 n spher. 8- 8 16- 16 0.0- 50.0 11 M.B.Chadwick 100 n spher. 20-92 40-238 10.0- 50.0 12 F.D.Becchetti 101 n spher. 12-83 24-209 11.0- 11.0 13 J.C.Ferrer 102 n spher. 82-82 206-208 5.0- 50.0 14 R.W.Finlay 103 n spher. 26-26 56- 56 0.0-100.0 15 A.Prince 104 n spher. 26-26 54- 54 0.0-100.0 15 A.Prince 105 n spher. 26-26 57- 57 0.0-100.0 15 A.Prince 106 n spher. 26-26 58- 58 0.0-100.0 15 A.Prince 107 n spher. 28-28 58- 58 0.0-100.0 15 A.Prince 108 n spher. 28-28 60- 60 0.0-100.0 15 A.Prince 109 n spher. 28-28 61- 61 0.0-100.0 15 A.Prince 110 n spher. 28-28 62- 62 0.0-100.0 15 A.Prince 111 n spher. 28-28 64- 64 0.0-100.0 15 A.Prince 112 n spher. 24-24 50- 50 0.0-100.0 15 A.Prince 113 n spher. 24-24 53- 53 0.0-100.0 15 A.Prince 114 n spher. 24-24 52- 52 0.0-100.0 15 A.Prince 115 n spher. 24-24 54- 54 0.0-100.0 15 A.Prince 116 n spher. 20-83 40-209 0.0- 5.0 16 P.A.Moldauer 117 n spher. 13-13 27- 27 0.0- 60.0 17 J.Petler 118 n spher. 39-51 85-125 0.0- 5.0 18 A.B.Smith 200 n spher. 0-69 0-146 0.0- 20.0 19 S.Igarasi 201 n spher. 69-95 147-999 0.0- 20.0 19 S.Igarasi 202 n spher. 33-37 61-107 0.0- 20.0 20 JAERI NDC 203 n spher. 38-42 69-116 0.0- 20.0 20 JAERI NDC 204 n spher. 43-45 80-125 0.0- 20.0 20 JAERI NDC 205 n spher. 46-48 89-134 0.0- 20.0 20 JAERI NDC 206 n spher. 49-51 97-141 0.0- 20.0 20 JAERI NDC 207 n spher. 52-54 103-150 0.0- 20.0 20 JAERI NDC 208 n spher. 55-55 111-153 0.0- 20.0 20 JAERI NDC 209 n spher. 56-56 112-154 0.0- 20.0 20 JAERI NDC 210 n spher. 57-58 117-156 0.0- 20.0 20 JAERI NDC 211 n spher. 59-59 119-160 0.0- 20.0 20 JAERI NDC 212 n spher. 60-60 141-143 0.0- 20.0 20 JAERI NDC 213 n spher. 60-60 144-148 0.0- 20.0 20 JAERI NDC 214 n spher. 60-60 150-999 0.0- 20.0 20 JAERI NDC 215 n spher. 61-61 147-999 0.0- 20.0 20 JAERI NDC 216 n spher. 62-62 144-144 0.0- 20.0 20 JAERI NDC 217 n spher. 62-62 147-147 0.0- 20.0 20 JAERI NDC 218 n spher. 62-62 148-148 0.0- 20.0 20 JAERI NDC 219 n spher. 62-62 149-149 0.0- 20.0 20 JAERI NDC 220 n spher. 62-62 150-150 0.0- 20.0 20 JAERI NDC 221 n spher. 63-63 151-999 0.0- 20.0 20 JAERI NDC 222 n spher. 64-64 133-171 0.0- 20.0 20 JAERI NDC 223 n spher. 65-65 138-175 0.0- 20.0 20 JAERI NDC 400 n CC rot. 79-79 197-197 0.0- 57.0 21 J.P.Delaroche 401 n spher. 20-92 40-238 0.0- 25.0 22 D.Wilmore 402 n spher. 83-83 209-209 0.0- 30.0 23 O.Bersillon 403 n spher. 74-74 182-186 0.0- 30.0 24 J.P.Delaroche 404 n spher. 23-41 50- 95 0.0- 30.0 25 B.Strohmaier 600 n CC rot. 90-** 227-260 0.0- 20.0 26 G.Vladuca 800 n spher. 20-83 40-210 0.0-155.0 27 C.A.Engelbrecht 2001 n spher. 13-82 12-208 50.0-400.0 28 D.G.Madland 2002 n CC rot. 74-74 182-186 0.0-100.0 29 P.G.Young 2003 n CC rot. 67-69 165-169 0.0-100.0 30 E.D.Arthur 2004 n CC rot. 63-63 151-153 0.0- 20.0 31 R.Macklin 2005 n CC rot. 75-75 185-187 0.0- 20.0 32 R.Macklin 2006 n CC rot. 92-92 238-238 0.0-200.0 33 P.G.Young 2100 n spher. 20-83 40-209 10.0- 26.0 34 R.L.Varner 2101 n spher. 26-82 54-208 10.0- 80.0 35 R.L.Walter 2404 n spher. 40-40 90- 90 0.0-200.0 36 A.J.Koning 4000 p spher. 25-26 54- 56 0.0- 28.0 37 E.D.Arthur 4001 p spher. 26-27 59- 59 0.0- 23.0 38 E.D.Arthur 4002 p spher. 38-38 88- 89 0.0- 21.0 39 E.D.Arthur 4003 p spher. 39-39 89- 89 0.0- 21.0 39 E.D.Arthur 4004 p CC rot. 79-79 197-197 0.0- 57.0 40 P.G.Young 4015 p spher. 6- 6 12- 12 0.0- 65.0 41 M.B.Chadwick 4016 p spher. 7- 7 14- 14 0.0- 70.0 41 M.B.Chadwick 4017 p spher. 8- 8 16- 16 0.0- 50.0 41 M.B.Chadwick 4100 p spher. 16-49 30-100 0.0- 22.0 42 F.G.Perey 4101 p spher. 20-83 40-209 10.0- 50.0 43 F.D.Becchetti 4102 p spher. 6-82 12-208 30.0- 60.0 44 J.J.H.Menet 4103 p spher. 26-26 56- 56 50.0- 50.0 45 G.S.Mani 4104 p spher. 28-28 58- 58 100.0-100.0 46 K.Kwiatkowski 4105 p spher. 40-40 90- 90 100.0-100.0 46 K.Kwiatkowski 4106 p spher. 50-50 120-120 100.0-100.0 46 K.Kwiatkowski 4107 p spher. 82-82 208-208 100.0-100.0 46 K.Kwiatkowski 4108 p spher. 20-82 48-208 25.0- 45.0 47 D.M.Patterson 4109 p spher. 39-39 89- 89 1.0- 7.0 48 C.H.Johnson 4110 p spher. 41-41 93- 93 1.0- 7.0 48 C.H.Johnson 4111 p spher. 45-45 103-103 1.0- 7.0 48 C.H.Johnson 4112 p spher. 46-46 105-105 1.0- 7.0 48 C.H.Johnson 4113 p spher. 47-47 107-107 1.0- 7.0 48 C.H.Johnson 4114 p spher. 47-47 109-109 1.0- 7.0 48 C.H.Johnson 4115 p spher. 48-48 110-110 1.0- 7.0 48 C.H.Johnson 4116 p spher. 48-48 111-111 1.0- 7.0 48 C.H.Johnson 4117 p spher. 48-48 113-113 1.0- 7.0 48 C.H.Johnson 4118 p spher. 48-48 114-114 1.0- 7.0 48 C.H.Johnson 4119 p spher. 49-49 115-115 1.0- 7.0 48 C.H.Johnson 4120 p spher. 50-50 116-116 1.0- 7.0 48 C.H.Johnson 4121 p spher. 50-50 122-122 1.0- 7.0 48 C.H.Johnson 4122 p spher. 50-50 124-124 1.0- 7.0 48 C.H.Johnson 4123 p spher. 52-52 128-128 1.0- 7.0 48 C.H.Johnson 4124 p spher. 52-52 130-130 1.0- 7.0 48 C.H.Johnson 4125 p spher. 40-40 92- 92 2.0- 7.0 49 D.S.Flynn 4126 p spher. 40-40 94- 94 2.0- 7.0 49 D.S.Flynn 4127 p spher. 40-40 96- 96 2.0- 7.0 49 D.S.Flynn 4128 p spher. 42-42 95- 95 2.0- 7.0 49 D.S.Flynn 4129 p spher. 42-42 98- 98 2.0- 7.0 49 D.S.Flynn 4130 p spher. 42-42 100-100 2.0- 7.0 49 D.S.Flynn 4200 p spher. 8- 8 16- 16 65.0- 65.0 50 H.Sagaguchi 4201 p spher. 10-10 20- 20 65.0- 65.0 50 H.Sagaguchi 4202 p spher. 12-12 24- 24 65.0- 65.0 50 H.Sagaguchi 4203 p spher. 14-14 28- 28 65.0- 65.0 50 H.Sagaguchi 4204 p spher. 18-18 40- 40 65.0- 65.0 50 H.Sagaguchi 4205 p spher. 20-20 40- 40 65.0- 65.0 50 H.Sagaguchi 4206 p spher. 20-20 44- 44 65.0- 65.0 50 H.Sagaguchi 4207 p spher. 20-20 48- 48 65.0- 65.0 50 H.Sagaguchi 4208 p spher. 22-22 46- 46 65.0- 65.0 50 H.Sagaguchi 4209 p spher. 22-22 48- 48 65.0- 65.0 50 H.Sagaguchi 4210 p spher. 22-22 50- 50 65.0- 65.0 50 H.Sagaguchi 4211 p spher. 26-26 54- 54 65.0- 65.0 50 H.Sagaguchi 4212 p spher. 26-26 56- 56 65.0- 65.0 50 H.Sagaguchi 4213 p spher. 27-27 59- 59 65.0- 65.0 50 H.Sagaguchi 4214 p spher. 28-28 58- 58 65.0- 65.0 50 H.Sagaguchi 4215 p spher. 28-28 60- 60 65.0- 65.0 50 H.Sagaguchi 4216 p spher. 28-28 62- 62 65.0- 65.0 50 H.Sagaguchi 4217 p spher. 28-28 64- 64 65.0- 65.0 50 H.Sagaguchi 4218 p spher. 39-39 89- 89 65.0- 65.0 50 H.Sagaguchi 4219 p spher. 40-40 90- 90 65.0- 65.0 50 H.Sagaguchi 4220 p spher. 42-42 98- 98 65.0- 65.0 50 H.Sagaguchi 4221 p spher. 42-42 100-100 65.0- 65.0 50 H.Sagaguchi 4222 p spher. 62-62 144-144 65.0- 65.0 50 H.Sagaguchi 4223 p spher. 82-82 208-208 65.0- 65.0 50 H.Sagaguchi 4224 p spher. 83-83 209-209 65.0- 65.0 50 H.Sagaguchi 4401 p spher. 42-42 92- 92 22.3- 22.3 51 E.Cereda 4402 p spher. 42-42 94- 94 22.3- 22.3 51 E.Cereda 4403 p spher. 42-42 96- 96 22.3- 22.3 51 E.Cereda 4404 p spher. 42-42 98- 98 22.3- 22.3 51 E.Cereda 4405 p spher. 42-42 100-100 22.3- 22.3 51 E.Cereda 4406 p spher. 44-44 102-102 22.3- 22.3 51 E.Cereda 4407 p spher. 46-46 104-104 22.3- 22.3 51 E.Cereda 4408 p spher. 46-46 106-106 22.3- 22.3 51 E.Cereda 4409 p spher. 46-46 108-108 22.3- 22.3 51 E.Cereda 4410 p spher. 46-46 110-110 22.3- 22.3 51 E.Cereda 4411 p spher. 48-48 106-106 22.3- 22.3 51 E.Cereda 4412 p spher. 48-48 110-110 22.3- 22.3 51 E.Cereda 4413 p spher. 48-48 112-112 22.3- 22.3 51 E.Cereda 4414 p spher. 48-48 116-116 22.3- 22.3 51 E.Cereda 4415 p spher. 47-47 109-109 6.1- 6.1 52 A.Feigel 4650 p spher. 21-21 45- 45 3.0- 5.0 53 S.Kailas 4651 p spher. 20-20 48- 48 3.0- 5.0 53 S.Kailas 4652 p spher. 23-23 51- 51 3.0- 5.0 53 S.Kailas 4653 p spher. 24-24 54- 54 3.0- 5.0 53 S.Kailas 4654 p spher. 27-27 59- 59 3.0- 5.0 53 S.Kailas 4655 p spher. 28-28 61- 61 3.0- 5.0 53 S.Kailas 4656 p spher. 29-29 65- 65 3.0- 5.0 53 S.Kailas 4657 p spher. 31-31 71- 71 3.0- 5.0 53 S.Kailas 4658 p spher. 33-33 75- 75 3.0- 5.0 53 S.Kailas 4659 p spher. 34-34 80- 80 3.0- 5.0 53 S.Kailas 4660 p spher. 19-19 41- 41 1.0- 7.0 54 Y.P.Viyogi 4661 p spher. 21-21 45- 45 1.0- 7.0 54 Y.P.Viyogi 4662 p spher. 20-20 48- 48 1.0- 7.0 54 Y.P.Viyogi 4663 p spher. 22-22 49- 49 1.0- 7.0 54 Y.P.Viyogi 4664 p spher. 23-23 51- 51 1.0- 7.0 54 Y.P.Viyogi 4665 p spher. 25-25 55- 55 1.0- 7.0 54 Y.P.Viyogi 4666 p spher. 27-27 59- 59 1.0- 7.0 54 Y.P.Viyogi 4667 p spher. 28-28 61- 61 1.0- 7.0 54 Y.P.Viyogi 4668 p spher. 29-29 65- 65 1.0- 7.0 54 Y.P.Viyogi 4669 p spher. 30-30 68- 68 1.0- 7.0 54 Y.P.Viyogi 4670 p spher. 31-31 71- 71 1.0- 7.0 54 Y.P.Viyogi 4671 p spher. 33-33 75- 75 1.0- 7.0 54 Y.P.Viyogi 4672 p spher. 34-34 80- 80 1.0- 7.0 54 Y.P.Viyogi 4673 p spher. 39-39 89- 89 1.0- 7.0 54 Y.P.Viyogi 4674 p spher. 41-41 93- 93 1.0- 7.0 54 Y.P.Viyogi 4675 p spher. 42-42 96- 96 1.0- 7.0 54 Y.P.Viyogi 4676 p spher. 42-42 98- 98 1.0- 7.0 54 Y.P.Viyogi 4677 p spher. 45-45 103-103 1.0- 7.0 54 Y.P.Viyogi 4678 p spher. 46-46 105-105 1.0- 7.0 54 Y.P.Viyogi 4679 p spher. 47-47 107-107 1.0- 7.0 54 Y.P.Viyogi 4680 p spher. 47-47 109-109 1.0- 7.0 54 Y.P.Viyogi 4681 p spher. 48-48 110-110 1.0- 7.0 54 Y.P.Viyogi 4682 p spher. 49-49 115-115 1.0- 7.0 54 Y.P.Viyogi 4683 p spher. 50-50 120-120 1.0- 7.0 54 Y.P.Viyogi 4684 p spher. 50-50 124-124 1.0- 7.0 54 Y.P.Viyogi 4685 p spher. 52-52 128-128 1.0- 7.0 54 Y.P.Viyogi 4686 p spher. 52-52 130-130 1.0- 7.0 54 Y.P.Viyogi 5001 p spher. 13-82 12-208 50.0-400.0 28 D.G.Madland 5002 p CC rot. 74-74 182-186 0.0-100.0 29 P.G.Young 5003 p CC rot. 67-69 165-169 0.0-100.0 30 E.D.Arthur 5004 p CC rot. 63-63 151-153 0.0- 20.0 31 R.Macklin 5005 p CC rot. 75-75 185-187 0.0- 20.0 32 R.Macklin 5006 p CC rot. 92-92 238-238 0.0-200.0 33 P.G.Young 5100 p spher. 20-83 40-209 16.0- 65.0 34 R.L.Varner 5101 p spher. 26-82 54-208 10.0- 80.0 55 R.L.Walter 5404 p spher. 40-40 90- 90 0.0-200.0 36 A.J.Koning 6001 d spher. 20-82 40-208 11.0- 27.0 56 C.M.Perey 6100 d spher. 20-83 40-209 8.0- 13.0 57 J.M.Lohr 6300 d spher. 22-22 48- 48 13.6- 13.6 58 O.P.Bilanyuk 6301 d spher. 24-24 52- 52 13.6- 13.6 58 O.P.Bilanyuk 6302 d spher. 24-24 54- 54 13.6- 13.6 58 O.P.Bilanyuk 6400 d spher. 6-82 12-208 20.0-100.0 59 J.Bojowald 7001 t spher. 20-20 40- 40 17.0- 17.0 60 R.Hardekopf 7002 t spher. 22-22 46- 46 17.0- 17.0 60 R.Hardekopf 7003 t spher. 22-22 48- 48 17.0- 17.0 60 R.Hardekopf 7004 t spher. 26-26 54- 54 17.0- 17.0 60 R.Hardekopf 7005 t spher. 26-26 56- 56 17.0- 17.0 60 R.Hardekopf 7006 t spher. 28-28 58- 58 17.0- 17.0 60 R.Hardekopf 7007 t spher. 28-28 60- 60 17.0- 17.0 60 R.Hardekopf 7008 t spher. 30-30 68- 68 17.0- 17.0 60 R.Hardekopf 7009 t spher. 40-40 90- 90 17.0- 17.0 60 R.Hardekopf 7010 t spher. 40-40 94- 94 17.0- 17.0 60 R.Hardekopf 7011 t spher. 50-50 116-116 17.0- 17.0 60 R.Hardekopf 7012 t spher. 58-58 140-140 17.0- 17.0 60 R.Hardekopf 7013 t spher. 82-82 208-208 17.0- 17.0 60 R.Hardekopf 7100 t spher. 20-82 40-208 1.0- 40.0 61 F.D.Becchetti 7101 t spher. 20-20 40- 40 20.0- 20.0 62 P.P.Urone 7102 t spher. 24-24 52- 52 20.0- 20.0 62 P.P.Urone 7103 t spher. 26-26 54- 54 20.0- 20.0 62 P.P.Urone 7104 t spher. 28-28 62- 62 20.0- 20.0 62 P.P.Urone 7105 t spher. 28-28 64- 64 20.0- 20.0 62 P.P.Urone 7106 t spher. 40-40 90- 90 20.0- 20.0 62 P.P.Urone 7107 t spher. 40-40 92- 92 20.0- 20.0 62 P.P.Urone 7108 t spher. 40-40 94- 94 20.0- 20.0 62 P.P.Urone 7109 t spher. 50-50 118-118 20.0- 20.0 62 P.P.Urone 7110 t spher. 12-12 26- 26 17.0- 17.0 63 P.Schwandt 7111 t spher. 13-13 27- 27 17.0- 17.0 63 P.Schwandt 7112 t spher. 14-14 28- 28 17.0- 17.0 63 P.Schwandt 8100 3He spher. 20-82 40-208 1.0- 40.0 61 F.D.Becchetti 8101 3He spher. 20-20 40- 40 21.0- 84.0 64 H.H.Chang 8102 3He spher. 28-28 58- 58 22.0- 84.0 64 H.H.Chang 8103 3He spher. 28-28 60- 60 29.6- 29.6 65 C.B.Fulmer 8104 3He spher. 28-28 60- 60 35.1- 35.1 65 C.B.Fulmer 8105 3He spher. 28-28 60- 60 49.7- 49.7 65 C.B.Fulmer 8106 3He spher. 28-28 60- 60 59.8- 59.8 65 C.B.Fulmer 8107 3He spher. 28-28 60- 60 71.1- 71.1 65 C.B.Fulmer 8108 3He spher. 20-20 40- 40 21.0- 21.0 66 P.P.Urone 8109 3He spher. 24-24 52- 52 21.0- 21.0 66 P.P.Urone 8110 3He spher. 26-26 54- 54 21.0- 21.0 66 P.P.Urone 8111 3He spher. 28-28 62- 62 21.0- 21.0 66 P.P.Urone 8112 3He spher. 28-28 64- 64 21.0- 21.0 66 P.P.Urone 8113 3He spher. 40-40 90- 90 21.0- 21.0 66 P.P.Urone 8114 3He spher. 40-40 92- 92 21.0- 21.0 66 P.P.Urone 8115 3He spher. 40-40 94- 94 21.0- 21.0 66 P.P.Urone 8116 3He spher. 50-50 118-118 21.0- 21.0 66 P.P.Urone 8200 3He spher. 20-20 40- 40 109.2-109.2 67 M.Hyakutake 8201 3He spher. 28-28 58- 58 109.2-109.2 67 M.Hyakutake 8202 3He spher. 40-40 90- 90 109.2-109.2 67 M.Hyakutake 8203 3He spher. 50-50 116-116 109.2-109.2 67 M.Hyakutake 8204 3He spher. 28-28 58- 58 89.3- 89.3 67 M.Hyakutake 8205 3He spher. 28-28 58- 58 118.5-118.5 67 M.Hyakutake 8400 3He spher. 12-12 24- 24 130.0-130.0 68 A.Djaloeis 8401 3He spher. 40-40 90- 90 130.0-130.0 68 A.Djaloeis 8402 3He spher. 50-50 120-120 130.0-130.0 68 A.Djaloeis 8403 3He spher. 82-82 208-208 130.0-130.0 68 A.Djaloeis 8404 3He spher. 3- 3 6- 6 217.0-217.0 69 N.Willis 8405 3He spher. 4- 4 9- 9 217.0-217.0 69 N.Willis 8406 3He spher. 6- 6 12- 12 217.0-217.0 69 N.Willis 8407 3He spher. 14-14 28- 28 217.0-217.0 69 N.Willis 8408 3He spher. 20-20 40- 40 217.0-217.0 69 N.Willis 8409 3He spher. 28-28 58- 58 217.0-217.0 69 N.Willis 8410 3He spher. 39-39 89- 89 217.0-217.0 69 N.Willis 8411 3He spher. 40-40 90- 90 217.0-217.0 69 N.Willis 8412 3He spher. 50-50 120-120 217.0-217.0 69 N.Willis 8413 3He spher. 82-82 208-208 217.0-217.0 69 N.Willis 8414 3He spher. 5- 5 10- 10 41.0- 41.0 70 H.J.Trost 8415 3He spher. 6- 6 12- 12 41.0- 41.0 70 H.J.Trost 8416 3He spher. 6- 6 13- 13 41.0- 41.0 70 H.J.Trost 8417 3He spher. 8- 8 16- 16 41.0- 41.0 70 H.J.Trost 8418 3He spher. 8- 8 18- 18 41.0- 41.0 70 H.J.Trost 8419 3He spher. 11-11 23- 23 41.0- 41.0 70 H.J.Trost 8420 3He spher. 12-12 24- 24 41.0- 41.0 70 H.J.Trost 8421 3He spher. 12-12 25- 25 41.0- 41.0 70 H.J.Trost 8422 3He spher. 12-12 26- 26 41.0- 41.0 70 H.J.Trost 8423 3He spher. 13-13 27- 27 41.0- 41.0 70 H.J.Trost 8424 3He spher. 20-20 40- 40 41.0- 41.0 70 H.J.Trost 8425 3He spher. 28-28 58- 58 41.0- 41.0 70 H.J.Trost 8650 3He spher. 28-28 58- 58 270.0-270.0 71 P.P.Singh 8651 3He spher. 40-40 90- 90 270.0-270.0 71 P.P.Singh 8652 3He spher. 50-50 116-116 270.0-270.0 71 P.P.Singh 8653 3He spher. 82-82 208-208 270.0-270.0 71 P.P.Singh 9000 4He spher. 13-26 27- 56 1.0-100.0 72 E.D.Arthur 9001 4He spher. 27-27 59- 59 1.0-100.0 73 E.D.Arthur 9100 4He spher. 8-82 16-208 1.0- 25.0 74 L.McFadden 9101 4He spher. 10-92 20-235 1.0- 46.0 75 J.R.Huizenga 9400 4He spher. 20-45 40-100 1.0- 30.0 76 B.Strohmaier 9401 4He spher. 22-30 37- 86 20.0- 30.0 77 O.F.Lemos 9600 4He spher. 8-96 16-250 1.0- 73.0 78 V.Avrigeanu
*************************************************************************** APPENDIX 3B. REFTAB2: REFERENCES FOR REFTAB1 SHORT SUMMARY ***************************************************************************
REFERENCES
1. P.G.Young and E.D.Arthur, Proc.Int.Conf.Nucl.Data Sci.and Tech., Julich (1992) p894 2. H.Vonach,A.Pavlik,M.B.Chadwick,R.C.Haight,R.O.Nelson,S.A.Wender, P.G.Young, Phys. Rev. C 50, 1952 (1994) 3. P.G.Young and E.D.Arthur, LANL Report LA-UR-91-1424,894(1992) 4. D.G.Madland and P.G.Young, Report LA-7533-MS (1978) 5. P.G.Young and E.D.Arthur, LANL Report LA-UR-95-3654, paper at RIPL CRP Mtg., Vienna, Oct.30-Nov.3,1995. 6. D.G.Madland and P.G.Young, Int. Conf., Harwell, UK, Sept. 25-29, 1978 7. E.D.Arthur and P.G.Young, LA-UR-95-3654 (1995),BNL-NCS-51245 (1980) p.731, LA-8626-MS (1980) 8. E.D.Arthur, P.G.Young, and W.Matthes, BNL-51245 ,751 (1980); Nucl. Sci.Eng.124,271(1996) 9. P.G.Young and D.Rutherford, Report IAEA-TECDOC-483,167 (1988) 10. E.D.Arthur, Nucl.Sci.Eng. 76,137(1980); LA-UR-94-3104 (1994) 11. M.B.Chadwick and P.G.Young, Nucl.Sci.Eng. 123, 17 (1996) 12. F.D.Becchetti, Jr. and G.W.Greenlees, Phys. Rev. 182,1190 (1969) 13. J.C.Ferrer,J.D.Carlson, and J.Rapaport, Nucl.Phys. A275,325 (1977) 14. R.W.Finlay et al., Phys. Rev. C 30, 796 (1984) 15. A.Prince, Int. Conf. on Nucl. Data, Antwerp ,1982 16. P.A.Moldauer, Nucl. Phys. 47,65(1963) 17. J.Petler,M.S.Islam, and R.W.Finlay, Phys. Rev. C 32 ,673 (1985) 18. A.B.Smith,P.T.Guenther,J.F.Whalen, Nucl. Phys. A415,1 (1984) 19. S.Igarasi, Japan At.Ener.Res. Insti. 1228 , 41 (1973) 20. Japan At.Ener.Res. Insti., JNDC FP Nucl. Data WG 21. J.P.Delaroche, Proc.Int.Conf.on Neut.Phys. for Reactors, Harwell (1978) 22. D.Wilmore and P.E.Hodgson, Nucl. Phys. 55,673 (1964) 23. O.Bersillon, CEA Report CEA-N-2284 (1982) p.130; see also NEANDC-222U 24. J.P.Delaroche et al., Int. Conf. on Nucl. Data, Knoxville,TN,1979 26. G.Vladuca, A.Tudora, and M.Sin, Rom. J. Phys.,tome 41, no. 7-8 (1996) 515-526 27. C.A.Engelbrecht and H.Fiedeldey, Ann. Phys. 42,262-295 (1967) 28. D.G.Madland, OECD/NEA Specialists Mtg. on Opt.Mod.to 200 MeV, Paris,1997 29. P.G.Young,E.D.Arthur,M.Bozian,T.R.England,G.M.Hale,R.J.LaBauve, R.C.Little,et al., LANL Report LA-11753-MS (1990); see also LA-8630-PR, p2 (1980) 30. E.D.Arthur and C.Philis, Report LA-8630-PR,p2 (1980) 31. R.Macklin and P.G.Young, Nucl.Sci.Eng. 95, 189 (1987) 32. R.Macklin and P.G.Young, Nucl.Sci.Eng. 97, 239 (1987) 33. P.G.Young, LANL Progress Report LA-11972-PR (1990) p.9 34. R.L.Varner,W.J.Thompson,T.L.McAbee,E.J.Ludwig,T.B.Clegg, Phys.Rep. 201,57 (1991) 35. R.L.Walter and P.P.Guss, Rad. Effects 92, 1079 (1985) [1985 Santa Fe Conf. Proc.] 36. A.J.Koning, J.J.van Wijk, J.P.Delaroche, OECD/NEA Specialists Mtg. on Opt.Mod.to 200 MeV,Paris,1997 37. E.D.Arthur and P.G.Young, LA-8626-MS(ENDF-304) (1980);BNL-51245, p751 (1980); LA-UR-94-3104 (1994) 38. E.D.Arthur,P.G.Young,W.Matthes, BNL-51245,751 (1980); LA-UR-94-3104 (1994) 39. E.D.Arthur, Nucl.Sci.Eng. 76,137 1980) 40. P.G.Young and E.D.Arthur, LA-UR-84-2767 (1984); LA-UR-94-3104 (1994) 41. M.B.Chadwick and P.G.Young, Proc.Int. Particle Therapy Mtg. and PTCOG XXIV, 24-26 Apr. 1996,Detroit,Mich. 42. F.G.Perey, Phys. Rev. 131,745 (1963) 43. F.D.Becchetti Jr. and G.W.Greenlees, Phys. Rev. 182,1190 (1969) 44. J.J.H.Menet,E.E.Gross,J.J.Malanify, and A.Zucker, Phys. Rev. C4, 1114 (1971) 45. G.S.Mani, Nucl. Phys. A165,225 (1972) 46. K.Kwiatkowski and N.S.Wall, Nucl. Phys. A301,349 (1978) 47. D.M.Patterson et al, Nucl. Phys. A263,261 (1976) 48. C.H.Johnson et al, Phys. Rev. Lett.39,1604(1977); Phys. Rev. C20, 2052(1979) 49. D.S.Flynn et al, Phys. Rev. C. 31, 87 (1985) 50. H.Sagaguchi et al, Phys. Rev. C 26, 944 (1982) 51. E.Cereda et. al., Phys. Rev. C 26, 1941 (1982) 52. A.Feigel et. al., Phys. Rev. C 21, 2666 (1980) 53. S.Kailas et al, Phys. Rev. C 20, 1272(1979); Pramana.J.Phys.27, 139(1986) 54. Y.P.Viyogi, Ph.D Thesis (Calcutta University 1983) 55. R.L.Walter and P.P.Guss, Rad. Effects 92, 1079 (1985) [1985 Santa Fe Conf. Proc.] 56. C.M.Perey and F.G.Perey, Phys. Rev. 132,755 (1963) 57. J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974) 58. O.P.Bilanyuk et al, Sov. J. Nucl. Phys. 35,317 (1982) 59. J.Bojowald et al, Phys. Rev. C 38,1153(1988) 60. R.Hardekopf et al, Phys. Rev. C 21,830 (1980) 61. F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969) 62. P.P.Urone et al, Nucl. Phys. A163,225 (1971) 63. P.Schwandt et al, Phys. Rev. C 26,369 (1982) 64. H.H.Chang et al, Nucl. Phys. A297,105 (1978) 65. C.B.Fulmer and J.C.Hafele, Phys. Rev. C 8,172 (1973) 66. P.P.Urone et al, Nucl. Phys. A163,225(1971) 67. M.Hyakutake et al, Nucl. Phys. A311,161 (1978) 68. A.Djaloeis et al, Nucl. Phys. A306,221 (1978) 69. N.Willis et al, Nucl. Phys. A204,454(1973) 70. H.J.Trost et al, Nucl. Phys. A337,377(1980) 71. P.P.Singh et al, Pramana. J. Phys. 27,747 (1986) 72. E.D.Arthur and P.G.Young, Report LA-8636-MS(ENDF-304) (1980) 73. E.D.Arthur,P.G.Young,W.Matthes, Report BNL-51245,751(1980) 74. L.McFadden and G.R.Satchler, Nucl. Phys. 84, 177 (1966) 75. J.R.Huizenga and G.Igo, Nucl. Phys. 29,462 (1962) 76. B.Strohmaier et al, Paper at the IAEA Advisory Group Meeting ,1981 77. O.F.Lemos, Orsay, Series A ,No.136 (1972) 78. V.Avrigeanu,P.E.Hodgson, and M.Avrigeanu, Report OUNP-94-02(1994); Phys. Rev. C49,2136 (1994)