ANNEX I:

RECOMMENDED DECAY DATA

Tabulations of the recommended decay data for the 85 radionuclides are presented in this Annex. The radionuclides are ordered by atomic number.

Data presented include:

- recommended half-lives $(T_{1/2})$, Q values and decay modes
- transition probabilities, nature and log ft data for β^- transitions
- transition probabilites, nature, log ft and shell capture probabilities for electron capture (EC) transitions
- energies and emission probabilities for the different radiations
 - α -particles
 - electrons (β^- emission, Auger and conversion electrons)
 - X-rays
- $\gamma\text{-ray}$ energies, transition and emission probabilities, multipolarities and total internal conversion coefficients.

ANNEX I: RECOMMENDED DECAY DATA

SYMBOLS AND NOTATION

1 Units

s second	
----------	--

- min minute
- h hour
- d day
- y year (1 y = 365.24219878 d or 31556925.26 s)
- eV electronvolt $(1 \text{ eV} = 1.602176462(63) \times 10^{-19} \text{ J})$
- keV kiloelectronvolt (1 keV = 1000 eV)

2 Particles and quanta

- α alpha particle
- β^+ positron from β^+ decay
- β^- electron from β^- decay
- γ gamma quantum, photon emitted when a nucleus decays to a lower energy state
- ec internal conversion electron
- ec_K internal conversion electron, ejected from the K shell
- ec_L internal conversion electron, ejected from the L shell
- ec_M internal conversion electron, ejected from the M shell
- ec_{M+} internal conversion electron, ejected from the M and higher shells
- ec_N internal conversion electron, ejected from the N shell
- ec_{N+} internal conversion electron, ejected from the N and higher shells
- ec_O internal conversion electron, ejected from the O shell
- e_A Auger electron
- e_{AK} K-Auger electron
- e_{AL} L-Auger electron
- KLL KLL-Auger electron
- KLX KLX-Auger electron (X=M, N)
- KXY KXY-Auger electron (X=M, N; Y=M, N)
- X X-ray quantum, photon emitted during the rearrangement of the atomic shells
- XK X-ray quantum, photon emitted during the rearrangement of the atomic K shell
- XL X-ray quantum, photon emitted during the rearrangement of the atomic L shell

3 Energies

- Q_{α} total energy of alpha decay
- Q_{β^-} total energy of β^- decay
- Q_{EC} total energy of electron capture (EC) decay
- Q_{IT} total energy of isomeric transition decay

4 Transitions, probabilities, emission intensities and conversion coefficients

- $\alpha_{x,y}$ transition by α decay between level x and level y
- $\beta_{x,y}^{-}$ transition by β^{-} decay between level x and level y
- $\epsilon_{x,y}$ transition by electron capture (EC) between level x and level y
- P_K K-shell capture probability for an electron capture (EC) transition
- P_L L-shell capture probability for an electron capture (EC) transition

P_M	M-shell capture probability for an electron capture (EC) transition
P_{M+}	M- and higher-shells capture probability for an electron capture (EC) transition
	$(P_K + P_L + P_M + \ldots = 1)$
$\gamma_{x,y}$	γ -ray emission between level x and level y
P_{γ}	γ -ray emission probability for a given transition (not including conversion electrons)
P_{ce}	conversion electron emission probability for a given transition
$P_{\gamma+ce}$	total transition probability for a given transition (including conversion electrons)
	$P_{\gamma+ce} = P_{\gamma} + P_{ce}$
α_K	K-shell internal conversion coefficient
α_L	total L-shell internal conversion coefficient
α_M	total M-shell internal conversion coefficient
α_{M+}	total M- and higher-shells internal conversion coefficient
α_N	total N-shell internal conversion coefficient
α_{N+}	total N- and higher-shells internal conversion coefficient
α_{π}	internal-pair formation coefficient
$\alpha_{T(ICC)}$	total internal conversion coefficient ($\alpha_T = \alpha_K + \alpha_L + \alpha_M + \ldots$)
α_T	total conversion coefficient ($\alpha_T = \alpha_K + \alpha_L + \alpha_M + \ldots + \alpha_{\pi}$)

5 Other physical quantities and abbreviations

E0, E1, E2, EL	electric monopole, dipole, quadrupole, 2L-pole
$\log ft$	logarithm of the comparative half-life in β^- or EC decay
J	quantum number of total angular momentum
K, L, M, \dots	electron shells
K/L	ratio $P_{ce_K}/P_{ce_L} = \alpha_K/\alpha_L$
K/LM	ratio $P_{ce_L}/(P_{ce_L}+P_{ce_M}) = \alpha_K/(\alpha_L+\alpha_M)$
K/LMN	ratio $P_{ce_K}/(P_{ce_L}+P_{ce_M}+P_{ce_N}) = \alpha_K/(\alpha_L+\alpha_M+\alpha_N)$
KLX/KXY	ratio $P_{A_{KLX}}/P_{A_{KXY}}$
L	orbital angular momentum quantum number
m_0	electron rest mass
max	maximum
min	minimum
avg	average
Z	atomic number of an element
A	mass number of an isotope
N	number of neutrons in an isotope, $N = A - Z$
M1, M2, ML	magnetic dipole, quadrupole, 2L-pole
$\bar{\nu}$	average total number of spontaneous fission neutrons
$T_{1/2}$	half-life (= total half-life for multiple decay modes)
λ	decay constant, $\lambda = ln2/T_{1/2}$
δ	mixing ratio of different multipolarities
π	parity

$T_{1/2}$:	8.32	(7)	\min
Q_{β^-}	:	1308	(20)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Probability × 100	Nature	$\log ft$
$\begin{array}{c} \beta_{0,3}^- \\ \beta_{0,2}^- \\ \beta_{0,0}^- \end{array}$	$\begin{array}{c} 659 \ (20) \\ 1003 \ (20) \\ 1308 \ (20) \end{array}$	$\begin{array}{ccc} 3.0 & (4) \\ 35 & (7) \\ 62 & (7) \end{array}$	1st forbidden non-unique 1st forbidden non-unique 1st forbidden non-unique	$5.41 \\ 5.24 \\ 5.67$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	$rac{\mathrm{Energy}}{\mathrm{keV}}$
e_{AL}	(Tl)	5.25 - 15.32	5.1(4)	
e _{AK}	(Tl) KLL KLX	54.587 - 59.954 66.37 - 72.86	0.30 (7) }	
	KXY	78.12 - 85.50	}	
$ec_{2,0}$ K	(TI) (TI)	219.366 (6) 280.540 202.228	8.0(15)	
ес _{2,0} Г ес _{2 0} м	(TI)	301.192 - 302.507	0.31(6)	
$ec_{2,0 N}$	(Tl)	304.050 - 304.777	0.080(15)	
$ec_{3,2 K}$	(Tl)	258.99 (17)	0.122(24)	
$ec_{3,2}$ L	(Tl)	329.17 - 331.86	0.0204(41)	
$ec_{3,0}$ K	('T1) (T1)	563.89 (5)	0.0906(18)	
$ec_{3,0}$ L	$(\mathbf{T}\mathbf{I})$	634.07 - 636.76	0.01498(30)	
$\beta_{0,3}^{-}$	max:	659 (20)	3.0(4)	avg: $203 (7)$
$\beta_{0,2}^{-}$	max:	1003 (20)	35~(7)	avg: $330(8)$
$\beta_{0,0}^-$	max:	1308 (20)	62~(7)	avg: $450(8)$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.	
XL	(Tl)	8.9531 - 14.7362	2.9(4)	
$XK\alpha_2$	(Tl)	70.8325	2.3(5)	$K\alpha$

		${ m Energy}\ { m keV}$	Photons per 100 disint.	
$XK\alpha_1$	(Tl)	72.8725	$3.9(8)$ }	_
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Tl) (Tl) (Tl)	82.118 82.577 83.115		
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Tl) (Tl) (Tl)	84.838 85.134 85.444		

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\begin{array}{l} \gamma_{1,0}(\mathrm{Tl}) \\ \gamma_{2,0}(\mathrm{Tl}) \\ \gamma_{3,2}(\mathrm{Tl}) \\ \gamma_{3,1}(\mathrm{Tl}) \\ \gamma_{3,0}(\mathrm{Tl}) \end{array}$	$\begin{array}{c} 265.832 \ (5) \\ 304.896 \ (6) \\ 344.52 \ (17) \\ 383.59 \ (6) \\ 649.42 \ (5) \end{array}$	$\begin{array}{c} 0.014 \ (7) \\ 36 \ (7) \\ 0.70 \ (14) \\ 0.014 \ (7) \\ 2.3 \ (3) \end{array}$	$E2 \\ M1 \\ M1 \\ M1(+E2) \\ M1$	$\begin{array}{c} 0.1603 \ (23) \\ 0.375 \ (6) \\ 0.269 \ (4) \\ 0.13 \ (8) \\ 0.0501 \ (7) \end{array}$	$\begin{array}{c} 0.012 \ (6) \\ 26 \ (5) \\ 0.55 \ (11) \\ 0.012 \ (6) \\ 2.2 \ (3) \end{array}$

5 References

M.NURMIA, P.KAURANEN, M.KARRAS, A.SIIVOLA, A.ISOLA, G.GRAEFFE, A.LYYJYEN, Nature 190 (1961) 427 (Half-life)

G.K.WOLF, Nucl. Phys. A116 (1968) 387

(Half-life, gamma-ray energy and emission probabilities)

R.C.LANGE, G.R.HAGEE, A.R.CAMPBELL, Nucl. Phys. A133 (1969) 273

(Gamma-ray energy and emission probabilities)

G.ASTNER, G.K.WOLF, Nucl. Phys. A147 (1970) 481

(Gamma-ray energy and emission probabilities)

R.C.LANGE, G.R.HAGEE, A.R.CAMPBELL, Priv. Comm. (1971)

(Gamma-ray energy and emission probabilities)

D.G.TUGGLE, Thesis, Report LBL-4460, Univ. California (1976)

(Gamma-ray energy and emission probabilities)

F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311

(K Auger electron energies)

M.U.RAJPUT, T.D.MACMAHON, Nucl. Instrum. Methods Phys. Res. A312 (1992) 289

(Evaluation techniques)

S.I.KAFALA, T.D.MACMAHON, P.W.GRAY, Nucl. Instrum. Methods Phys. Res. A339 (1994) 151 (Evaluation techniques)

E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-shell fluorescence yields)

B.SINGH, J.L.RODRIGUEZ, S.S.M.WONG, J.K.TULI, Nucl. Data Sheets 84 (1998) 487 (log ft values)

E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998)

(K Auger electron energies)

E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999)

(K X-ray energies and relative emission probabilities)

E.BROWNE, Nucl. Data Sheets 88 (1999) 29

(Nuclear levels)

E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (EMISSION program and X-ray and Auger electron emission probabilities and energies) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1(ICCs) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) R.D.DESLATTES, E.G.KESSLER JR., P.INDELICATO, L.DE BILLY, E.LINDROTH, J.ANTON, Rev. Mod. Phys. 75 (2003) 35 (K and L X-ray energies) T.D.MACMAHON, A.PEARCE, P.HARRIS, Appl. Radiat. Isot. 60 (2004) 275 (Evaluation techniques) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICCs) F.G.KONDEV, Nucl. Data Sheets 109 (2008) 1527 (Nuclear levels) C.DULIEU, M.M.BÉ, V.CHISTÉ, Proc. Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France (2008) 97 (SAISINUC software)

$T_{1/2}$:	4.202	(11)	\min
$Q_{\beta^{-}}$:	1532.4	(6)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\begin{array}{c} \beta_{0,2}^- \\ \beta_{0,1}^- \\ \beta_{0,0}^- \end{array}$	$\begin{array}{c} 366.0 \ (8) \\ 729.3 \ (6) \\ 1532.4 \ (6) \end{array}$	$\begin{array}{c} 0.110 \ (14) \\ 0.0051 \ \ (3) \\ 99.885 \ (14) \end{array}$	1st forbidden 1st forbidden unique 1st forbidden	

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e _{AK}	(Pb) KLL KLX KXY	56.028 - 61.669 68.181 - 74.969 80.3 - 88.0	0.0034 (6) } } }	
$ec_{2,0 \text{ K}}$ $ec_{2,0 \text{ L}}$	(Pb) (Pb)	1078.4 1150.54 - 1151.20	$\begin{array}{c} 0.093 \ (11) \\ 0.017 \ (3) \end{array}$	
$\begin{array}{c} \beta_{0,2}^- \\ \beta_{0,1}^- \\ \beta_{0,0}^- \end{array}$	max: max: max:	$\begin{array}{ccc} 366.0 & (8) \\ 729.3 & (6) \\ 1532.4 & (6) \end{array}$	$\begin{array}{c} 0.110 \ (14) \\ 0.0051 \ (3) \\ 99.885 \ (14) \end{array}$	avg: 104.52 (25) avg: 232.39 (21) avg: 538.86 (25)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.19 - 15.217		0.035~(4)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		$\begin{array}{c} 0.026 \ (3) \\ 0.044 \ (5) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	0.0150 (17)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.0045~(6)	$\mathrm{K}\beta_2'$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{2,1}(Pb)$ $\gamma_{1,0}(Pb)$	363.3(5) 803.06(3)	$\begin{array}{c} 0.00015 \ (15) \\ 0.0051 \ (3) \end{array}$	E2 E2	$\begin{array}{c} 0.0663 \ (20) \\ 0.01030 \ (31) \end{array}$	$\begin{array}{c} 0.00014 \ (14) \\ 0.0050 \ (3) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

K.FAJANS, A.F.VOIGT, Phys. Rev. 60 (1941) 619 (Half-life) D.E.ALBURGER, G.FRIEDLANDER, Phys. Rev. 82 (1951) 977 (Maximum beta-decay energy) B.W.SARGENT, L.YAFFE, A.P.GRAY, Can. J. Phys. 31 (1953) 235 (Half-life) A.POULARIKAS, R.W.FINK, Phys. Rev. 115 (1959) 989 (Half-life) D.A.HOWE, L.M.LANGER, Phys. Rev. 124 (1961) 519 (Maximum beta-decay energy) M.NURMIA, P.KAURANEN, M.KARRAS, A.SHVOLA, A.ISOLA, G.GRAEFFE, A.LYYJYEN, Nature 190 (1961) 427 (Half-life) W.H.ZOLLER, C.BOTTERON, W.B.WALTERS, Report MIT-905-133, Massachusetts Institute of Technology (1968) (Gamma-ray emission probability) W.H.ZOLLER, W.B.WALTERS, J. Inorg. Nucl. Chem. 32 (1970) 2465 (Gamma-ray emission probability) D.FLOTHMANN, R.LOHKEN, W.WIESNER, H.REBEL, Phys. Rev. Lett. 25 (1970) 1719 (Half-life, Maximum beta-decay energy) N.B.GOVE, M.J.MARTIN, Nucl. Data Tables 10 (1971) 205 (Log ft values) B.I.PERSSON, I.PLESSER, J.W.SUNIER, Nucl. Phys. A167 (1971) 470 (Half-life, Maximum beta-decay energy) J.C.MANTHURUTHIL, D.C.CAMP, A.V.RAMAYYA, J.H.HAMILTON, J.J.PINAJIAN, J.W.DOORNEBOS, Phys. Rev. C6 (1972) 1870 (Gamma-ray transition energies) L.L.COLLINS, G.D.O'KELLEY, E.EICHLER, Report ORNL-4791, Oak Ridge National Laboratory (1972) (Half-llife) H.C.GRIFFIN, A.M.DONNE, Phys. Rev. Lett. 28 (1972) 107 (Half-life) W.Wiesner, D.Flothmann, H.J.Gils, R.Lohken, H.Rebel, Nucl. Phys. A191 (1972) 166 (Half-life, Maximum beta-decay energy) J.E.DRAPER, R.J.MCDONALD, N.S.P.KING, Phys. Rev. C16 (1977) 1594 (Transition energies, K/L conversion electrons subs) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 313 (Electron shells binding energies) W.H.TRZASKA, J.KANTELE, R.JULIN, J.KUMPULAINEN, P.VAN DUPPEN, M.HUYSE, J.WAUTERS, Z. Phys. A335 (1990) 475(K/L conversion electrons subshell ratio) M.U.RAJPUT, T.D.MCMAHON, Nucl. Instrum. Methods Phys. Res. A312 (1992) 289 (Evaluation techniques) S.I.KAFALA, T.D.MCMAHON, P.W.GRAY, Nucl. Instrum. Methods Phys. Res. A339 (1994) 151 (Evaluation techniques) S.RAMAN, J.B.MCGRORY, E.T.JURNEY, J.W.STARNER, Phys. Rev. C53 (1996) 2732 (Gamma-ray transition energies) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Fluorescence yields) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (K Auger electron energies)

E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilitie) E.BROWNE, Nucl. Data Sheets 88 (1999) 29 (206Tl and 206Pb level schemes) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (Program Emission) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR, P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 91 (2002) 1 (ICC) M.-M.Bé, R.G.HELMER, V.CHISTÉ, J. Nucl. Sci. Technol. (Tokyo) suppl. 2 (2002) 481 (Saisinuc supporting software) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) R.D.DESLATTES, E.G.KESSLER, P.INDELICATO, L.DE BILLY, E.LINDROTH, J.ANTON, Rev. Mod. Phys. 77 (2003) 35(K and L X-ray energies) D.MACMAHON, A.PEARCE, P.HARRIS, Appl. Radiat. Isot. 60 (2004) 275 (Evaluation techniques) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	4.774	(12)	\min
$Q_{\beta^{-}}$:	1418	(5)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\begin{array}{c} \beta_{0,2}^- \\ \beta_{0,1}^- \\ \beta_{0,0}^- \end{array}$	520 (5) 848 (5) 1418 (5)	$\begin{array}{c} 0.271 \ (10) \\ < 0.00008 \\ 99.729 \ (10) \end{array}$	1st forbidden non-unique 1st forbidden unique 1st forbidden non-unique	$6.15 > 10.8 \\ 5.11$

3 Electron Emissions

		Ene ke	rgy V]	Electrons per 100 disint.]	Energy keV
e_{AL}	(Pb)	5.33 -	15.82		0.00333~(6)		
e _{AK}	(Pb) KLL KLX KXY	56.028 - 68.181 - 80.3 -	$61.669 \\74.969 \\88.0$	} } }	0.000202 (23)		
$\begin{array}{c} \beta_{0,2}^- \\ \beta_{0,1}^- \\ \beta_{0,0}^- \end{array}$	max: max: max:	$520 \\ 848 \\ 1418$	$(5) \\ (5) \\ (5)$		$\begin{array}{c} 0.271 \ (10) \\ < 0.00008 \\ 99.729 \ (10) \end{array}$	avg: avg: avg:	$\begin{array}{c} 155.0 \ (17) \\ 273.2 \ (18) \\ 492.5 \ (21) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Pb)	9.186 - 15.2169		0.00201~(6)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		$0.00154 \ (6) \\ 0.00258 \ (10)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	84.451 84.937 85.47	} } }	0.00088 (4)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.000266 (12)	$\mathrm{K}\beta_2'$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \gamma_{2,1}(\mathrm{Pb}) \\ \gamma_{1,0}(\mathrm{Pb}) \\ \gamma_{2,0}(\mathrm{Pb}) \end{array}$	$\begin{array}{c} 328.10 \ (12) \\ 569.698 \ (2) \\ 897.77 \ (12) \end{array}$	$\begin{array}{c} 0.00189 \ (19) \\ 0.00189 \ (19) \\ 0.269 \ (9) \end{array}$	[M1] E2 M1+0.8%E2	$\begin{array}{c} 0.334 \ (5) \\ 0.0216 \ (3) \\ 0.0233 \ (4) \end{array}$	$\begin{array}{c} 0.00142 \ (14) \\ 0.00185 \ (19) \\ 0.263 \ (9) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

M.CURIE, A.DEBIERNE, A.S.EVE, H.GEIGER, O.HAHN, S.C.LIND, S.MEYER, E.RUTHERFORD, E.SCHWEIDLER, Rev. Mod. Phys. 3 (1931) 427 (Half-life)

K.FAJANS, A.F.VOIGT, Phys. Rev. 58 (1940) 177

(Half-life)

H.D.EVANS, Proc. Phys. Soc. (London) 63A (1950) 575

(Measured energies and probabilities of beta-transitions)

- B.W.SARGENT, L.YAFFE, A.P.GRAY, Can. J. Phys. 31 (1953) 235
- (Half-life)

S.CUPERMAN, Nucl. Phys. 28 (1961) 84

(Measured energies and probabilities of beta-transitions)

P.R.Christensen, O.B.Nielsen, H.Nordby, Phys. Lett. 4 (1963) 318

(Measured energies and probabilities of beta-transitions)

W.F.DAVIDSON, C.R.COTHERN, R.D.CONNOR, Can. J. Phys. 45 (1967) 2295

(Measured energies and probabilities of beta-transitions)

J.M.TRISCHUK, E.KANKELEIT, Nucl. Phys. A90 (1967) 33

(Half-life, measured energies and probabilities of beta-transitions)

CH.BRIANÇON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533

(Measured energies and probabilities of gamma-transitions)

H.V.KLAPDOR, P.VON BRENTANO, E.GROSSE, K.HABERKANT, Nucl. Phys. A152 (1970) 263

(Measured energies and probabilities of gamma- and beta-transitions and ICCs)

N.B.GOVE, M.J.MARTIN, Nucl. Data Tables A10 (1971) 205

(Log ft values)

O.HAUSSER, F.C.KHANNA, D.WARD, Nucl. Phys. A194 (1972) 113

(Multipolarity and mixing ratio)

C.BARGHOLTZ, L.ERIKSSON, L.GIDEFELDT, Phys. Scr. 7 (1973) 254

(Multipolarity and mixing ratio)

O.HAUSSER, D.B.FOSSAN, A.OLIN, D.WARD, W.WITTHUHN, R.E.WARNER, Nucl. Phys. A225 (1974) 425 (Measured energies and probabilities of gamma-transitions)

F.T.AVIGNONE III, T.A.GIRARD, Phys. Rev. C13 (1976) 2067

(Multipolarity and mixing ratio)

F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311

(Auger electron energies)

M.M.HINDI, E.G.ADELBERGER, S.E.KELLOGG, T.MURAKAMI, Phys. Rev. C38 (1988) 1370

(Measured energies and probabilities of gamma- and beta-transitions, B(M1), experimental ICCs)

A.ARTNA-COHEN, Nucl. Data Sheets 63 (1991) 79

(Evaluation and gamma-ray normalisation factor)

E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527

(Evaluation of K-shell fluorescence yields and X-ray emission probabilities)

E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998)

(Auger electron energies)

E.Schönfeld, G.Rodloff, Report PTB-6.11-1999-1, Braunschweig (1999)

(X-ray energies and emission probabilities)

E.Schönfeld, H.Janssen, Appl. Radiat. Isot. 52 (2000) 595

(X-ray and Auger electron emission probabilities)

R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35
(Evaluated energies and probabilities of gamma-transitions)
R.D.DESLATTES, E.G.KESSLER JR., P.INDELICATO, L.DE BILLY, E.LINDROTH, J.ANTON, Rev. Mod. Phys. 75
(2003) 35
(Evaluated X-ray transition energies)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337
(Q)
T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202
(Theoretical ICC)
C.DULIEU, M.M.BÉ, V.CHISTÉ, Proc. Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France (2008) 97
(SAISINUC Software and atomic data)
F.G.KONDEV, S.LALKOVSKI, Nucl. Data Sheets 112 (2011) 707
(Nuclear levels)

$T_{1/2}$:	3.058	(6)	\min
Q_{β^-}	:	4999.0	(17)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Proba × 1	bility .00	Nature	$\log ft$
$\beta_{0,23}^{-}$	518.3(17)	0.052	(5)	1st forbidden non-unique	6.67
$\beta_{0.21}^{-}$	615.7(17)	0.017	(5)	1st forbidden non-unique	7.41
$\beta_{0.20}^{-}$	640.3(17)	0.045	(4)	1st forbidden non-unique	7.04
$\beta_{0,19}^{-}$	675.1 (17)	0.005	(2)	Allowed	8.1
$\beta_{0.18}^{-1}$	702.4(17)	0.102	(11)	1st forbidden non-unique	6.82
$\beta_{0,17}^{-1}$	737.1(17)	0.002	(1)	1st forbidden non-unique	8.6
$\beta_{0.13}$	818.6(17)	0.231	(9)	1st forbidden non-unique	6.7
$\beta_{0.12}^{-1}$	873.7(17)	0.174	(9)	1st forbidden non-unique	6.92
$\beta_{0.8}^{-}$	1003.6(17)	0.007	(3)	1st forbidden non-unique	8.5
$\beta_{0.7}^{-1}$	1037.8(17)	3.17	(4)	1st forbidden non-unique	5.92
$\beta_{0.6}^{-}$	1052.4(17)	0.048	(3)	1st forbidden non-unique	7.76
$\beta_{0.5}^{-}$	1079.0(17)	0.63	(4)	1st forbidden non-unique	6.68
$\beta_{0.4}^{-}$	1290.5(17)	24.1	(2)	1st forbidden non-unique	5.38
$\beta_{0.3}^{\circ,\circ}$	1523.9(17)	22.1	(5)	1st forbidden non-unique	5.69
$\beta_{0,2}^{-}$	1801.3(17)	49.2	(6)	1st forbidden non-unique	5.61

3 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.	Energy keV
e_{AL}	(Pb)	5.262 - 10.398	4.50 (13)	
e _{AK}	(Pb) KLL KLX KXY	56.028 - 61.669 68.181 - 74.969 80.3 - 88.0	0.27 (3) } }	
$ec_{3,2} K$ $ec_{3,2} L$ $ec_{3,2} M+$ $ec_{4,2} K$ $ec_{4,2} L$ $ec_{4,2} M+$	 (Pb) (Pb) (Pb) (Pb) (Pb) (Pb) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 2.86 \ (13) \\ 0.49 \ (2) \\ 0.15 \ (1) \\ 1.88 \ (2) \\ 0.32 \\ 0.098 \\ 1.95 \ (1) \end{array}$	
$ec_{2,1}$ K $ec_{2,1}$ L $ec_{2,1}$ M+ $ec_{1,0} \alpha$ $ec_{1,0}$ K $ec_{1,0}$ L	(Pb) (Pb) (Pb) (Pb) (Pb) (Pb)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1.25 \ (1) \\ 0.34 \\ 0.109 \\ 0.0369 \ (6) \\ 0.170 \ (3) \\ 0.0291 \ (4) \end{array}$	

		Energy keV		Electrons per 100 disint.	${ m Energy}\ { m keV}$	
$\beta_{0,23}^{-}$	max:	518.3	(17)	0.052~(5)	avg:	154.3~(6)
$\beta_{0,21}^{-}$	max:	615.7	(17)	0.017~(5)	avg:	187.7~(6)
$\beta_{0.20}^{-}$	max:	640.3	(17)	0.045~(4)	avg:	196.4(6)
$\beta_{0.19}^{-}$	max:	675.1	(17)	0.005~(2)	avg:	208.6(6)
$\beta_{0,18}^{-}$	max:	702.4	(17)	0.102(11)	avg:	218.3~(6)
$\beta_{0,17}^{-}$	max:	737.1	(17)	0.002(1)	avg:	230.8~(6)
$\beta_{0,13}^{-}$	max:	818.6	(17)	0.231~(9)	avg:	260.4(6)
$\beta_{0.12}^{-1}$	max:	873.7	(17)	0.174(9)	avg:	280.8~(6)
$\beta_{0.8}^{-}$	max:	1003.6	(17)	0.007~(3)	avg:	329.7(7)
$\beta_{0,7}^{-}$	max:	1037.8	(17)	3.17~(4)	avg:	342.8(7)
$\beta_{0.6}^{-}$	max:	1052.4	(17)	0.048(3)	avg:	348.4(7)
$\beta_{0.5}^{-}$	max:	1079.0	(17)	0.63~(4)	avg:	358.6(7)
$\beta_{0,4}^{-}$	max:	1290.5	(17)	24.1(2)	avg:	441.5(7)
$\beta_{0,3}^{-}$	max:	1523.9	(17)	22.1(5)	avg:	535.4(7)
$\beta_{0,2}^{-}$	max:	1801.3	(17)	49.2(6)	avg:	649.5(7)

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Pb)	9.184 - 15.216		2.75(12)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		$\begin{array}{c} 2.03 \; (5) \\ 3.42 \; (7) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{''} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	1.17(3)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.353(11)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$ \begin{array}{c} \gamma_{5,4}(\mathrm{Pb}) \\ \gamma_{4,3}(\mathrm{Pb}) \\ \gamma_{7,4}(\mathrm{Pb}) \\ \gamma_{3,2}(\mathrm{Pb}) \\ \gamma_{7,3}(\mathrm{Pb}) \end{array} $	$\begin{array}{c} 211.52 (2) \\ 233.37 (2) \\ 252.71 (2) \\ 277.37 (2) \\ 486.08 (2) \end{array}$	$\begin{array}{c} 0.38 (2) \\ 0.51 (2) \\ 1.26 (3) \\ 10.1 (5) \\ 0.055 (4) \end{array}$	M1+3%E2 [M1+33%E2] [M1+14%E2] [M1+0.04%E2] [M1]	$\begin{array}{c} 1.096 \ (17) \\ 0.66 \ (3) \\ 0.616 \ (15) \\ 0.529 \ (8) \\ 0.1164 \ (17) \end{array}$	$\begin{array}{c} 0.18 \ (1) \\ 0.31 \ (1) \\ 0.78 \ (2) \\ 6.6 \ (3) \\ 0.049 \ (4) \end{array}$
$\gamma_{4,2}(Pb)$	510.74(2)	24.8(2)	[M1+0.25%E2]	0.1019(16)	22.5(2)

Tl - 2	208
--------	-----

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{2,1}(Pb)$ $\gamma_{18,4}(Pb)$ $\gamma_{12,3}(Pb)$ $\gamma_{13,3}(Pb)$ $\gamma_{5,2}(Pb)$ $\gamma_{6,2}(Pb)$ $\gamma_{7,2}(Pb)$	583.187 (2) $588.108 (18)$ $650.27 (2)$ $705.34 (2)$ $722.26 (2)$ $748.87 (2)$ $763.45 (2)$ $808.32 (13)$	$\begin{array}{c} 86.7 (3) \\ 0.06 (1) \\ 0.043 (5) \\ 0.023 (4) \\ 0.25 (4) \\ 0.048 (3) \\ 1.86 (2) \\ 0.030 (7) \end{array}$	$\begin{array}{c} {\rm E2}\\ [{\rm M1}]\\ [{\rm M1}]\\ [{\rm M1}]\\ {\rm M1+8.8\% E2}\\ [{\rm M1}]\\ [{\rm M1+1.0\% E2}] \end{array}$	$\begin{array}{c} 0.0205 \ (3) \\ 0.0704 \ (10) \\ 0.0541 \ (8) \\ 0.0438 \ (7) \\ 0.0387 \ (7) \\ 0.0375 \ (6) \\ 0.0354 \ (5) \end{array}$	$\begin{array}{c} 85.0 \ (3) \\ 0.06 \ (1) \\ 0.041 \ (5) \\ 0.022 \ (4) \\ 0.24 \ (4) \\ 0.046 \ (3) \\ 1.80 \ (2) \\ 0.030 \ (7) \end{array}$
$\begin{array}{l} \gamma_{18,3}({\rm Pb}) \\ \gamma_{-1,2}({\rm Pb}) \\ \gamma_{3,1}({\rm Pb}) \\ \gamma_{20,3}({\rm Pb}) \\ \gamma_{12,2}({\rm Pb}) \\ \gamma_{13,2}({\rm Pb}) \\ \gamma_{4,1}({\rm Pb}) \\ \gamma_{19,2}({\rm Pb}) \\ \gamma_{20,2}({\rm Pb}) \\ \gamma_{21,2}({\rm Pb}) \\ \gamma_{23,2}({\rm Pb}) \end{array}$	$\begin{array}{c} 821.48\ (2)\\ 835.90\ (11)\\ 860.53\ (2)\\ 927.64\ (2)\\ 982.70\ (2)\\ 1093.90\ (2)\\ 1126.24\ (2)\\ 1160.96\ (2)\\ 1185.57\ (2)\\ 1283.04\ (2)\\ \end{array}$	$\begin{array}{c} 0.042 \ (4) \\ 0.076 \ (11) \\ 12.7 \ (1) \\ 0.032 \ (3) \\ 0.131 \ (7) \\ 0.208 \ (8) \\ 0.44 \ (1) \\ 0.005 \ (2) \\ 0.011 \ (3) \\ 0.017 \ (5) \\ 0.052 \ (5) \end{array}$	$\begin{array}{c} M1 \\ [M1+0.02\%E2] \\ [M1] \\ [M1] \\ [M1] \\ E2 \\ E1 \\ [M1] \\ [M1] \\ [M1] \\ [M1] \\ [M1] \end{array}$	$\begin{array}{c} 0.0295 \ (5) \\ 0.0262 \ (4) \\ 0.0244 \ (4) \\ 0.0216 \ (3) \\ 0.0186 \ (3) \\ 0.00560 \ (8) \\ 0.00203 \ (3) \\ 0.01214 \ (17) \\ 0.01151 \ (17) \\ 0.00943 \ (14) \end{array}$	$\begin{array}{c} 0.041 \ (4) \\ 0.076 \ (11) \\ 12.4 \ (1) \\ 0.031 \ (3) \\ 0.128 \ (7) \\ 0.204 \ (8) \\ 0.44 \ (1) \\ 0.005 \ (2) \\ 0.011 \ (3) \\ 0.017 \ (5) \\ 0.052 \ (5) \end{array}$
$\gamma_{8,1}(Pb)$ $\gamma_{17,1}(Pb)$ $\gamma_{20,12}(Pb)$ $\gamma_{1,0}(Pb)$	$\begin{array}{c} 1380.89 \ (2) \\ 1647.32 \ (2) \\ 1744.12 \ (2) \\ 2614.511 \ (10) \end{array}$	$\begin{array}{c} 0.007 \ (3) \\ 0.002 \ (1) \\ 0.002 \ (1) \\ 100 \end{array}$	[M1] [M1] [M1] E3	$\begin{array}{c} 0.00785 \ (11) \\ 0.00518 \ (8) \\ 0.00457 \ (7) \\ 0.00246 \ (4) \end{array}$	$\begin{array}{c} 0.007 \ (3) \\ 0.002 \ (1) \\ 0.002 \ (1) \\ 99.755 \ (4) \end{array}$

5 References

L.G.ELLIOTT, R.L.GRAHAM, J.WALKER, J.I.WOLFSON, Phys. Rev. 93 (1954) 356 (K ICC) D.L.BAULCH, H.A.DAVID, J.F.DUNCAN, Australian J. Chem. 10 (1957) 85 (Half-life) E.M.KRISIUK, A.G.SERGEEV, G.D.LATYSHEV, K.I.ILIN, V.I.FADEEV, Sov. Phys. - JETP 6 (1958) 880 (Multipolarities) V.D.Vorobev, K.I.Ilin, T.I.Kolchinskaia, G.D.Latyshev, A.G.Sergeev, IU.N.Trofimov, V.I.Fadeev, Bull. Rus. Acad. Sci. Phys. 21 (1958) 956 (Conversion electron emission probabilities) G.T.EMERY, W.R.KANE, Phys. Rev. 118 (1960) 755 (Beta-ray emission probabilities, gamma-ray emission probabilities) G.SCHUPP, H.DANIEL, G.W.EAKINS, E.N.JENSEN, Phys. Rev. 120 (1960) 189 (Beta-ray emission probabilities, gamma-ray emission probabilities) L.SIMONS, M.BRENNER, L.KÄLD, K-E.NYSTEN, E.SPRING, Soc. Sci. Fennica Comm. Phys. Math. 26 (1961) part 6 (Gamma-ray emission probabilities) H.DANIEL, G.LÜHRS, Z. Phys. 176 (1963) 30 (Conversion electron emission probabilities, K ICC, Multipolarities) H.OSTERTAG, K.H.LAUTERJUNG, Z. Phys. 199 (1967) 25 (Beta-ray emission probabilities) N.O.LASSEN, N.HORNSTRUP, Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 36 (1967) No. 4 (Half-life) J.S.LARSEN, B.C.JORGENSEN, Z. Phys. 227 (1969) 65 (Gamma-ray emission probabilities) G.AUBIN, J.BARRETTE, G.LAMOUREUX, S.MONARO, Nucl. Instrum. Methods 76 (1969) 85 (Gamma-ray emission probabilities)

A.Pakkanen, J.Kantele, P.Suominen, Z. Phys. 218 (1969) 273 (Gamma-ray emission probabilities) V.H.MUNDSCHENK, Radiochim. Acta 14 (1970) 72 (Half-life) R.ACKERHALT, P.ELLERBE, G.HARBOTTLE, Radiochem. Radioanal. Lett. 8 (1971) 75 (Half-life) P.JAGAM, D.S.MURTY, Nucl. Phys. A197 (1972) 540 (Gamma-ray emission probabilities, mixing ratio) J.DALMASSO, Thesis, Report FRNC-TH-441, Univ. Nice (1972) (Gamma-ray emission probabilities) J.DALMASSO, H.MARIA, C.YTHIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 277 (1973) 467 (Gamma-ray emission probabilities) M.KORTELAHTI, A.PAKKENAN, J.KANTELE, Nucl. Phys. A240 (1975) 87 (Gamma-ray emission probabilities, mixing ratio) F.T.AVIGNONE, S.M.BLANKENSHIP, W.W.TRUE, Phys. Rev. C14 (1976) 267 (Mixing ratio) R.J.GEHRKE, R.G.HELMER, R.C.GREENWOOD, Nucl. Instrum. Methods 147 (1977) 405 (Gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) F.T.AVIGNONE, A.G.SCHMIDT, Phys. Rev. C17 (1978) 380 (Gamma-ray emission probabilities) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities) R.VANINBROUKX, H.H.HANSEN, Int. J. Appl. Radiat. Isotop. 34 (1983) 1395 (Gamma-ray emission probabilities) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma-ray emission probabilities) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) L.I.GOVOR, A.M.DEMIDOV, V.A.KURKIN, Bull. Rus. Acad. Sci. Phys. 54 (1990) 147 (Mixing ratio) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities) O.EL SAMAD, J.DALMASSO, G.BARCI-FUNEL, G.ARDISSON, Radiochim. Acta 62 (1993) 65 (Gamma-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons) M.Schramm, K.H.Maier, M.Rejmund, L.D.Wood, N.Roy, A.Kuhnert, A.Aprahamian, J.Becker, M.Brink-MAN, D.J.DECMAN, E.A.HENRY, R.HOFF, D.MANATT, L.G.MANN, R.A.MEYER, W.STOEFFL, G.L.STRUBLE, T.-F.WANG, Phys. Rev. C56 (1997) 1320 (Nuclear levels, Spin and Parity) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (K-x ray) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray energy) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) S.I.VASILEV, K.YA.GROMOV, A.A.KLIMENKO, ZH.K.SAMATOV, A.A.SMOLNIKOV, V.I.FOMINYKH, V.G.CHUMIN, Instrum. Exp. Tech. 49 (2006) 34 (Crossover gammas) M.J.MARTIN, Nucl. Data Sheets 108 (2007) 1583 (Nuclear structure, nuclear level energies)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	2.161	(7)	\min
Q_{β^-}	:	3976	(8)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Proba × 1	bility 00	Nature	$\log ft$
$\beta_{0,10}^{-}$	587(8)	0.420	(22)		
$\beta_{0,9}$ $\beta_{0,9}^-$	906(8)	$0.10 \\ 0.645$	(3) (16)	1st forbidden	6.3
$\beta_{0.7}^{>0.8}$	1071(8)	0.70	(10) (9)	1st forbidden	6.5
$\beta_{0.6}^{-}$	1451(8)	0.070	(15)	Allowed	8
$\beta_{0,5}^{-}$	1515(8)	0.031	(16)	1st forbidden unique	9.2
$\beta_{0.4}^{-}$	1660(8)	0.32	(11)	1st forbidden	7.5
$\beta_{0.3}^{\underline{2}}$	1827(8)	97.70	(15)	1st forbidden	5.2
$\beta_{0,2}^{\underline{-},\underline{0}}$	1944(8)	< 0.1		Allowed	>8.3

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e_{AL}	(Pb)	5.34 - 15.82	$13.23\ (15)$	
e_{AK}	(Pb)		0.77(9)	
	KLĹ	56.028 - 61.669	}	
	KLX	68.181 - 74.969	}	
	KXY	80.3 - 88.0	}	
ес _{3,2 К}	(Pb)	29.22 (8)	17.51 (48)	
$ec_{3,2}$ L	(Pb)	101.36 - 104.18	$3.39\ (9)$	
$ec_{3,2}$ M	(Pb)	113.37 - 114.74	0.799~(20)	
$ec_{3,2 N}$	(Pb)	116.33 - 117.08	0.200(5)	
$ec_{4,2 \text{ K}}$	(Pb)	195.61 (14)	0.057~(28)	
$ec_{2,1 K}$	(Pb)	377.13 (8)	2.34(7)	
$ec_{2,1 L}$	(Pb)	449.27 - 452.09	0.786~(23)	
$ec_{2,1}$ M	(Pb)	461.28 - 462.65	0.197~(6)	
$ec_{2,1 N}$	(Pb)	464.24 - 464.99	0.0497~(15)	
$ec_{3,1 \text{ K}}$	(Pb)	494.35 (8)	0.0491 (40)	
$ec_{3,1 L}$	(Pb)	566.49 - 569.31	0.0100(8)	
$ec_{8,3 \text{ K}}$	(Pb)	832.43 (14)	0.01142 (33)	
$ec_{1,0 K}$	(Pb)	1478.94 (5)	0.2340(42)	
$ec_{1,0 L}$	(Pb)	1551.08 - 1553.90	0.0396~(6)	
$\beta_{0,10}^{-}$	max:	587 (8)	0.420(22)	avg: 177.8 (28)
$\beta_{0,9}^{-}$	max:	615 (8)	0.10(3)	avg: $187.4(28)$
$\beta_{0,8}^{-}$	max:	906 (8)	0.645~(16)	avg: 292.9 (30)

	Ene ke	ergy V	Electrons per 100 disint.]	Energy keV
$\begin{array}{cccc} \beta_{0,7}^{-} & \max: \\ \beta_{0,6}^{-} & \max: \\ \beta_{0,5}^{-} & \max: \\ \beta_{0,4}^{-} & \max: \\ \beta_{0,3}^{-} & \max: \\ \beta_{0,2}^{-} & \max: \end{array}$	$1071 \\ 1451 \\ 1515 \\ 1660 \\ 1827 \\ 1944$	(8) (8) (8) (8) (8) (8)	$\begin{array}{c} 0.70 \ (9) \\ 0.070 \ (15) \\ 0.031 \ (16) \\ 0.32 \ (11) \\ 97.70 \ (15) \\ < 0.1 \end{array}$	avg: avg: avg: avg: avg: avg: avg:	$\begin{array}{c} 355.5 \ (31) \\ 505.9 \ (33) \\ 518.1 \ (31) \\ 591.2 \ (33) \\ 660.0 \ (34) \\ 709.0 \ (34) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.186 - 15.2169		8.04 (14)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		$5.85\ (10)$ $9.84\ (16)$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	84.451 84.937 85.47	} } }	3.36 (8)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	1.016 (28)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\begin{array}{c} \gamma_{3,2}({\rm Pb}) \\ \gamma_{4,2}({\rm Pb}) \\ \gamma_{5,3}({\rm Pb}) \\ \gamma_{6,3}({\rm Pb}) \\ \gamma_{2,1}({\rm Pb}) \\ \gamma_{-1,1}({\rm Pb}) \\ \gamma_{3,1}({\rm Pb}) \\ \gamma_{4,1}({\rm Pb}) \\ \gamma_{7,3}({\rm Pb}) \\ \gamma_{-1,2}({\rm Pb}) \\ \gamma_{7,2}({\rm Pb}) \\ \gamma_{-1,3}({\rm Pb}) \end{array}$	$\begin{array}{c} 117.224 \ (7) \\ 284.04 \ (23) \\ 311.5 \ (3) \\ 375.5 \ (2) \\ 465.128 \ (24) \\ 469.7 \ (3) \\ 582.4 \ (2) \\ 748.3 \ (2) \\ 755.6 \ (3) \\ 860.5 \ (3) \\ 873.5 \ (4) \\ 890.0 \ (4) \end{array}$	$\begin{array}{c} 100\\ 0.21\ (10)\\ 0.031\ (15)\\ 0.070\ (15)\\ 100\\ 0.12\ (3)\\ 0.374\ (29)\\ 0.080\ (21)\\ 0.114\ (21)\\ 0.26\ (4)\\ 0.59\ (8)\\ 0.12\ (3) \end{array}$	E1 [M1] [E2] E2 [M2] [E1] [M1] [E1]	$\begin{array}{c} 0.295 \ (5) \\ 0.495 \ (7) \\ 0.1034 \ (15) \end{array}$ $\begin{array}{c} 0.0350 \ (5) \\ 0.200 \ (3) \\ 0.00428 \ (6) \\ 0.0366 \ (6) \end{array}$ $\begin{array}{c} 0.00320 \ (5) \end{array}$	$\begin{array}{c} 77.22 \ (27) \\ 0.14 \ (7) \\ 0.028 \ (14) \\ 0.070 \ (15) \\ 96.62 \ (5) \\ 0.12 \ (3) \\ 0.312 \ (24) \\ 0.080 \ (21) \\ 0.11 \ (2) \\ 0.26 \ (4) \\ 0.59 \ (8) \\ 0.12 \ (3) \end{array}$
$\gamma_{-1,4}(Pb)$ $\gamma_{8,3}(Pb)$ $\gamma_{-1,5}(Pb)$	902.8 (4) 920.43 (11) 970.3	$\begin{array}{c} 0.10 \ (2) \\ 0.645 \ (15) \\ 0.054 \ (15) \end{array}$	[M1]	0.0220(3)	$\begin{array}{c} 0.10 \ (2) \\ 0.631 \ (15) \\ 0.054 \ (15) \end{array}$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \gamma_{10,3}(\text{Pb}) \\ \gamma_{9,2}(\text{Pb}) \\ \gamma_{1,0}(\text{Pb}) \\ \gamma_{-1,6}(\text{Pb}) \\ \gamma_{-1,7}(\text{Pb}) \\ \gamma_{-1,8}(\text{Pb}) \\ \gamma_{-1,9}(\text{Pb}) \end{array}$	$\begin{array}{c} 1239.66 \ (11) \\ 1329.29 \ (16) \\ 1566.93 \ (5) \\ 1661.1 \ (5) \\ 1673.2 \ (4) \\ 1781.7 \ (5) \\ 2005.3 \ (2) \end{array}$	$\begin{array}{c} 0.420 \ (22) \\ 0.10 \ (3) \\ 100 \\ 0.10 \ (2) \\ 0.48 \ (4) \\ 0.04 \ (2) \\ 0.020 \ (5) \end{array}$	E2	0.00294 (5)	$\begin{array}{c} 0.420 \ (22) \\ 0.10 \ (3) \\ 99.707 \ (5) \\ 0.10 \ (2) \\ 0.48 \ (4) \\ 0.04 \ (2) \\ 0.020 \ (5) \end{array}$
$\gamma_{-1,10}(Pb)$ $\gamma_{3,0}(Pb)$ $\gamma_{4,0}(Pb)$ $\gamma_{-1,11}(Pb)$	$\begin{array}{c} 2032.1 \ (5) \\ 2149 \ (1) \\ 2315.80 \ (21) \\ 2548.2 \end{array}$	$\begin{array}{c} 0.001 \\ 0.015 \ (5) \\ 0.0289 \ (21) \\ 0.015 \ (6) \end{array}$	[M4] [E3]	0.01529(22) 0.00292(4)	$\begin{array}{c} 0.001 \\ 0.015 \ (5) \\ 0.0288 \ (21) \\ 0.015 \ (6) \end{array}$

5 References

F.HAGEMANN, Phys. Rev. 79 (1950) 534 (Half-life) N.B.GOVE, M.J.MARTIN, Nucl. Data Tables A10 (1971) 205 (Log ft) T.Vylov, N.A.Golovkov, B.S.Dzhelepov, R.B.Ivanov, M.A.Mikhailova, Y.V.Norseev, V.G.Chumin, Bull. Rus. Acad. Sci. Phys. 41 (1977) 85 (Gamma-ray emission energies and probabilities) V.M.DATAR, C.V.K.BABA, S.N.ACHARYA, S.A.CHITAMBAR, H.C.JAIN, S.K.BHATTACHERJEE, C.S.WARKE, Phys. Rev. C22 (1980) 1787 (Beta emission energies and probabilities) J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma-ray emission energies and probabilities) R.G.HELMER, C.W.REICH, M.A.LEE, I.AHMAD, Int. J. Appl. Radiat. Isotop. 37 (1986) 139 (Gamma-ray emission energies and probabilities) M.C.KOUASSI, A.HACHEM, C.ARDISSON, G.ARDISSON, Nucl. Instrum. Methods Phys. Res. A280 (1989) 424 (Gamma-ray emission energies and probabilities) M.J.MARTIN, Nucl. Data Sheets 63 (1991) 723 (Nuclear levels, multipolarities) O.EL SAMAD, J.DALMASSO, G.BARCI-FUNEL, G.ARDISSON, Radiochim. Acta 62 (1993) 65 (Gamma-ray emission energies and probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-shell fluorescence yields) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (K Auger electron energies) G.Ardisson, V.Barci, O.El Samad, Phys. Rev. C57 (1998) 612 (Gamma-ray emission energies and probabilities) K.YA.GROMOV, SH.R.MALIKOV, T.M.MUMINOV, ZH.K.SAMATOV, ZH.SEHREHEHTEHR, V.I.FOMINYKH, V.V. TSUPKO-SITNIKOV, V.G.CHUMIN, Proc. 49th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Dubna (1999) 117 (Gamma-ray emission energies and probabilities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (K X-ray energies and relative emission probabilities) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger electron emission probabilities) K.YA.GROMOV, S.A.KUDRYA, SH.R.MALIKOV, T.M.MUMINOV, ZH.K.SAMATOV, ZH.SEREETER, V.I.FOMINYKH, V.G.CHUMIN, Bull. Rus. Acad. Sci. Phys. 64 (2000) 1770 (Gamma-ray emission energies and probabilities) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q})

R.D.DESLATTES, E.G.KESSLER JR., P.INDELICATO, L.DE BILLY, E.LINDROTH, J.ANTON, Rev. Mod. Phys. 75 (2003) 35

(K and L X-ray energies)

V.G.CHUMIN, V.I.FOMINYKH, K.YA.GROMOV, A.A.KLIMENKO, S.A.KUDRYA, A.A.SMOLNIKOV, S.I.VASILIEV, Proc. 53rd Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Moscow (2003) 105 (Gamma-ray emission energies and probabilities)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICCs)

C.DULIEU, M.M.BÉ, V.CHISTÉ, Proc. Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France (2008) 97

(SAISINUC software)

$T_{1/2}$:	1.30	(3)	\min
Q_{β^-}	:	5482	(12)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\begin{array}{c} \beta_{0,11}^{-} \\ \beta_{0,10}^{-} \\ \beta_{0,9}^{-} \\ \beta_{0,8}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,3}^{-} \\ \beta_{0,3}^{-} \end{array}$	$\begin{array}{c} 1380 \ (12) \\ 1603 \ (12) \\ 1860 \ (12) \\ 2024 \ (12) \\ 2413 \ (12) \\ 4290 \ (12) \\ 4386 \ (12) \end{array}$	~ 2 ~ 7 ~ 24 ~ 10 ~ 10 ~ 31 ~ 13	Allowed 2nd forbidden unique Allowed Allowed	$ \begin{array}{c} 6.2 \\ 5.9 \\ 5.6 \\ 6.1 \\ 6.4 \\ 6.9 \\ 7.3 \\ \end{array} $

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	E	nergy keV
ес _{3,2 К}	(Pb)	~ 9	$\sim \! 16$		
$ec_{3,2 L}$	(Pb)	81.1392 - 83.9648	$\sim \! 12$		
$ec_{3,2}$ M	(Pb)	93.1493 - 94.5160	~ 3.2		
$ec_{2,1 K}$	(Pb)	208 (3)	5.3(7)		
$ec_{2,1 L}$	(Pb)	280.1392 - 282.9648	3.15(42)		
$ec_{2,1 M}$	(Pb)	292.1493 - 293.5160	0.81(11)		
$ec_{2,1 N}$	(Pb)	295.1064 - 295.8637	0.205~(27)		
$ec_{1,0 K}$	(Pb)	711.6 (3)	0.803(12)		
$ec_{1,0 L}$	(Pb)	783.7 - 786.6	$0.1746\ (25)$		
$ec_{1,0}$ M	(Pb)	795.7 - 797.1	0.0421~(6)		
$ec_{1,0 N}$	(Pb)	798.7 - 799.5	0.01066~(16)		
$ec_{4,1}$ K	(Pb)	982 (20)	0.022 (9)		
$ec_{-1,1 L}$	(Pb)	67.1392 - 69.9648	~ 20		
$ec_{-1,1 M}$	(Pb)	79.1493 - 80.5160	~ 6		
$ec_{-1,2 \text{ K}}$	(Pb)	268 (10)	0.88~(45)		
$ec_{-1,2 L}$	(Pb)	340.1392 - 342.9648	0.15(8)		
$ec_{-1,2}$ M	(Pb)	352.1493 - 353.5160	0.035~(18)		
$ec_{-1,3}$ K	(Pb)	294 (10)	0.55~(37)		
$ec_{-1,3}$ L	(Pb)	366.1392 - 368.9648	0.09~(6)		
$ec_{-1,3}$ M	(Pb)	378.1493 - 379.5160	0.022~(15)		
$\beta_{0,11}^{-}$	max:	1380 (12)	$\sim\!2$	avg:	477(13)
$\beta_{0.10}$	max:	1603 (12)	${\sim}7$	avg:	568(14)
$\beta_{0.9}^{-}$	max:	1860 (12)	~ 24	avg:	674(10)
$\beta_{0.8}^{-}$	max:	2024 (12)	~ 10	avg:	743(10)
$\beta_{0,7}^{-,-}$	max:	2413 (12)	~ 10	avg:	907 (7)

		Energy keV		Electrons Energy per 100 disint. keV		Energy keV
$\beta_{0,3}^{-} \\ \beta_{0,2}^{-}$	max: max:	4290 4386	(12) (12)	~ 31 ~ 13	avg: avg:	$\begin{array}{c} 1721 \ (11) \\ 1763 \ (5) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Pb)	9.186 - 15.217			
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pb) (Pb)	$72.805 \\ 74.97$		$\begin{array}{c} 7 \ (4) \\ 11 \ (6) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	3.8 (19)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	1.1 (6)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	${ m Energy}\ { m keV}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{-1,1}(Pb)$	83(30)	30(6)	[E2]	~ 14	~ 1.98 (40)
$\gamma_{3,2}(Pb)$	97(30)	40 (20)	M1+E2	~ 9	~ 4 (2)
$\gamma_{2,1}(Pb)$	296(3)	89 (11)	E2	0.120(5)	79(10)
$\gamma_{-1,2}(Pb)$	356(10)	5.0(25)	[M1]	0.270(22)	4(2)
$\gamma_{-1,3}(Pb)$	382(10)	3.7(24)	[M1]	0.223(17)	3(2)
$\gamma_{11,9}(Pb)$	480 (36)	2(1)			2(1)
$\gamma_{-1,4}(Pb)$	670(20)	2(1)			2(1)
$\gamma_{1,0}(Pb)$	799.6 (3)	100	E2	0.01042(31)	98.969 (30)
$\gamma_{7,5}(Pb)$	860 (30)	6.9(20)			6.9(20)
$\gamma_{-1,5}(Pb)$	910 (30)	3(2)			3(2)
$\gamma_{4,1}(Pb)$	1070(20)	11.9(49)	[E1]	0.00222(7)	11.9(49)
$\gamma_{5,2}(Pb)$	1110 (20)	6.9(20)			6.9(20)
$\gamma_{9.6}(Pb)$	1210 (20)	16.8(40)			16.8 (40)
$\gamma_{6,2}(Pb)$	1310 (20)	20.8(49)			20.8(49)
$\gamma_{5,1}(Pb)$	1410 (20)	4.9(20)			4.9 (20)
$\gamma_{-1.6}(Pb)$	1490(20)	2(1)			2(1)
$\gamma_{-1.7}(Pb)$	1540(30)	2(1)			2(1)
$\gamma_{8.4}(Pb)$	1590(30)	2(1)			2(1)
$\gamma_{-1.8}(Pb)$	1650(30)	2(1)			2(1)
$\gamma_{10,4}(\text{Pb})$	2010 (30)	6.9(20)			6.9(20)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{-1,9}(Pb)$ $\gamma_{7,1}(Pb)$ $\gamma_{8,2}(Pb)$ $\gamma_{9,3}(Pb)$	$\begin{array}{c} 2090 \ (30) \\ 2280 \ (12) \\ 2360 \ (30) \\ 2430 \ (30) \end{array}$	$\begin{array}{c} 4.9 \ (20) \\ 3 \ (2) \\ 7.9 \ (30) \\ 8.9 \ (30) \end{array}$			$\begin{array}{c} 4.9 \ (20) \\ 3 \ (2) \\ 7.9 \ (30) \\ 8.9 \ (30) \end{array}$

5 References

M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, S.C.Lind, St.Meyer, E.Rutherford, E.Schweildler, Rev. Mod. Phys. 3 (1931) 427

(Half-life)

A.V.KOGAN, L.I.RUSINOV, Sov. Phys. - JETP 5 (1957) 365

(Half-life, neutron emission)

G.STETTER, Report TID-14880 (1961)

 $({\it Neutron\ emission\ probability})$

 $\operatorname{P.Weinzierl}, \operatorname{E.Ujlaki}, \operatorname{G.Preinreich}, \operatorname{G.Eder}, \operatorname{Phys. Rev.} 134$ (1964) B257

 $({\rm Half-life}, {\rm \ beta\ emission\ energies\ and\ probabilities}, {\rm \ gamma-ray\ energies\ and\ emission\ probabilities})$

B.HARMATZ, Nucl. Data Sheets 34 (1981) 735

(Spin, parity, energy level, beta and gamma probabilities)

E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527

(Atomic data)

I.M.Band, M.B.Trzhaskovskaya, C.W.Nestor Jr., P.O.Tikkanen, S.Raman, At. Data Nucl. Data Tables 81 (2002) 1

 $({\rm Theoretical \ ICC})$

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129

 (\mathbf{Q})

E.BROWNE, Nucl. Data Sheets 99 (2003) 483

(Spin, parity, energy level, beta and gamma probabilities)

$T_{1/2}$:	3.277	(15)	h
Q_{β^-}	:	644.0	(12)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta^{0,0}$	644.0 (12)	100	1st forbidden non-unique	5.54

3 Electron Emissions

		Energy keV	Electrons per 100 disint.		Energy keV
$\beta_{0,0}^-$	max:	644.0 (12)	100	avg:	197.35(42)

4 References

R.S.KRISHNAN, E.A.NAHUM, Proc. Cambridge Phil. Soc. 36 (1940) 490 (Half-life) K.FAJANS, A.F.VOIGT, Phys. Rev. 60 (1941) 619 (Half-life) W.MAURER, W.RAMM, Z. Phys. 119 (1942) 602 (Half-life) A.POULARIKAS, R.W.FINK, Phys. Rev. 115 (1959) 989 (Half-life) N.B.GOVE, M.J.MARTIN, Nucl. Data Tables A10 (1971) 205 (log ft values) B.I.PERSSON, I.PLESSER, J.W.SUNIER, Nucl. Phys. A167 (1971) 470 (Half-life) H.BEHRENS, M.KOBELT, W.G.THIES, H.APPEL, Z. Phys. 252 (1972) 349 (Half-life) M.J.MARTIN, Nucl. Data Sheets 63 (1991) 723 (Nuclear levels) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q})

$T_{1/2}$:	22.23	(12)	У
$Q_{\beta^{-}}$:	63.5	(5)	keV
Q_{lpha}	:	3792	(20)	keV
β^{-}	:	100		%
α	:	1.9	(4)	$ imes 10^{-6}$ %

2 β^- Transitions

	Energy keV	Proba × 1	ability 100	Nature	$\log ft$
$egin{array}{c} eta_{0,1}^- \ eta_{0,0}^- \end{array} \ eta_{0,0}^- \end{array}$	$17.0 (5) \\ 63.5 (5)$	80.2 19.8	(13) (13)	1st forbidden 1st forbidden	$5.5 \\ 7.8$

3 α Emissions

	Energy keV	Probability × 100
$\alpha_{0,0}$	3720 (20)	0.0000019 (4)

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Bi)	5.3 - 10.7	36.0(9)	
${ m e}_{{ m AK}} { m ec}_{1,0} { m L} { m c}_{1,0} { m M} { m ec}_{1,0} { m N}$	(Bi) (Bi) (Bi) (Bi)	30.152 - 33.120 42.540 - 43.959 45.601 - 46.382	58 (1) 13.65 (25) 3.50 (6)	
$egin{array}{c} eta_{0,1}^{-} \ eta_{0,0}^{-} \end{array}$	max: max:	$\begin{array}{ccc} 17.0 & (5) \\ 63.5 & (5) \end{array}$	80.2 (13) 19.8 (13)	avg: 4.3 (1) avg: 16.3 (1)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.
XL	(Bi)	9.4207 - 15.7084	22.0(5)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(\mathrm{Bi})$	46.539(1)	80.2 (13)	M1	17.86(25)	4.252(40)

5.2 Gamma Transitions and Emissions

6 References

I.CURIE, J. Phys. Radium 10 (1929) 388 (Half-life) P.CURIE, I.CURIE, J. Phys. Radium 10 (1929) 385 (Half-life) M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, S.C.Lind, St.Meyer, E.Rutherford, E.Schweidler, Rev. Mod. Phys. 3 (1931) 427 (Half-life) F.WAGNER, Report ANL-4490, Argonne National Laboratory (1950) 5 (Half-life) D.K.BUTT, W.D.BRODIE, Proc. Phys. Soc. (London) 64A (1951) 791 (Gamma-ray intensity) C.S.WU, F.BOEHM, E.NAGEL, Phys. Rev. 91 (1953) 319 (Gamma-ray intensity) P.E.DAMON, R.R.EDWARDS, Phys. Rev. 95 (1954) 1698 (Gamma-ray intensity) J.TOBAILEM, J. Phys. Radium 16 (1955) 235 (Half-life) W.STANNERS, M.A.S.Ross, Proc. Phys. Soc. 69A (1956) 836 (Beta intensity) J.TOUSSET, Compt. Rend. Acad. Sci. (Paris) 245 (1957) 1617 (Beta intensity) W.F.MERRITT, P.J.CAMPION, R.C.HAWKINGS, Can. J. Phys. 35 (1957) 16 (Half-life) R.W.FINK, Phys. Rev. 106 (1957) 266 (Gamma-ray intensity) I.Y.KRAUSE, Z. Phys. 152 (1958) 586 (Gamma-ray intensity) J.TOUSSET, J. Phys. Radium 19 (1958) 39 (Beta intensity) B.D.PATE, D.C.SANTRY, L.YAFFE, Can. J. Phys. 37 (1959) 1000 (Half-life) G.HABORTTLE, J. Inorg. Nucl. Chem. 12 (1959) 6 (Half-life) W.R.ECKELMANN, W.S.BROECKER, J.L.KULP, Phys. Rev. 118 (1960) 698 (Half-life) M.NURMIA, P.KAURANEN, M.KARRAS, A.SIIVOLA, A.ISOLA, G.GRAEFFE, A.LYYJYNEN, Nature 190 (1961) 427 (Alpha branching ratio) P.KAURANEN, Ann. Acad. Sci. Fenn., Ser. A, VI 96 (1962) (Alpha branching ratio) L.IMRE, G.FABRY, I.DEZSI, Nucl. Sci. Abstr. 17 (1963) 4186 (Half-life) G.K.WOLF, F.LUX, H.J.BORN, Radiochim. Acta 3 (1964) 206 (Alpha branching ratio) H.RAMTHUN, Z. Naturforsch. 19a (1964) 1064 (Half-life) H.R.VON GUNTEN, A.WYTTENBACH, H.DULAKAS, J. Inorg. Nucl. Chem. 29 (1967) 2826 (Half-life) A.HÖHNDORF, Z. Naturforsch. 24a (1969) 612 (Half-life)

K.YA.GROMOV, B.M.SABIROV, J.J.URBANETS, Bull. Rus. Acad. Sci. Phys. 33 (1970) 1510 (Gamma-ray intensity) R.J.GEHRKE, R.A.LOKKEN, Nucl. Instrum. Methods 97 (1971) 219 (L x-rays) R.G.HELMER, A.J.CAFFREY, R.J.GEHRKE, R.C.GREENWOOD, Nucl. Instrum. Methods 188 (1981) 671 (Gamma-ray energy) K.DEBERTIN, W.PESSARA, Int. J. Appl. Radiat. Isotop. 34 (1983) 515 (Gamma-ray intensity) D.METHA, B.CHAND, S.SINGH, M.L.GARG, N.SINGH, T.S.CHEEMA, P.N.TREHAN, Nucl. Instrum. Methods Phys. Res. A260 (1987) 157 (L x-rays) R.G.HELMER, M.A.LEE, Nucl. Data Sheets 61 (1990) 93 (Spin, parity, level energy) U.SCHÖTZIG, Nucl. Instrum. Methods Phys. Res. A286 (1990) 523 (Gamma-ray intensity) Y.HINO, Y.KAWADA, Nucl. Instrum. Methods Phys. Res. A286 (1990) 543 (Gamma-ray intensity) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) E.BROWNE, Nucl. Data Sheets 88 (1999) 29 (Spin, parity, level energy) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray energy) G.A.RECH, E.BROWNE, I.D.GOLDMAN, F.J.SCHIMA, E.B.NORMAN, Phys. Rev. C65 (2002) 057302 (Half-life) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) E.BROWNE, Nucl. Data Sheets 99 (2003) 483 (Spin, parity, level energy) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q})
$T_{1/2}$:	36.1	(2)	\min
Q_{β^-}	:	1367	(6)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Probability × 100	Nature	$\log ft$
$\beta_{0,10}^{-}$	96 (6) 122 (6)	0.0172(15)	1st forbidden non-unique	5.93
$\beta_{0,9}^{-}$ $\beta_{0,8}^{-}$	133(0) 171(6) 257(6)	$\begin{array}{c} 0.0009 & (3) \\ 0.019 & (4) \\ 1.06 & (4) \end{array}$	1.4 ():]]	FFO
$\beta_{0,7} \\ \beta_{0,6}^{-}$	257(6) 263(6) 206(6)	1.06 (4) 0.0047 (7)	ist forbidden non-unique	0.08
$egin{array}{c} eta_{0,5} \ eta_{0,3}^- \ eta_{0,3} \end{array}$	286(6) 535(6)	$\begin{array}{c} 0.0570 \ (24) \\ 6.32 \ (9) \\ \end{array}$	1st forbidden non-unique	5.73
$egin{array}{c} eta_{0,2}^- \ eta_{0,1}^- \end{array} \ eta_{0,1}^- \end{array}$	$\begin{array}{c} 600 \ (6) \\ 962 \ (6) \end{array}$	$ \begin{array}{c} < 0.09 \\ 1.57 (9) \end{array} $	1st forbidden non-unique 1st forbidden non-unique	>7.7 7.21
$\beta_{0,0}^-$	1367~(6)	91.28(12)	1st forbidden non-unique	5.99

		Energy keV	Electrons per 100 disint.	Energy keV
$e_{\rm AL}$	(Bi)	5.42 - 16.34	0.782(18)	
e _{AK}	(Bi) KLL KLX KXY	57.491 - 63.419 70.025 - 77.105 82.53 - 90.52	0.029 (4) } }	
$ec_{7,4 \rm K}$	(Bi)	4.60 (5)	0.050~(18)	
$ec_{7,4 L}$	(Bi)	78.74 - 81.71	0.086~(17)	
$ec_{7,4}$ M	(Bi)	91.13 - 92.55	0.0229 (44)	
$ec_{3,2}$ L	(Bi)	48.916 - 51.885	0.389~(21)	
ес _{3,2 М}	(Bi)	61.305 - 62.724	0.092~(5)	
ес _{3,2} N	(Bi)	64.366 - 65.147	0.0234~(13)	
$ec_{1,0 K}$	(Bi)	314.308 (9)	0.36~(3)	
$ec_{1,0 L}$	(Bi)	388.446 - 391.415	0.079~(3)	
$ec_{1,0 M}$	(Bi)	400.835 - 402.254	0.0191~(7)	
ес _{3,1 К}	(Bi)	336.624 (15)	0.264~(7)	
$ec_{3,1 L}$	(Bi)	410.76 - 413.73	0.0451~(12)	
$ec_{3,1}$ M	(Bi)	423.15 - 424.57	0.01059~(29)	
$ec_{7,1 \text{ K}}$	(Bi)	614.149 (25)	0.01833 (48)	
$ec_{2,0 K}$	(Bi)	676.154 (13)	$0.0194\ (13)$	
$ec_{3,0 K}$	(Bi)	741.458 (12)	0.080(8)	
$ec_{3,0 L}$	(Bi)	815.596 - 818.565	0.0136(14)	

		Ene ke	rgy V	Electrons per 100 disint.]	Energy keV
$\beta_{0.10}^{-}$	max:	96	(6)	0.0172(15)	avg:	25.0(17)
$\beta_{0.9}^{-,10}$	max:	133	(6)	0.0009(3)	avg:	35.0(17)
$\beta_{0.8}^{-}$	max:	171	(6)	0.019~(4)	avg:	45.6(18)
$\beta_{0,7}^{-}$	max:	257	(6)	1.06(4)	avg:	71.0(18)
$\beta_{0,6}$	max:	263	(6)	0.0047~(7)	avg:	72.8(18)
$\beta_{0,5}^{-}$	max:	286	(6)	0.0570(24)	avg:	79.7(19)
$\beta_{0,3}^{-}$	max:	535	(6)	6.32 (9)	avg:	159.8(21)
$\beta_{0.2}$	max:	600	(6)	< 0.09	avg:	182.2(21)
$\beta_{0,1}$	max:	962	(6)	1.57 (9)	avg:	313.3(23)
$\beta_{0,0}^{-}$	max:	1367	(6)	91.28(12)	avg:	470.9(24)

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Bi)	9.4207 - 15.7084		0.494(13)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Bi) (Bi)	74.8157 77.1088		$\begin{array}{c} 0.228 \ (10) \\ 0.381 \ (17) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Bi) (Bi) (Bi)	86.835 87.344 87.862	} } }	0.130(6)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Bi) (Bi) (Bi)	$\begin{array}{c} 89.732 \\ 90.074 \\ 90.421 \end{array}$	} } }	0.0399(20)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\begin{array}{c} \gamma_{3,2}(\text{Bi}) \\ \gamma_{7,4}(\text{Bi}) \\ \gamma_{5,2}(\text{Bi}) \\ \gamma_{7,2}(\text{Bi}) \\ \gamma_{2,1}(\text{Bi}) \\ \gamma_{1,0}(\text{Bi}) \\ \gamma_{3,1}(\text{Bi}) \\ \gamma_{8,2}(\text{Bi}) \end{array}$	$\begin{array}{c} 65.304 \ (18) \\ 95.13 \ (5) \\ 313.96 \ (4) \\ 342.83 \ (3) \\ 361.846 \ (16) \\ 404.834 \ (9) \\ 427.150 \ (15) \\ 429.65 \ (6) \\ 504.97 \ (6) \end{array}$	$\begin{array}{c} 0.59 \ (3) \\ 0.19 \ (3) \\ 0.0268 \ (21) \\ 0.035 \ (6) \\ 0.049 \ (6) \\ 4.30 \ (7) \\ 2.13 \ (5) \\ 0.008 \ (3) \\ 0.0520 \ (8) \end{array}$	$\begin{array}{c} M1\\ M1{+}74.3\%E2\\ [M1{,}E2]\\ [M1{,}E2]\\ M1{+}54.8\%E2\\ M1{+}0.05\%E2 \end{array}$	$\begin{array}{c} 6.61 \ (10) \\ 9.3 \ (4) \\ 0.20 \ (12) \\ 0.17 \ (11) \\ 0.122 \ (8) \\ 0.1783 \ (25) \end{array}$	$\begin{array}{c} 0.077 \ (4) \\ 0.018 \ (3) \\ 0.0268 \ (21) \\ 0.029 \ (4) \\ 0.042 \ (3) \\ 3.83 \ (6) \\ 1.81 \ (4) \\ 0.008 \ (3) \\ 0.0059 \ (8) \end{array}$
$\gamma_{10,2}(\mathrm{Bi})$ $\gamma_{4,1}(\mathrm{Bi})$ $\gamma_{5,1}(\mathrm{Bi})$	$\begin{array}{c} 504.07 \ (6) \\ 609.55 \ (4) \\ 675.81 \ (4) \end{array}$	$\begin{array}{c} 0.0059 \ (8) \\ 0.033 \ (9) \\ 0.0181 \ (9) \end{array}$			$\begin{array}{c} 0.0059 \ (8) \\ 0.033 \ (9) \\ 0.0181 \ (9) \end{array}$

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}} \times 100$	Multipolarity	$lpha_{ m T}$	${ m P}_{\gamma} \ imes 100$
$\begin{array}{c} \gamma_{7,1}({\rm Bi}) \\ \gamma_{2,0}({\rm Bi}) \\ \gamma_{3,0}({\rm Bi}) \\ \gamma_{10,1}({\rm Bi}) \\ \gamma_{4,0}({\rm Bi}) \\ \gamma_{5,0}({\rm Bi}) \\ \gamma_{5,0}({\rm Bi}) \\ \gamma_{6,0}({\rm Bi}) \\ \gamma_{7,0}({\rm Bi}) \\ \gamma_{8,0}({\rm Bi}) \\ \gamma_{9,0}({\rm Bi}) \\ \gamma_{10,0}({\rm Bi}) \end{array}$	$\begin{array}{c} 704.675 \ (25) \\ 766.680 \ (13) \\ 831.984 \ (12) \\ 865.92 \ (6) \\ 1014.38 \ (4) \\ 1080.64 \ (4) \\ 1103.52 \ (20) \\ 1109.509 \ (23) \\ 1196.33 \ (5) \\ 1234.3 \ (4) \\ 1270.75 \ (6) \end{array}$	$\begin{array}{c} 0.492 \ (10) \\ 0.64 \ (4) \\ 3.60 \ (5) \\ 0.0046 \ (2) \\ 0.0173 \ (5) \\ 0.0121 \ (5) \\ 0.0047 \ (7) \\ 0.118 \ (3) \\ 0.0103 \ (4) \\ 0.0009 \ (3) \\ 0.0068 \ (12) \end{array}$	M1+0.05%E2 M1 M1+13.8%E2 [M1]	$\begin{array}{c} 0.0476 \ (7) \\ 0.0382 \ (6) \\ 0.028 \ (3) \end{array}$	$\begin{array}{c} 0.47 \ (1) \\ 0.62 \ (4) \\ 3.50 \ (5) \\ 0.0046 \ (2) \\ 0.0173 \ (5) \\ 0.0121 \ (5) \\ 0.0047 \ (7) \\ 0.116 \ (3) \\ 0.0103 \ (4) \\ 0.0009 \ (3) \\ 0.0068 \ (12) \end{array}$

5 References

B.W.SARGENT, Can. J. Res. 17A (1939) 103 (Half-life) M.GIANNINI, D.PROSPERI, S.SCIUTI, Nuovo Cim. 25 (1962) 1227 (Gamma-ray emission energies and probabilities) S.E.VANDENBOSCH, C.V.K.BABA, P.R.CHRISTENSEN, O.B.NIELSEN, H.NORDBY, Nucl. Phys. 41 (1963) 482 (Gamma-ray emission energies and probabilities) C.R.COTHERN, R.D.CONNOR, Can. J. Phys. 43 (1965) 383 (Gamma-ray emission energies and probabilities) R.O.MEAD, J.E.DRAPER, Phys. Rev. 139 (1965) B9 (Gamma-ray emission energies and probabilities) M.NURMIA, D.GIESSING, W.SIEVERS, L.VARGA, Ann. Acad. Sci. Fenn., Ser. A, VI 167 (1965) (Half-life) W.F.DAVIDSON, C.R.COTHERN, R.D.CONNOR, Can. J. Phys. 45 (1967) 2295 (Gamma-ray emission energies and probabilities) J.DALMASSO, H.MARIA, Compt. Rend. Acad. Sci. (Paris) Ser. B 265 (1967) 822 (Gamma-ray emission energies and probabilities) CH.BRIANCON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533 (Gamma-ray emission energies and probabilities) S.GORODETZKY, F.A.BECK, T.BYRSKI, A.KNIPPER, Nucl. Phys. A117 (1968) 208 (Gamma-ray emission energies and probabilities) W.D.HAMILTON, K.E.DAVIES, Nucl. Phys. A114 (1968) 577 (Gamma-ray emission energies and probabilities) E.F.DA SILVEIRA, A.G.DE PINHO, C.V.DE BARROS, Ann. Acad. Brasil. Ciênc. 43 (1971) 97 (Gamma-ray emission energies and probabilities) N.B.GOVE, M.J.MARTIN, Nucl. Data Tables A10 (1971) 205 (Log ft) K.BLATON-ALBICKA, B.KOTLINSKA-FILIPEK, M.MATUL, K.STRYCZNIEWICZ, M.NOWICKI, E.RUCHOWSKA-LUKASIAK, Nukleonika 21 (1976) 935 (Gamma-ray emission energies and probabilities) M.M.HINDI, E.G.ADELBERGER, S.E.KELLOGG, T.MURAKAMI, Phys. Rev. C38 (1988) 1370 (Gamma-ray emission energies and probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-shell fluorescence yields) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (K Auger electron energies) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (K X-ray energies and relative emission probabilities) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger electron emission probabilities and energies)

G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337
(Q)
R.D.DESLATTES, E.G.KESSLER JR., P.INDELICATO, L.DE BILLY, E.LINDROTH, J.ANTON, Rev. Mod. Phys. 75 (2003) 35
(K and L X-ray energies)
E.BROWNE, Nucl. Data Sheets 103 (2004) 183
(Nuclear levels, multipolarities and mixing ratios)
C.DULIEU, M.M.BÉ, V.CHISTÉ, Proc. Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France (2008) 97
(SAISINUC software)
T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202
(Theoretical ICCS)
F.G.KONDEV, S.LALKOVSKI, Nucl. Data Sheets 112 (2011) 707
(Nuclear levels)

$T_{1/2}$:	10.64	(1)	h
Q_{β^-}	:	569.9	(19)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Proba × 1	ability 100	Nature	$\log ft$
$\begin{array}{c} \beta_{0,3}^- \\ \beta_{0,2}^- \\ \beta_{0,0}^- \end{array}$	$\begin{array}{c} 154.6 \ (19) \\ 331.3 \ (19) \\ 569.9 \ (19) \end{array}$	4.99 81.7 13.3	(21) (11) (11)	1st forbidden 1st forbidden 1st forbidden	$5.35 \\ 5.18 \\ 6.74$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e_{AL}	(Bi)	5.35 - 10.66	21.4(7)	
e_{AK}	(Bi)		1.29(15)	
	KLĹ	57.49 - 63.42	}	
	KLX	70.03 - 77.11	}	
	KXY	82.53 - 90.52	}	
$ec_{1,0 K}$	(Bi)	24.657 (5)	3.45(16)	
$ec_{1,0}$ L	(Bi)	98.80 - 101.76	0.61(3)	
ec _{1,0 M+}	(Bi)	111.18 - 115.18	0.19(1)	
$ec_{2,0 K}$	(Bi)	148.106 (2)	30.9(10)	
$ec_{2,0 L}$	(Bi)	222.24 - 225.21	5.37(17)	
$ec_{2,0 M+}$	(Bi)	234.63 - 238.63	1.73(5)	
$ec_{3,1}$ K	(Bi)	209.563 (12)	1.21(20)	
$ec_{3,1}$ L	(Bi)	283.70 - 286.67	0.21~(4)	
$ec_{3,1\ M+}$	(Bi)	296.090 - 300.086	0.066(11)	
$\beta_{0,3}^-$	max:	154.6 (19)	4.99(21)	avg: 41.1 (5)
$\beta_{0,2}^{-}$	max:	331.3 (19)	81.7~(11)	avg: $93.5(6)$
$\beta_{0,0}^{1}$	max:	569.9 (19)	13.3(11)	avg: $171.7(7)$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.	
XL	(Bi)	9.42 - 15.709	13.8(6)	
$XK\alpha_2$	(Bi)	74.8157	10.07(18)	$K\alpha$

Surrey Univ. /A.L. Nichols

		Energy keV		Photons per 100 disint	- -
$XK\alpha_1$	(Bi)	77.1088		16.9(3)	}
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{''} \end{array}$	(Bi) (Bi) (Bi)	86.835 87.344 87.862	} } }	5.77(13)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Bi) (Bi) (Bi)	$\begin{array}{c} 89.732 \\ 90.074 \\ 90.421 \end{array}$	} } }	1.77(5)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\begin{array}{l} \gamma_{1,0}({\rm Bi}) \\ \gamma_{2,1}({\rm Bi}) \\ \gamma_{3,2}({\rm Bi}) \\ \gamma_{2,0}({\rm Bi}) \\ \gamma_{3,1}({\rm Bi}) \\ \gamma_{3,0}({\rm Bi}) \end{array}$	$\begin{array}{c} 115.183 \ (5) \\ 123.449 \ (5) \\ 176.640 \ (11) \\ 238.632 \ (2) \\ 300.089 \ (12) \\ 415.272 \ (11) \end{array}$	$\begin{array}{c} 4.87\ (19)\\ 0.198\ (19)\\ 0.157\ (15)\\ 81.6\ (11)\\ 4.66\ (21)\\ 0.17\ (3)\end{array}$	[M1] [E2] [M1] [M1] [M1] [M1]	$\begin{array}{c} 6.8 \ (1) \\ 2.80 \ (4) \\ 2.02 \ (3) \\ 0.872 \ (13) \\ 0.464 \ (7) \\ 0.192 \ (3) \end{array}$	$\begin{array}{c} 0.624 \ (23) \\ 0.052 \ (5) \\ 0.052 \ (5) \\ 43.6 \ (5) \\ 3.18 \ (14) \\ 0.144 \ (22) \end{array}$

5 References

D.G.E.MARTIN, H.O.W.RICHARDSON, Proc. Phys. Soc. 195A (1948) 287 (Beta-ray emission probabilities) H.VON BUTTLAR, Naturwissenschaften 39 (1952) 575 (Half-life) P.MARIN, G.R.BISHOP, H.HALBAN, Proc. Phys. Soc. (London) 66A (1953) 608 (Half-life) J.TOBAILEM, J.ROBERT, J. Phys. Radium 16 (1955) 115 (Half-life) E.M.KRISYOUK, A.G.SERVEYEV, G.D.LATYSHEV, V.D.VOROBYOV, Nucl. Phys. 4 (1957) 579 (Conversion-electron emission probabilities, multipolarity) K.O.NIELSEN, O.B.NIELSEN, M.A.WAGGONER, Nucl. Phys. 2 (1957) 476 (Conversion-electron emission probabilities, multipolarity) A.G.SERGEYEV, V.D.VOROLYEV, A.S.REMENNYI, T.J.KOLCHENSKAYA, G.D.LATYSHEV, Y.S.YEGOROV, Nucl. Phys. 9 (1959) 498 (Mixing Ratio) P.G.ROETLING, W.P.GANLEY, G.S.KLAIBER, Nucl. Phys. 20 (1960) 347 (Gamma-ray emission probabilities, multipolarity) M.GIANNINI, D.PROSPERI, S.SCIUTI, NUOVO Cim. 21 (1961) 430 (Gamma-ray emission probabilities) H.DANIEL, G.LÜHRS, Z. Phys. 176 (1963) 30 (Conversion-electron emission probabilities, multipolarity) D.KRPIC, R.STEPIC, M.BOGDANOVIC, M.MLADENOVIC, Fizika 1 (1969) 171 (Mixing Ratio) J.DALMASSO, Thesis, Report FRNC-TH-441, Univ. Nice (1972) (Gamma-ray emission probabilities) J.DALMASSO, H.MARIA, C.YTHIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 277 (1973) 467 (Gamma-ray emission probabilities)

F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies) F.T.AVIGNONE, A.G.SCHMIDT, Phys. Rev. C17 (1978) 380 (Gamma-ray emission probabilities) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities) R.VANINBROUKX, H.H.HANSEN, Int. J. Appl. Radiat. Isotop. 34 (1983) 1395 (Gamma-ray emission probabilities) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma-ray emission probabilities) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (KX-ray, LX-ray, Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 104 (2005) 427 (Nuclear structure and energies) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 20

(Theoretical ICC)

$T_{1/2}$:	26.916	(44)	\min
Q_{β^-}	:	1019	(11)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$eta_{0,9}^{-} \ eta_{0,8}^{-}$	180 (11) 222 (11)	$2.762 (22) \\ 0.0196 (27)$	Allowed Allowed	$\begin{array}{c} 4.5 \\ 6.9 \end{array}$
$\beta_{0,7}^{-}$ $\beta_{0,7}^{-}$	485(11) 667(11)	$1.047 (17) \\ 46.52 (37)$	1st forbidden 1st forbidden	$6.2 \\ 5.1$
$\beta_{0,4}^{-}$ $\beta_{0,0}^{-}$	$\begin{array}{c} 729 \ (11) \\ 1019 \ (11) \end{array}$	$ \begin{array}{c} 41.09 (39) \\ 9.2 (7) \end{array} $	1st forbidden 1st forbidden	5.2 6.3

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Bi)	5.3 - 16.4	19.8(3)	
e_{AK}	(Bi)		0.80(9)	
	KLL	57.49 - 63.42	}	
	KLX	70.02 - 77.10	}	
	KXY	82.45 - 90.52	}	
$ec_{1,0}$ L	(Bi)	36.8400 - 39.8089	10.39(31)	
$ec_{1,0}$ M	(Bi)	49.2284 - 50.6479	2.46(8)	
$ec_{1,0 N}$	(Bi)	52.2893 - 53.0704	0.641~(20)	
$ec_{4,1 K}$	(Bi)	151.471 (3)	5.26(16)	
$ec_{4,1 L}$	(Bi)	225.610 - 228.578	0.908~(28)	
$ec_{4,1 M}$	(Bi)	237.998 - 239.417	0.214~(7)	
$ec_{4,1 N}$	(Bi)	241.059 - 241.840	$0.0560\ (17)$	
$ec_{3,0}$ K	(Bi)	168.34 (3)	0.32(1)	
$ec_{3,0}$ L	(Bi)	242.48 - 245.45	$0.0551 \ (17)$	
$ec_{3,0 M}$	(Bi)	254.87 - 256.29	0.01298 (38)	
$ec_{4,0 K}$	(Bi)	204.698 (2)	7.22~(23)	
$ec_{4,0 L}$	(Bi)	278.836 - 281.805	1.291 (40)	
$ec_{4,0 M}$	(Bi)	291.225 - 292.644	0.305~(10)	
$ec_{4,0 N}$	(Bi)	294.286 - 295.067	0.0797~(25)	
$ec_{5,0}$ K	(Bi)	261.406 (2)	9.26(29)	
$ec_{5,0 L}$	(Bi)	335.544 - 338.513	1.584(46)	
$ec_{5,0 M}$	(Bi)	347.933 - 349.352	0.373~(11)	
$ec_{5,0 N}$	(Bi)	350.994 - 351.775	0.0975~(29)	
$\beta_{0,9}^{-}$	max:	180 (11)	2.762(22)	avg: $50(3)$
$\beta_{0,8}^{-}$	max:	222 (11)	0.0196~(27)	avg: $62(3)$

		Ene ke	ergy V	Electrons per 100 disint.	Eı J	nergy keV
$\begin{array}{c} \beta_{0,7}^- \\ \beta_{0,5}^- \\ \beta_{0,4}^- \\ \beta_{0,0}^- \end{array}$	max: max: max: max:	485 667 724 1019	(11) (11) (11) (11)	$\begin{array}{c} 1.047 \ (17) \\ 46.52 \ (37) \\ 41.09 \ (39) \\ 9.2 \ (7) \end{array}$	avg: avg: avg: avg:	$145 (4) \\ 207 (4) \\ 227 (4) \\ 337 (4)$

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Bi)	9.42 - 16.36		12.42(22)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Bi) (Bi)	74.8157 77.1088		$\begin{array}{c} 6.26 \ (12) \\ 10.47 \ (20) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Bi) (Bi) (Bi)	86.835 87.344 87.862	} } }	3.59(9)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Bi) (Bi) (Bi)	$\begin{array}{c} 89.732 \\ 90.074 \\ 90.421 \end{array}$	} } }	1.10 (4)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(\mathrm{Bi})$	53.2275 (21)	14.71 (42)	M1+E2	12.88(39)	1.060(7)
$\gamma_{-1,0}(\mathrm{Bi})$	107.22(9)	0.0068(14)			0.0068(14)
$\gamma_{-1,1}(\mathrm{Bi})$	137.45(30)	0.045~(18)			0.045~(18)
$\gamma_{-1,2}(\mathrm{Bi})$	141.3~(6)	0.027~(14)			0.027~(14)
$\gamma_{-1,3}(\mathrm{Bi})$	170.07~(6)	0.0146(27)			0.0146(27)
$\gamma_{3,2}(\mathrm{Bi})$	196.20(5)	0.069(9)			0.069(9)
$\gamma_{3,1}(\mathrm{Bi})$	205.68(9)	0.0114(23)			0.0114(23)
$\gamma_{-1,4}(\mathrm{Bi})$	216.47(7)	0.0100(23)			0.0100(23)
$\gamma_{4,1}(\mathrm{Bi})$	241.997(3)	13.72(20)	M1(+E2)	0.888~(27)	7.268(22)
$\gamma_{3,0}(\mathrm{Bi})$	258.87(3)	0.924~(13)	M1	0.737~(22)	0.5318(36)
$\gamma_{7,3}(\mathrm{Bi})$	274.80(5)	0.504(15)	M1+E2	0.392~(12)	0.362(10)
$\gamma_{4,0}(\mathrm{Bi})$	295.224(2)	27.29(26)	M1+E2	0.482(14)	18.414(36)
$\gamma_{9,7}(\mathrm{Bi})$	305.26(3)	0.0324(22)	[E1]	0.0295~(9)	0.0315(21)
$\gamma_{6,2}(Bi)$	314.32(7)	0.077~(6)			0.077~(6)
$\gamma_{6,1}(Bi)$	323.83(4)	0.0287(32)			0.0287(32)
$\gamma_{5,0}(\mathrm{Bi})$	351.932(2)	46.96(37)	M1(+E2)	0.319(10)	35.60(7)
$\gamma_{9,6}(\mathrm{Bi})$	462.00 (7)	0.213(6)		. ,	0.213(6)
$\gamma_{7,1}(\mathrm{Bi})$	480.43 (2)	0.3838(49)	M1(+E2)	0.1384(42)	0.3371(41)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\begin{array}{l} \gamma_{9,5}(\mathrm{Bi}) \\ \gamma_{7,0}(\mathrm{Bi}) \\ \gamma_{8,3}(\mathrm{Bi}) \\ \gamma_{9,4}(\mathrm{Bi}) \\ \gamma_{9,3}(\mathrm{Bi}) \\ \gamma_{-1,5}(\mathrm{Bi}) \\ \gamma_{9,1}(\mathrm{Bi}) \\ \gamma_{-1,5}(\mathrm{Bi}) \end{array}$	$\begin{array}{c} 487.09\ (7)\\ 533.66\ (2)\\ 538.41\ (8)\\ 543.81\ (7)\\ 580.13\ (3)\\ 765.96\ (9)\\ 785.96\ (9)\\ 820\ 04\ (0)\\ \end{array}$	$\begin{array}{c} 0.438 \ (6) \\ 0.192 \ (10) \\ 0.0196 \ (27) \\ 0.050 \ (9) \\ 0.372 \ (6) \\ 0.053 \ (8) \\ 1.068 \ (13) \\ 0.589 \ (8) \end{array}$	(E1) [M1,E2] E1+M2 (E1) E1 (E1)	$\begin{array}{c} 0.01058 \ (32) \\ 0.06 \ (4) \end{array}$ $\begin{array}{c} 0.00843 \ (25) \\ 0.00740 \ (22) \end{array}$ $\begin{array}{c} 0.00410 \ (12) \\ 0.00262 \ (11) \end{array}$	$\begin{array}{c} 0.433\ (6)\\ 0.182\ (6)\\ 0.0196\ (27)\\ 0.050\ (9)\\ 0.369\ (6)\\ 0.053\ (8)\\ 1.064\ (13)\\ 0.587\ (8)\\ \end{array}$

5 References

M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, S.C.Lind, S.Meyer, E.Rutherford, E.Schweidler, Rev. Mod. Phys. 3 (1931) 427 (Half-life) E.E.BERLOVICH, Bull. Rus. Acad. Sci. Phys. 16 (1952) 314 (Beta emission intensity) K.SAGEYAMA, J. Phys. Soc. (Japan) 8 (1953) 689 (Beta emission intensity) H.DANIEL, R.NIERHAUS, Z. Naturforsch. 11a (1956) 212 (Half-life) K.O.NIELSEN, O.B.NIELSEN, M.A.WAGGONER, Nucl. Phys. 2 (1957) 476 (Beta emission intensity) H.DANIEL, Z. Naturforsch. 11a (1958) 759 (Beta emission intensity) G.T.EWAN, J.TAVENDALE, Can. J. Phys. 42 (1964) 2286 (Gamma-ray emission intensities) E.W.A.LINGEMAN, J.KONIJN, P.POLAK, A.H.WAPSTRA, Nucl. Phys. A133 (1969) 630 (Gamma-ray emission intensities) G.WALLACE, G.E.COOTE, Nucl. Instrum. Methods 74 (1969) 353 (Gamma-ray emission intensities) K.YA.GROMOV, B.M.SABIROV, J.J.URBANETS, Bull. Rus. Acad. Sci. Phys. 33 (1970) 1510 (Gamma-ray emission intensities) R.S.MOWATT, Can. J. Phys. 48 (1970) 2606 (Gamma-ray emission probabilities) A.HACHEM, Compt. Rend. Acad. Sci. (Paris) Ser. B 281 (1975) 45 (Gamma-ray emission intensities) V.ZOBEL, J.EBERTH, E.EUBE, Nucl. Instrum. Methods 141 (1977) 329 (Gamma-ray emission intensities) F.Rösel, At. Data Nucl. Data Tables 21 (1978) 91 (Theoretical ICC) G.MOUZE, Compt. Rend. Acad. Sci. (Paris) 292 (1981) 1243 (Gamma-ray emission intensities) H.AKCAY, G.MOUZE, D.MAILLARD, CH.YTHIER, Radiochem. Radioanal. Lett. 51 (1982) 1 (Gamma-ray emission intensities) M.A.FAROUK, A.M.AL-SORAYA, Nucl. Instrum. Methods 200 (1982) 593 (Gamma-ray emission intensities) D.G.OLSON, Nucl. Instrum. Methods 206 (1983) 313 (Gamma-ray emission intensities) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma-ray emission intensities) I.PENEV, W.ANDREJTSCHEFF, CH.PROTOCHRISTOW, ZH.ZELEV, Z. Phys. A318 (1984) 213 (Half-life (E=53 keV)) Y.A.AKOVALI, Nucl. Data Sheets 55 (1988) 665 (Energy level, spin, parity, multipolariy)

G.MOUZE, J.F.COMANDUCCI, C.YTHIER, Rev. Roum. Phys. 35 (1990) 337 (Gamma-ray emission intensities) G.MOUZE, O.DIALLO, P.BECHLICH, J.F.COMANDUCCI, C.YTHIER, Radiochim. Acta 49 (1990) 13 (Gamma-ray emission intensities) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. Lett. 153 (1991) 137 (Gamma-ray emission intensities) O.DIALLO, G.MOUZE, C.YTHIER, J.F.COMANDUCCI, NUOVO Cim. 106A (1993) 1321 (Gamma-ray emission intensities) Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 127 (Energy level, spin, parity, multipolariy) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.MOREL, M.ETCHEVERRY, J.L.PICOLO, Appl. Radiat. Isot. 49 (1998) 1387 (Gamma-ray emission intensities) D.SARDARI, T.D.MCMAHON, J. Radioanal. Nucl. Chem. 244 (2000) 463 (Gamma-ray emission intensities) J.U.DELGADO, J.MOREL, M.ETCHEVERRY, Appl. Radiat. Isot. 56 (2002) 137 (Gamma-ray emission intensities) G.L.MOLNAR, Z.S.RÉVAY, T.BELGYA, Proc. 11th Int. Symp. on Capture Gamma-ray Spectroscopy, 2-6 September 2002, Pruhonice (2002) 522 (Gamma-ray emission intensities) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) J.MOREL, S.SPEMAN, M.RASKO, E.TERECHTCHENKO, J.U.DELGADO, Appl. Radiat. Isot. 60 (2004) 341 (Gamma-ray emission intensities) R.G.HELMER, in Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications Vol. 1, STI/PUB/1287, IAEA, Vienna (2007) 19

(Gamma-ray emission intensities)

$T_{1/2}$:	5.012	(5)	d
Q_{β^-}	:	1162.1	(8)	keV
Q_{lpha}	:	5042.7	(18)	keV
β^-	:	99.99986	(2)	%
α	:	1.40	(15)	$\times 10^{-4}~\%$

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,0}^-$	1162.1(8)	99.99986(2)	1st forbidden	8

3 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,2} lpha_{0,1}$	$\begin{array}{c} 4650 \ (4) \\ 4687 \ (4) \end{array}$	$0.000084 (9) \\ 0.000056 (6)$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	$rac{\mathrm{Energy}}{\mathrm{keV}}$
$\beta_{0,0}^-$	max:	1162.1 (8)	99.99986(2)	avg: 389.2 (3)

5 Photon Emissions

5.1 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(\mathrm{Tl})$ $\gamma_{2,0}(\mathrm{Tl})$	$\begin{array}{c} 265.832 \ (5) \\ 304.896 \ (6) \end{array}$	$\begin{array}{c} 0.000056 \ (6) \\ 0.000084 \ (9) \end{array}$	E2 M1	$\begin{array}{c} 0.1603 \ (23) \\ 0.375 \ (6) \end{array}$	$\begin{array}{c} 0.000048 \ (5) \\ 0.000061 \ (7) \end{array}$

6 References

A.POMPÉI, J. Phys. Radium 6 (1935) 471 (Half-life)
A.FLAMMERSFELD, Z. Phys. 112 (1939) 727 (End point energy)
G.J.NEARY, Proc. Roy. Soc. (London) 175A (1940) 71 (End point energy)
N.HOLE, Arkiv Mat. Astron. Fysik 31B (1944) 1

(Half-life) E.BRODA, N.FEATHER, Proc. Roy. Soc. (London) 191A (1947) 20 (Alpha branching ratio) F.BEGEMANN, F.G.HOUTERMANS, Z. Naturforsch. 7a (1952) 143 (Half-life) E.E.LOCKETT, R.H.THOMAS, Nucleonics 11 (1953) 14 (Half-life) E.A.PLASSMANN, L.M.LANGER, Phys. Rev. 96 (1954) 1593 (End point energy) J.ROBERT, J.TOBAILEM, J. Phys. Radium 17 (1956) 440 (Half-life) R.W.FINK, G.W.WAREN, B.L.ROBINSON, R.R.EDWARDS, Bull. Am. Phys. Soc. 1 (1956) 171 (Alpha branching ratio) R.J.WALEN, G.BASTIN-SCOFFIER, J. Phys. Radium 20 (1959) 589 (Alpha branching ratio) J.ROBERT, Ann. Phys. (Paris) 4 (1959) 89 (Half-life) R.J.WALEN, G.BASTIN-SCOFFIER, Nucl. Phys. 16 (1960) 246 (Alpha branching ratio and energy) L.I.RUSINOV, YU.N.ANDREEV, S.V.GOLENETSKII, M.I.KISLOV, YU.I.FILIMONOV, Sov. Phys. - JETP 13 (1961) 707 (Spin, parity and multipolarity) M.NURMIA, P.KAURANEN, M.KARRAS, A.SIIVOLA, A.ISOLA, G.GRAEFFE, A.LYYJYNEN, Nature 190 (1961) 427 (Alpha branching ratio) H.DANIEL, Nucl. Phys. 31 (1962) 293 (End point energy) P.KAURANEN, Ann. Acad. Sci. Fenn., Ser. A, VI 96 (1962) (Alpha branching ratio and energy) S.T.HSUE, M.U.KIM, S.M.TANG, Nucl. Phys. A94 (1967) 146 (End point energy) R.C.LANGE, G.R.HAGEE, A.R.CAMPBELL, Nucl. Phys. A133 (1969) 273 (Alpha energy) D.FLOTHMANN, W.WIESNER, R.LÖHKEN, H.RESEL, Z. Phys. 225 (1969) 164 (End point energy) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha energy) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) E.BROWNE, Nucl. Data Sheets 88 (1999) 29 (Energy and half-life levels) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 99 (2003) 649 (Spin, parity and energy level)

$T_{1/2}$:	2.15	(2)	\min
$Q^{'}_{lpha}$:	6750.33	(46)	keV
Q_{β^-}	:	574	(5)	keV
$\alpha^{'}$:	99.724	(4)	%
β^-	:	0.276	(4)	%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$		Nature	$\log ft$
$\beta_{0,0}^-$	574(5)	0.276	(4)	1st forbidden	5.99

3 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 6278.5 \ (9) \\ 6622.4 \ (6) \end{array}$	$\begin{array}{c} 16.16 \ (23) \\ 83.56 \ (23) \end{array}$

		Energy keV	Electrons per 100 disint.]	Energy keV
e_{AL}	(Tl)	5.18 - 15.31	1.617(21)		
e _{AK}	(Tl) KLL KLX KXY	54.587 - 59.954 66.37 - 72.86 78.12 - 85.50	0.096 (11) } } }		
$ec_{1,0}$ K $ec_{1,0}$ L $ec_{1,0}$ M $ec_{1,0}$ N	(Tl) (Tl) (Tl) (Tl)	$\begin{array}{cccc} 265.50 & (4) \\ 335.68 & - & 338.37 \\ 347.33 & - & 348.64 \\ 350.18 & - & 350.91 \end{array}$	$\begin{array}{c} 2.59 \ (5) \\ 0.446 \ (9) \\ 0.1044 \ (22) \\ 0.0263 \ (5) \end{array}$		170.0 (19)
$\beta_{0,0}^-$	max:	574 (5)	0.276(4)	avg:	172.9(18)

5.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Tl)	8.9531 - 14.7362		0.929(19)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Tl) (Tl)	70.8325 72.8725		$0.726 (16) \\ 1.225 (27)$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Tl) (Tl) (Tl)	82.118 82.577 83.115	} } }	0.417 (11)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Tl) (Tl) (Tl)	84.838 85.134 85.444	} } }	0.124 (4)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(\mathrm{Tl})$	351.03(4)	16.16(24)	M1+E2	0.243(4)	13.00 (19)

6 References

M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, S.C.Lind, St.Meyer, E.Rutherford, E.Schweidler, Rev. Mod. Phys. 3 (1931) 427 (Half-life) F.N.SPIESS, Phys. Rev. 94 (1954) 1292 (Half-life) R.J.WALEN, V.NEDOVESOV, G.BASTIN-SCOFFIER, Nucl. Phys. 35 (1962) 232 (Alpha emission probabilities) M.GIANNINI, D.PROSPERI, S.SCIUTI, Nuovo Cim. 25 (1962) 1314 (Branching ratio of the alpha particles emission) M.NURMIA, D.GIESSING, W.SIEVERS, L.VARGA, Ann. Acad. Sci. Fenn., Ser. A, VI 167 (1965) (Half-life, Branching ratio of the alpha particles emission) S.GORODETZKY, F.BECK, A.KNIPPER, Nucl. Phys. 82 (1966) 275 (Alpha emission probabilities, Multipolarities, Mixing ratio, K ICC) W.F.DAVIDSON, C.R.COTHERN, R.D.CONNOR, Can. J. Phys. 45 (1967) 2295 (Branching ratio of the alpha particles emission) CH.BRIANÇON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533 (Gamma-ray energies) V.H.MUNDSCHENK, Radiochim. Acta 14 (1970) 72 (Half-life) G.A.KOROLEV, A.A.VOROBYOV, Y.K.ZALITE, Nucl. Instrum. Methods 97 (1971) 323 (Half-life) B.GRENNBERG, A.Rytz, Metrologia 7 (1971) 65 (Alpha emission energies) D.F.URQUHART, Report AAEC TM 634 (1973) (Gamma-ray energies)

V.M.VAKHTEL, T.VYLOV, V.M.GOROZHANKIN, N.A.GALOVKOV, B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, YU.V.NORSEEV, V.G.CHUMIN, Conf. Dubna (1975) 149 (Gamma-ray energies) K.BLATON-ALBICKA, B.KOTLINSKA-FILIPEK, M.MATUL, K.STRYCZNIEWICZ, M.NOWICKI, E.RUCHOWSKA-LUKASIAK, Nukleonika 21 (1976) 935 (Gamma-ray energies) M.H.MOMENI, Nucl. Instrum. Methods 193 (1982) 185 (Gamma-ray emergies, Gamma-ray emission probabilities) M.M.HINDI, E.G.ADELBERGER, S.E.KELLOGG, T.MURAKAMI, Phys. Rev. C38 (1988) 1370 (Gamma-ray energies) J.T.ITURBE, Nucl. Instrum. Methods Phys. Res. A274 (1989) 404 (Alpha emission energies) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energies, Alpha emission probabilities) P.Schuurmans, J.Wouters, P.De Moor, N.Severijns, W.Vanderpoorten, J.Vanhaverbeke, L.Vanneste, Hyperfine Interactions 75 (1992) 423 (Alpha emission energies) M.J.MARTIN, Nucl. Data Sheets 70 (1993) 315 (Spin and Parity, Level energies) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 103 (2004) 183 (Spin and Parity, Level energies) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR, Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	60.54	(6)	\min
Q_{β^-}	:	2252.1	(17)	keV
Q_{lpha}	:	6207.26	(3)	keV
$Q_{\alpha*}$:	8954.12	(11)	keV
β^-	:	64.06	(7)	%
$\beta^- \alpha$:	0.014	(1)	%
α	:	35.93	(7)	%

2 β^- Transitions

	Energy keV	Probab × 10	oility 00	Nature	$\log ft$
$\begin{array}{c} \beta_{0,6}^{-} \\ \beta_{0,5} \\ \beta_{0,4} \\ \beta_{0,3} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,2}^{-} \end{array}$	$\begin{array}{c} 446.1 \ (17) \\ 451.2 \ (17) \\ 572.7 \ (17) \\ 631.4 \ (17) \\ 739.4 \ (17) \\ 1524.8 \ (17) \\ 2252.1 \ (17) \end{array}$	$\begin{array}{c} 0.68\\ 0.032\\ 0.21\\ 1.90\\ 1.44\\ 4.50\\ 55.31\end{array}$	(4) (4) (4) (3) (1) (6) (9)	1st forbidden non-unique 1st forbidden non-unique 1st forbidden non-unique 1st forbidden non-unique 1st forbidden non-unique 1st forbidden non-unique 1st forbidden non-unique	$6.67 \\ 8.03 \\ 7.55 \\ 6.74 \\ 7.094 \\ 7.718 \\ 7.267$

3 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,8}$	5302(2)	0.000040 (4)
$\alpha_{0,7}$	5344(2)	0.00036 (3)
$\alpha_{0,6}$	5481.4(3)	0.0050(4)
$\alpha_{0,4}$	5606.60(5)	0.43(3)
$lpha_{0,3}$	5625.7(4)	0.060(3)
$\alpha_{0,2}$	5768.29(6)	0.61(3)
$\alpha_{0,1}$	6051.04(3)	25.1(1)
$\alpha_{0,0}$	6090.14(3)	9.7(1)
$*\alpha_{1,0}$	9498.78 (11)	0.0024(2)
$*\alpha_{4,0}$	10432.94(11)	0.0010(1)
$^*lpha_{5,0}$	10552.1 (2)	0.0106 (7)

* Long-range α .

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Tl)	5.182 - 10.132	12.2(4)	
e_{AK}	(Tl) KLL	54.587 - 59.954	0.0069 (8) }	

		Energy keV	Electrons per 100 disint.	Energy keV
	KLX KXY	66.37 - 72.86 78.12 - 85.50	} }	
\mathbf{e}_{AL}	(Po)	5.434 - 10.934	0.0833~(25)	
e _{AK}	(Po) KLL KLX KXY	58.978 - 65.205 71.902 - 79.289 84.8 - 93.1	0.0048 (6) } } }	
$ec_{1,0 L} ec_{1,0 M}$	(Tl) (Tl)	24.511 - 27.200 36.154 - 39.469	$\begin{array}{c} 19.06 \ (23) \\ 4.46 \ (5) \end{array}$	
$\begin{array}{c} \beta_{0,6}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,4}^{-} \\ \beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,0}^{-} \end{array}$	max: max: max: max: max: max: max:	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.68 \ (4) \\ 0.032 \ (4) \\ 0.21 \ (4) \\ 1.90 \ (3) \\ 1.44 \ (1) \\ 4.50 \ (6) \\ 55.31 \ (9) \end{array}$	avg:130.1 (6)avg:131.7 (6)avg:172.4 (6)avg:192.7 (6)avg:230.8 (6)avg:533.1 (7)avg:834.2 (7)

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Tl)	8.953 - 14.738		7.1(3)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Tl) (Tl)	70.8325 72.8725		$\begin{array}{c} 0.0525 \ (23) \\ 0.089 \ (4) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Tl) (Tl) (Tl)	82.118 82.577 83.115	} } }	0.0301 (14)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Tl) (Tl) (Tl)	84.838 85.134 85.444	} } }	0.0089(5)	$\mathrm{K}\beta_2'$
XL	(Po)	9.658 - 16.213		0.0563(24)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		$0.0388\ (8)\ 0.0647\ (13)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.0223(6)	$\mathrm{K}\beta_1'$
$egin{array}{c} XKeta_2 \ XKeta_4 \ XKO_{2,3} \end{array}$	(Po) (Po) (Po)	92.263 92.618 92.983	} } }	0.00693 (20)	$\mathrm{K}\beta_2'$

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(\mathrm{Tl})$	39.858(4)	26.0(3)	[M1]	23.3~(4)	1.07(1)
$\gamma_{4,2}(\mathrm{Tl})$	164.80(6)	0.010(1)	(E2)	0.816(12)	0.0055~(6)
$\gamma_{5,3}(\text{Po})$	180.2(2)	0.0095~(40)	M1	2.08(3)	0.0031 (12)
$\gamma_{2,1}(\mathrm{Tl})$	288.18(5)	0.46(3)	M1 + 0.64% E2	0.436~(7)	0.32(2)
$\gamma_{2,0}(\mathrm{Tl})$	328.04(5)	0.158(4)	[M1]	0.308~(5)	0.121(3)
$\gamma_{3,1}(\mathrm{Tl})$	433.5~(4)	0.013(1)	[M1]	$0.1453\ (21)$	0.011(1)
$\gamma_{4,1}(\mathrm{Tl})$	452.98(4)	0.38(3)	(M1)	0.1293(18)	0.34(3)
$\gamma_{3,0}(\mathrm{Tl})$	473.4(4)	0.047(3)	[M1+E2]	0.074(10)	0.044(3)
$\gamma_{4,0}(\mathrm{Tl})$	492.84(4)	0.04(1)	E2	0.0291~(4)	0.039(10)
$\gamma_{6,1}(\mathrm{Tl})$	580.5(3)	0.0011(2)	E2	0.0198(3)	0.0011(2)
$\gamma_{6,0}(\mathrm{Tl})$	620.4(3)	0.0039(4)	[M1+E2]	0.037~(5)	0.0038(4)
$\gamma_{1,0}(\text{Po})$	727.330(9)	6.74(4)	E2	0.01393(20)	6.65(4)
$\gamma_{2,1}(\text{Po})$	785.37~(9)	1.15(1)	$\mathrm{M1}{+}0.8\%\mathrm{E2}$	0.0387~(6)	1.11(1)
$\gamma_{3,1}(\text{Po})$	893.408(14)	0.39(1)	$\mathrm{M1}{+}0.2\%\mathrm{E2}$	0.0278(4)	0.38(1)
$\gamma_{4,1}(\text{Po})$	952.12(2)	0.14(4)	M1+30%E2	0.0190(3)	0.14(4)
$\gamma_{5,1}(\text{Po})$	1073.6(2)	0.0155~(6)	E2	0.00642 (9)	0.0154~(6)
$\gamma_{6,1}(\text{Po})$	1078.63(10)	0.559(20)	$M1{+}1.8\%E2$	0.01692(24)	0.55(2)
$\gamma_{2,0}(\text{Po})$	1512.70(8)	0.291~(10)	E2	0.00344~(5)	0.29(1)
$\gamma_{3,0}(\text{Po})$	1620.738(10)	1.52(3)	[M1]	0.00620 (9)	1.51(3)
$\gamma_{4,0}(\text{Po})$	1679.450(14)	0.07(1)	E2	0.00291(4)	0.07(1)
$\gamma_{6,0}(\text{Po})$	1805.96(10)	0.12(3)	E2	0.00261(4)	0.12(3)

5.2 Gamma Transitions and Emissions

6 References

F.V.LERCH, Sitzber. Akad. Wiss. Wien, Wath-naturw. Kl. Abt. IIa 123 (1914) 699 (Half-life) A.Rytz, Compt. Rend. Acad. Sci. (Paris) 233 (1951) 790 (Alpha emission energies, Alpha emission probabilities) J.BURDE, B.ROZNER, Phys. Rev. 107 (1957) 531 (Beta-ray emission probabilities) R.J.WALEN, G.BASTIN-SCOFFIER, Nucl. Phys. 16 (1960) 246 (Alpha emission energies, Alpha emission probabilities) G.T.EMERY, W.R.KANE, Phys. Rev. 118 (1960) 755 (Gamma-ray emission probabilities, high-energy alpha) G.SCHUPP, H.DANIEL, G.W.EAKINS, E.N.JENSEN, Phys. Rev. 120 (1960) 189 (Gamma-ray emission probabilities) K.P.APPLEGATE, E.M.MORIMOTO, M.KAHR, J.D.KNIGHT, J. Inorg. Nucl. Chem. 19 (1961) 375 (Half-life) F.C.FLACK, J.E.JOHNSON, Proc. Phys. Soc. 79 (1962) 10 (Gamma-ray emission probabilities, branching fraction) G.BERTOLINI, F.CAPPELLANI, G.RESTELLI, A.ROTA, Nucl. Phys. 30 (1962) 599 (Alpha emission probabilities) J.WALKER, T.SALGIR, Proc. Phys. Soc. 86 (1965) 423 (Branching fraction) C.F.LEANG, Compt. Rend. Acad. Sci. (Paris) 260 (1965) 3037 (Alpha emission energies, Alpha emission probabilities) S.S.KLEIN, Thesis, Report NP-16835, Univ. Amsterdam (1966) (Gamma-ray energies) R.BENOIT, G.BERTOLINI, F.CAPPELLANI, G.RESTELLI, NUOVO Cim. 49B (1967) 125 (Gamma-ray emission probabilities)

C.YTHIER, H.FOREST, G.ARDISSON, H.MARIA, Compt. Rend. Acad. Sci. (Paris) Ser. B 267 (1968) 1362 (Gamma-ray energies, Gamma-ray emission probabilities) J.DALMASSO, Thesis, Report FRNC-TH-441, Univ. Nice (1972) (Gamma-ray emission probabilities) J.DALMASSO, H.MARIA, C.YTHIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 277 (1973) 467 (Gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies) F.T.AVIGNONE, A.G.SCHMIDT, Phys. Rev. C17 (1978) 380 (Gamma-ray emission probabilities) B.BENGTSON, H.L.NIELSEN, N.RUD, K.WILSKY, Nucl. Phys. A378 (1982) 1 (Multipolarity) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma-ray emission probabilities) R.VANINBROUKX, H.H.HANSEN, Int. J. Appl. Radiat. Isotop. 34 (1983) 1395 (Gamma-ray emission probabilities) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (KX-ray, LX-ray, Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 104 (2005) 427 (Nuclear structure, energies) N.J.STONE, J.R.STONE, M.LINDROOS, P.RICHARDS, M.VESKOVIC, D.A.WILLIAMS, Nucl. Phys. A793 (2007) 1 (Half-life) M.J.MARTIN, Nucl. Data Sheets 108 (2007) 1583 (Nuclear structure, energies) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	45.59	(6)	\min
Q_{β^-}	:	1423	(5)	keV
Q_{lpha}	:	5983	(6)	keV
β^{-}	:	97.91	(3)	%
α	:	2.09	(3)	%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
β_0^-	95(5)	0.00039(13)		7.68
$\beta_{0.8}^{-,0}$	304(5)	0.0608(20)		7.07
$\beta_{0.7}^{0.7}$	323(5)	0.595(17)		6.16
$\beta_{0.6}^{\bullet,\bullet}$	377(5)	0.020 (4)		7.85
$\beta_{0.5}^{-}$	419(5)	0.0648(23)		7.494
$\beta_{0,4}^{-,\circ}$	555(5)	0.0129 (6)	1st forbidden unique	8.597
$\beta_{0.3}^{-}$	822(5)	0.0025(19)		9.9
$\beta_{0.2}^{-,\circ}$	983(5)	30.8(4)	1st forbidden	6.07
$\beta_{0,1}^{\circ,2}$	1130(5)	0.21 (9)	1st forbidden	8.45
$\beta_{0,0}^{-,1}$	1423(5)	66.2 (4)	1st forbidden	6.316

3 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,1} lpha_{0,0}$	5549(10) 5869(10)	$\begin{array}{c} 0.186 \ (5) \\ 1.90 \ (4) \end{array}$

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e_{AL}	(Po)	5.43 - 16.86	1.7(3)	
e _{AK}	(Po) KLL KLX KXY	58.978 - 65.205 71.902 - 79.289 84.8 - 93.1	0.121 (19) } } }	
e_{AL}	(Tl)	5.18 - 10.13	0.0107(13)	
e_{AK}	(Tl) KLL KLX KXY	54.587 - 59.954 66.37 - 72.86 78.12 - 85.50	0.00076 (9) } } }	

		Ene ke	rgy V	Electrons per 100 disint.]	Energy keV
$ec_{2,1}$ L $ec_{1,0}$ K $ec_{1,0}$ L $ec_{2,0}$ K $ec_{2,0}$ L $ec_{2,0}$ M $ec_{2,0}$ N $ec_{2,0}$ N	 (Po) (Po) (Po) (Po) (Po) (Po) (Po) (Tl) 	$\begin{array}{r} 130.8 \\ 199.70 \\ 275.9 \\ 347.34 \\ 423.51 \\ 436.29 \\ 439.45 \\ 238.17 \end{array}$	133.9 (1) 279.0 (1) 426.63 437.76 440.26 (2)	$\begin{array}{c} 0.0109 \ (7) \\ 0.09 \ (7) \\ 0.025 \ (8) \\ 3.81 \ (7) \\ 0.653 \ (13) \\ 0.1550 \ (27) \\ 0.0392 \ (7) \\ 0.0212 \ (22) \end{array}$		
$ \begin{array}{c} \beta_{0,9} \\ \beta_{0,8} \\ \beta_{0,7} \\ \beta_{0,6} \\ \beta_{0,5} \\ \beta_{0,5} \\ \beta_{0,4} \\ \beta_{0,3} \\ \beta_{0,2} \\ \beta_{0,1} \\ \beta_{0,0} \\ \end{array} $	max: max: max: max: max: max: max: max:	9530432337741955582298311301423	$\begin{array}{c} (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \end{array}$	$\begin{array}{c} 0.00039 \ (13) \\ 0.0608 \ (20) \\ 0.595 \ (17) \\ 0.020 \ (4) \\ 0.0648 \ (23) \\ 0.0129 \ (6) \\ 0.0025 \ (19) \\ 30.8 \ (4) \\ 0.21 \ (9) \\ 66.2 \ (4) \end{array}$	avg: avg: avg: avg: avg: avg: avg: avg:	$\begin{array}{c} 24.6 \ (14) \\ 84.9 \ (16) \\ 90.8 \ (16) \\ 107.9 \ (16) \\ 121.4 \ (17) \\ 166.4 \ (17) \\ 260.8 \ (19) \\ 320.4 \ (19) \\ 376.8 \ (20) \\ 492.2 \ (20) \end{array}$

5.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Po)	9.6576 - 16.2129		1.14(18)	
${ m XK}lpha_2 { m XK}lpha_1$	(Po) (Po)	76.864 79.293		$\begin{array}{c} 0.99 (15) \\ 1.6 (3) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.56(9)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	$\begin{array}{c} 92.263 \\ 92.618 \\ 92.983 \end{array}$	} } }	0.18(3)	$\mathrm{K}\beta_2'$
XL	(Tl)	8.9531 - 14.7362		0.0062(8)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Tl) (Tl)	$70.8325 \\ 72.8725$		0.0058(7) 0.0098(12)	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Tl) (Tl) (Tl)	82.118 82.577 83.115	} } }	0.0033(5)	$\mathrm{K}\beta_1'$

		Energy keV		Photons per 100 disint.	
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Tl) (Tl) (Tl)	$\begin{array}{c} 84.838 \\ 85.134 \\ 85.444 \end{array}$	} } }	0.00098 (14)	${ m K}eta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{2,1}(\text{Po})$	147.70(4)	0.0314(20)	$\mathrm{E2}$	1.453(21)	0.0128(8)
$\gamma_{1,0}(Po)$	292.80(1)	0.55(8)	M1+E2	0.30(18)	0.421(7)
$\gamma_{1,0}(\mathrm{Tl})$	323.70(2)	0.1866(37)	M1+E2	0.178(15)	0.1584(24)
$\gamma_{5,3}(\text{Po})$	402.8(3)	0.00010(4)			0.00010(4)
$\gamma_{2,0}(\text{Po})$	440.44(1)	30.77~(36)	M1	0.179(3)	26.1(3)
$\gamma_{4,1}(\text{Po})$	574.9(3)	0.00068(16)			0.00068(16)
$\gamma_{3,0}(\text{Po})$	600.9(2)	0.0026 (19)			0.0026~(19)
$\gamma_{6,2}(\text{Po})$	604.93(17)	0.0014~(5)			0.0014(5)
$\gamma_{7,2}(\text{Po})$	659.75(2)	0.043~(6)			0.043~(6)
$\gamma_{5,1}(\text{Po})$	710.82(3)	0.0112~(6)			0.0112~(6)
$\gamma_{7,1}(\text{Po})$	807.37(1)	0.287(14)			0.287(14)
$\gamma_{8,1}(\text{Po})$	826.55~(4)	0.0065~(4)			0.0065~(4)
$\gamma_{4,0}(\text{Po})$	867.96(2)	0.0122~(6)			0.0122~(6)
$\gamma_{9,2}(\text{Po})$	886.66(14)	0.00102(19)			0.00102~(19)
$\gamma_{5,0}(\text{Po})$	1003.58(2)	0.0535~(22)			0.0535~(22)
$\gamma_{6,0}(Po)$	1045.67(8)	0.019(4)			0.019(4)
$\gamma_{7,0}(\mathrm{Po})$	1100.16(1)	0.265~(6)			0.265~(6)
$\gamma_{8,0}(Po)$	1119.42(8)	0.0543~(20)			0.0543~(20)
$\gamma_{9,0}(\text{Po})$	1328.2(3)	0.00039(13)			0.00039(13)

6 References

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. 72 (1947) 253

(Half-life)

F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435 (11-16 146)

(Half-life)

L.B.MAGNUSSON, F.WAGNER JR., D.W.ENGELKEMEIR, M.S.FREEDMAN, Report ANL-5386, Argonne National Laboratory (1955)

(Multipolarity)

G.GRAEFFE, K.VALLI, J.AALTONEN, Ann. Acad. Sci. Fenn., Ser. A, VI 145 (1964)

(Gamma-ray energies and intensities)

R.ARLT, B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, L.N.MOSKVIN, V.O.SERGEEV, L.G.TSARITSYNA, K.SHTRUSNYI, B.S.DZHELEPOV, Proc. 19th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Erevan (1969) 152 (Gamma-ray energies and intensities)

B.S.DZHELEPOV, A.V.ZOLOTAVIN, R.B.IVANOV, M.A.MIKHAILOVA, V.O.SERGEEV, M.I.SOVTSOV, O.M.SHUMILO,
Proc. 19th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Erevan (1969) 153
(Multipolarity)
P.POLAK, Radiochim. Acta 19 (1973) 148

(Half-life)

T.VYLOV, N.A.GOLOVKOV, B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, Y.V.NORSEEV, V.G.CHUMIN, Bull. Rus. Acad. Sci. Phys. 41 (1977) 85 (Gamma-ray energies and intensities) J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma-ray energies and intensities) R.G.HELMER, C.W.REICH, M.A.LEE, I.AHMAD, Int. J. Appl. Radiat. Isotop. 37 (1986) 139 (Gamma-ray energies, intensities and emission probabilities) M.C.KOUASSI, A.HACHEM, C.ARDISSON, G.ARDISSON, Nucl. Instrum. Methods Phys. Res. A280 (1989) 424 (Gamma-ray energies and intensities) M.J.MARTIN, Nucl. Data Sheets 63 (1991) 723 (Decay scheme and levels) Y.A.AKOVALI, Nucl. Data Sheets 66 (1992) 237 (Decay scheme and levels) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) V.G.CHUMIN, J.K.JABBER, K.V.KALYAPKIN, S.A.KUDRYA, V.V.TSUPKO-SITNIKOV, K.YA.GROMOV, V.I.FOMINYKH, T.A.FURYAEV, Bull. Rus. Acad. Sci. Phys. 61 (1997) 1606 (Gamma-ray energies and intensities) G.Ardisson, V.Barci, O.El Samad, Phys. Rev. C57 (1998) 612 (Gamma-ray energies and intensities) K.YA.GROMOV, S.A.KUDRYA, SH.R.MALIKOV, T.M.MUMINOV, ZH.K.SAMATOV, ZH.SEREETER, V.I.FOMINYKH, V.G.CHUMIN, Bull. Rus. Acad. Sci. Phys. 64 (2000) 1770 (Gamma-ray energies and intensities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129

 (\mathbf{Q})

$T_{1/2}$:	19.8	(1)	\min
Q_{β^-}	:	3270	(11)	keV
Q_{lpha}	:	5621	(3)	keV
$Q_{\alpha*}$:	11105	(11)	keV
β^{-}	:	99.979	(13)	%
α	:	0.021	(13)	%

2 β^- Transitions

	Energy	Probability	Nature	$\log ft$
	keV	\times 100		
$\beta_{0.80}^{-}$	86 (11)	0.0011 (5)		6.8
$\beta_{0.79}^{$	99 (11)	0.00014 (9)	1st forbidden	7.8
$\beta_{0.77}^{$	110 (11)	0.00079(12)		7.2
$\beta_{0.76}^{0.76}$	121 (11)	0.00019		8
$\beta_{0.75}^{-}$	127(11)	0.00118 (9)		7.3
$\beta_{0,73}^{-}$	176(11)	0.00037 (4)		8.2
$\beta_{0,72}^{-}$	188(11)	0.0052 (7)		7.1
$\beta_{0,70}^{-}$	204(11)	0.00141~(23)	1st forbidden	7.8
$\beta_{0,69}^{-}$	$216\ (11)$	0.030(5)		6.6
$\beta_{0,65}^{-}$	$256\ (11)$	0.0252~(24)		6.9
$\beta_{0,62}^{\perp}$	270(11)	0.0160(16)		7.1
$\beta_{0,61}^-$	284(11)	0.032 (5)		6.9
$\beta_{0,60}^-$	291 (11)	0.0165 (6)		7.2
$\beta_{0,58}^-$	309(11)	0.00036(14)	1st forbidden	9
$\beta_{0,57}^-$	$329\ (11)$	0.041 (7)		7
$\beta_{0,56}^-$	$336\ (11)$	0.00216 (32)		8.3
$\beta_{0,55}^-$	341 (11)	0.0025 (9)		8.3
$\beta_{0,54}^-$	348(11)	0.0220 (9)		7.3
$\beta^{0,53}$	$353\ (11)$	0.0014 (9)	1st forbidden	8.6
$\beta_{0,52}^-$	373~(11)	0.0046 (5)	1st forbidden	8.1
$\beta_{0,51}^-$	$376\ (11)$	0.022 (3)		7.5
$\beta_{0,50}^-$	390(11)	$0.0115\ (16)$		7.8
$\beta_{0,49}^-$	400(11)	0.0087 (4)	1st forbidden	7.9
$\beta_{0,48}^-$	409(11)	0.0146~(20)		7.6
$\beta_{0,47}^-$	443(11)	0.00218(17)		8.7
$\beta_{0,44}^-$	484(11)	0.0248 (31)		7.8
$\beta_{0,43}^-$	500(11)	0.038(5)		7.6
$\beta_{0,42}^-$	541 (11)	0.525~(16)		6.6
$\beta_{0,41}^{-}$	551 (11)	0.247 (8)		6.9
$\beta_{0,39}^-$	571 (11)	0.026 (4)		8
$\beta_{0,40}^-$	573~(11)	0.0471 (23)	1st forbidden	7.7
$\beta_{0,38}^-$	575~(11)	$0.231\ (15)$	1st forbidden	7
$\beta_{0,37}^-$	608(11)	0.098 (9)		7.5
$\beta_{0,36}^-$	$639\ (11)$	0.0223~(21)		8.2
$\beta_{0,35}^-$	665~(11)	0.058(4)		7.7
$\beta_{0,34}^-$	710(11)	0.00018 (9)	1st forbidden	10.5
$\beta_{0,32}^-$	727~(11)	0.044 (7)	1st forbidden	8.1

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.31}^{-}$	764 (11)	0.092 (9)	1st forbidden	7.9
$\beta_{0.30}^{-}$	765(11)	0.169(10)	1st forbidden	7.6
$\beta_{0.29}^{-}$	788 (11)	1.227(27)		6.8
$\beta_{0.28}^{-,28}$	822 (11)	2.76(6)	Allowed	6.5
$\beta_{0.27}^{-,28}$	847 (11)	0.0620(49)		8.1
$\beta_{0.26}^{0.26}$	909(11)	0.0030 (8)		9.6
$\beta_{0.25}^{}$	922(11)	0.0014 (9)		9.9
$\beta_{0,24}^{-}$	977(11)	0.558(8)	1st forbidden	7.4
$\beta_{0,23}^{-}$	1004~(11)	0.187(12)	1st forbidden	8
$\beta_{0,21}^{-}$	1068(11)	5.642(43)	1st forbidden	6.6
$\beta_{0,20}^{-}$	1077(11)	0.851~(10)	1st forbidden	7.4
$\beta_{0,19}^{-}$	1124(11)	0.433(22)	1st forbidden	7.8
$\beta_{0,18}^{-}$	1151 (11)	4.339(18)	1st forbidden	6.8
$\beta_{0,17}^{-}$	1182(11)	0.114(6)		8.4
$\beta_{0.16}^{-}$	$1253\ (11)$	2.449(10)	1st forbidden	7.2
$\beta_{0,15}^{-}$	1261 (11)	1.430 (9)	1st forbidden	7.4
$\beta_{0,14}^{-}$	1275(11)	1.171(18)		7.5
$\beta_{0,13}^{-}$	1382(11)	1.584(10)	1st forbidden	7.5
$\beta_{0,12}^{-}$	1423(11)	8.147(28)	1st forbidden	6.9
$\beta_{0,11}^{-}$	1506(11)	17.10(8)	1st forbidden	6.6
$\beta_{0,10}^{-}$	1529(11)	0.116(16)	1st forbidden	8.8
$\beta_{0,9}^{-}$	1540(11)	17.494(36)	1st forbidden	6.7
$\beta_{0,8}^{-}$	1557(11)	0.170(16)		8.7
$\beta_{0,7}^{-}$	1609(11)	$0.65\ (6)$	1st forbidden	8.2
$\beta_{0,6}^{-}$	1727 (11)	3.12(4)	1st forbidden	7.6
$\beta_{0,5}^{-}$	1857(11)	0.396~(46)	1st forbidden	8.6
$\beta_{0,4}^{-}$	$1894\ (11)$	7.45 (5)	1st forbidden	7.4
$\beta_{0,1}^{-}$	2661 (11)	0.62~(20)	1st forbidden	9
$\beta_{0,0}^{-}$	3270(11)	19.67(20)	1st forbidden	7.9

3 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,5}$	4941 (3)	0.000052(3)
$\alpha_{0,4}$	5023(3)	0.000045(3)
$lpha_{0,3}$	5184(3)	0.00013(1)
$\alpha_{0,2}$	5273~(9)	0.00125~(7)
$lpha_{0,1}$	5452(3)	0.0116(7)
$lpha_{0,0}$	5516(3)	0.0082(5)
$*\alpha_{1,0}$	8287~(6)	0.00012
$*\alpha_{6,1}$	8430(6)	0.00006
$*\alpha_{2,0}$	8950(6)	0.00002
$*\alpha_{4,0}$	9080(6)	0.0022
$*\alpha_{6,0}$	9320 (6)	0.00005
$*\alpha_{7,0}$	9378 (8)	0.00002

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$*\alpha_{10,0}$	9500(6)	0.0001
$*\alpha_{14,0}$	9670(8)	0.00004
$^{*}\alpha_{17,0}$	9802~(6)	0.00012
$\alpha_{21,0}$	9907(6)	0.00007
$^{*}\alpha_{24,0}$	10082(6)	0.00014
$\alpha_{26,0}$	10150(8)	0.00002
$^*lpha_{32,0}$	10332(6)	0.00008
$\alpha_{38,0}$	10505(10)	0.00002

* Long-range α .

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e_{AL}	(Po)	5.43 - 16.86	0.934(16)	
eak	(Po)		0.053(7)	
	KLĹ	58.97 - 65.20	}	
	KLX	71.93 - 76.60	}	
	KXY	84.72 - 93.04	}	
$ec_{18,9}$ K	(Po)	295.84 (5)	0.0800(16)	
$ec_{18,9}$ L	(Po)	372.01 - 375.13	$0.01391\ (26)$	
$ec_{1,0 K}$	(Po)	516.216 (7)	0.676(10)	
$ec_{1,0 L}$	(Po)	592.388 - 595.510	0.1892~(28)	
$ec_{1,0 M}$	(Po)	605.164 - 606.640	0.0469~(7)	
$ec_{1,0 N}$	(Po)	608.329 - 609.138	$0.01201 \ (19)$	
$ec_{4,1 \text{ K}}$	(Po)	675.259 (14)	0.060~(9)	
$ec_{5,1}$ K	(Po)	713.07 (2)	0.01094~(17)	
$ec_{4,1 L}$	(Po)	751.431 - 754.550	0.0127~(15)	
$ec_{6,1~\rm K}$	(Po)	840.959 (16)	0.0595~(25)	
$ec_{6,1 L}$	(Po)	917.131 - 920.250	0.01014 (40)	
$ec_{9,1\ K}$	(Po)	1027.195 (15)	0.1858~(29)	
$ec_{9,1}$ L	(Po)	1103.367 - 1106.490	0.03131 (45)	
$ec_{12,1}$ K	(Po)	1145.015 (12)	0.0573~(8)	
$ec_{11,0}$ K	(Po)	1671.398 (14)	0.0608~(9)	
$ec_{11,0\ L}$	(Po)	1747.57 - 1750.69	0.01012 (16)	
$\beta_{0,80}^-$	max:	86 (11)	0.0011 (5)	avg: $23(3)$
$\beta_{0,79}^-$	max:	97 (11)	0.00014 (9)	avg: $26(3)$
$\beta_{0,77}^{-}$	max:	110 (11)	0.00079~(12)	avg: $29(3)$
$\beta_{0,76}^{-}$	max:	121 (11)	0.00019	avg: $32(3)$
$\beta_{0,75}^{-}$	max:	127 (11)	0.00118 (9)	avg: $34(3)$
$\beta_{0,73}^{-}$	max:	176 (11)	0.00037~(4)	avg: $48(3)$
$\beta_{0,72}^{-}$	max:	188 (11)	0.0052~(7)	avg: $51(3)$
$\beta_{0,70}^{-1}$	max:	202 (11)	$0.00141 \ (23)$	avg: $55(3)$
$\beta_{0,69}$	max:	216 (11)	0.030(5)	avg: $59(3)$

Bi -	214
------	-----

		Energy keV		Electrons per 100 disint.	Energy keV	
β_{0}^{-} cr	max:	256	(11)	0.0252(24)	avg:	71(3)
$\beta_{0,65}^{-}$	max:	270	(11)	0.0160(16)	avg:	75(3)
$\beta_{0,61}^{-}$	max:	284	(11)	0.032(5)	avg:	80 (3)
$\beta_{0.60}^{-0.01}$	max:	291	(11)	0.0165(6)	avg:	82(3)
$\beta_{0.58}^{-}$	max:	307	(11)	0.00036(14)	avg:	87 (3)
$\beta_{0.57}^{-}$	max:	329	(11)	0.041(7)	avg:	93 (3)
$\beta_{0.56}^{-}$	max:	336	(11)	0.00216(32)	avg:	95(3)
$\beta_{0.55}^{-}$	max:	341	(11)	0.0025(9)	avg:	97(3)
$\beta_{0.54}^{-}$	max:	348	(11)	0.0220(9)	avg:	99(3)
$\beta_{0.53}^{-}$	max:	350	(11)	0.0014(9)	avg:	100(3)
$\beta_{0.52}^{-}$	max:	373	(11)	0.0046(5)	avg:	107(3)
$\beta_{0.51}^{}$	max:	376	(11)	0.022(3)	avg:	108(3)
$\beta_{0.50}^{}$	max:	390	(11)	$0.0115\ (16)$	avg:	113(3)
$\beta_{0,49}^{-}$	max:	400	(11)	0.0087~(4)	avg:	116(3)
$\beta_{0,48}^{-}$	max:	409	(11)	0.0146~(20)	avg:	119(4)
$\beta_{0,47}^{-}$	max:	443	(11)	$0.00218\ (17)$	avg:	130(4)
$\beta_{0,44}^{-}$	max:	484	(11)	0.0248 (31)	avg:	143~(4)
$\beta_{0,43}^{-}$	max:	500	(11)	0.038~(5)	avg:	149(4)
$\beta_{0,42}^{-}$	max:	541	(11)	0.525~(16)	avg:	162~(4)
$\beta_{0,41}^{-}$	max:	551	(11)	0.247~(8)	avg:	166~(4)
$\beta_{0,40}^{-}$	max:	571	(11)	0.0471 (23)	avg:	172~(4)
$\beta_{0,39}^-$	max:	571	(11)	0.026~(4)	avg:	173~(4)
$\beta_{0,38}^-$	max:	575	(11)	$0.231\ (15)$	avg:	174(4)
$\beta_{0,37}^-$	max:	608	(11)	0.098~(9)	avg:	185(4)
$\beta_{0,36}^-$	max:	639	(11)	0.0223~(21)	avg:	196(4)
$\beta_{0,35}^-$	max:	665	(11)	0.058~(4)	avg:	205~(4)
$\beta_{0,34}^{-}$	max:	708	(11)	0.00018 (9)	avg:	220(4)
$\beta_{0,32}^-$	max:	725	(11)	0.044(7)	avg:	226(4)
$\beta_{0,31}^{-}$	max:	762	(11)	0.092(9)	avg:	240(4)
$\beta_{0,30}^-$	max:	765	(11)	0.169(10)	avg:	241(4)
$\beta_{0,29}^{-}$	max:	788	(11)	1.227(27)	avg:	249(3)
$\beta_{0,28}^{-}$	max:	822	(11)	2.76(6)	avg:	262(4)
$\beta_{0,27}^{-}$	max:	847	(11)	0.0620(49)	avg:	271(4)
$\beta_{0,26}$	max:	909	(11)	0.0030(8)	avg:	294(4)
$\beta_{0,25}$	max:	922	(11)	0.0014(9)	avg:	298(4)
$\beta_{0,24}$	max:	977	(11)	0.558(8)	avg:	319(4)
$\beta_{0,23}$	max:	1004	(11)	0.187(12)	avg:	329(4)
$\beta_{0,21}$	max:	1066	(11)	5.642(43)	avg:	353(4)
$\beta_{0,20}$	max:	1077	(11)	0.851(10)	avg:	357(4)
$p_{0,19}$	max:	1122	(11)	0.433(22)	avg:	373(4)
$\rho_{0,18}$	max:	1151	(11)	4.339(18)	avg:	380(4)
$\rho_{0,17}$	max:	1182	(11)	0.114(6)	avg:	398 (4) 495 (4)
$\rho_{0,16}$	max:	1255 1950	(11)	2.449(10) 1.420(0)	avg:	423(4)
$\rho_{0,15}$	max:	1209 1975	(11)	1.430(9) 1 171(10)	avg:	428(4)
$\rho_{0,14}$	max:	1270	(11)	1.1(1(18)) 1 = 0.4(10)	avg:	434(4)
$\rho_{0,13}$	max:	1380	(11)	1.384(10) 0.147(20)	avg:	410(4)
$\rho_{0,12}$	max:	1423	(11)	8.147(28)	avg:	493(4)

		Energy keV		Electrons per 100 disint.	E	ènergy keV
$\beta_{0.11}^{-}$	max:	1506	(11)	17.10 (8)	avg:	526(4)
$\beta_{0.10}^{-1}$	max:	1527	(11)	0.116(16)	avg:	535(4)
$\beta_{0.9}^{-}$	max:	1540	(11)	17.494(36)	avg:	540(4)
$\beta_{0.8}^{}$	max:	1557	(11)	0.170(16)	avg:	547(4)
$\beta_{0.7}^{-}$	max:	1609	(11)	0.65~(6)	avg:	568(4)
$\beta_{0.6}^{-}$	max:	1727	(11)	3.12(4)	avg:	616(5)
$\beta_{0.5}^{}$	max:	1855	(11)	0.396 (46)	avg:	669(5)
$\beta_{0.4}^{}$	max:	1892	(11)	7.45(5)	avg:	685(5)
$\beta_{0,1}^{-1}$	max:	2661	(11)	0.62(20)	avg:	1008(5)
$\beta_{0,0}^{\underline{\cdot},\underline{\cdot}}$	max:	3270	(11)	19.67(20)	avg:	1270(5)

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9.66 - 16.21		0.627~(15)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		$\begin{array}{c} 0.426 \ (13) \\ 0.710 \ (22) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.244 (9)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	92.263 92.618 92.983	} } }	0.0760 (29)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$\begin{array}{c} \mathrm{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(\mathrm{Tl})$	62.5(10)	0.0116(7)	(M1)		0.0116(7)
$\gamma_{2,1}(\mathrm{Tl})$	191.1(18)	0.00125(7)			0.00125(7)
$\gamma_{11,6}(\text{Po})$	221(1)	0.106(31)	[M1,E2]	0.8(5)	0.059(6)
$\gamma_{-1,0}(\text{Po})$	230(1)	0.0031(11)		0.0585(11)	0.0029(10)
$\gamma_{16,11}(Po)$	252.80(6)	0.0212 (33)	[M1]	0.809(12)	0.0117(18)
$\gamma_{6,3}(\text{Po})$	268.8(2)	0.0168(19)	[E1]	0.0405~(6)	0.0161 (18)
$\gamma_{29,22}(Po)$	273.80(5)	0.120(8)			0.120(8)
$\gamma_{42,28}(Po)$	280.95(5)	0.062~(6)			0.062~(6)
$\gamma_{-1,1}(\text{Po})$	304.2(2)	0.033~(6)		0.30(19)	0.0255~(23)
$\gamma_{14,7}(\text{Po})$	333.350(42)	0.0646~(41)	[E1]	0.0247~(4)	0.063~(4)
$\gamma_{-1,2}(\text{Po})$	334.78(8)	0.033~(5)			0.033~(5)
$\gamma_{11,5}(\text{Po})$	348.92(6)	0.164(43)	[M1]	0.335~(5)	0.123(32)

	Energy keV	$\mathrm{P}_{\gamma+\mathrm{ce}} \ imes 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{11.4}(Po)$	386.77(5)	0.343(30)	[M1, E2]	0.16(10)	0.296(5)
$\gamma_{18.9}(Po)$	388.88(5)	0.493(6)	(M1)	0.250(4)	0.394(5)
$\gamma_{29.17}(Po)$	394.05(8)	0.0127(18)			0.0127(18)
$\gamma_{35,22}(Po)$	396.01 (8)	0.0259(18)			0.0259(18)
$\gamma_{2,1}(\text{Po})$	405.74(3)	0.180(7)	[E2]	0.0541(8)	0.171(7)
$\gamma_{28,14}(\text{Po})$	452.92(10)	0.034(5)	[M1,E2]	0.10(7)	0.031(4)
$\gamma_{9,3}(\text{Po})$	454.770(12)	0.292(5)	[E1]	0.01251 (18)	0.288(5)
$\gamma_{21,10}(\text{Po})$	461.0(2)	0.067~(9)	[M1]	0.1581 (23)	0.058~(8)
$\gamma_{12,4}(\text{Po})$	469.76(7)	0.145~(18)	[M1,E2]	0.09~(6)	$0.133\ (15)$
$\gamma_{21,9}(\text{Po})$	474.41(5)	0.100(9)	[M1,E2]	0.09~(6)	0.092~(6)
$\gamma_{38,22}(Po)$	485.92(11)	0.021~(4)			0.021~(4)
$\gamma_{29,14}(\text{Po})$	487.95(13)	0.028~(9)	[E1]	$0.01080 \ (16)$	0.028~(9)
$\gamma_{39,21}(Po)$	494.2~(4)	0.011~(3)			0.011~(3)
$\gamma_{31,15}(\text{Po})$	496.90(18)	0.0068 (18)			0.0068 (18)
$\gamma_{23,11}(\text{Po})$	$501.96\ (15)$	0.0181~(22)			0.0181~(22)
$\gamma_{42,22}(Po)$	519.90(5)	0.0166(17)			0.0166(17)
$\gamma_{42,21}(\text{Po})$	524.6(2)	0.0169(17)			0.0169(17)
$\gamma_{6,2}(\text{Po})$	528(1)	0.0112(13)	[E2]	0.0282~(5)	0.0109(13)
$\gamma_{23,9}(\text{Po})$	536.77(4)	0.061(8)			0.061(8)
$\gamma_{21,7}(\text{Po})$	543.0(2)	0.093(23)	[M1,E2]	0.06(4)	0.088(21)
$\gamma_{22,7}(Po)$	547.6(3)	0.034(3)			0.034(3)
$\gamma_{62,28}(Po)$	551.9(8)	0.0055(14)	[124]		0.0055(14)
$\gamma_{12,3}(\text{Po})$	572.76(7)	0.072(8)	[E1]	0.00779(11)	0.071(8)
$\gamma_{15,5}(\text{Po})$	595.23(7)	0.0183(17)	[M1,E2]	0.05(3)	0.0174(15)
$\gamma_{41,18}(Po)$	600.0(5)	0.008(4)	Ta		0.008(4)
$\gamma_{1,0}(\text{Po})$	609.312(7)	46.42 (19)	E2	0.0204(3)	45.49 (19)
$\gamma_{13,3}(Po)$	615.73(10)	0.055(7)	[E1]	0.00674(10)	0.055(7)
$\gamma_{14,4}(\text{Po})$	617.0(2)	0.027(5)	[E1]	0.00672(10)	0.027(5)
$\gamma_{51,23}(\text{Po})$	626.4(6)	0.0041(14)			0.0041(14)
$\gamma_{-1,3}(\text{Po})$	630.79(7)	0.0166(14)		0.044.(05)	0.0166(14)
$\gamma_{15,4}(\text{Po})$	633.14(10)	0.057(3)	[M1, E2]	0.044(25)	0.055(3)
$\gamma_{29,12}(Po)$	634.72(21)	0.0067(24)	[M1,E2]	0.043(25)	0.0064(23)
$\gamma_{16,4}(Po)$	639.67 (10)	0.035(5)	[E2] [M1 E9]	0.0183(3)	0.034(5)
$\gamma_{20,6}(Po)$	049.18(7)	0.050(7)	[M1, E2]	0.041(24)	0.034(7)
$\gamma_{27,11}(Po)$	030.7(2)	0.017(4)	[M1 E9]	0.020 (22)	0.017(4)
$\gamma_{21,6}(P0)$	001.1(2)	0.050(4) 1 520(7)	[M1,E2] E1	0.039(22)	0.034(4) 1 520(7)
$\gamma_{3,1}(Po)$	677 41 (15)	1.339(7)	E1	0.00579(9)	1.000(7)
$\gamma_{38,16}(Po)$	683.22 (6)	0.0055(25)	[F 1]	0.00551 (8)	0.0055(25)
$\gamma_{28,11}(P0)$	687.6(3)	0.064(0)		0.00331 (8)	0.064(0)
$\gamma_{39,15}(P0)$	603.3(5)	0.0000(14) 0.0050(15)			0.0000(14) 0.0050(15)
$\gamma_{27,9}(F0)$	693.3(3)	0.0059(15)	[M1 E2]	0.034(10)	0.0039(13)
$\frac{18,2(F0)}{200,14(P_0)}$	690 89 (18)	0.009(4) 0.016(5)		0.004 (19)	0.007 (4) 0.016 (5)
738,14(F0)	703.11(A)	0.510(0)	[M1]	0.0519 (8)	0.010(0)
$\gamma_{18,5}(10)$	704.0(3)	0.004(12) 0.051(10)	[111] [E1]	0.0019(0)	0.913(11) 0.051(10)
$\gamma_{28,10}(r_0)$	704.3 (3)	0.031(10) 0.0110(90)		0.00313 (0)	0.001 (10) 0.0110 (20)
$\gamma_{41,15}(r_0)$ $\gamma_{17,4}(P_0)$	710.67(10)	0.0113(20) 0.076(4)			0.0113(20) 0.076(4)
$\gamma_{14,2}(P_0)$	719.86 (3)	0.300(4)	E2	0.01494.(20)	0.303(10)
/14,3(10)	110.00 (0)	0.000 (10)	114	0.01424 (20)	0.030 (10)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{23,6}(Po)$	722.98(12)	0.037(7)			0.037(7)
$\gamma_{42,14}(\text{Po})$	$733.80\ (15)$	0.038~(3)			0.038~(3)
$\gamma_{18,4}(\text{Po})$	$740.73\ (18)$	0.0440 (23)	[M1,E2]	0.029~(16)	0.0428(21)
$\gamma_{29,9}(\text{Po})$	752.84(3)	0.130(8)	[M1,E2]	0.028~(16)	0.126(8)
$\gamma_{4,1}(\text{Po})$	$768.356\ (10)$	4.969(19)	M1+E2	0.0157~(21)	4.892(16)
$\gamma_{28,7}(Po)$	786.1(4)	0.31(5)	[E1]	0.00422~(6)	0.31~(5)
$\gamma_{21,5}(\text{Po})$	788.6(5)	0.016~(5)	[M1]	0.0385~(6)	0.015~(5)
$\gamma_{5,1}(\text{Po})$	806.174(18)	1.276~(6)	E2	0.01127 (16)	1.262~(6)
$\gamma_{20,4}(Po)$	815.0(1)	0.0399(31)	[M1,E2]	0.023~(13)	0.039(3)
$\gamma_{29,7}(Po)$	821.18(3)	0.172(10)	M1	0.0346~(5)	0.166(10)
$\gamma_{21,4}(\text{Po})$	826.3(2)	0.133(11)	M1	0.0341(5)	0.129(11)
$\gamma_{12,2}(Po)$	832.39 (11)	0.0354(20)	[E2]	0.01057(15)	0.035(2)
$\gamma_{38,12}(Po)$	847.16 (11)	0.016(6)			0.016(6)
$\gamma_{19.3}(Po)$	873.07 (19)	0.019(3)			0.019(3)
$\gamma_{24.5}(\text{Po})$	878.03 (12)	0.0120(28)	[M1,E2]	0.019(10)	0.0118(27)
$\gamma_{28.6}(Po)$	904.29(10)	0.066(8)	[E1]	0.00326(5)	0.066(8)
$\gamma_{244}(Po)$	915.74(15)	0.023(5)	[M1, E2]	0.017(9)	0.023(5)
$\gamma_{20,3}(Po)$	917.8 (3)	0.005(3)	[E1]	0.00317(5)	0.005(3)
$\gamma_{38,11}(Po)$	930.2(2)	0.043(8)			0.043(8)
$\gamma_{6,1}(P_0)$	934.061 (12)	3.173(11)	M1+E2	0.0234(10)	3.10(1)
$\gamma_{20} \epsilon(P_0)$	939.6(5)	0.016(4)	[M1.E2]	0.016(8)	0.016(4)
$\gamma_{25,0}(10)$ $\gamma_{25,7}(P_0)$	943.34(12)	0.017(3)	[[]]]]	0.010 (0)	0.017(3)
$\gamma_{27} \circ (P_0)$	949.8(5)	0.0055(23)			0.0055(23)
$\gamma_{28,10}(P_0)$	952.2(8)	0.0059(23)			0.0059(23)
$\gamma_{20,c}(P_0)$	961.61.(17)	0.0101(14)			0.0101(14)
$\gamma_{30,0}(10)$ $\gamma_{40,11}(P_0)$	964.08(3)	0.363(12)			0.363(12)
$\gamma_{42,11}(P_0)$	976 18 (12)	0.000 (12) 0.0151 (21)			0.000(12) 0.0151(21)
$\gamma_{41,10}(10)$ $\gamma_{22,2}(P_0)$	$991 \ 49 \ (19)$	0.0101(21)	[M1 E2]	0.014.(7)	0.0101(21)
$\gamma_{23,3}(10)$	1013.8(2)	0.011(0) 0.0087(19)		0.014 (1)	0.011(0) 0.0087(19)
$\gamma_{48,12}(10)$ $\gamma_{44,11}(P_0)$	1010.0(2) 1021.0(5)	0.0001(10)			0.0001 (19)
$\gamma_{44,11}(10)$	1021.0(0) 1032.37(8)	0.010(3) 0.061(4)	[E1]	0.00257(4)	0.010(3) 0.061(4)
728,5(10)	1032.01(0) 1038.0(3)	0.001(4)		0.00201 (4)	0.001(4)
$\gamma_{39,7(10)}$	1036.0(3) 1045.6(2)	0.0000(10)			0.0000(10)
$\gamma_{27,4}(10)$	1040.0(2) 1051.06(3)	0.025(3) 0.328(8)	[M1 E2]	0.012(6)	0.023(3) 0.324(8)
$\gamma \gamma, I(FO)$	1051.90(3) 1067.2(3)	0.328(8) 0.024(7)	[111,122]	0.012(0)	0.324(0) 0.024(7)
$\gamma_{42,7}(P0)$	1007.2(3) 1060.06(8)	0.024(7) 0.272(10)	[F 1]	0.00241(4)	0.024(7) 0.271(10)
$\gamma_{28,4}(P0)$	1009.90(0) 1102.64(10)	0.272(10) 0.107(15)	[Ľ1] [M1 E9]	0.00241(4)	0.271(10) 0.106(15)
$\gamma_{8,1}(Po)$	1103.04(19) 1104.70(10)	0.107(13)	[M1, E2]	0.011(5)	0.100(13)
$\gamma_{29,4}(Po)$	1104.79(19)	0.074(14)	[M1, E2]	0.011(3)	0.075(14)
$\gamma_{37,6}(Po)$	1118.9(5)	0.010(4)	M1 + E9	0.01500 (02)	0.010(4)
$\gamma_{9,1}(Po)$	1120.287(10)	15.14(3)	M1+E2	0.01522(23)	14.91(3)
$\gamma_{31,4}(Po)$	1130.29(19)	0.036(3)		0.00570(0)	0.036(3)
$\gamma_{10,1}(Po)$	1133.00(3)	0.255(8)	[E2]	0.00578(8)	0.254(8)
$\gamma_{11,1}(Po)$	1155.19(2)	1.657(7)	M1+E2	0.0135(4)	1.635(7)
$\gamma_{32,4}(\text{Po})$	1167.3(2)	0.0123(17)	[1] ~ 1		0.0123(17)
$\gamma_{28,3}(\text{Po})$	1172.98(10)	0.055(7)	[E2]	0.00542(8)	0.055(7)
$\gamma_{29,3}(Po)$	1207.68(3)	0.455(12)	[E1]	0.00196(3)	0.454(12)
$\gamma_{-1,4}(\text{Po})$	1226.7(3)	0.018(8)			0.018 (8)
$\gamma_{30,3}(Po)$	1230.6(4)	0.007~(5)			0.007~(5)

	$rac{\mathrm{Energy}}{\mathrm{keV}}$	$\mathrm{P}_{\gamma+\mathrm{ce}}$ $ imes 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{12,1}(Po)$	1238.111 (12)	5.901(14)	M1+E2	0.01200(17)	5.831 (14)
$\gamma_{13,1}(Po)$	1280.96(2)	1.451 (6)	M1	0.01101(16)	1.435 (6)
$\gamma_{37.4}(Po)$	1284(1)	0.013(6)		· · · · · · · · · · · · · · · · · · ·	0.013(6)
$\gamma_{41.5}(\text{Po})$	1303.76(8)	0.105(5)			0.105(5)
$\gamma_{38,4}(\text{Po})$	1316.96(15)	0.077(7)			0.077(7)
$\gamma_{35,3}(\text{Po})$	1330.0(2)	0.0120(14)			0.0120(14)
$\gamma_{41,4}(\text{Po})$	1341.49(16)	0.0214(27)			0.0214(27)
$\gamma_{42,4}(\text{Po})$	1351(1)	0.0042(11)			0.0042(11)
$\gamma_{65,7}(\text{Po})$	1353.4(8)	0.0036 (9)			0.0036 (9)
$\gamma_{4,0}(\text{Po})$	1377.669(12)	3.984(11)	$\mathrm{E2}$	0.00404~(6)	3.968(11)
$\gamma_{14,1}(\text{Po})$	1385.31(3)	0.796~(5)	[E1]	0.001631 (23)	0.795~(5)
$\gamma_{43,4}(\text{Po})$	1392.5~(4)	0.0087~(19)			0.0087~(19)
$\gamma_{15,1}(\text{Po})$	1401.50(4)	1.337~(7)	(M1+E2)	0.0053~(9)	1.330(7)
$\gamma_{16,1}(\text{Po})$	1407.98(4)	2.398(8)	(E2)	0.00389~(6)	2.389(8)
$\gamma_{38,3}(\text{Po})$	1419.7(3)	0.0055~(10)			0.0055~(10)
$\gamma_{65,6}(\text{Po})$	1470.9(3)	0.0094~(13)			0.0094~(13)
$\gamma_{17,1}(\text{Po})$	1479.15(14)	0.051~(4)			0.051~(4)
$\gamma_{18,1}(\text{Po})$	$1509.228\ (15)$	2.144(10)	M1+E2	0.00732~(11)	2.128(10)
$\gamma_{51,4}(\text{Po})$	1515.5(3)	0.0072(21)			0.0072~(21)
$\gamma_{19,1}(\text{Po})$	1538.50(6)	0.401~(22)			0.401~(22)
$\gamma_{6,0}(\mathrm{Po})$	1543.32~(6)	0.303(13)	[E2]	0.00333~(5)	0.302~(13)
$\gamma_{20,1}(\text{Po})$	1583.22 (4)	0.712(5)	M1+E2	0.00642 (18)	0.707~(5)
$\gamma_{21,1}(\text{Po})$	1594.73(8)	$0.276\ (15)$	[M1]	0.00644 (9)	$0.274\ (15)$
$\gamma_{22,1}(\text{Po})$	1599.31(6)	0.322~(15)			0.322~(15)
$\gamma_{65,4}(\text{Po})$	1636.3(2)	0.0111 (16)			0.0111 (16)
$\gamma_{23,1}(\text{Po})$	1657.00(19)	0.047~(5)			0.047~(5)
$\gamma_{7,0}(\mathrm{Po})$	1661.28(6)	1.051(9)	$\mathrm{E2}$	0.00296~(5)	1.048(9)
$\gamma_{57,3}(\text{Po})$	1665.8(2)	0.015(6)			0.015~(6)
$\gamma_{24,1}(\text{Po})$	1683.99(4)	0.217(3)			0.217(3)
$\gamma_{61,3}(\text{Po})$	1711.0 (8)	0.023(5)			0.023(5)
$\gamma_{9,0}(\text{Po})$	1729.595(15)	2.852(10)	$\mathrm{E2}$	0.00278(4)	2.844(10)
$\gamma_{26,1}(\text{Po})$	1751.4(8)	0.0009(5)			0.0009(5)
$\gamma_{11,0}(\text{Po})$	1764.494(14)	15.39(5)	M1	0.00511 (8)	15.31(5)
$\gamma_{27,1}(\text{Po})$	1813.73 (14)	0.0108(9)			0.0108(9)
$\gamma_{28,1}(\text{Po})$	1838.36(5)	0.343(10)			0.343(10)
$\gamma_{12,0}(Po)$	1847.420(25)	2.025(12)			2.025(12)
$\gamma_{29,1}(\text{Po})$	1873.16 (6)	0.212(8)			0.212(8)
$\gamma_{13,0}(\text{Po})$	1890.30(15)	0.078(4)			0.078(4)
$\gamma_{30,1}(Po)$	1895.92(14)	0.146(8)			0.146(8)
$\gamma_{31,1}(\mathrm{Po})$	1898.7(4)	0.049(8)			0.049(8)
$\gamma_{32,1}(Po)$	1935.5(2)	0.032(7)			0.032(7)
$\gamma_{35,1}(\text{Po})$	1994.6(6)	0.0024(5)			0.0024(5)
$\gamma_{15,0}(\text{Po})$	2010.78(12)	0.0434(17)			0.0434(17)
$\gamma_{36,1}(\text{Po})$	2021.6(2)	0.0214(21)			0.0214(21)
$\gamma_{37,1}(\mathrm{Po})$	2052.94(12)	0.069(4)			0.069(4)
$\gamma_{38,1}(Po)$	2085.1(2)	0.0082(5)			0.0082(5)
$\gamma_{40,1}(Po)$	2089.7(2)	0.0443(22)			0.0443(22)
$\gamma_{41,1}(\mathrm{Po})$	2109.92(12)	0.084(3)			0.084(3)

	${ m Energy}\ { m keV}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{18,0}(\text{Po})$	2118.55(3)	1.162(5)	M1	0.00356(5)	1.158(5)
$\gamma_{19,0}(\text{Po})$	2147.9(2)	$0.0134\ (13)$			$0.0134\ (13)$
$\gamma_{43,1}(\text{Po})$	2160.4(3)	0.007~(5)			0.007~(5)
$\gamma_{44,1}(\text{Po})$	2176.5(2)	0.0033~(6)			0.0033~(6)
$\gamma_{20,0}(Po)$	2192.58(16)	0.038~(3)			0.038~(3)
$\gamma_{21,0}(\text{Po})$	2204.21 (4)	4.929(23)	M1	0.00333~(5)	4.913(23)
$\gamma_{48,1}(\text{Po})$	2251.6(2)	0.0055~(5)			0.0055~(5)
$\gamma_{49,1}(\text{Po})$	2260.3(2)	0.0087~(4)			0.0087~(4)
$\gamma_{23,0}(\text{Po})$	2266.51(13)	0.0165~(8)			0.0165~(8)
$\gamma_{50,1}(\text{Po})$	2270.9(4)	0.0014(3)			0.0014(3)
$\gamma_{51,1}(\text{Po})$	2284.3(2)	0.0050(4)			0.0050(4)
$\gamma_{52,1}(\text{Po})$	2287.65(23)	0.0046(5)			0.0046(5)
$\gamma_{24,0}(\text{Po})$	2293.40(12)	0.306(4)			0.306(4)
$\gamma_{53,1}(Po)$	2310.2(3)	0.0014(9)			0.0014(9)
$\gamma_{54,1}(\text{Po})$	2312.4(2)	0.0086(8)			0.0086(8)
$\gamma_{55,1}(\text{Po})$	2319.3(3)	0.0014(9)			0.0014(9)
$\gamma_{56,1}(\text{Po})$	2325.0(3)	0.0017(3)			0.0017(3)
$\gamma_{57.1}(\text{Po})$	2331.3(2)	0.026(4)			0.026(4)
$\gamma_{25.0}(\text{Po})$	2348.0(13)	0.0014(9)			0.0014(9)
$\gamma_{58.1}(\text{Po})$	2353.5(7)	0.00036(14)			0.00036(14)
$\gamma_{26.0}(Po)$	2361.00(19)	0.0021(6)			0.0021(6)
$\gamma_{60.1}(\text{Po})$	2369.0(4)	0.0028(4)			0.0028(4)
$\gamma_{61.1}(Po)$	2376.9(2)	0.0086(8)			0.0086(8)
$\gamma_{62,1}(Po)$	2390.8(2)	0.00156(14)			0.00156(14)
$\gamma_{65.1}(\text{Po})$	2405.1(5)	0.0011(7)			0.0011(7)
$\gamma_{27.0}(Po)$	2423.27(13)	0.0048(6)			0.0048(6)
$\gamma_{69.1}(Po)$	2444.7(8)	0.008(4)			0.008(4)
$\gamma_{28.0}(Po)$	2447.86 (10)	1.550(7)	${ m E1}$	0.001424(20)	1.548(7)
$\gamma_{70.1}(Po)$	2459.0(8)	0.00141(23)			0.00141(23)
$\gamma_{29.0}(Po)$	2482.8(4)	0.00096(18)			0.00096(18)
$\gamma_{30.0}(Po)$	2505.4(2)	0.0056(6)			0.0056(6)
$\gamma_{77,1}(\text{Po})$	2550.7(7)	0.00032(9)			0.00032(9)
$\gamma_{34.0}(\text{Po})$	2562.0(6)	0.00018(9)			0.00018(9)
$\gamma_{79.1}(\text{Po})$	2564.0(6)	0.00014(9)			0.00014(9)
$\gamma_{35.0}(Po)$	2604.5(5)	0.00036(9)			0.00036(9)
$\gamma_{36,0}(Po)$	2630.9(3)	0.00086(23)			0.00086(23)
$\gamma_{37,0}(Po)$	2662.4(10)	0.000200(41)			0.000200(41)
γ38 n(Po)	2694.7(2)	0.033(3)			0.033(3)
$\gamma_{40,0}(P_0)$	2699.4(3)	0.00282(23)			0.00282(23)
$\gamma_{41,0}(P_0)$	2719.3(2)	0.00170(17)			0.00170(17)
$\gamma_{43,0}(Po)$	2769.9(2)	0.0225(8)			0.0225(8)
$\gamma_{44.0}(Po)$	2785.9(2)	0.0055(5)			0.0055(5)
$\gamma_{470}(P_0)$	2826.98(20)	0.00218(17)			0.00218(17)
$\gamma_{480}(P_0)$	2861.08(40)	0.00041(13)			0.00041(13)
$\gamma_{50,0}(2^{\circ})$	2880.3(2)	0.0101(16)			0.0101(16)
$\gamma_{51,0}(P_0)$	2893.5(2)	0.0057(5)			0.0057(5)
$\gamma_{54,0}(10)$	2921.9(2)	0.0134(5)			0.0134(5)
$\gamma_{04,0}(10)$	2021.0(2) 2028 6(3)	0.0101(0)			0.0101(0)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{56,0}(\text{Po})$	2934.6(3)	0.00046(12)			0.00046 (12)
$\gamma_{60,0}(Po)$	2978.9(2)	0.0137(4)			0.0137(4)
$\gamma_{62,0}(Po)$	2999.98(20)	0.0089(7)			0.0089(7)
$\gamma_{69,0}(\text{Po})$	3053.88(20)	0.022(3)			0.022(3)
$\gamma_{72,0}(Po)$	3081.7 (3)	0.0052(7)			0.0052(7)
$\gamma_{73,0}(Po)$	3093.98(40)	0.00037(4)			0.00037(4)
$\gamma_{75,0}(\text{Po})$	3142.58(40)	0.00118(9)			0.00118(9)
$\gamma_{76,0}(Po)$	3149.0(5)	0.00019			0.00019
$\gamma_{77,0}(Po)$	3160.6(6)	0.00047(8)			0.00047(8)
$\gamma_{80,0}(\text{Po})$	3183.57(40)	0.0011(5)			0.0011(5)

6 References

W.B.LEWIS, B.V.BOWDEN, Proc. Roy. Soc. (London) A145 (1934) 235 (Alpha emission energies and probabilities) J.M.CORK, C.E.BRANYAN, A.E.STODDARD, H.B.KELLER, J.M.LE BLANC, W.J.CHILDS, Phys. Rev. 83 (1951) 681 (Alpha emission energies) G.H.BRIGGS, Red. Mod. Phys. 26 (1954) 1 (Alpha emission energies and probabilities) H.DANIEL, R.NIERHAUS, Z. Naturforsch. 11a (1956) 212 (Half-life) R.J.WALEN, G.BASTIN-SCOFFIER, Nucl. Phys. 16 (1960) 246 (Alpha emission energies and probabilities) C.F.LEANG, Compt. Rend. Acad. Sci. (Paris) 260 (1965) 3037 (Alpha emission (long range) energies and probabilities) R.GUNNINK, J.B.NIDAY, R.P.ANDERSON, R.A.MEYER, Report UCID-15439, Univ. California (1969) (Gamma-ray emission probabilities) E.W.A.LINGEMAN, J.KONIJN, P.POLAK, A.H.WAPSTRA, Nucl. Phys. A133 (1969) 630 (Gamma-ray energies and emission probabilities) G.WALLACE, G.E.COOTE, Nucl. Instrum. Methods 74 (1969) 353 (Gamma-ray emission probabilities) K.YA.GROMOV, B.M.SABIROVV, J.J.URBANETS, Bull. Rus. Acad. Sci. Phys. 33 (1970) 1510 (Gamma-ray emission probabilities) A.HACHEM, H.MARIA, J.DALMASSO, C.YTHIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 279 (1974) 555 (Gamma-ray energies and emission probabilities) A.HACHEM, Compt. Rend. Acad. Sci. (Paris) Ser. B 281 (1975) 45 (Gamma-ray emission probabilities and energies) V.ZOBEL, J.EBERTH, U.EBERTH, E.EUBE, Nucl. Instrum. Methods 141 (1977) 329 (Gamma-ray energies and emission probabilities) F.RÖSEL, H.M.FRIESS, K.ALDER, H.C.PAULI, At. Data Nucl. Data Tables 21 (1978) 92 (Theoretical internal conversion coefficients) R.G.HELMER, R.J.GEHRKE, R.C.GREENWOOD, Nucl. Instrum. Methods 166 (1979) 547 (Gamma-ray energies) B.BENGTSON, H.L.NIELSEN, N.RUD, Nucl. Phys. A319 (1979) 21 (Half-life and gamma transition probabilities) G.MOUZE, Compt. Rend. Acad. Sci. (Paris) 292 (1981) 1243 (Gamma-ray emission probabilities) H.AKCAY, G.MOUZE, D.MAILLARD, C.YTHIER, Radiochem. Radioanal. Lett. 51 (1982) 1 (Gamma-ray energies and emission probabilities) M.A.FAROUK, A.M.AL-SORAYA, Nucl. Instrum. Methods 200 (1982) 593 (Gamma-ray emission probabilities) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34,2 (1983) 533 (Gamma-ray emission intensities, X-ray emission intensities)
D.G.OLSON, Nucl. Instrum. Methods 206 (1983) 313 (Gamma-ray emission probabilities) G.MOUZE, O.DIALLO, P.BECHLICH, C.YTHIER, J.F.COMANDUCCI, Radiochim. Acta 49 (1990) 13 (Gamma-ray emission probabilities) N.COURSOL, F.LAGOUTINE, B.DUCHEMIN, Nucl. Instrum. Methods A286 (1990) 589 (Gamma-ray emission probabilities) G.MOUZE, C.YTHIER, J.F.COMANDUCCI, Rev. Roum. Phys. 35 (1990) 337 (Gamma-ray emission probabilities) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. Lett. 153 (1991) 137 (Gamma-ray emission intensities) O.DIALLO, G.MOUZE, C.YTHIER, J.F.COMANDUCCI, NUOVO Cim. 106A (1993) 1321 (Gamma-ray emission probabilities) Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 127 (Energy level, spin, parity, multipolarity) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.MOREL, M.ETCHEVERRY, J.L.PICOLO, Appl. Radiat. Isot. 49 (1998) 1387 (Gamma-ray emission intensities) D.SARDARI, T.D.MCMAHON, J. Radioanal. Nucl. Chem. 244 (2000) 463 (Gamma-ray emission probabilities) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical internal conversion coefficients) J.U.DELGADO, J.MOREL, M.ETCHEVERRY, Appl. Radiat. Isot. 56 (2002) 137 (Gamma-ray emission intensities, X-ray emission intensities) E.BROWNE, Nucl. Data Sheets 99 (2003) 483 (Energy level, spin, parity and multipolarity) G.L.MOLNAR, ZS.RÉVAY, T.BELGYA, Proc. 11th Int. Symp. on Capture Gamma-ray Spectroscopy, 2-6 September 2002, Pruhonice (2003) (Gamma-ray emission intensities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) J.MOREL, S.SPEMAN, M.RASKO, E.TERECHTCHENKO, J.U.DELGADO, Appl. Radiat. Isot. 60 (2004) 341 (Gamma-ray emission probabilities) R.G.HELMER, in Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications Vol. 1, STI/PUB/1287, IAEA, Vienna (2007) 19

(Gamma-ray emission intensities)

$T_{1/2}$:	7.6	(2)	\min
Q_{β^-}	:	2189	(15)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Probability × 100	Nature	$\log ft$
$\begin{array}{c} \beta_{0,18}^{-} \\ \beta_{0,17}^{-} \\ \beta_{0,16}^{-} \\ \beta_{0,14}^{-} \\ \beta_{0,9}^{-} \\ \beta_{0,6}^{-} \end{array}$	$\begin{array}{c} 790 \ (15) \\ 895 \ (15) \\ 1013 \ (15) \\ 1111 \ (15) \\ 1354 \ (15) \\ 1512 \ (15) \\ 1591 \ (15) \end{array}$	$\begin{array}{cccc} 2.8 & (1) \\ 2.0 & (2) \\ 0.2 & (1) \\ 0.7 & (1) \\ 1.5 & (1) \\ 0.5 & (1) \\ 0.7 & (1) \end{array}$	[1st forbidden non-unique] [1st forbidden non-unique] [1st forbidden non-unique] [1st forbidden non-unique] [1st forbidden non-unique] [1st forbidden non-unique]	6 6.34 7.5 7.1 7.1 7.8 7.7
$\begin{array}{c} \beta_{0,5}^- \\ \beta_{0,4}^- \\ \beta_{0,3}^- \\ \beta_{0,2}^- \\ \beta_{0,0}^- \end{array}$	$\begin{array}{c} 1581 \ (15) \\ 1671 \ (15) \\ 1787 \ (15) \\ 1895 \ (15) \\ 2189 \ (15) \end{array}$	$\begin{array}{ccc} 0.7 & (1) \\ 0.3 & (2) \\ 0.5 & (1) \\ 30 & (6) \\ 61 & (6) \end{array}$	 (1st forbidden non-unique) (1st forbidden non-unique) (1st forbidden unique) (1st forbidden non-unique) (1st forbidden non-unique) 	7.7 8.1 9 6.35 6.28

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	$rac{\mathrm{Energy}}{\mathrm{keV}}$
e_{AL}	(Po)	5.434 - 10.934	4.0(4)	
e _{AK}	(Po) KLL KLX KXY	58.978 - 65.205 71.902 - 79.289 84.8 - 93.1	0.22 (5) } }	
ес _{1.0 К}	(Po)	178.13 (1)	0.22(1)	
$ec_{1,0 L}$	(Po)	254.30 - 257.42	0.13(1)	
ec _{1,0 M+}	(Po)	267.08 - 271.23	0.04	
$ec_{2,0 K}$	(Po)	200.46 (4)	6.0(4)	
$ec_{2,0 L}$	(Po)	276.63 - 279.75	1.5(1)	
$ec_{2,0 M+}$	(Po)	289.41 - 293.56	0.7(1)	
$\beta_{0,18}^{-}$	max:	790 (15)	2.8(1)	avg: 249 (6)
$\beta_{0,17}^{-}$	max:	895 (15)	2.0(2)	avg: $287(6)$
$\beta_{0,16}^{-}$	max:	1013 (15)	0.2(1)	avg: $332(6)$
$\beta_{0.14}^{-}$	max:	1111 (15)	0.7(1)	avg: $370(6)$
$\beta_{0.9}^{-}$	max:	1354 (15)	1.5(1)	avg: $465(6)$
$\beta_{0.6}^{-}$	max:	1512 (15)	0.5(1)	avg: 528 (6)
$\beta_{0.5}^{-}$	max:	1581 (15)	0.7(1)	avg: 556 (6)
$\beta_{0.4}^{}$	max:	1671 (15)	0.3(2)	avg: 593 (6)
$\beta_{0,3}^{\underline{\circ},\underline{\circ}}$	max:	1787 (15)	0.5(1)	avg: 619 (6)

		Ene ke	ergy V	Electrons per 100 disint.	E	nergy keV
$\begin{array}{c} \beta_{0,2}^{-} \\ \beta_{0,0}^{-} \end{array}$	max: max:	$\begin{array}{c} 1895\\ 2189 \end{array}$	(15) (15)	$30 (6) \\ 61 (6)$	avg: avg:	$685 (6) \\ 808 (6)$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9.658 - 16.213		2.7(3)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		$\begin{array}{c} 1.8 \ (3) \\ 3.0 \ (5) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	1.02 (16)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	$\begin{array}{c} 92.263 \\ 92.618 \\ 92.983 \end{array}$	} } }	0.32(5)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{3,1}(Po)$ $\gamma_{4,2}(Po)$	130.58(1) 224.04(7)	0.0505(12) 0.044(7)	M1+26.5%E2 E2	$4.44 (13) \\ 0.319 (5)$	$0.0093 (10) \\ 0.033 (5)$
$\gamma_{1,0}(\text{Po})$	271.228 (10)	2.34(10)	$M1{+}94\%E2$	0.201(7)	1.95(7)
$\gamma_{2,0}(\text{Po})$	293.56(4)	32(2)	$M1{+}50\%E2$	0.34~(5)	23.8(9)
$\gamma_{6,2}(\text{Po})$	383.10(8)	0.14(7)			0.14(7)
$\gamma_{3,0}(\text{Po})$	401.81(1)	0.50(8)	E2	0.0555~(8)	0.48(7)
$\gamma_{6,1}(\text{Po})$	405.43(7)	0.006(1)			0.006(1)
$\gamma_{4,0}(\mathrm{Po})$	517.60(6)	1.10(8)	M1 + 50% E2	0.073(10)	1.02(8)
$\gamma_{9,2}(\text{Po})$	541.76(22)	0.21(7)			0.21(7)
$\gamma_{9,1}(\text{Po})$	564.09(22)	0.67(7)			0.67(7)
$\gamma_{5,0}(\mathrm{Po})$	608.30(7)	0.67(7)	(M1+E2)		0.67(7)
$\gamma_{6,0}(\mathrm{Po})$	676.66(7)	0.40(7)			0.40(7)
$\gamma_{17,4}(\text{Po})$	776.9(1)	0.81(14)			0.81(14)
$\gamma_{14,2}(\text{Po})$	784(2)	0.33(7)			0.33(7)
$\gamma_{14,1}(\text{Po})$	806.4(20)	0.40(7)			0.40(7)
$\gamma_{9,0}(\mathrm{Po})$	835.32(22)	0.62(7)			0.62(7)
$\gamma_{16,1}(\text{Po})$	905(2)	0.21(7)			0.21(7)
$\gamma_{17,1}(\text{Po})$	1023.3(1)	0.62(7)			0.62(7)
$\gamma_{18,2}(\text{Po})$	1105.2(4)	1.50(7)			1.50(7)
$\gamma_{18,1}(\text{Po})$	1127.6(4)	0.48(7)			0.48(7)

Surrey Univ. /A.L. Nichols, ANL /F.G. Kondev

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{17,0}(Po)$ $\gamma_{18,0}(Po)$	$\begin{array}{c} 1294.5 \ (1) \\ 1398.8 \ (4) \end{array}$	$\begin{array}{c} 0.62 \ (7) \\ 0.81 \ (7) \end{array}$			$\begin{array}{c} 0.62 \ (7) \\ 0.81 \ (7) \end{array}$

5 References

B.W.SARGENT, Proc. Roy. Soc. (London) A139 (1933) 659 (Beta decay, 5th power law) E.K.Hyde, A.Ghiorso, Phys. Rev. 90 (1953) 267 (Beta decay, Half-life) R.D.Evans, The Atomic Nucleus, Tata McGraw-Hill (1955) 559 (Beta decay, 5th power law) I.KAPLAN, Nuclear Physics, Addison-Wesley (1963) 364 (Beta decay, 5th power law) M.NURMIA, D.GIESSING, W.SIEVERS, L.VARGA, Ann. Acad. Sci. Fenn., Ser. A, VI 167 (1965) (Half-life) W.F.DAVIDSON, R.D.CONNOR, Nucl. Phys. A149 (1970) 385 (K/L and L sub-shell ratios, ICC) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) D.G.BURKE, H.FOLGER, H.GABELMANN, E.HAGEBØ, P.HILL, P.HOFF, O.JONSSON, N.KAFFRELL, W.KURCEWICZ, G.LØVHØIDEN, K.NYBØ, G.NYMAN, H.RAVN, K.RIISAGER, J.ROGOWSKI, K.STEFFENSEN, T.F.THORSTEINSEN, ET AL., Z. Phys. A333 (1989) 131 (Half-life) E.Ruchowska, J.Zylicz, C.F.Liang, P.Paris, Ch.Briançon, J. Phys. (London) G16 (1990) 255 (Gamma-ray energies, Gamma-ray emission probabilities, Half-life) M.J.MARTIN, Nucl. Data Sheets 63 (1991) 723 (Nuclear structure, level energies) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (X(K), X(L), Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (X(K))E.BROWNE, Nucl. Data Sheets 93 (2001) 763 (Nuclear structure, level energies) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) J.Kurpeta, A.Plochocki, A.N.Andreyev, J.Aysto, A.de Smet, H.de Witte, A.-H.Evensen, V.Fedoseyev, S.Franchoo, M.Gorska, H.Grawe, M.Huhta, M.Huyse, Z.Janas, A.Jokinen, M.Karny, E.Kugler, W.Kurcewicz, U.KOSTER, ET AL., Eur. Phys. J. A18 (2003) 31 (Gamma-ray energies, gamma-ray emission probabilities, beta-particle emission probabilities) Y.A.AKOVALI, At. Data Nucl. Data Tables 100 (2003) 141 (Nuclear structure, level energies) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 103 (2004) 183 (Nuclear structure, level energies) M.S.BASUNIA, Nucl. Data Sheets 108 (2007) 633 (Nuclear structure, level energies) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	138.3763	(17)	d
$Q^{'}_{lpha}$:	5407.46	(7)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 4516.66 \ (9) \\ 5304.33 \ (7) \end{array}$	0.00124 (4) 99.99876 (4)

3 Photon Emissions

3.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.186 - 15.217		0.00000384 (10)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pb) (Pb)	$72.805 \\ 74.97$		0.00000277 (10) 0.00000466 (17)	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	0.00000159 (6)	$\mathrm{K}\beta_1'$
$\begin{array}{l} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.000000481 (20)	$\mathrm{K}\beta_{2}^{\prime}$

3.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Pb)$	803.10 (5)	0.00124 (4)	E2	0.01033(15)	0.00123(4)

4 References

E.V.SCHWEIDLER, Verh. Deutsch Phys. Ges. 14 (1912) 539
(Half-life)
M.CURIE, J. Phys. Radium 1 (1920) 12
(Half-life)
A.DORABIALSKA, Roczniki Chem. (Poland) 11 (1931) 475
(Half-life)
S.ROSENBLUM, G.DUPOUY, J. Phys. Radium 4 (1933) 262
(Alpha energy)
W.B.LEWIS, B.V.BOWDEN, Proc. Roy. Soc. (London) A145 (1934) 235

(Alpha energy) A.S.SANIELEVICI, J. Chim. Phys. 33 (1936) 759 (Half-life) W.H.BEAMER, C.R.MAXWELL, J. Chem. Phys. 17 (1949) 1293 (Half-life) M.A.GRACE, R.A.ALLEN, D.WEST, H.HALBAN, Proc. Roy. Soc. (London) A64 (1951) 493 (Gamma-ray instensity) W.C.BARBER, R.H.HELM, Phys. Rev. 86 (1952) 275 (Gamma-ray instensity) S.DE BENEDETTI, G.H.MINTON, Phys. Rev. 85 (1952) 944 (Multipolaity) M.RIOU, J. Phys. Radium 13 (1952) 244 (Gamma-ray instensity) D.C.GINNINGS, A.F.BALL, D.T.VIER, J. Res. Nat. Bur. Stand. 50 (1953) 75 (Half-life) M.L.CURTIS, Phys. Rev. 92 (1953) 1489 (Half-life) E.R.COLLINS, C.D.MCKENZIE, C.A.RAMM, Proc. Roy. Soc. (London) 216A (1953) 219 (Alpha energy) G.H.BRIGGS, Rev. Mod. Phys. 26 (1954) 1 (Alpha energy) J.F.EICHELBERGER, K.C.JORDAN, S.R.ORR, J.R.PARKS, Phys. Rev. 96 (1954) 719 (Half-life) R.W.HAYWARD, D.D.HOPPES, W.B.MANN, J. Res. Nat. Bur. Stand. 54 (1955) 47 (Gamma-ray instensity) O.ROJO, M.A.HAKEEM, M.GOODRICH, Phys. Rev. 99 (1955) 1629 (Gamma-ray instensity) A.Ascoli, M.Asdente, E.Germagnoli, Nuovo Cim. 4 (1956) 946 (Gamma-ray instensity) N.S.SHIMANSKAIA, Sov. Phys. - JETP 4 (1957) 165 (Gamma-ray instensity) V.V.OVECHKIN, Bull. Rus. Acad. Sci. Phys. 21 (1958) 1627 (Gamma-ray instensity) I.I.AGAPKIN, L.L.GOLDIN, Bull. Rus. Acad. Sci. Phys. 21 (1958) 911 (Alpha energy) F.A.WHITE, F.M.ROURKE, J.C.SHEFFIELD, R.P.SCHUMAN, J.R.HUIZENGA, Phys. Rev. 109 (1958) 437 (Alpha energy) C.P.BROWNE, J.A.GALEY, J.R.ERSKINE, K.L.WARSH, Phys. Rev. 120 (1960) 905 (Alpha energy) A.Rytz, H.H.Staub, H.Winkler, Helv. Phys. Acta 34 (1961) 960 (Alpha energy) E.H.BECKNER, R.L.BRAMBLETT, G.C.PHILLIPS, T.A.EASTWOOD, Phys. Rev. 123 (1961) 2100 (Alpha energy) C.P.BROWNE, Phys. Rev. 126 (1962) 1139 (Alpha energy) J.F.EICHELBERGER, G.R.GROVE, L.V.JONE, Report MLM-1209, Mound Laboratory (1964) 11 (Half-life) D.J.GORMAN, A.RYTZ, Compt. Rend. Acad. Sci. (Paris) Ser. B 277 (1973) 29 (Alpha energy) R.G.HELMER, Nucl. Data Sheets 61 (1990) 93 (Energy level, spin and parity) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha energy) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) E.BROWNE, Nucl. Data Sheets 88 (1999) 29 (Spin, parity) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 8 (2002) 1 (Theoretical ICC)

G.Audi, A.H.Wapstra, V.Thibault, Nucl. Phys. A729 (2003) 129 (Q)

$T_{1/2}$:	0.516	(3)	\mathbf{S}
$Q^{'}_{lpha}$:	7594.48	(51)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,2} lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 6568.4 \ (10) \\ 6891.2 \ (10) \\ 7450.2 \ (3) \end{array}$	$\begin{array}{c} 0.523 \ (9) \\ 0.541 \ (17) \\ 98.936 \ (19) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pb)	5.33 - 15.82	0.01216(17)
e _{AK}	(Pb) KLL KLX KXY	56.028 - 61.669 68.181 - 74.969 80.3 - 88.0	0.00071 (8) } }

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.186 - 15.2169		0.00740(16)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		0.00535(14) 0.00900(24)	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	84.451 84.937 85.47	} } }	0.00308 (10)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.00093 (4)	$\mathrm{K}\beta_2'$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{2,1}(Pb) \\ \gamma_{1,0}(Pb) \\ \gamma_{2,0}(Pb)$	$\begin{array}{c} 328.2 \ (2) \\ 569.65 \ (15) \\ 897.8 \ (2) \end{array}$	$\begin{array}{c} 0.0043 \ (15) \\ 0.546 \ (17) \\ 0.519 \ (9) \end{array}$	M1 E2 M1+E2	$\begin{array}{c} 0.334 \ (5) \\ 0.0216 \ (3) \\ 0.0233 \ (4) \end{array}$	$\begin{array}{c} 0.0032 \ (11) \\ 0.534 \ (17) \\ 0.507 \ (9) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

M.CURIE, A.DEBIERNE, A.S.EVE, H.GEIGER, O.HAHN, S.C.LIND, ST.MEYER, E.RUTHERFORD, E.SCHWEIDLER, Rev. Mod. Phys. 3 (1931) 427

(Half-life)

R.F.Leininger, E.Segrè, F.N.Spiess, Phys. Rev. 82 (1951) A334 $\,$

(Alpha emission energies, Alpha emission probabilities)

H.M.Neumann, I.Perlman, Phys. Rev. 81 (1951) 958 $\,$

(Alpha emission energies, Alpha emission probabilities)

F.Asaro, Thesis, Report UCRL-2180, Univ. California $\left(1953\right)$

 $(\mbox{Alpha emission energies}, \mbox{Alpha emission probabilities})$

R.W.HOFF, Report UCRL-2325, Univ. California (1953)

(Alpha emission energies, Alpha emission probabilities)

G.H.BRIGGS, Rev. Mod. Phys. 26 (1954) 1

(Alpha emission energies)

J.W.MIHELICH, A.W.SCHARDT, E.SEGRÈ, Phys. Rev. 95 (1954) 1508

(Gamma-ray energies) F.N.SPIESS, Phys. Rev. 94 (1954) 1292

(Half-life)

M.M.WINN, Proc. Phys. Soc. (London) 67A (1954) 949

(Half-life)

P.A.TOVE, Ark. Fys. 13 (1958) 549

(Half-life)

R.J.WALEN, V.NEDOVESOV, G.BASTIN-SCOFFIER, Nucl. Phys. 35 (1962) 232

(Alpha emission energies, Alpha emission probabilities)

W.B.JONES, Phys. Rev. 130 (1963) 2042

(Alpha emission energies)

L.GUETH, S.GUETH, E.DAROCZY, B.S.DZHELEPOV, Y.V.NORSEEV, V.A.KHALKIN, Report JINR-P6-4079, Joint Institute of Nuclear Research, Dubna (1968)

(Alpha emission energies, Alpha emission probabilities)

CH.BRIANÇON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533

(Gamma-ray emission probabilities)

N.A.GOLOVKOV, S.GUETKH, B.S.DZHELEPOV, Y.V.NORSEEV, V.A.KHALKIN, V.G.CHUMIN, Izv. Akad. Nauk SSSR, Ser. Fiz. 33 (1969) 1622

(Alpha emission energies)

R.L.HAHN, M.F.ROCHE, K.S.TOTH, Phys. Rev. 182 (1969) 1329

(Alpha emission energies)

K.Valli, E.K.Hyde, J.Borggreen, Phys. Rev. C1 (1970) 2115

(Alpha emission energies)

G.ASTNER, Phys. Scr. 5 (1972) 31 (Alpha emission probabilities, Gamma-ray emission probabilities)

A.R.BARNETT, J.S.LILLEY, Phys. Rev. C9 (1974) 2010

(Half-life)

L.J.JARDINE, Phys. Rev. C11 (1975) 1385

(Alpha emission probabilities, Gamma-ray energies, Gamma-ray emission probabilities)

⁽Alpha emission energies, Alpha emission probabilities)

J.D.BOWMAN, R.E.EPPLEY, E.K.HYDE, Phys. Rev. C25 (1982) 941 (Alpha emission energies) R.M.LAMBRECHT, S.MIRZADEH, Int. J. Appl. Radiat. Isotop. 36 (1985) 443 (Alpha emission energies, Alpha emission probabilities, Gamma-ray emission probabilities) A.RYTZ, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energies) M.J.MARTIN, Nucl. Data Sheets 70 (1993) 315 (Multipolarities, Spin and Parity, Mixing ratio) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic Data, Auger electron emission probabilities, L X-ray emission probabilities, K X-ray emission probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 103 (2004) 183 (Production modes) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	300	(2)	$\times 10^{-9} { m s}$
$Q^{'}_{lpha}$:	8954.12	(11)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,0}$	8785.17 (11)	100

3 References

D.E.BUNYAN, A.LUNDBY, D.WALKER, Proc. Phys. Soc. (London) 62A (1949) 253 (Half-life) F.C.FLACK, J.E.JOHNSON, Proc. Phys. Soc. 79 (1962) 10 (Half-life) G.ASTNER, I.BERGSTROM, L.ERIKSSON, U.FAGERGUIST, G.HOLM, A.PERSSON, Nucl. Phys. 45 (1963) 49 (Half-life) G.W.McBeth, R.A.WINYARD, Int. J. Appl. Radiat. Isotop. 23 (1972) 527 (Half-life) S.SANYAL, R.K.GARG, S.D.CHAUHAN, S.L.GUPTA, S.C.PANCHOLI, Phys. Rev. C12 (1975) 318 (Half-life) H.BOHN, E.ENDRES, T.FAESTERMANN, P.KIENLE, Z. Phys. A302 (1981) 51 (Half-life) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 104 (2005) 427 (Nuclear structure, energies)

$T_{1/2}$:	3.70	(5)	$\times 10^{-6} {\rm s}$
$Q^{'}_{lpha}$:	8536.1	(26)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	
$lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 7614 \ (10) \\ 8375.9 \ (25) \end{array}$	$\begin{array}{c} 0.0050 \; (5) \\ 99.9950 \; (5) \end{array}$	

3 Photon Emissions

3.1 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Pb)$	778.8(3)	0.0050(5)	M1	0.0339(5)	0.0048(5)

4 References

J.V.JELLEY, Can. J. Res. 26A (1948) 255 (Half-life) K.VALLI, Ann. Acad. Sci. Fenn., Ser. A, VI 165 (1964) (Alpha energies) C.F.LEANG, Thesis, Univ. Paris (1969) (Alpha energies) J.D.BOWMAN, R.E.EPPLEY, E.K.HYDE, Phys. Rev. C25 (1982) 941 (Alpha energies) M.C.KOUASSI, A.HACHEM, C.ARDISSON, G.ARDISSON, Nucl. Instrum. Methods Phys. Res. A280 (1989) 424 (Gamma-ray energies and intensities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Evaluation alpha energies) J.WAWRYSZCZUK, M.B.YULDASHEV, K.YA.GROMOV, T.M.MUMINOV, Proc. 45th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, St. Petersburg (1995) 107 (Half-life) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.WAWRYSZCZUK, K.V.KALYAPKIN, M.B.YULDASHEV, K.YA.GROMOV, V.I.FOMINYKH, Bull. Rus. Acad. Sci. Phys. 61 (1997) 25 (Half-life) V.G.Chumin, J.K.Jabber, K.V.Kalyapkin, S.A.Kudrya, V.V.Tsupko-Sitnikov, K.Ya.Gromov, V.I.Fomin-YKH, T.A.FURYAEV, Bull. Rus. Acad. Sci. Phys. 61 (1997) 1606 (Alpha emission probabilities) YA.VAVRYSHCHUK, K.YA.GROMOV, V.B.ZLOKAZOV, V.G.KALINNIKOV, V.A.MOROZOV, N.V.MOROZOVA, V.I.FO-MINYKH, V.V.TSUPKO-SITNIKOV, I.N.CHURIN, Report JINR-P6-97-180, Joint Institute of Nuclear Research, Dubna (1997)(Half-life) J.WAWRYSZCZUK, K.YA.GROMOV, V.B.ZLOKAZOV, V.G.KALINNIKOV, V.A.MOROZOV, N.V.MOROZOVA, V.I.FO-MINIKH, V.V.TSUPKO-SITNIKOV, I.N.CHURIN, Phys. Atomic Nuclei 61 (1998) 1322 (Half-life)

V.A.MOROZOV, N.V.MOROZOVA, YU.V.NORSEEV, ZH.SEREETER, V.B.ZLOKAZOV, Nucl. Instrum. Methods Phys. Res. A484 (2002) 225 (Half-life)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (Q)
HUANG XIAOLONG, WANG BAOSONG, Nuclear Science and Techniques Vol.108 (2007) 261 (Evaluation)
M.S.BASUNIA, Nucl. Data Sheets 108 (2007) 633 (Decay scheme and levels)

$T_{1/2}$:	162.3	(12)	$\times 10^{-6} {\rm s}$
$Q^{'}_{lpha}$:	7833.46	(6)	keV
α	:	100		%

2 α Emissions

	Energy keV	Probability × 100
$lpha_{0,2} lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 6610.1 \ (10) \\ 6902.6 \ (3) \\ 7686.82 \ (6) \end{array}$	$\begin{array}{c} 0.000058 \ (2) \\ 0.0105 \ (7) \\ 99.9895 \ (7) \end{array}$

3 Photon Emissions

3.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.19 - 15.22		$0.0000347\ (13)$	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		$\begin{array}{c} 0.0000246 \ (15) \\ 0.0000414 \ (25) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	84.451 84.937 85.47	} } }	0.0000141 (9)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.00000427 (27)	$\mathrm{K}\beta_2'$

3.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{2,1}(Pb)$ $\gamma_{1,0}(Pb)$	$\begin{array}{c} 298 \ (1) \\ 799.7 \ (1) \end{array}$	$\begin{array}{c} 0.000058 \ (20) \\ 0.0105 \ (7) \end{array}$	E2 E2	$\begin{array}{c} 0.1180 \ (21) \\ 0.01042 \ (15) \end{array}$	$\begin{array}{c} 0.000052 \ (18) \\ 0.0104 \ (6) \end{array}$

4 References

J.V.DUNWORTH, Nature 144 (1939) 152
(Half-life)
J.ROTBLAT, Proc. Roy. Soc. (London) A177 (1941) 260
(Half-life)
A.G.WARD, Proc. Roy. Soc. (London) A181 (1942) 183
(Half-life)
J.C.JACOBSEN, T.SIGURGEIRSSON, Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 20 (1943) 11

(Half-life) G.VON DARDEL, Phys. Rev. 79 (1950) 734 (Half-life) R.BALLINI, Ann. Phys. (Paris) 8 (1953) 441 (Half-life) K.W.OGILVIE, Proc. Phys. Soc. (London) 76 (1960) 299 (Half-life) A.RYTZ, Helv. Phys. Acta 34 (1961) 240 (Alpha transitions) T.DOBROWOLSKI, J.YOUNG, Proc. Phys. Soc. (London) 77 (1961) 1219 (Half-life) A.PEGHAIRE, Nucl. Instrum. Methods 75 (1969) 66 (Gamma-ray instensity) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha transitions) A.ERLIK, J.FELSTEINER, H.LINDEMAN, M.TATCHER, Nucl. Instrum. Methods 92 (1971) 45 (Half-life) W.KURCEWICZ, N.KAFFRELL, N.TRAUTMANN, A.PLOCHOCKI, J.ZYLICZ, K.STRYCZNIEWICZ, I.YUTLANDOV, Nucl. Phys. A270 (1976) 175 (Gamma-ray instensity and energy, alpha intensity) N.E.HOLDEN, Pure Appl. Chem. 62 (1990) 941 (Half-life) E.BROWNE, Nucl. Data Sheets 65 (1992) 209 (Energy level, spin, parity) J.W.ZHOU, P.DE MARCILLAC, N.CORON, S.WANG, H.H.STROKE, O.REDI, J.LEBLANC, G.DAMBIER, M.BARTHELEMY, J.P.TORRE, O.TESTARD, G.BEYER, H.RAVN, J.MANGIN, Nucl. Instrum. Methods Phys. Res. A335 (1993) 443 (Half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1995) 205 (Alpha energy and intensity) Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 127 (Energy level, spin, parity) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) Y.A.Akovali, Nucl. Data Sheets 84 (1998) 1 (Alpha energy and intensity) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 99 (2003) 483 (Energy level, spin, parity)

$T_{1/2}$:	1.781	(4)	$ imes 10^{-3} \ { m s}$
$Q^{'}_{lpha}$:	7526.3	(8)	keV
Q_{β^-}	:	715	(7)	keV
α	:	99.99977	(2)	%
β^{-}	:	2.3	(2)	$ imes 10^{-4}$ %

2 α Emissions

	Energy keV	$\begin{array}{l} \text{Probability} \\ \times \ 100 \end{array}$
$\begin{array}{c} \alpha_{0,7} \\ \alpha_{0,6} \\ \alpha_{0,5} \\ \alpha_{0,4} \\ \alpha_{0,3} \\ \alpha_{0,2} \\ \alpha_{0,1} \\ \alpha_{0,0} \end{array}$	$\begin{array}{c} 6509 \ (3) \\ 6586 \ (3) \\ 6667 \ (3) \\ 6755 \ (3) \\ 6799 \ (3) \\ 6813 \ (3) \\ 6955.4 \ (8) \\ 7386.1 \ (8) \end{array}$	$\begin{array}{c} 0.0003\\ 0.0020\ (6)\\ 0.0008\ (3)\\ 0.0008\ (3)\\ 0.0016\ (5)\\ 0.0004\ (2)\\ 0.06\ (2)\\ 99.934\ (20) \end{array}$
0,0		

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pb)	5.33 - 15.82	0.00115 (14)
e _{AK}	(Pb) KLL KLX KXY	56.028 - 61.669 68.181 - 74.969 80.3 - 88.0	0.000059 (21) } } }

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.186 - 15.2169		0.00071 (12)	
${ m XK}lpha_2 \ { m XK}lpha_1$	(Pb) (Pb)	$72.8049 \\ 74.97$		$0.00045 (15) \\ 0.00075 (25)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	84.451 84.937 85.47	} } }	0.00026 (9)	$\mathrm{K}\beta_1'$

		${ m Energy}\ { m keV}$	Photons per 100 disint.
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(Pb)$	438.9 (2)	0.06(2)	E2	0.0405~(6)	0.058(19)

5 References

A.G.WARD, Proc. Roy. Soc. (London) 181A (1942) 183 (Half-life) P.AVIGNON, J. Phys. Radium 11 (1950) 521 (Beta-branching) YU.M.VOLKOV, A.P.KOMAR, G.A.KOROLEV, G.E.KOCHAROV, Izv. Akad. Nauk SSSR, Ser. Fiz. (Columbia Tech.Transl. 25, 1193 (1962)) 25 (1961) 1188 (Half-life) R.J.WALEN, V.NEDOVESOV, G.BASTIN-SCOFFIER, Nucl. Phys. 35 (1962) 232 (Alpha-particle energies and emission probabilities) K.VALLI, J.AALTONEN, G.GRAEFFE, M.NURMIA, Ann. Acad. Sci. Fenn., Ser. A, VI 184 (1965) (Alpha-particle energies and emission probabilities) CH.BRIANÇON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533 (Gamma-ray energies and emission probabilities) W.F.DAVIDSON, R.D.CONNOR, Nucl. Phys. A149 (1970) 385 (Gamma-ray energies and emission probabilities) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha-particle energies) A.ERLIK, J.FELSTEINER, H.LINDEMAN, M.TATCHER, Nucl. Instrum. Methods 92 (1971) 45 (Half-life) C.MAPLES, Nucl. Data Sheets 22 (1977) 207 (X-, gamma-ray emission probabilities) A.Rytz, At. Data Nucl. Data Tables (1991) (Alpha-particle energies and emission probabilities) C.F.LIANG, P.PARIS, R.K.SHELINE, Phys. Rev. C58 (1998) 3223 (Alpha -particle and gamma-ray energies and emission probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 103 (2004) 183 (215Po decay scheme, 211Pb levels) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Band-Raman ICC for gamma-ray transitions)

$T_{1/2}$:	0.148	(4)	S
$Q^{'}_{lpha}$:	6906.3	(5)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,1} lpha_{0,0}$	5988.4(7) 6778.4(5)	$\begin{array}{c} 0.0019 \ (3) \\ 99.9981 \ (3) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pb)	5.26 - 10.40	0.0000097 (10)
e _{AK}	(Pb) KLL KLX KXY	56.03 - 61.67 68.18 - 74.97 80.3 - 88.0	0.00000056 (11) } } }

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.184 - 15.216		0.0000059~(6)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		0.0000043 (7) 0.0000072 (12)	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	0.0000024 (4)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.00000074(12)	$\mathrm{K}\beta_2'$

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(Pb)$	804.9(5)	0.0019(3)	[E2]	0.01027 (15)	0.0019(3)

4.2 Gamma Transitions and Emissions

5 References

H.G.J.MOSELEY, K.FAJANS, Phil. Mag. 22 (1911) 629 (Half-life) A.G.WARD, Proc. Roy. Soc. (London) 181A (1942) 183 (Half-life) R.J.WALEN, Compt. Rend. Acad. Sci. (Paris) 255 (1962) 1604 (Alpha emission energies, Alpha emission probabilities) H.DIAMOND, J.E.GINDLER, J. Inorg. Nucl. Chem. 25 (1963) 143 (Half-life) W.Kurcewicz, N.Kaffrell, N.Trautmann, A.Plochocki, J.Zylicz, M.Matul, K.Stryczniewicz, Nucl. Phys. A289 (1977) 1 (Gamma-ray energies, Gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1 (Alpha decay, r0 parameter) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (K-x ray) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) F.A.DANEVICH, A.SH.GEORGADZE, V.V.KOBYCHEV, B.N.KROPIVYANSKY, A.S.NIKOLAIKO, O.A.PONKRATENKO, V.I.TRETYAK, S.YU.ZDESENKO, YU.G.ZDESENKO, P.G.BIZZETI, T.F.FAZZINI, P.R.MAURENZIG, Phys. Rev. C68 (2003) 035501(Half-life) E.BROWNE, Nucl. Data Sheets 104 (2005) 427 (Nuclear structure, energies) S.-C.WU, Nucl. Data Sheets 108 (2007) 1057 (Nuclear structure, energies) N.J.STONE, J.R.STONE, M.LINDROOS, P.RICHARDS, M.VESKOVIC, D.A.WILLIAMS, Nucl. Phys. A793 (2007) 1 (Half-life) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	3.071	(22)	\min
$Q^{'}_{lpha}$:	6114.68	(9)	keV
Q_{β^-}	:	260	(12)	keV
$\alpha^{'}$:	99.978	(3)	%
β^{-}	:	0.022	(3)	%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$		Nature	$\log ft$
$\beta_{0,0}^-$	260(12)	0.022	(3)		

3 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	
$lpha_{0,1} lpha_{0,0}$	5181 (2) 6002.35 (9)	$\begin{array}{c} 0.0011 \ (11) \\ 99.9769 \ (32) \end{array}$	

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV	
$\beta_{0,0}^-$	max:	260 (12)	0.022(3)	avg: 73 (4)	

5 Photon Emissions

5.1 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(Pb)$	836 (2)	0.0011 (11)	(E2)		0.0011 (11)

6 References

M.BLAU, Akad. Wiss. Wien, Berlin 133 (1924) 17
(Half-life)
M.CURIE, A.DEBIERNE, A.S.EVE, H.GEIGER, O.HAHN, S.C.LIND, ST.MEYER, E.RUTHERFORD, E.SCHWEILDLER, Rev. Mod. Phys. 3 (1931) 427
(Half-life (Pb-214))
R.J.WALEN, J. Phys. Radium 10 (1949) 95
(Beta emission probabilities and half-life (At-218))

F.HIESSBERGER, B.KARLIK, Stizber. Akad. Wiss. Wien, Math-Naturw. Kl. Abt. Iia 161 (1952) 51 (Branching ratio) R.J.WALEN, G.BASTIN, Compt. Rend. Cong. Phys. Nucl., Paris (1958) 910 (Alpha emission energies and probabilities, beta emission probabilities) G.BASTIN-SCOFFIER, C.F.LEANG, R.J.WALEN, J. Phys. (Paris) 24 (1963) 854 (Alpha energy) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha energy) A.Rytz, At. Data Nucl. Data Tables 23 (1979) 507 (Alpha emission energy and probabilities) J.R.VAN HISE, D.E.MARTZ, R.A.JACKSON, D.Y.KUNIHIRA, E.BOLTON, Phys. Rev. C25 (1982) 2802 (Half-life) G.V.POTAPOV, P.S.SOLOSHENKOV, Sov. J. At. Energy 60 (1986) 345 (Half-life) Y.A.ELLIS-AKOVALI, Nucl. Data Sheets 52 (1987) 789 (Energy level, spin, parity, multipolarity) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energy and probabilities) P.BALTZER, K.G.GÖRSTEN, A.BÄCKLIN, Nucl. Instrum. Methods Phys. Res. A317 (1992) 357 (Alpha energy) Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 127 (Energy level, spin, parity, multipolarity) Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 457 (Energy level and half-life) Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1 (Branching ratio) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) A.K.JAIN, B.SINGH, Nucl. Data Sheets 107 (2006) 1027 (Energy level and haf-life)

$T_{1/2}$:	7.216	(7)	h
$Q_{EC}^{'}$:	785.4	(25)	keV
Q_{lpha}	:	5982.4	(13)	keV
EC	:	58.22	(8)	%
α	:	41.78	(8)	%

2 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$	P_K	P_L	P_{M+}
$\epsilon_{0,1} \\ \epsilon_{0,0}$	$\begin{array}{c} 98.2 \ (26) \\ 785.4 \ (25) \end{array}$	$\begin{array}{c} 0.258 \ (13) \\ 57.96 \ (8) \end{array}$	1st forbidden non-unique 1st forbidden non-unique	$5.77 \\ 5.97$	$\begin{array}{c} 0.015 \ (17) \\ 0.7731 \ (2) \end{array}$	$\begin{array}{c} 0.684 \ (10) \\ 0.1693 \ (1) \end{array}$	$\begin{array}{c} 0.301 \ (7) \\ 0.05758 \ (4) \end{array}$

3 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,5} \ lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 4895.4 \ (13) \\ 4993.4 \ (13) \\ 5140.3 \ (13) \\ 5211.9 \ (13) \\ 5869.0 \ (13) \end{array}$	$\begin{array}{c} <0.00004 \\ \sim 0.0004 \\ 0.0011 \ (2) \\ 0.0039 \ (3) \\ 41.78 \ (8) \end{array}$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Po)	5.434 - 10.934	27.6 (8)
e _{AK}	(Po) KLL KLX KXY	58.978 - 65.205 71.902 - 79.289 84.8 - 93.1	1.57 (18) } }
$e_{\rm AL}$	(Bi)	5.35 - 10.66	0.000211 (20)
e _{AK}	(Bi) KLL KLX KXY	57.491 - 63.419 70.025 - 77.105 82.53 - 90.52	0.0000126 (24) } } }

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9.658 - 16.213		18.6(8)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		$\begin{array}{c} 12.66 \ (9) \\ 21.08 \ (12) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	7.26 (12)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	$\begin{array}{c} 92.263 \\ 92.618 \\ 92.983 \end{array}$	} } }	2.26 (5)	$\mathrm{K}\beta_2'$
XL	(Bi)	9.42 - 15.709		0.000136(14)	
$ ext{XK} lpha_2 \\ ext{XK} lpha_1$	(Bi) (Bi)	74.8157 77.1088		$\begin{array}{c} 0.000098 \ (15) \\ 0.000164 \ (25) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Bi) (Bi) (Bi)	86.835 87.344 87.862	} } }	0.000056 (9)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Bi) (Bi) (Bi)	89.732 90.074 90.421	} } }	0.000017 (3)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	${ m P}_{\gamma+{ m ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{l} \gamma_{3,2}({\rm Bi}) \\ \gamma_{3,1}({\rm Bi}) \\ \gamma_{1,0}({\rm Bi}) \\ \gamma_{1,0}({\rm Po}) \\ \gamma_{2,0}({\rm Bi}) \\ \gamma_{3,0}({\rm Bi}) \end{array}$	$\begin{array}{c} 149.72\ (10)\\ 222.69\ (10)\\ 669.77\ (7)\\ 687.2\ (7)\\ 742.74\ (7)\\ 892.46\ (7) \end{array}$	$\begin{array}{c} \sim 0.0002 \\ \sim 0.00008 \\ 0.0040 \ (3) \\ 0.258 \ (13) \\ 0.0013 \ (2) \\ \sim 0.00014 \end{array}$	$\begin{array}{c} M1{+}13.8\%E2\\ M1{+}13.8\%E2\\ [M1{+}5.9\%E2]\\ (M1{+}3.85\%E2]\\ [M1{+}8.3\%E2]\\ [M1{+}8.3\%E2]\\ [M1{+}66.2\%E2]\end{array}$	$\begin{array}{c} 3.0 \ (3) \\ 0.95 \ (5) \\ 0.0520 \ (9) \\ 0.0536 \ (9) \\ 0.0391 \ (7) \\ 0.0145 \ (13) \end{array}$	$\begin{array}{c} \sim 0.00005 \\ \sim 0.00004 \\ 0.0038 \ (3) \\ 0.245 \ (12) \\ 0.00125 \ (19) \\ \sim 0.00014 \end{array}$

6 References

H.M.NEUMANN, I.PERLMAN, Phys. Rev. 81 (1951) 958
(Alpha branching fraction)
R.W.HOFF, Thesis, Report UCRL-2325, Univ. California (1953)
(Alpha decay, Auger-electron spectra, gamma-ray spectra)
P.R.GRAY, Phys. Rev. 101 (1956) 1306
(Half-life, Alpha spectra, Auger electron spectra)
W.J.RAMLER, J.WING, D.J.HENDERSON, J.R.HUAZENGA, Phys. Rev. 114 (1959) 154
(Half-life)

E.H.Appelman, Phys. Rev. 121 (1961) 253 (Half-life) T.D.THOMAS, G.E.GORDON, R.M.LATIMER, G.T.SEABORG, Phys. Rev. 126 (1962) 1805 (Half-life) N.A.GOLOVKOV, SH.GUETKH, B.S.DZHELEPOV, YU.V.NORSEEV, V.A.KHALKIN, V.G.CHUMIN, Bull. Rus. Acad. Sci. Phys. 33 (1970) 1489 (Alpha emission energies, Alpha emission probabilities, Alpha branching fraction) G.Astner, M.Alpsten, Nucl. Phys. A140 (1970) 643 (Multipolarities) V.P.AFANASIEV, M.BOCHVAROVA, N.A.GOLOVKOV, I.I.GROMOVA, R.B.IVANOV, V.I.KUZIN, Y.V.NORSEEV, V.G.CHUMIN, Report JINR-P6-4972, Joint Institute of Nuclear Research, Dubna (1970) (Alpha emission energies, Alpha emission probabilities, Alpha branching fraction) L.J.JARDINE, Phys. Rev. C11 (1975) 1385 (Alpha emission energies, Alpha emission probabilities, Gamma-ray energies, Gamma-ray emission probabilities, Alpha branching fraction) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) W.-D.Schmidt-Ott, R.-D.V.Dincklage, Z. Phys. A286 (1978) 301 (Multipolarities) M.YANOKURA, H.KUDO, H.NAKAHARA, K.MIYANO, S.OHYA, O.NITOH, Nucl. Phys. A299 (1978) 92 (Half-life, Alpha branching fraction) P.HERZOG, H.WALITZKI, K.FREITAG, H.HILDEBRAND, K.SCHLOSSER, Z. Phys.A - Atoms and Nuclei A311 (1983) 351(Multipolarities) R.M.LAMBRECHT, S.MIRZADEH, Int. J. Appl. Radiat. Isotop. 36 (1985) 443 (Alpha energies and emission probabilities, Gamma-ray energies and emission probabilities, X-ray energies and emission probabilities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energies, Alpha emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (X(K), X(L), Auger electrons) Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1 (Alpha decay, r(0) parameters) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (X(K))V.G.CHUMIN, K.YA.GROMOV, SH.R.MALIKOV, YU.V.NORSEEV, ZH.K.SAMATOV, V.I.FOMINYKH, A.P.CHEREVATENKO, L.V.YURKOVA, Bull. Rus. Acad. Sci. Phys. 65 (2001) 27 (Alpha emission energies, Alpha emission probabilities) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 103 (2004) 183 (Nuclear structure and level energies) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC) F.G.KONDEV, S.LALKOSKI, Nucl. Data Sheets 112 (2011) 707 (Nuclear structure and level energies)

$T_{1/2}$:	0.10	(2)	$ imes 10^{-3} m \ s$
$Q^{'}_{lpha}$:	8178	(4)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 7628 \ (4) \\ 8026 \ (4) \end{array}$	$\begin{array}{c} 0.05 \ (2) \\ 99.95 \ (2) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Bi)	5.42 - 16.34	0.0027~(5)
e_{AK}	(Bi) KLL KLX KXY	57.491 - 63.419 70.025 - 77.105 82.53 - 90.52	0.00015 (7) } } }

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Bi)	9.4207 - 15.7084		0.0017(4)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Bi) (Bi)	74.8157 77.1088		$0.0012 (5) \\ 0.0020 (9)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Bi) (Bi) (Bi)	86.835 87.344 87.862	} } }	0.00069(28)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Bi) (Bi) (Bi)	89.732 90.074 90.421	} } }	0.00021 (9)	$\mathrm{K}\beta_2'$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(Bi)$	404.853 (9)	0.05(2)	M1+E2	0.122(8)	0.045(18)

4.2 Gamma Transitions and Emissions

5 References

W.W.MEINKE, A.GHIORSO, G.T.SEABORG, Phys. Rev. 81 (1951) 782
(Half-life, energy of alpha-emission)
G.GRAEFFE, P.KAURANEN, J. Inorg. Nucl. Chem. 28 (1966) 933
(Alpha-particle energies and emission prjbabilities, Bi-211 levels)
J.D.BOWMAN, R.E.EPPLEY, E.K.HYDE, Phys. Rev. C25 (1982) 941
(Alpha-particle energies)
A.RYTZ, At. Data Nucl. Data Tables 47 (1991) 205
(Alpha-particle energies and emission prjbabilities)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337
(Q)
E.BROWNE, Nucl. Data Sheets 103 (2004) 183
(At215 alpha decay scheme, Bi211 levels)
T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods
Phys. Res. A589 (2008) 202

(Band-Raman ICC for gamma-ray transitions)

$T_{1/2}$:	32.3	(4)	$\times 10^{-3}~{\rm s}$
$Q^{'}_{lpha}$:	7201.3	(12)	keV
Q_{β^-}	:	737	(6)	keV
α	:	99.9933	(24)	%
β^{-}	:	0.0067	(24)	%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,4} \ lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 6037 \ (3) \\ 6322.0 \ (16) \\ 6484.7 \ (16) \\ 6813.8 \ (16) \\ 7066.9 \ (16) \end{array}$	$\begin{array}{c} 0.002\\ 0.0049 \ (4)\\ 0.0167 \ (8)\\ 0.0384 \ (15)\\ 99.932 \ (3) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Bi)	5.3 - 16.4	0.0077(4)
e _{AK}	(Bi) KLL KLX KXY	57.491 - 63.419 70.025 - 77.105 82.53 - 90.52	0.00044 (3) } }
$ec_{1,0\ K}$	(Bi)	167.35 (4)	0.0125~(6)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Bi)	9.421 - 15.708		0.00497~(23)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Bi) (Bi)	74.8157 77.1088		$\begin{array}{c} 0.00351 \ (20) \\ 0.0059 \ (4) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Bi) (Bi) (Bi)	86.835 87.344 87.862	} } }	0.00201 (11)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Bi) (Bi) (Bi)	89.732 90.074 90.421	} } }	0.00062 (4)	${ m K}eta_2'$

CNDC /Huang Xiaolong, Wang Baosong

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\begin{array}{c} \gamma_{1,0}({\rm Bi}) \\ \gamma_{2,1}({\rm Bi}) \\ \gamma_{4,2}({\rm Bi}) \\ \gamma_{2,0}({\rm Bi}) \\ \gamma_{3,0}({\rm Bi}) \end{array}$	$\begin{array}{c} 257.88 \ (4) \\ 335.33 \ (10) \\ 455 \\ 593.1 \ (1) \\ 758.9 \ (1) \end{array}$	$\begin{array}{c} 0.0446 \ (13) \\ 0.0062 \ (3) \\ 0.002 \\ 0.0115 \ (5) \\ 0.0049 \ (4) \end{array}$	M1+29%E2	0.555 (26)	$\begin{array}{c} 0.0287 \ (7) \\ 0.0062 \ (3) \\ 0.002 \\ 0.0115 \ (5) \\ 0.0049 \ (4) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. 72 (1947) 253(Half-life) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435 (Half-life) H.DIAMOND, J.E.GINDLER, J. Inorg. Nucl. Chem. 25 (1963) 143 (Half-life) K.VALLI, Ann. Acad. Sci. Fenn., Ser. A, VI 165 (1964) (Gamma-ray energies) B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, L.N.MOSKVIN, O.M.NAZARENKO, V.F.RODIONOV, IZV. Akad. Nauk USSR, Ser. Fiz. 31 (1967) 568 (Alpha energies and intensities) C.F.LEANG, Thesis, Univ. Paris (1969) (Alpha energies and intensities, Beta minus decay branching ratio) T.Vylov, N.A.Golovkov, B.S.Dzhelepov, R.B.Ivanov, M.A.Mikhailova, Y.V.Norseev, V.G.Chumin, Bull. Rus. Acad. Sci. Phys. 41 (1977) 85 (Alpha energies) J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma-ray energies and emission probabilities) J.D.BOWMAN, R.E.EPPLEY, E.K.HYDE, Phys. Rev. C25 (1982) 941 (Alpha energies) V.G.CHUMIN, S.S.ELISEEV, K.YA.GROMOV, YU.V.NORSEEV, V.I.FOMINYKH, V.V.TSUPKO-SITNIKOV, Bull. Rus. Acad. Sci. Phys. 59 (1995) 1854 (Beta minus decay branching ratio) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) V.G.CHUMIN, J.K.JABBER, K.V.KALYAPKIN, S.A.KUDRYA, V.V.TSUPKO-SITNIKOV, K.YA.GROMOV, V.I.FOMINYKH, T.A.FURYAEV, Bull. Rus. Acad. Sci. Phys. 61 (1997) 1606 (Alpha and beta minus decay branching ratio) V.G.Chumin, V.I.Fominykh, K.Ya.Gromov, M.Ya.Kuznetsova, V.V.Tsupko-Sitnikov, M.B.Yuldashev, Z. Phys. A358 (1997) 33 (Alpha energies and intensities, Gamma-ray energies and emission probabilities, Multipolarity) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) M.S.BASUNIA, Nucl. Data Sheets 108 (2007) 633 (Decay scheme, levels)

$T_{1/2}$:	1.4	(2)	\mathbf{s}
$Q^{'}_{lpha}$:	6874	(3)	keV
$Q_{\beta^{-}}$:	2881	(12)	keV
$\alpha^{'}$:	99.9	(1)	%
β^{-}	:	0.1	(1)	%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$		Nature	$\log ft$
$\beta_{0,0}^-$	2881 (12)	0.1	(1)		

3 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 6653 \ (5) \\ 6694 \ (3) \\ 6756 \ (5) \end{array}$	$\begin{array}{c} 6.4 \ (1) \\ 90.0 \ (1) \\ 3.6 \ (1) \end{array}$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
$\beta_{0,0}^-$	max:	2881 (12)	0.1(1)	avg: 1095 (12)

5 References

R.J.WALEN, Compt. Rend. Acad. Sci. (Paris) 227 (1948) 1090 (Branching ratio) R.J.WALEN, J. Phys. Radium 10 (1949) 95 (Beta emission probabilities, half-life) R.J.WALEN, G.BASTIN-SCOFFIER, Compt. Rend. Cong. Phys. Nucl., Paris (1958) 910 (Alpha emission energies and probabilities, beta emission probabilities) E.K.HYDE, I.PERLMAN, G.T.SEABORG, The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) 460 (Branching ratio) R.J.WALEN, G.BASTIN-SCOFFIER, Priv. Comm. (1963), cited in E.K.Hyde et al., The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Branching ratio) A.RYTZ, At. Data Nucl. Data Tables 23 (1979) 507 (Alpha emission energies and probabilities) Y.A.ELLIS-AKOVALI, Nucl. Data Sheets 52 (1987) 789 (Alpha emission probabilities and energies, spin and parity) D.G.BURKE, H.FOLGER, H.GABELMANN, E.HAGEBO, P.HILL, P.HOFF, O.JONSSON, N.KAFFRELL, W.KURCEWICZ, G.LOVHOIDEN, K.NYBO, G.NYMAN, H.RAVN, K.RIISAGER, J.ROGOWSKI, K.STEFFENSEN, T.F.THORSTEINSEN, ISOLDE COLLABORATION, Z. Phys. A333 (1989) 131

(Half-life)

A.RYTZ, At. Data Nucl. Data Tables 47 (1991) 205
(Alpha emission energies and probabilities)
Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 457
(Alpha emission probabilities and energies, spin and parity)
Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 127
(Alpha emission probabilities and energies, spin and parity)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129

 (\mathbf{Q})

A.K.JAIN, B.SINGH, Nucl. Data Sheets 107 (2006) 1027

(Alpha emission probabilities and energies, spin and parity)
$T_{1/2}$:	56	(4)	s
$Q^{'}_{lpha}$:	6324	(15)	keV
$Q_{\beta^{-}}$:	1566	(3)	keV
$\alpha^{'}$:	$\sim \! 97$		%
β^{-}	:	~ 3		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,0}^-$	1566(3)	$\sim\!\!3$	1st forbidden non-unique	6.2

3 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	
$\alpha_{0,0}$	6208(15)	~ 97	

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Eı l	nergy keV
$\beta_{0,0}^-$	max:	1566 (3)	$\sim\!\!3$	avg:	547(2)

5 References

E.K.Hyde, A.Ghiorso, Phys. Rev. 90 (1953) 267

(Half-life, Alpha emission energies, Alpha and beta minus decay, Alpha/beta minus ratio)

D.G.Burke, H.Folger, H.Gabelmann, E.Hagebø, P.Hill, P.Hoff, O.Jonsson, N.Kaffrell, W.Kurcewicz, G.Løvhøiden, K.Nybø, G.Nyman, H.Ravn, K.Riisager, J.Rogowski, K.Steffensen, T.F.Thorsteinsen, The Isolde Collaboration, Z. Phys. A333 (1989) 131 (Half-life)

Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1

(Alpha decay, r0 parameter)

E.BROWNE, Nucl. Data Sheets 93 (2001) 763

(Nuclear structure, level energies)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

G.AUDI, W.MENG, D.LUNNEY, B.PFEIFFER, AME2009, CSNSM, Orsay, France, private communication (2009) (Q)

$T_{1/2}$:	0.54	(5)	$\times 10^{-3} \mathrm{s}$
$Q^{'}_{lpha}$:	7887	(3)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,0}$	7742(3)	100

3 References

W.W.MEINKE, A.GHIORSO, G.T.SEABORG, Phys. Rev. 81 (1951) 782 (Half-life)
C.P.RUIZ, Report UCRL-9511, Univ. California (1961) (Half-life, Alpha energy)
J.D.BOWMAN, R.E.EPPLEY, E.K.HYDE, Phys. Rev. C25 (1982) 941 (Alpha energy)
A.RYTZ, At. Data Nucl. Data Tables 47 (1991) 205 (Evaluation alpha energies)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (Q)
M.S.BASUNIA, Nucl. Data Sheets 108 (2007) 633 (Decay scheme and levels)

$T_{1/2}$:	36.0	(19)	$ imes 10^{-3} { m s}$
$Q^{'}_{lpha}$:	7262.5	(19)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	
$lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 6531.1 \ (19) \\ 7129.2 \ (19) \end{array}$	$\begin{array}{c} 0.127 \ (7) \\ 99.873 \ (7) \end{array}$	

3 Photon Emissions

3.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9.66 - 16.21		0.00080 (3)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		$0.00052 (4) \\ 0.00086 (6)$	} Κα }
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.000296 (21)	$\mathrm{K}\beta_1'$
$\begin{array}{l} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	92.263 92.618 92.983	} } }	0.000092 (7)	$\mathrm{K}\beta_2'$

3.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Po)$	609.31 (6)	0.127(7)	E2	0.0204(3)	0.124(7)

4 References

F.Asaro, I.Perlman, Phys. Rev. 104 (1956) 91
(Alpha energy)
P.A.Tove, Ark. Fys. 13 (1958) 549
(Half-life)
C.P.Ruiz, Report UCRL-9511, Univ. California (1961)
(Half-life)
H.DIAMOND, J.E.GINDLER, J. Inorg. Nucl. Chem. 25 (1963) 143
(Half-life)
A.PEGHAIRE, Nucl. Instrum. Methods 75 (1969) 66

(Gamma-ray instensity) A.ERLIK, J.FELSTEINER, H.LINDEMAN, M.TATCHER, Nucl. Instrum. Methods 92 (1971) 45 (Half-life) W.KURCEWICZ, N.KAFFRELL, N.TRAUTMANN, A.PLOCHOCKI, J.ZYLICZ, K.STRYCZNIEWICZ, I.YUTLANDOV, Nucl. Phys. A270 (1976) 175 (Gamma-ray energy and intensity, alpha intensity) A.Rytz, At. Data Nucl. Data Tables 23 (1979) 507 (Alpha energy and intensity) J.D.BOWMAN, R.E.EPPLEY, E.K.HYDE, Phys. Rev. C25 (1982) 941 (Alpha energy) Y.A.ELLIS-AKOVALI, Nucl. Data Sheets 52 (1987) 789 (Alpha energy and intensity, gamma-ray energy and intensity) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha energy and intensity) Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 127 (Alpha energy and intensity, gamma-ray energy and intensity, spin, parity) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) Y.A.Akovali, Nucl. Data Sheets 84 (1998) 1 (Alpha energy and intensity, gamma-ray energy and intensity, spin, parity) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129 (\mathbf{Q})

$T_{1/2}$:	3.98	(3)	s
$Q^{'}_{lpha}$:	6946.1	(3)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\begin{array}{c} \alpha_{0,14} \\ \alpha_{0,13} \\ \alpha_{0,12} \\ \alpha_{0,11} \\ \alpha_{0,10} \\ \alpha_{0,9} \\ \alpha_{0,8} \\ \alpha_{0,7} \\ \alpha_{0,6} \\ \alpha_{0,5} \\ \alpha_{0,4} \end{array}$	kev 5745 (1) 5765.1 (5) 5906.2 (10) 5944.4 (4) 5958.1 (7) 5999.2 (4) 6099.9 (5) 6124.1 (6) 6154.9 (3) 6222.0 (3) 6311.1 (3)	\times 100 0.00009 (5) 0.00094 (19) 0.00009 (5) 0.0021 (3) 0.0003 (1) 0.0032 (5) 0.00123 (12) 0.00064 (12) 0.0043 (12) 0.0043 (10) 0.048 (3)
$lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 6424.8 \\ 6531.0 \\ 6553.0 \\ 6819.2 \\ (3) \end{array}$	7.85 (24) 0.098 (5) 12.6 (3) 79.4 (10)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Po)	5.434 - 10.934	1.50(5)
$e_{\rm AK}$	(Po) KLL KLX KXY	58.978 - 65.205 71.902 - 79.289 84.8 - 93.1	0.067 (9) } } }
$ec_{1,0}$ K $ec_{1,0}$ L $ec_{1,0}$ M $ec_{3,0}$ K $ec_{3,0}$ L $ec_{3,0}$ M	(Po) (Po) (Po) (Po) (Po) (Po)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1.23 \ (2) \\ 0.74 \ (2) \\ 0.19 \ (1) \\ 0.234 \ (8) \\ 0.102 \ (3) \\ 0.026 \ (1) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Po)	9.658 - 16.213		1.01(5)	
$\begin{array}{l} { m XK} lpha_2 \ { m XK} lpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		$\begin{array}{c} 0.540 \ (24) \\ 0.90 \ (4) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.309 (15)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	$\begin{array}{c} 92.263 \\ 92.618 \\ 92.983 \end{array}$	} } }	0.096(5)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{3,1}(\text{Po})$	130.58(1)	0.72~(6)	M1 + 26.5% E2	4.44(13)	0.133(11)
$\gamma_{4,2}(\text{Po})$	224.04(7)	0.0019(3)	(E2)	0.319(5)	0.0014(2)
$\gamma_{1,0}(\text{Po})$	271.228(10)	13.30(26)	M1+94%E2	0.201~(7)	11.07(22)
$\gamma_{2,0}(\text{Po})$	293.56(4)	0.101~(4)	M1+50%E2	0.34(5)	0.075~(3)
$\gamma_{12,5}(\text{Po})$	322~(1)	0.00009(5)			0.00009(5)
$\gamma_{8,3}(\text{Po})$	330.9(4)	0.00100(11)			0.00100(11)
$\gamma_{11,4}(\text{Po})$	373.5~(3)	0.00025 (3)			0.00025 (3)
$\gamma_{6,2}(\text{Po})$	383.1~(1)	0.00044~(7)			0.00044~(7)
$\gamma_{3,0}(\text{Po})$	401.81(1)	7.12(23)	E2	0.0555~(8)	6.75(22)
$\gamma_{6,1}(\text{Po})$	405.4(1)	0.00025~(4)			0.00025~(4)
$\gamma_{7,1}(\text{Po})$	436.9(5)	0.00031~(6)			0.00031~(6)
$\gamma_{8,1}(\text{Po})$	461.5(4)	0.00017~(3)			0.00017(3)
$\gamma_{11,3}(\text{Po})$	489.3(3)	0.00064 (9)			0.00064 (9)
$\gamma_{4,0}(\text{Po})$	517.60(6)	0.046~(4)	M1+50%E2	0.073~(10)	0.043(3)
$\gamma_{13,4}(\text{Po})$	556.1 (4)	0.00006(4)	M1+50%E2	0.061~(8)	0.00006~(4)
$\gamma_{9,1}(\text{Po})$	564.1(2)	0.0015~(3)			0.0015~(3)
$\gamma_{14,4}(\text{Po})$	576.6(10)	0.00009(5)			0.00009(5)
$\gamma_{5,0}(\text{Po})$	608.30(7)	0.0044~(10)	(M1+E2)		0.0044~(10)
$\gamma_{11,1}(\text{Po})$	619.9(3)	0.00033(11)			0.00033(11)
$\gamma_{-1,1}(\text{Po})$	665.5(10)	0.00009(5)			0.00009(5)
$\gamma_{13,3}(\text{Po})$	671.9(4)	0.00022(11)	M1+E2		0.00022(11)
$\gamma_{6,0}(\mathrm{Po})$	676.66(7)	0.018~(2)			0.018(2)
$\gamma_{7,0}(\mathrm{Po})$	708.1(5)	0.00033(11)			0.00033(11)
$\gamma_{8,0}(\mathrm{Po})$	732.7~(4)	0.00007~(4)			0.00007~(4)
$\gamma_{13,1}(\text{Po})$	802.5~(4)	0.00033(11)	M1+E2		0.00033(11)
$\gamma_{9,0}(\mathrm{Po})$	835.32(22)	0.0017~(3)			0.0017~(3)
$\gamma_{10,0}({\rm Po})$	877.2~(6)	0.00033(11)			0.00033(11)

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{11,0}(Po) \\ \gamma_{13,0}(Po)$	$\begin{array}{c} 891.1 \ (3) \\ 1073.7 \ (4) \end{array}$	$\begin{array}{c} 0.0009 \ (2) \\ 0.00033 \ (11) \end{array}$	E2	0.00641 (9)	$\begin{array}{c} 0.0009 \ (2) \\ 0.00033 \ (11) \end{array}$

5 References

H.RODENBUSCH, G.HERRMANN, Z. Naturforsch. 16a (1961) 577 (Half-life) R.J.WALEN, V.NEDOVESSOV, G.BASTIN-SCOFFIER, Nucl. Phys. 35 (1962) 232 (Alpha emission energies, Alpha emission probabilities) K.VALLI, J.AALTONEN, G.GRAEFFE, M.NURMIA, Ann. Acad. Sci. Fenn., Ser. A, VI 184 (1965) (Gamma-ray energies, Gamma-ray emission probabilities) J.B.HURSH, J. Inorg. Nucl. Chem. 28 (1966) 2771 (Half-life) J.DALMASSO, H.MARIA, Compt. Rend. Acad. Sci. (Paris) Ser. B 265 (1967) 822 (Gamma-ray energies, Gamma-ray emission probabilities) CH.BRIANCON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533 (Gamma-ray energies, Gamma-ray emission probabilities) W.F.DAVIDSON, R.D.CONNOR, Nucl. Phys. A149 (1970) 385 (Gamma-ray energies, Gamma-ray emission probabilities, Conversion electron emission probabilities, K/L and L sub-shell ratios, ICC) K.KRIEN, M.J.CANTY, P.HERZOG, Nucl. Phys. A157 (1970) 456 (Gamma-ray energies, Gamma-ray emission probabilities, Conversion electron emission probabilities, L sub-shell ratios, ICC) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha emission energy) K.BLATON-ALBICKA, B.KOTLINSKA-FILIPEK, M.MATUL, K.STRYCZNIEWICZ, M.NOWICKI, E.RUCHOWSKA-LUKASIAK, Nukleonika 21 (1976) 935 (Gamma-ray energies, Gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energies, Alpha emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (X(K), X(L), Auger electrons)Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1 (Alpha decay, r0 parameter) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) C.F.LIANG, P.PARIS, R.K.SHELINE, Phys. Rev. C59 (1999) 648 (Alpha emission energies, Alpha emission probabilities, Gamma ray energies, Gamma-ray emission probabilities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (X(K))E.BROWNE, Nucl. Data Sheets 93 (2001) 763 (Nuclear structure, level energies) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (Ω) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	55.8	(3)	\mathbf{S}
$Q^{'}_{lpha}$:	6404.67	(10)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,1} lpha_{0,0}$	5748.46(11) 6288.22(10)	$\begin{array}{c} 0.118 \ (15) \\ 99.882 \ (15) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Po)	5.434 - 10.934	0.00140 (11)
e _{AK}	(Po) KLL KLX KXY	58.978 - 65.205 71.902 - 79.289 84.8 - 93.1	0.000074 (13) } }

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9.658 - 16.213		0.00094 (8)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		0.00059(8) 0.00099(13)	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.00034(5)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	$\begin{array}{c} 92.263 \\ 92.618 \\ 92.983 \end{array}$	} } }	0.000106 (15)	$\mathrm{K}\beta_2'$

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(Po)$	549.76(4)	0.118(15)	E2	0.0257(4)	0.115(15)

4.2 Gamma Transitions and Emissions

5 References

H.SCHMIED, R.W.FINK, B.L.ROBINSON, J. Inorg. Nucl. Chem. 1 (1955) 342 (Half-life) L.MADANSKY, F.RASETTI, Phys. Rev. 102 (1956) 464 (Gamma-ray emission probabilities) H.RODENBUSCH, G.HERRMANN, Z. Naturforsch. 16a (1961) 577 (Half-life) R.J.WALEN, Compt. Rend. Acad. Sci. (Paris) 255 (1962) 1604 (Alpha emission energies, Alpha emission probabilities) J.E.GINDLER, D.W.ENGELKEMEIR, Radiochim. Acta 2 (1963) 58 (Half-life) J.B.HURSH, J. Inorg. Nucl. Chem. 28 (1966) 2771 (Half-life) J.DALMASSO, Thesis, Report FRNC-TH-441, Univ. Nice (1972) (Gamma-ray emission probabilities) J.DALMASSO, H.MARIA, C.YTHIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 277 (1973) 467 (Gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) W.Kurcewicz, N.Kaffrell, N.Trautmann, A.Plochocki, J.Zylicz, A.Matul, K.Stryczniewicz, Nucl. Phys. A289 (1977) 1 (Gamma-ray emission probabilities) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons) A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 157 (Nuclear structure, energies) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) N.J.STONE, J.R.STONE, M.LINDROOS, P.RICHARDS, M.VESKOVIC, D.A.WILLIAMS, Nucl. Phys. A793 (2007) 1 (Half-life) S.-C.WU, Nucl. Data Sheets 108 (2007) 1057 (Nuclear structure, energies) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	3.8232	(8)	d
$Q^{'}_{lpha}$:	5590.3	(3)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	
$lpha_{0,2} lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 4827 \ (4) \\ 4987 \ (1) \\ 5489.48 \ (30) \end{array}$	≈ 0.0005 0.078 99.92 (1)	

3 Photon Emissions

3.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9.66 - 16.21		0.000766 (15)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		$0.000469 (10) \\ 0.000781 (16)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.000269(7)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	$\begin{array}{c} 92.263 \\ 92.618 \\ 92.983 \end{array}$	} } }	0.0000837(25)	$\mathrm{K}\beta_2'$

3.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{1,0}(Po)$	510 (2)	0.078	[E2]	0.0306 (6)	0.076

4 References

W.Bothe, Z. Phys. 16 (1923) 266
(Half-life)
I.CURIE, C.CHAMIÉ, J. Phys. Radium 5 (1924) 238
(Half-life)
J.TOBAILEM, Compt. Rend. Acad. Sci. (Paris) 233 (1951) 1360
(Half-life)
L.MADANSKY, F.RASETTI, Phys. Rev. 102 (1956) 464
(Gamma-ray energy)

P.C.MARIN, Brit. J. Appl. Phys. 7 (1956) 188

(Half-life) J.ROBERT, J. Phys. Radium 17 (1956) 605 (Half-life) N.S.SHIMANSKAYA, Instr. Exptl. Techniques 2 (1958) 283 (Half-life) R.J.WALEN, G.BASTIN, Compt. Rend. Cong. Phys. Nucl., Paris (1959) 910 (Alpha energy and probability) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha energy) D.K.BUTT, A.R.WILSON, J. Phys. (London) A5 (1972) 1248 (Half-life) A.Rytz, At. Data Nucl. Data Tables 23 (1979) 507 (Alpha energy and probabilties) Y.A.ELLIS-AKOVALI, Nucl. Data Sheets 52 (1987) 789 (Spin and parity) N.E.HOLDEN, Pure Appl. Chem. 62 (1990) 941 (Half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha energy and probabilities) R.COLLÉ, Radioact. Radiochem. 6 (1995) 16 (Half-life) Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 457 (Spin and parity) Y.A.AKOVALI, Nucl. Data Sheets 77 (1996) 271 (Spin and parity) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) H.SCHRADER, Appl. Radiat. Isot. 60 (2004) 317 (Half-life) A.K.JAIN, B.SINGH, Nucl. Data Sheets 107 (2006) 1027 (Spin, parity and multipolarity) R.G.HELMER, in Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications Vol. 1, STI/PUB/1287, IAEA, Vienna (2007) 19 (Gamma-ray instensity)

$T_{1/2}$:	4.79	(2)	\min
$Q^{'}_{lpha}$:	6457.8	(14)	keV
Q_{β^-}	:	314	(6)	keV
α	:	99.9952	(15)	%
β^{-}	:	0.0048	(15)	%

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,14}$	5500(40)	0.000038(10)
$\alpha_{0,13}$	$5530 \ (25)$	0.00010(2)
$\alpha_{0,12}$	5689~(3)	0.0025~(5)
$\alpha_{0,11}$	5697~(4)	0.0003
$\alpha_{0,10}$	5776~(3)	0.064(4)
$lpha_{0,9}$	5783~(4)	0.0031~(6)
$\alpha_{0,8}$	5813(3)	0.006~(1)
$lpha_{0,7}$	5925~(3)	0.0285~(24)
$\alpha_{0,6}$	5938.9(20)	0.128(3)
$\alpha_{0,5}$	5965.9(25)	0.064(16)
$\alpha_{0,4}$	5979.9(20)	0.39~(7)
$lpha_{0,3}$	6075.9(20)	0.15(3)
$\alpha_{0,2}$	6126.3(15)	15.1(2)
$\alpha_{0,1}$	6243~(2)	1.34(7)
$lpha_{0,0}$	6341.0(13)	82.8(2)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(At)	5.6 - 17.4	3.05(10)
e _{AK}	(At) KLL KLX KXY	60.489 - 67.031 73.811 - 81.516 87.10 - 95.72	0.114 (6) } } }
$ec_{1,0}$ K $ec_{2,1}$ K $ec_{3,2}$ L $ec_{3,2}$ M $ec_{4,2}$ K $ec_{4,3}$ L $ec_{4,3}$ L $ec_{1,0}$ L $ec_{1,0}$ M $ec_{2,1}$ L	 (At) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1.51 \ (13) \\ 0.13 \ (10) \\ 0.156 \ (27) \\ 0.037 \ (6) \\ 0.138 \ (8) \\ 0.0156 \ (21) \\ 0.029 \ (18) \\ 0.274 \ (23) \\ 0.065 \ (5) \\ 0.024 \ (18) \end{array}$

CNDC /Huang Xiaolong, Wang Baosong

		Energy keV	Electrons per 100 disint.
$ec_{2,0 \text{ K}}$ $ec_{4,2 \text{ L}}$ $ec_{3,1 \text{ L}}$	(At) (At) (At)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1.570 \ (31) \\ 0.0247 \ (14) \\ 0.0325 \ (43) \\ 1.042 \ (37) \end{array}$
$ec_{2,0 L} ec_{2,0 M} ec_{10,2 K}$	(At) (At) (At)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1.943 \ (37) \\ 0.515 \ (10) \\ 0.01047 \ (44) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

_		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(At)	9.8964 - 16.7291		2.18(7)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	$(At) \\ (At)$	$78.94 \\ 81.51$		$\begin{array}{c} 0.96 \ (5) \\ 1.59 \ (9) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	(At) (At) (At)	91.73 92.315 92.883	} } }	0.55(6)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(At) (At) (At)	94.846 95.211 95.595	} } }	0.18 (2)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy	$P_{\gamma+ce}$	Multipolarity	$lpha_{ m T}$	P_{γ}
	keV	$\times 100$			$\times 100$
		0.000 (20)	2.64	1.4.1 = (20)	
$\gamma_{3,2}(\mathrm{At})$	53.81(3)	0.220(38)	M1	14.17(20)	0.0145(25)
$\gamma_{4,3}(At)$	96.3(3)	0.046~(26)	M1+E2	5.6(24)	0.007~(3)
$\gamma_{1,0}(At)$	100.25(2)	2.02(17)	M1	11.97(17)	$0.156\ (13)$
$\gamma_{2,1}(At)$	117.82(3)	0.19(14)	M1	7.58(11)	0.022~(16)
$\gamma_{4,2}(At)$	150.21(3)	0.216(12)	M1	3.80(5)	0.0449~(25)
$\gamma_{3,1}(At)$	171.83(3)	0.129(17)	E2	0.863(12)	0.069(9)
$\gamma_{10,4}(At)$	208.3(6)	0.0073(14)	[E2]	0.430(8)	$0.0051 \ (10)$
$\gamma_{2,0}(At)$	218.12(2)	15.61(21)	E2	0.367~(5)	11.42(15)
$\gamma_{5,1}(At)$	282.12(9)	0.0097~(20)	[M1,E2]	0.41 (25)	0.0069~(7)
$\gamma_{7,1}(At)$	324.10(6)	$0.0252\ (17)$	M1	0.446~(6)	0.0174(12)
$\gamma_{10,2}(At)$	359.86(4)	$0.0514\ (20)$	M1	0.335~(5)	$0.0385\ (15)$
$\gamma_{5,0}(At)$	382.34(4)	0.0437~(18)	M1	0.284(4)	0.0340(14)
$\gamma_{6,0}(At)$	410.64(5)	0.1270(26)	E2	0.0548(8)	$0.1204\ (25)$
$\gamma_{8,1}(At)$	437.00(5)	0.0010(1)			0.0010(1)
$\gamma_{12,2}(At)$	446.30(8)	0.0017~(4)	E1+M2		0.0017~(4)
$\gamma_{9,1}(\mathrm{At})$	468.3(7)	0.0018 (3)			0.0018 (3)

Fr - 221

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \gamma_{8,0}({\rm At}) \\ \gamma_{12,1}({\rm At}) \\ \gamma_{9,0}({\rm At}) \\ \gamma_{10,0}({\rm At}) \\ \gamma_{11,0}({\rm At}) \\ \gamma_{12,0}({\rm At}) \\ \gamma_{13,0}({\rm At}) \\ \gamma_{14,0}({\rm At}) \end{array}$	$\begin{array}{c} 537.8 \ (8) \\ 562.3 \ (12) \\ 568.5 \ (3) \\ 576.9 \ (4) \\ 652 \ (2) \\ 665 \ (2) \\ 809.3 \ (2) \\ 891.9 \ (3) \end{array}$	$\begin{array}{c} 0.0045 \ (8) \\ 0.005 \ (5) \\ 0.0012 \ (4) \\ 0.0033 \ (7) \\ 0.0004 \ (4) \\ 0.0009 \ (9) \\ 0.00010 \ (2) \\ 0.000038 \ (10) \end{array}$	[M1]	0.0948 (13)	$\begin{array}{c} 0.0045 \ (8) \\ 0.005 \ (5) \\ 0.0012 \ (4) \\ 0.0030 \ (6) \\ 0.0004 \ (4) \\ 0.0009 \ (9) \\ 0.00010 \ (2) \\ 0.000038 \ (10) \end{array}$

5 References

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. 72 (1947) 253(Half-life) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435 (Half-life) B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, L.N.MOSKVIN, O.M.NAZARENKO, V.F.RODIONOV, IZV. Akad. Nauk SSSR, Ser. Fiz. 31 (1967) 568 (Alpha energies and intensities) W.LOURENS, Thesis, Technische Hogeschool, Delft (1967) (Half-life) C.F.LEANG, G.BASTIN-SCOFFIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 629 (Alpha energies and intensities, Gamma-ray energies and intensities) J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma-ray energies and emission probabilities) R.G.HELMER, C.W.REICH, M.A.LEE, Int. J. Appl. Radiat. Isotop. 37 (1986) 139 (Gamma-ray energies and emission probabilities) Y.A.AKOVALI, Nucl. Data Sheets 61 (1990) 623 (Decay scheme and levels) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Evaluation alpha energies) G.ARDISSON, V.BARCI, O.EL SAMAD, Nucl. Instrum. Methods Phys. Res. A339 (1994) 168 (Gamma-ray energies and intensities) V.G.CHUMIN, S.S.ELISEEV, K.YA.GROMOV, YU.V.NORSEEV, V.I.FOMINYKH, V.V.TSUPKO-SITNIKOV, Bull. Rus. Acad. Sci. Phys. 59 (1995) 1854 (Beta minus decay branching ratio) YU.S.BUTABAEV, I.ADAM, K.YA.GROMOV, S.S.ELISEEV, R.A.NIYAZOV, YU.V.NORSEEV, V.I.FOMINYKH, A.KH. KHOLMATOV, V.V.TSUPKO-SITNIKOV, V.G.CHUMIN, M.B.YULDASHEV, Bull. Rus. Acad. Sci. Phys. 59 (1995) 5 (Gamma-ray energies and intensities) R.K.SHELINE, C.F.LIANG, P.PARIS, Phys. Rev. C51 (1995) 1192 (Gamma-ray energies, intensities and emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) V.G.CHUMIN, J.K.JABBER, K.V.KALYAPKIN, S.A.KUDRYA, V.V.TSUPKO-SITNIKOV, K.YA.GROMOV, V.I.FO-MINYKH, T.A.FURYAEV, Bull. Rus. Acad. Sci. Phys. 61 (1997) 1606 (Beta minus decay branching ratio) K.YA.GROMOV, J.K.JABBER, SH.R.MALIKOV, V.I.FOMINYKH, YU.V.KHOLNOV, V.V.TSUPKO-SITNIKOV, V.G. CHUMIN, Bull. Rus. Acad. Sci. Phys. 63 (1999) 685 (Gamma-ray energies, intensities and emission probabilities) J.GASPARRO, G.ARDISSON, V.BARCI, R.K.SHELINE, Phys. Rev. C62 (2000) 064305 (Gamma-ray emission probabilities) K.YA.GROMOV, S.A.KUDRYA, SH.R.MALIKOV, V.A.SERGIENKO, V.I.FOMINYKH, V.V.TSUPKO-SITNIKOV, V.G. CHUMIN, Bull. Rus. Acad. Sci. Phys. 66 (2002) 1519 (Alpha energies and intensities, Gamma-ray energies and intensities)

Y.A.AKOVALI, Nucl. Data Sheets 100 (2003) 141
(Decay scheme and levels)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129
(Q)
H.B.JEPPESEN, J.BYSKOV-NIELSEN, P.WRIGHT, J.G.CORREIA, L.M.FRAILE, H.O.U.FYNBO, K.JOHNSTON, K. RIISAGER, Eur. Phys. J. A32 (2007) 31
(Half-life)
M.S.BASUNIA, Nucl. Data Sheets 108 (2007) 633
(Decay scheme and levels)

$T_{1/2}$:	22.00	(7)	\min
Q_{β^-}	:	1149.2	(9)	keV
Q_{lpha}	:	5562	(3)	keV
β^-	:	99.980	(4)	%
α	:	0.020	(4)	%

2 β^- Transitions

	Energy keV	$\begin{array}{c} \text{Probability} \\ \times 100 \end{array}$	Nature	$\log ft$
			~	
$\beta_{0,32}$	120.3(10)	0.0012 (3)	Super-allowed or allowed	7.3
$\beta_{0,31}$	124.6(10)	0.0004 (1)	lst forbidden	7.82
$\beta_{0,30}$	129.9(10)	0.00046(12)	lst forbidden	7.82
$\beta_{0,29}^-$	191.5(9)	0.020 (4)	nth forbidden unique	6.7
$\beta_{0,28}^-$	205.9(9)	0.0082(18)	nth forbidden unique	7.19
$\beta_{0,27}^-$	208.4 (9)	0.0051(12)		7.41
$\beta_{0,26}^{-}$	222.6 (9)	0.106(22)	nth forbidden unique	6.18
$\beta_{0,25}^{-}$	243.3(10)	0.0011 (4)	1st forbidden	8.29
$\beta_{0,24}^{-}$	281.9(9)	0.025 (5)	nth forbidden unique	7.14
$\beta_{0,23}^-$	302.8 (9)	0.088(18)	1st forbidden	6.69
$\beta_{0,22}^-$	306.9 (9)	0.035(7)	nth forbidden unique	7.11
$\beta_{0,21}^-$	323.3 (9)	0.54(10)		5.99
$\beta_{0,20}^-$	326.0 (9)	0.014 (3)	nth forbidden unique	7.59
$\beta_{0,19}^-$	343.8(9)	0.0040 (8)	nth forbidden unique	8.21
$\beta_{0,18}^{-}$	345.4 (9)	0.14(3)	nth forbidden unique	6.67
$\beta_{0,17}^{-}$	362.1 (9)	0.019 (4)	1st forbidden	7.6
$\beta_{0,16}^{-}$	366.7(10)	0.00111 (22)	nth forbidden unique	8.85
$\beta_{0,15}^{-}$	555.3 (9)	0.013 (3)	1st forbidden	8.38
$\beta_{0,14}^{-}$	773.1(10)	0.0046~(12)		9.31
$\beta_{0.13}^{-}$	779.9(9)	1.8(4)		6.73
$\beta_{0,11}^{-}$	806.7 (9)	0.037 (8)	1st forbidden	8.47
$\beta_{0,10}^{-}$	814.9 (9)	0.042 (9)	1st forbidden	8.43
$\beta_{0.9}^{-}$	819.4(9)	0.049(10)	Super-allowed or allowed	8.37
$\beta_{0.8}^{-}$	863.1 (9)	0.032 (9)	1st forbidden	8.64
$\beta_{0.7}^{-}$	869.0 (9)	0.004 (4)		9.5
$\beta_{0.6}^{-}$	914.5 (9)	9.1(17)		6.27
$\beta_{0.5}^{\bullet,\bullet}$	1025.5 (9)	0.24(6)		8.02
$\beta_{04}^{2,3}$	1069.6 (9)	15 (3)		6.29
$\beta_{0,3}^{-1}$	1087.8 (9)	0.27(19)		8.1
$\beta_{0,2}^{-}$	1099.1 (9)	67 (13)	Super-allowed or allowed	5.68
$\beta_{0,1}^{-1}$	1119.3 (9)	6 (6)	-	6.8
$\beta_{0,0}^{-}$	1149.2 (9)	1	1st forbidden	7.6
, 0,0				

3 α Emissions

	Energy keV	$\begin{array}{l} \text{Probability} \\ \times \ 100 \end{array}$
$\alpha_{0.4}$	5172(5)	0.0009(5)
$\alpha_{0,3}$	5291 (4)	0.0060(26)
$\alpha_{0,2}$	5314(4)	0.0053~(23)
$\alpha_{0,1}$	5403~(3)	0.0044~(20)
$lpha_{0,0}$	5462(3)	0.0033~(15)

4 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.	Energy keV
e_{AL}	(Ra)	5.71 - 12.04	29(4)	
елк	(Ra)		0.159(21)	
	KLL	65.149 - 72.729	}	
	KLX	79.721 - 88.466	}	
	KXY	94.27 - 103.91	}	
e_{AL}	(At)	5.6 - 17.4	0.0076 (18)	
e_{AK}	(At)		0.000065 (20)	
	KLL	60.489 - 67.031	}	
	KLX	73.811 - 81.516	}	
	KXY	87.10 - 95.72	}	
$ec_{2,1 L}$	(Ra)	1.04 - 4.83	8.1 (17)	
$ec_{1,0 L}$	(Ra)	10.55 - 14.34	20~(6)	
$ec_{3,1 L}$	(Ra)	12.46 - 16.25	0.26(8)	
$ec_{2,1 M}$	(Ra)	15.45 - 17.16	2.10(45)	
$ec_{5,4}$ L	(Ra)	24.768 - 28.556	$0.131\ (12)$	
$ec_{1,0}$ M	(Ra)	24.96 - 26.68	5.0(14)	
$ec_{3,1}$ M	(Ra)	26.87 - 28.58	0.068~(20)	
$ec_{4,1}$ L	(Ra)	30.6 - 34.4	1.34(32)	
$ec_{13,6}$ K	(Ra)	30.68 (2)	0.092~(18)	
$ec_{2,0 L}$	(Ra)	30.9 - 34.7	17.4(37)	
$ec_{5,4}$ M	(Ra)	39.178 - 40.895	0.0344~(32)	
$ec_{3,0}$ L	(Ra)	42.20 - 45.99	0.25~(5)	
$ec_{4,1}$ M	(Ra)	45.0 - 46.7	0.33~(8)	
$ec_{2,0}$ M	(Ra)	45.3 - 47.0	4.3(9)	
$ec_{5,2 L}$	(Ra)	54.3 - 58.1	0.039(27)	
$ec_{3,0}$ M	(Ra)	56.61 - 58.32	0.068(14)	
$ec_{4,0 L}$	(Ra)	60.42 - 64.21	1.38(28)	
$ec_{5,2}$ M	(Ra)	68.7 - 70.4	0.011~(7)	
ес _{6,3} к	(Ra)	69.43 (5)	0.16(14)	
$ec_{4,0}$ M	(Ra)	74.83 - 76.54	0.33~(7)	
$ec_{6,2}$ K	(Ra)	80.74 (5)	0.0191 (43)	
$ec_{6,1 K}$	(Ra)	100.93 (5)	1.47(28)	

CNDC /Huang Xiaolong, Wang Baosong

		Energy keV	Electrons per 100 disint.	Energy keV
ec _{73 к}	(Ra)	114.88 (5)	0.0118(23)	
ec _{13.6 L}	(Ra)	115.4 - 119.2	0.0192(38)	
ес _{6.0 К}	(Ra)	130.78 (5)	3.0(6)	
ес _{7.1 К}	(Ra)	146.33 (5)	0.01506(22)	
ес _{6.3} L	(Ra)	154.12 - 157.91	0.061(13)	
ес _{6.3} м	(Ra)	168.53 - 170.24	0.0156(38)	
ес _{6,1 L}	(Ra)	185.62 - 189.41	0.28(5)	
$ec_{6.1 M}$	(Ra)	200.03 - 201.74	0.066(12)	
ес _{13,2 К}	(Ra)	215.33 (5)	0.215(42)	
$ec_{6,0 L}$	(Ra)	215.5 - 219.3	0.56(10)	
$ec_{6,0 M}$	(Ra)	229.9 - 231.6	$0.134\ (25)$	
$ec_{13,2}$ L	(Ra)	300.02 - 303.81	0.040(8)	
$\beta_{0,32}^-$	max:	120.3 (10)	0.0012 (3)	avg: $31.5(3)$
$\beta_{0,31}^{-}$	max:	124.6 (10)	0.0004(1)	avg: $32.7(3)$
$\beta_{0,30}^-$	max:	129.9 (10)	0.00046~(12)	avg: $34.1(3)$
$\beta_{0,29}^{-}$	max:	191.5 (9)	0.020~(4)	avg: $51.5(3)$
$\beta_{0,28}^{-}$	max:	205.9 (9)	0.0082~(18)	avg: $55.6(3)$
$\beta_{0,27}^{-}$	max:	208.4 (9)	0.0051~(12)	avg: $56.3(3)$
$\beta_{0,26}^{-}$	max:	222.6 (9)	0.106~(22)	avg: $60.5(3)$
$\beta_{0,25}^{-}$	max:	243.3 (10)	0.0011~(4)	avg: $66.6(3)$
$\beta_{0,24}^{-}$	max:	281.9 (9)	0.025~(5)	avg: $78.1(3)$
$\beta_{0,23}^{-}$	max:	302.8 (9)	0.088~(18)	avg: $84.4(3)$
$\beta_{0,22}^{-}$	max:	306.9 (9)	0.035~(7)	avg: $85.7(3)$
$\beta_{0.21}^{-1}$	max:	323.3 (9)	0.54(10)	avg: $90.7(3)$
$\beta_{0.20}^{-1}$	max:	326.0 (9)	0.014(3)	avg: $91.5(3)$
$\beta_{0.19}^{-1}$	max:	343.8 (9)	0.0040(8)	avg: 97.0 (3)
$\beta_{0.18}^{-10}$	max:	345.4 (9)	0.14(3)	avg: 97.5 (3)
$\beta_{0.17}^{-10}$	max:	362.1 (9)	0.019(4)	avg: $102.7(3)$
$\beta_{0.16}^{-16}$	max:	366.7 (10)	0.00111(22)	avg: 104.1 (3)
$\beta_{0.15}^{-10}$	max:	555.3 (9)	0.013(3)	avg: 165.6 (4)
$\beta_{0.14}^{-10}$	max:	773.1 (10)	0.0046(12)	avg: 241.3 (4)
$\beta_{0.13}^{-1}$	max:	779.9 (9)	1.8(4)	avg: 243.7 (4)
$\beta_{0.11}^{-10}$	max:	806.7 (9)	0.037(8)	avg: 253.3 (4)
$\beta_{0,10}^{-10}$	max:	814.9 (9)	0.042(9)	avg: 256.3 (4)
$\beta_{0,9}^{-,10}$	max:	819.4 (9)	0.049(10)	avg: 257.9 (4)
$\beta_{0.8}^{\bullet,\bullet}$	max:	863.1 (9)	0.032(9)	avg: 273.8 (4)
$\beta_{0,7}^{\bullet,\bullet}$	max:	869.0 (9)	0.004(4)	avg: 275.9 (4)
$\beta_{0,6}^{-}$	max:	914.5 (9)	9.1(17)	avg: 292.6 (4)
$\beta_{0.5}^{-}$	max:	1025.5 (9)	0.24 (6)	avg: 333.9 (4)
$\beta_{0,4}^{-}$	max:	1069.6 (9)	15 (3)	avg: 350.5 (4)
$\beta_{0,3}^{-1}$	max:	1087.8 (9)	0.27(19)	avg: 357.4 (4)
$\beta_{0,2}^{-}$	max:	1099.1 (9)	67(13)	avg: 361.7 (4)
$\beta_{0,1}^{-1}$	max:	1119.3 (9)	6 (6)	avg: 369.4 (4)
$\beta_{0,0}^{-1}$	max:	1149.2 (9)	1	avg: 380.8 (4)
, -				

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Ra)	10.6241 - 18.3539		24(3)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Ra) (Ra)	85.43 88.47		$\begin{array}{c} 1.44 \ (19) \\ 2.3 \ (3) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Ra) (Ra) (Ra)	$99.432 \\100.13 \\100.738$	} } }	0.83(11)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Ra) (Ra) (Ra)	$102.89 \\103.295 \\103.74$	} } }	0.27(4)	$\mathrm{K}\beta_2'$
XL	(At)	9.8964 - 16.7291		0.0054(13)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(At) (At)	$78.94 \\ 81.51$		$\begin{array}{c} 0.00056 \ (15) \\ 0.00092 \ (25) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(At) (At) (At)	91.73 92.315 92.883	} } }	0.00031 (11)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(At) (At) (At)	$\begin{array}{c} 94.846 \\ 95.211 \\ 95.595 \end{array}$	} } }	0.00011 (6)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{2,1}(Ra)$ $\gamma_{1,0}(Ra)$ $\gamma_{3,1}(Ra)$ $\gamma_{9,8}(Ra)$ $\gamma_{5,4}(Ra)$ $\gamma_{4,1}(Ra)$ $\gamma_{2,0}(Ra)$ $\gamma_{1,0}(At)$ $\gamma_{3,0}(Ra)$ $\gamma_{5,3}(Ra)$ $\gamma_{5,2}(Ra)$ $\gamma_{4,0}(Ra)$	$\begin{array}{c} 20.27 \ (5) \\ 29.78 \ (4) \\ 31.69 \ (5) \\ 43.5 \ (2) \\ 44.0 \ (1) \\ 49.80 \ (5) \\ 50.10 \ (2) \\ 58.9 \ (2) \\ 61.43 \ (5) \\ 62.31 \ (6) \\ 73.5 \ (1) \\ 79.65 \ (2) \end{array}$	12.3 (26) 26 (7) 0.35 0.0044 0.178 4.3 (10) 56 (12) 0.0095 (36) 0.34 (7) 0.022 (10) 0.054 (38) 10.8 (22) 10.8 (2	$\begin{array}{c} [E1] \\ M1 + 8.26\% E2 \\ M1 + 7.27\% E2 \\ E1 \\ M1 + 21.3\% E2 \\ E1 \\ E1 \\ M1 \\ E2 \\ E1 \\ E2 \\ E1 \\ E2 \\ E1 \end{array}$	$\begin{array}{c} 7.76 \ (22) \\ 370 \ (50) \\ 260 \ (80) \\ 1.015 \ (19) \\ 131 \ (12) \\ 0.708 \ (10) \\ 0.696 \ (10) \\ 10.87 \ (19) \\ 96.5 \ (14) \\ 0.389 \ (6) \\ 40.8 \ (6) \\ 0.202 \ (3) \end{array}$	$\begin{array}{c} 1.4 \ (3) \\ 0.070 \ (17) \\ 0.00135 \\ 0.0022 \\ 0.00135 \\ 2.5 \ (6) \\ 33 \ (7) \\ 0.0008 \ (3) \\ 0.0035 \ (7) \\ 0.016 \ (7) \\ 0.0013 \ (9) \\ 9.0 \ (18) \end{array}$
$\gamma_{13,7}({ m Ra})$ $\gamma_{5,1}({ m Ra})$ $\gamma_{6,5}({ m Ra})$ $\gamma_{13,6}({ m Ra})$	$\begin{array}{c} 89.08 \ (10) \\ 93.88 \ (5) \\ 111.05 \ (3) \\ 134.60 \ (2) \end{array}$	$\begin{array}{c} 0.054 \ (11) \\ 0.054 \ (11) \\ 0.067 \ (16) \\ 0.0049 \ (14) \\ 0.62 \ (12) \end{array}$	E1 [E1]	0.1305 (18) 0.234 (3)	$\begin{array}{c} 0.054 \ (11) \\ 0.059 \ (14) \\ 0.0049 \ (14) \\ 0.5 \ (1) \end{array}$

	Energy keV	${ m P}_{\gamma+{ m ce}} \ imes \ 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathrm{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{4,2}(At)$	145.3(3)	0.00078(47)	M1 + (E2)	2.9(13)	0.0002(1)
$\gamma_{2,0}(At)$	150.9(2)	0.0135(12)	$\mathbf{E2}$	1.417(21)	0.0056(5)
$\gamma_{6,4}(\mathrm{Ra})$	155.5(5)	0.0027			0.0027
$\gamma_{6,3}(\mathrm{Ra})$	173.35(5)	0.36(15)	M1,E2	2.1(12)	0.115(22)
$\gamma_{6,2}(\text{Ra})$	184.65(5)	0.24(6)	${ m E1}$	0.1092(15)	0.22(5)
$\gamma_{7,4}(\text{Ra})$	200.7(2)	0.0027(10)			0.0027~(10)
$\gamma_{6,1}(\text{Ra})$	204.85(5)	2.8(5)	M1+1.42%E2	2.02(5)	0.92(18)
$\gamma_{9,5}({ m Ra})$	205.6(2)	0.0090(17)	$\mathrm{E2}$	0.530(8)	$0.0059\ (11)$
$\gamma_{10,5}({\rm Ra})$	210.60(5)	0.0105~(21)	${ m E1}$	0.0798(11)	0.0097~(19)
$\gamma_{7,3}({ m Ra})$	218.80(5)	0.0232~(46)	M1	1.701(24)	0.0086~(17)
$\gamma_{6,0}({ m Ra})$	234.70(5)	6.5(12)	M1(+0.5%E2)	1.393(16)	2.7(5)
$\gamma_{8,2}({ m Ra})$	236.05(5)	0.029~(8)	${ m E1}$	0.0610 (9)	0.027~(8)
$\gamma_{13,5}({\rm Ra})$	245.60(5)	0.019(4)			0.019~(4)
$\gamma_{9,4}({ m Ra})$	250.25(5)	0.0043	M1 + 81.5% E2	0.44(7)	0.003
$\gamma_{7,1}(\mathrm{Ra})$	250.25(5)	0.035	M1	1.170(16)	0.016
$\gamma_{10,4}({ m Ra})$	254.6(2)	0.0060(13)	${ m E1}$	0.0512(7)	0.0057~(12)
$\gamma_{8,1}({ m Ra})$	256.18(5)	0.025~(5)	${ m E2}$	0.250(4)	0.020~(4)
$\gamma_{11,4}(\text{Ra})$	262.9(2)	0.0037~(12)	${ m E1}$	0.0475~(7)	0.0035(11)
$\gamma_{10,3}({ m Ra})$	272.8(2)	0.0064~(23)	M1+E2	0.6(4)	0.004(1)
$\gamma_{7,0}({\rm Ra})$	280.7(5)	0.0003			0.0003
$\gamma_{11,3}(\text{Ra})$	280.7(5)	0.0003			0.0003
$\gamma_{8,0}({ m Ra})$	286.0(2)	0.0069(24)	M1+E2	0.5~(4)	0.0046~(10)
$\gamma_{13,4}({ m Ra})$	289.67(5)	0.21			0.21
$\gamma_{14,4}(\text{Ra})$	296.5(2)	0.0022(7)	M1 + 1.66% E2	0.723(9)	0.0013(4)
$\gamma_{9,1}({ m Ra})$	299.95(5)	0.0207(41)	E1	0.0352(5)	0.020(4)
$\gamma_{10,1}(\mathrm{Ra})$	304.40(5)	0.0142(28)	M1+6.3%E2(+E0)	0.647(14)	0.0086(17)
$\gamma_{15,8}(\text{Ra})$	307.93(5)	0.012(3)			0.012(3)
$\gamma_{13,3}({ m Ra})$	307.93(5)	0.0013(13)			0.0013(13)
$\gamma_{11,1}(\text{Ra})$	312.65(5)	0.026(6)	M1+2.5%E2	0.621(10)	0.016(4)
$\gamma_{14,3}(\mathrm{Ra})$	314.6(2)	0.0023(7)		0.0316(5)	0.0022(7)
$\gamma_{13,2}(\mathrm{Ra})$	319.25(5)	0.73(14)	M1+3.14%E2	0.583(10)	0.46(9)
$\gamma_{9,0}({ m Ra})$	329.80(5)	0.025(5)	(E1)	0.0285(4)	0.024(5)
$\gamma_{10,0}(\text{Ra})$	334.30(6)	0.0119(24)	M1+27.12%E2	0.414(13)	0.0084(17)
$\gamma_{13,1}(\text{Ra})$	339.50(5)	0.062(13)		0.050 (5)	0.062(13)
$\gamma_{11,0}(\text{Ra})$	342.50(7)	0.0145(30)	M1+62.5%E2	0.250(5)	0.0116(24)
$\gamma_{12,0}(\text{Ra})$	350.5(2)	0.0028(15)	El	0.0249(4)	0.0027(15)
$\gamma_{13,0}(\text{Ra})$	309.32(5)	0.089(18)			0.089(18)
$\gamma_{18,13}(\text{Ra})$	434.4(1)	0.0022(7)			0.0022(7)
$\gamma_{16,11}(Ra)$	439.0(3)	0.00030(8)			0.00030(8)
$\gamma_{17,11}(\text{Ra})$	444.0(3) 452.0(2)	0.0011(4)			0.0011(4)
$\gamma_{16,9}(Ra)$	402.9 (2) 452.0 (2)	0.0008			0.0008
$\gamma_{17,10}(Ra)$	452.9 (2) 457 5 (9)	0.0008			0.0008
$\gamma_{17,9}(na)$	469 3 (2)	0.0008			0.0000
718,10(na)	469.3(2)	0.001			0.001
$\gamma_{15,5}(na)$	409.0(2)	0.001			0.001
$\gamma_{19,9}(na)$	475.4(1)	0.0027			0.0021
$\gamma_{20,11}(Ra)$	480.9(3)	0.003 (4)			0.0013(4)
120,11(100)					

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{20,9}({\rm Ra})$	493.4 (2)	0.0024(7)			0.0024(7)
$\gamma_{17,7}(\text{Ra})$	506.9(2)	0.0022~(7)			0.0022~(7)
$\gamma_{23,9}({ m Ra})$	516.7(2)	0.0032~(8)			0.0032~(8)
$\gamma_{24,11}({ m Ra})$	524.8(2)	0.0043~(12)			0.0043~(12)
$\gamma_{24,10}(\text{Ra})$	533.1(3)	0.0019(7)			0.0019(7)
$\gamma_{20,8}({ m Ra})$	537.2(2)	0.0032			0.0032
$\gamma_{24,9}({ m Ra})$	537.2(2)	0.0019			0.0019
$\gamma_{21,8}(\text{Ra})$	539.8(2)	0.0059~(18)			0.0059(18)
$\gamma_{21,7}(\text{Ra})$	545.4(4)	0.00030 (8)			0.00030 (8)
$\gamma_{17,6}({ m Ra})$	552.3(2)	0.0027~(8)			0.0027~(8)
$\gamma_{22,8}(\text{Ra})$	556.3(3)	0.0011(4)			0.0011(4)
$\gamma_{18,6}(\text{Ra})$	569.03(8)	0.049(11)			0.049(11)
$\gamma_{25,9}({ m Ra})$	576.1(4)	0.0011(4)			0.0011(4)
$\gamma_{24,8}(\text{Ra})$	581.3(4)	0.0013(4)			0.0013(4)
$\gamma_{26,10}(\mathrm{Ra})$	592.3(2)	0.0032(10)			0.0032(10)
$\gamma_{26.9}(\text{Ra})$	596.9(4)	0.0008(3)			0.0008(3)
$\gamma_{28,11}(\text{Ra})$	600.7(4)	0.00054(14)			0.00054(14)
$\gamma_{22.6}(\text{Ra})$	607.6(3)	0.0022(7)			0.0022(7)
$\gamma_{28.9}(\text{Ra})$	613.6(4)	0.0011(4)			0.0011(4)
$\gamma_{24.6}(\text{Ra})$	632.7(3)	0.0022(7)			0.0022(7)
$\gamma_{17.5}(\text{Ra})$	663.7(3)	0.0011(4)			0.0011(4)
$\gamma_{29.8}(\text{Ra})$	671.9(4)	0.00054(14)			0.00054(14)
$\gamma_{17.4}(\text{Ra})$	708.3(3)	0.0013(4)			0.0013(4)
$\gamma_{23.5}(\text{Ra})$	722.65(5)	0.038(9)			0.038(9)
$\gamma_{18,4}(\mathrm{Ra})$	724.15 (5)	0.014(4)			0.014(4)
$\gamma_{17,2}(\mathrm{Ra})$	737.4 (3)	0.0009(3)			0.0009(3)
$\gamma_{18,3}(\mathrm{Ra})$	742.4(3)	0.0011(4)			0.0011(4)
$\gamma_{21,4}(\text{Ra})$	746.30(5)	0.020(5)			0.020(5)
$\gamma_{18,2}(\text{Ra})$	753.65(5)	0.0094(22)			0.0094(22)
$\gamma_{17,1}(\text{Ra})$	757.20(5)	0.0076(20)			0.0076(20)
$\gamma_{22,4}(\text{Ra})$	762.6(2)	0.0024(7)			0.0024(7)
$\gamma_{23,4}(\mathrm{Ra})$	766.64(5)	0.022(5)			0.022(5)
$\gamma_{21,2}(\text{Ra})$	775.83(5)	0.45(9)			0.45(9)
$\gamma_{22,3}(\mathrm{Ra})$	780.8(1)	0.003(1)			0.003(1)
$\gamma_{23,3}(\text{Ra})$	784.93(5)	0.0086(21)			0.0086(21)
$\gamma_{24.4}(\text{Ra})$	787.6(2)	0.0024(7)			0.0024(7)
$\gamma_{17.0}(\text{Ra})$	787.6(2)	0.0003(3)			0.0003(3)
$\gamma_{22,2}(\text{Ra})$	792.2(3)	0.00054(14)			0.00054(14)
$\gamma_{23,2}(\text{Ra})$	796.22(5)	0.0108(25)			0.0108(25)
$\gamma_{18.0}(\text{Ra})$	803.77(5)	0.059(14)			0.059(14)
$\gamma_{19.0}(\text{Ra})$	806.0(2)	0.0013(4)			0.0013(4)
$\gamma_{22,1}(\mathrm{Ra})$	812.40 (6)	0.021(5)			0.021(5)
$\gamma_{27,5}(\text{Ra})$	816.5(2)	0.0013(4)			0.0013(4)
$\gamma_{20,0}({ m Ra})$	823.20 (7)	0.0070(16)			0.0070(16)
$\gamma_{21,0}(\text{Ra})$	825.95 (7)	0.054(13)			0.054(13)
$\gamma_{29,5}(\text{Ra})$	833.9 (2)	0.0013(4)			0.0013(4)
$\gamma_{24,1}(\text{Ra})$	837.5(1)	0.0097(21)			0.0097(21)
$\gamma_{22.0}(\text{Ra})$	842.2 (1)	0.0049(11)			0.0049(11)
,, < 、 /	<pre>\ /</pre>	\ /			<pre>\ /</pre>

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{26,4}({\rm Ra})$	846.85 (10)	0.049(13)			0.049(13)
$\gamma_{23,0}({ m Ra})$	846.85(10)	0.005~(3)			0.005~(3)
$\gamma_{28,4}({ m Ra})$	863.6(1)	0.0038~(9)			0.0038~(9)
$\gamma_{24,0}(\text{Ra})$	867.4(1)	0.0016~(4)			0.0016~(4)
$\gamma_{26,2}(\mathrm{Ra})$	876.5(1)	0.038~(9)			0.038~(9)
$\gamma_{29,4}({ m Ra})$	878.1(2)	0.0032~(8)			0.0032~(8)
$\gamma_{28,2}(\text{Ra})$	893.1(2)	0.0024(7)			0.0024~(7)
$\gamma_{26,1}({ m Ra})$	896.7(2)	0.013~(3)			0.013~(3)
$\gamma_{29,2}(\text{Ra})$	907.6(2)	0.014(3)			0.014(3)
$\gamma_{27,1}({ m Ra})$	911.3~(3)	0.0008 (3)			0.0008 (3)
$\gamma_{28,1}({ m Ra})$	913.6~(3)	0.00041 (14)			0.00041(14)
$\gamma_{26,0}({ m Ra})$	926.5(3)	0.0016~(4)			0.0016~(4)
$\gamma_{27,0}({ m Ra})$	941.2(3)	0.0030(8)			0.0030 (8)
$\gamma_{32,4}({ m Ra})$	949.3~(4)	0.00032~(8)			0.00032~(8)
$\gamma_{29,0}({ m Ra})$	958.0(7)	0.00035~(8)			0.00035~(8)
$\gamma_{30,2}({ m Ra})$	969.2~(4)	0.00032~(8)			0.00032~(8)
$\gamma_{31,2}({ m Ra})$	975.2(5)	0.00016~(5)			0.00016~(5)
$\gamma_{32,2}(\text{Ra})$	978.7(4)	0.00067~(12)			0.00067~(12)
$\gamma_{30,1}(\text{Ra})$	989.4(5)	0.00014(3)			0.00014(3)
$\gamma_{31,1}({ m Ra})$	994.3(3)	0.00011 (3)			0.00011 (3)
$\gamma_{32,1}(\text{Ra})$	999.3~(5)	0.00019(4)			0.00019(4)
$\gamma_{31,0}({\rm Ra})$	1025.1 (5)	0.00014(3)			0.00014(3)

6 References

E.K.HYDE, Phys. Rev. 94 (1954) 1221 (Gamma-ray emission probabilities) J.P.ADLOFF, Compt. Rend. Acad. Sci. (Paris) 240 (1955) 1421 (Half-life, Alpha energies and intensities) C.YTHIER, G.MAZZONE, P.W.F.LOUWRIER, Physica 30 (1964) 2143 (Gamma-ray energies and intensities) K.H.LIESER, E.KLUGE, Radiochim. Acta 7 (1967) 3 (Half-life) H.MARIA, C.YTHIER, P.POLAK, A.H.WAPSTRA, Physica 34 (1967) 571 (Gamma-ray energies and intensities) S.K.VASILEV, B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, A.V.MOZZHUKHIN, B.I.SHESTAKOV, IZV. Akad. Nauk SSSR, Ser. Fiz. 45 (1981) 1895 (Gamma-ray emission probabilities) YU.V.ALEKSANDROV, S.K.VASILEV, B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, A.V.MOZZHUKHIN, A.V. SAULSKY, B.I.SHESTAKOV, Proc. 32nd Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei Kiev (1982) 135 (Gamma-ray energies and intensities) CH.BRIANÇON, S.CWIOK, S.A.EID, V.GREEN, W.D.HAMILTON, C.F.LIANG, R.J.WALEN, J. Phys. (London) G16 $(1990)\ 1735$ (Multipolarities) A.Abdul-Hadi, V.Barci, B.Weiss, H.Maria, G.Ardisson, M.Hussonnois, O.Constantinescu, Phys. Rev. C47 (1993) 94 (Half-life, Gamma-ray energies and intensities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) E.BROWNE, Nucl. Data Sheets 93 (2001) 763 (Decay scheme and levels)

C.F.LIANG, P.PARIS, R.K.SHELINE, Phys. Rev. C64 (2001) 034310 (Alpha energies, intensities and emission probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (Q)

$T_{1/2}$:	11.43	(3)	d
$Q^{'}_{lpha}$:	5978.99	(21)	keV
α	:	100		%
^{14}C	:	6.4	(1)	$\times 10^{-8}~\%$

2 α Emissions

	$rac{\mathrm{Energy}}{\mathrm{keV}}$	$\begin{array}{c} \text{Probability} \\ \times \ 100 \end{array}$
$lpha_{0,30}$ $lpha_{0,29}$ $lpha_{0,28}$	5014.3 5026.1 5035.9	~ 0.00044 ~ 0.00063 ~ 0.0004
$lpha_{0,28}$ $lpha_{0,27}$ $lpha_{0,26}$	5056.5 5086	~ 0.0002 ~ 0.0003
$lpha_{0,25} lpha_{0,24}$	$5112.5 \\ 5137.1$	$\sim 0.0006 \\ \sim 0.0017$
$lpha_{0,23} \ lpha_{0,22}$	5151.98(23) 5173.10(23)	0.021 0.026
$lpha_{0,21}$ $lpha_{0,20}$ $lpha_{0,10}$	5211.1 (5) 5237.12 (23) 5259.14 (21)	0.0053 0.041 0.042
$lpha_{0,18} \ lpha_{0,17}$	5283.65 (21) 5288.19 (23)	$\begin{array}{c} 0.093 \\ 0.16 \ (4) \end{array}$
$lpha_{0,16} \ lpha_{0,14}$	5339.37 (21) 5366.37 (23) 5462.32 (21) 5565.37 (21) 5575.37 (21)	0.13 0.13
$lpha_{0,12}$ $lpha_{0,11}$	5432.83(21) 5434.60(21) 5481.7(5)	$\begin{array}{c} 0.50 \ (8) \\ 1.60 \ (24) \\ 0.008 \end{array}$
$lpha_{0,10}$ $lpha_{0,8}$ $lpha_{0.6}$	5401.7(3) 5502.12(21) 5539.43(21)	$\begin{array}{c} 0.008 \\ 0.74 \ (25) \\ 10.6 \ (10) \end{array}$
$lpha_{0,5} \ lpha_{0,4}$	$5606.99(21) \\5715.84(21)$	$25.8(11) \\ 49.6(12)$
$lpha_{0,3}$ $lpha_{0,2}$	5747.14(21) 5857.52(21) 5871.63(21)	$\begin{array}{c} 10.0 \ (3) \\ 0.32 \ (4) \\ 1 \ 0 \ (2) \end{array}$
~0,0		(-)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e _{AL}	(Rn)	5.66 - 17.95	30.1(4)
e_{AK}	(Rn)		1.73(21)
	KLL	62.017 - 68.885	}
	KLX	75.744 - 83.785	}
	KXY	89.45 - 98.39	}
ес _{17,13} к	(Rn)	4.8 (2)	0.03~(3)

		Energy keV	Electrons per 100 disint.
<u>есэ</u> 1 м	(Rn)	5.4 - 7.0	11.8 (16)
$ec_{12,7}$ K	(Rn)	5.64 (4)	0.1(1)
ес _{11 6 к}	(Rn)	8.38 (3)	0.204(13)
ec _{2.1 N}	(Rn)	8.8 - 9.7	3.05(41)
$ec_{2,0}$ M	(Rn)	9.90 - 11.49	7.6(6)
$ec_{5,4}$ K	(Rn)	12.46 (1)	0.0211(15)
$ec_{2,0 N}$	(Rn)	13.28 - 14.15	1.96(15)
$ec_{4,3 L}$	(Rn)	13.82 - 17.26	0.156(31)
$ec_{3,1 K}$	(Rn)	23.92 (1)	7.28(16)
$ec_{4,3}$ M	(Rn)	27.40 - 28.99	0.042~(8)
$ec_{4,3}$ N	(Rn)	30.78 - 31.65	0.0108~(22)
$ec_{4,2}$ K	(Rn)	45.87 (2)	12.40(36)
$ec_{12,9}$ L	(Rn)	51.5 - 54.9	0.039(17)
$ec_{4,1 \text{ K}}$	(Rn)	55.81 (1)	18.0(5)
$ec_{4,0 K}$	(Rn)	60.24 (1)	1.98(10)
$ec_{6,4 K}$	(Rn)	81.14 (6)	0.249(25)
$ec_{17,13}$ L	(Rn)	85.2 - 88.6	0.021(15)
$ec_{12,7}$ L	(Rn)	85.99 - 89.43	0.064(32)
$ec_{11,6}$ L	(Rn)	88.73 - 92.17	0.0375(23)
$ec_{5,4}$ L	(Rn)	92.808 - 96.250	0.214(15)
$ec_{12,7}$ M	(Rn)	99.57 - 101.16	0.017 (10) 1.272 (20)
$ec_{3,1 L}$	(Rn)	104.271 - 107.710 106.292 107.072	1.373(30)
$ec_{5,4}$ M	$(\mathbf{R}\mathbf{n})$	100.363 - 107.972 100.770 - 110.634	0.0377 (41) 0.0150 (11)
$ec_{5,4}$ N	(\mathbf{Rn})	109.170 - 110.034 117.846 - 110.435	0.0130(11) 0.328(7)
ec3,1 M	(\mathbf{Rn})	117.840 - 119.433 121.230 - 122.007	0.328(1) 0.0854(10)
ecan I	(Rn)	121.230 - 122.037	2.30(6)
СС4,2 L	(Rn)	$136\ 16\ -\ 139\ 60$	32.30(0) 327(9)
ес <u>4</u> ,1 Г	(Rn)	139.80 - 141.39	0.547(0)
$ec_{4,2}$ M	(Rn)	140.587 - 144.020	0.373(12)
$ec_{4,0}$ L	(Rn)	143.18 - 144.05	0.143(4)
eca 1 M	(Rn)	149.735 - 151.324	0.777(21)
ecs.3 K	(Rn)	151.09 (3)	0.019(16)
$ec_{4.1 N}$	(Rn)	153.120 - 153.986	0.203(5)
$ec_{17.7 \text{ K}}$	(Rn)	153.2 (3)	0.022(22)
$ec_{4,0 M}$	(Rn)	154.162 - 155.751	0.0891(35)
$ec_{4,0 N}$	(Rn)	157.540 - 158.413	0.0232 (9)
$ec_{6,4}$ L	(Rn)	161.49 - 164.93	0.058~(5)
$ec_{5,0 K}$	(Rn)	171.07 (1)	9.06~(27)
$ec_{6,4}$ M	(Rn)	175.07 - 176.66	0.0142~(13)
$ec_{6,2}$ K	(Rn)	225.47 (1)	1.55~(7)
$\mathrm{ec}_{6,0~\mathrm{K}}$	(Rn)	239.88 (1)	0.992~(25)
$ec_{5,0 L}$	(Rn)	251.415 - 254.850	1.65(4)
$ec_{5,0 M}$	(Rn)	264.990 - 266.579	0.391(10)
$ec_{5,0 N}$	(Rn)	268.370 - 269.241	0.1019(28)
$ec_{8,1}$ K	(Rn)	273.279 (15)	0.135(4)
$ec_{6,2}$ L	(Rn)	305.823 - 309.260	0.281(9)
$ec_{6,2}$ M	(Rn)	319.398 - 320.987	0.0666 (21)

		Energy keV	Electrons per 100 disint.
$\begin{array}{c} ec_{6,0} \ L \\ ec_{6,2} \ N \\ ec_{6,0} \ M \\ ec_{6,0} \ N \\ ec_{11,0} \ K \\ ec_{8,1} \ L \\ ec_{11,0} \ L \end{array}$	(Rn) (Rn) (Rn) (Rn) (Rn) (Rn) (Rn)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.177 \ (5) \\ 0.0174 \ (5) \\ 0.0420 \ (11) \\ 0.0109 \ (3) \\ 0.213 \ (7) \\ 0.0240 \ (6) \\ 0.0378 \ (13) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Rn)	10.1372 - 17.2578		22.1(4)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Rn) (Rn)	81.07 83.78		$\begin{array}{c} 14.86 \ (23) \\ 24.5 \ (4) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	$\left({{ m Rn}} ight)$ $\left({{ m Rn}} ight)$ $\left({{ m Rn}} ight)$	94.247 94.868 95.449	} } }	8.50 (18)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	$\left({{ m Rn}} ight)$ $\left({{ m Rn}} ight)$ $\left({{ m Rn}} ight)$	97.48 97.853 98.357	} } }	2.72 (7)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	$\frac{\rm Energy}{\rm keV}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \gamma_{1,0}({\rm Rn}) \\ \gamma_{2,1}({\rm Rn}) \\ \gamma_{2,0}({\rm Rn}) \\ \gamma_{4,3}({\rm Rn}) \\ \gamma_{12,9}({\rm Rn}) \\ \gamma_{15,12}({\rm Rn}) \\ \gamma_{11,7}({\rm Rn}) \\ \gamma_{12,7}({\rm Rn}) \\ \gamma_{12,7}({\rm Rn}) \\ \gamma_{11,6}({\rm Rn}) \\ \gamma_{12,6}({\rm Rn}) \\ \gamma_{5,4}({\rm Rn}) \\ \end{array}$	$\begin{array}{r} \mathrm{keV} \\ \hline \\ 4.47 (1) \\ 9.90 (2) \\ 14.37 (1) \\ 31.87 (2) \\ 69.5 (1) \\ 70.9 (2) \\ 102.2 (2) \\ 103.2 (2) \\ 104.04 (4) \\ 106.78 (3) \\ 108.5 (2) \\ 110.856 (10) \\ 114.7 (2) \end{array}$	\times 100 54.9 (23) 15.7 (21) 10.0 (8) 0.21 (4) 0.059 (25) 0.0036 (11) 0.0008 (4) 0.064 (35) 0.20 (5) 0.277 (17) 0.006 (3) 0.369 (26) 0.010 (4)	$E2 \\ M1+E2 \\ M1+E2 \\ (E2) \\ M1 \\ M1+E2 \\ M1+E2 \\ (M1) \\ E2$	$\begin{array}{c} 860000\\ 990\ (40)\\ 539\ (15)\\ 2010\ (30)\\ 7.36\ (11)\\ 9.6\ (24)\\ 9.4\ (24)\\ 10.89\ (16)\\ 5.36\ (8)\\ \end{array}$	\times 100 0.0000064 0.0158 (20) 0.0185 (13) 0.000105 (21) 0.007 (3) 0.0036 (11) 0.0008 (4) 0.006 (3) 0.0194 (21) 0.0233 (14) 0.006 (3) 0.058 (4) 0.010 (4)
$\gamma_{13,8}(\mathrm{Rn})$ $\gamma_{3,1}(\mathrm{Rn})$ $\gamma_{20,14}(\mathrm{Rn})$	$\begin{array}{c} 114.7 (2) \\ 122.319 (10) \\ 131.6 (2) \end{array}$	$\begin{array}{c} 0.010 \ (4) \\ 10.32 \ (21) \\ 0.006 \ (3) \end{array}$	M1+E2	7.34 (11)	$\begin{array}{c} 0.010 \ (4) \\ 1.238 \ (19) \\ 0.006 \ (3) \end{array}$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$P_{\gamma} \times 100$
$\gamma_{14,8}(\mathrm{Rn})$	138.3(3)	0.0017(7)			0.0017(7)
$\gamma_{4,2}(\mathrm{Rn})$	144.27~(2)	18.8(5)	M1+E2	4.59(7)	3.36(8)
$\gamma_{17,12}(\mathrm{Rn})$	147.2(3)	0.006(3)			0.006(3)
$\gamma_{4,1}(\mathrm{Rn})$	154.208(10)	28.2(7)	M1	3.83~(6)	5.84(13)
$\gamma_{4,0}(\mathrm{Rn})$	$158.635\ (10)$	3.18(11)	M1+E2	3.46(12)	$0.713\ (16)$
$\gamma_{16,8}(\mathrm{Rn})$	165.8(2)	0.0054(28)			0.0054(28)
$\gamma_{11,5}(\mathrm{Rn})$	$175.65\ (15)$	0.017~(4)			0.017~(4)
$\gamma_{12,5}(\mathrm{Rn})$	177.3(1)	0.047~(4)			0.047~(4)
$\gamma_{6,4}(\mathrm{Rn})$	179.54~(6)	0.480(45)	M1+E2	2.12(7)	0.154(14)
$\gamma_{20,12}(\mathrm{Rn})$	199.3(3)	0.0030(14)			0.0030(14)
$\gamma_{18,9}(\mathrm{Rn})$	221.32(24)	0.038~(6)	E1	0.0675~(10)	0.036~(6)
$\gamma_{19,8}(\mathrm{Rn})$	247.2(5)	0.0097~(28)			0.0097~(28)
$\gamma_{8,3}(\mathrm{Rn})$	249.49(3)	0.061~(22)	M1+E2	0.6(4)	0.038~(10)
$\gamma_{17,7}(\mathrm{Rn})$	251.6(3)	0.088~(27)	M1+E2	0.6(4)	0.055~(10)
$\gamma_{5,2}(\mathrm{Rn})$	255.2(2)	0.048(7)			0.048(7)
$\gamma_{17,6}(\mathrm{Rn})$	255.7(3)	0.0055(28)			0.0055(28)
$\gamma_{18,6}(\mathrm{Rn})$	260.4(3)	0.0067(28)			0.0067(28)
$\gamma_{5,0}(\mathrm{Rn})$	269.463(10)	25.5(6)	M1+E2	0.789(14)	14.23(32)
$\gamma_{10,3}(\mathrm{Rn})$	270.3(4)	0.0007(4)			0.0007(4)
$\gamma_{23,12}(\mathrm{Rn})$	286.0(4)	0.0011(6)			0.0011(6)
$\gamma_{12,4}(\mathrm{Rn})$	288.18(3)	0.167(5)	E1	0.0364(6)	0.161(5)
$\gamma_{6,2}(\mathrm{Rn})$	323.871 (10)	5.98(14)	M1+E2	0.473(17)	4.06 (8)
$\gamma_{7,2}(\mathrm{Rn})$	328.38 (3)	0.209(10)	(E1)	0.0271(4)	0.203(10)
$\gamma_{6.1}(\mathrm{Rn})$	334.01(6)	0.110(7)	(E2)	0.1007(15)	0.100(6)
$\gamma_{6.0}(\mathrm{Rn})$	338.282(10)	4.08(9)	M1	0.430(6)	2.85(6)
$\gamma_{7.0}(\mathrm{Rn})$	342.78(2)	0.232(13)	$\mathrm{E1}$	0.0246(4)	0.226(13)
$\gamma_{23,9}(\mathrm{Rn})$	355.5(2)	0.0043(14)			0.0043(14)
$\gamma_{14.4}(\mathrm{Rn})$	355.7(2)	0.0028(14)			0.0028(14)
$\gamma_{8,2}(\mathrm{Rn})$	361.89(2)	0.028(7)			0.028(7)
$\gamma_{9,2}(\mathrm{Rn})$	362.9(2)	0.016(7)			0.016(7)
$\gamma_{22.7}(\mathrm{Rn})$	368.56(12)	0.009(4)			0.009(4)
$\gamma_{8,1}(\mathrm{Rn})$	371.676(15)	0.665(15)	M1	0.333(5)	0.499(11)
$\gamma_{9,1}(\mathrm{Rn})$	372.86(6)	0.052	E1	0.0205(3)	0.051
$\gamma_{8.0}(\text{Rn})$	376.26(2)	0.013(4)			0.013(4)
$\gamma_{16.4}(\text{Rn})$	383.35(2)	0.007(4)			0.007(4)
$\gamma_{14,3}(\text{Rn})$	387.7(2)	0.016(6)			0.016(6)
$\gamma_{23,7}(\text{Rn})$	390.1(2)	0.0046(21)			0.0046(21)
$\gamma_{23,1}(Rn)$	430.6(3)	0.020 (6)			0.020(6)
$\gamma_{12,2}(Rn)$	432.45(3)	0.0356(29)			0.0356(29)
$\gamma_{12,2}(-\infty)$ $\gamma_{11,0}(Rn)$	445.033(12)	1.542(48)	M1	0.205(3)	1.28 (4)
$\gamma_{20.4}(\text{Rn})$	487.5 (2)	0.011(2)		01200 (0)	0.011(2)
$\gamma_{-1,1}(\text{Rn})$	490.8(3)	0.0017(7)			0.0017(7)
$\gamma_{14.9}(\text{Rn})$	500.0(4)	0.0014(6)			0.0014(6)
$\gamma_{14,2}(\mathrm{Rn})$ $\gamma_{14,1}(\mathrm{Rn})$	510.0(4)	0.0004(3)			0.0004(3)
$\gamma_{19}(\mathrm{Rn})$	523.2(4)	0.0014(6)			0.0014(6)
$\gamma_{1c,2}(\mathbf{Rn})$	$527\ 611\ (13)$	0.073(4)			0.073(4)
$\gamma_{10,2}(\mathbf{nn})$	532.011(10)	0.0114(6)			0.0114(6)
$\gamma_{1,0,1}(\mathbf{Rn})$	532.5(4) 537 6 (1)	0.0014(0) 0.0021(7)			0.0014(0) 0.0021(7)
/16,1(n n)	001.0 (I)	0.0021(1)			0.0021(1)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{l} \gamma_{16,0}({\rm Rn}) \\ \gamma_{21,3}({\rm Rn}) \\ \gamma_{23,4}({\rm Rn}) \\ \gamma_{17,2}({\rm Rn}) \\ \gamma_{18,2}({\rm Rn}) \\ \gamma_{17,0}({\rm Rn}) \end{array}$	$541.99(2) \\545.8(5) \\574.1(7) \\579.6(3) \\584.3(3) \\594.0(3)$	$\begin{array}{c} 0.0014 \ (6) \\ 0.0011 \ (6) \\ 0.0011 \ (6) \\ 0.0014 \ (6) \\ 0.0014 \ (6) \\ 0.0014 \ (6) \end{array}$			$\begin{array}{c} 0.0014 \ (6) \\ 0.0011 \ (6) \\ 0.0011 \ (6) \\ 0.0014 \ (6) \\ 0.0014 \ (6) \\ 0.0014 \ (6) \end{array}$
$\gamma_{18,0}({ m Rn})$ $\gamma_{19,2}({ m Rn})$ $\gamma_{19,1}({ m Rn})$ $\gamma_{19,0}({ m Rn})$ $\gamma_{20,2}({ m Rn})$ $\gamma_{20,1}({ m Rn})$	598.721 (24) 609.31 (4) 619.1 (4) 623.68 (4) 631.7 (7) 641.7 (4) 646.1 (5)	$\begin{array}{c} 0.092 \ (4) \\ 0.057 \ (3) \\ 0.0036 \ (11) \\ 0.009 \ (4) \\ 0.0004 \ (3) \\ 0.0017 \ (7) \\ 0.0004 \ (4) \end{array}$			$\begin{array}{c} 0.092 \ (4) \\ 0.057 \ (3) \\ 0.0036 \ (11) \\ 0.009 \ (4) \\ 0.0004 \ (3) \\ 0.0017 \ (7) \\ 0.0004 \ (4) \end{array}$
$\begin{array}{l} \gamma_{20,0}(\mathrm{Rn}) \\ \gamma_{22,2}(\mathrm{Rn}) \\ \gamma_{23,2}(\mathrm{Rn}) \\ \gamma_{23,1}(\mathrm{Rn}) \\ \gamma_{23,0}(\mathrm{Rn}) \\ \gamma_{-1,25}(\mathrm{Rn}) \end{array}$	$\begin{array}{c} 640.1 \\ 696.9 \\ (7) \\ 711.3 \\ (2) \\ 718.4 \\ (4) \\ 728.4 \\ (8) \\ 732.8 \\ (6) \\ 737.2 \\ (8) \end{array}$	$\begin{array}{c} 0.0004 \ (4) \\ 0.0007 \ (3) \\ 0.0037 \ (10) \\ 0.0014 \ (6) \\ 0.00028 \ (14) \\ 0.00028 \ (14) \end{array}$			$\begin{array}{c} 0.0004 \\ (4) \\ 0.0007 \\ (3) \\ 0.0037 \\ (10) \\ 0.0014 \\ (6) \\ 0.00028 \\ (14) \\ 0.0006 \\ (3) \\ 0.00028 \\ (14) \end{array}$

5 References

G.R.HAGEE, M.L.CURTIS, G.R.GROVE, Phys. Rev. 96 (1954) 817A (Half-life) H.PAUL, H.WARHANEK, Helv. Phys. Acta 30 (1957) 272 (Gamma-ray energies and emission probabilities) R.C.PILGER JR., Thesis, Report UCRL-3877, Univ. California (1957) (Alpha-particle and gamma-ray energies and emission probabilities) J.ROBERT, Ann. Phys. (Paris) 4 (1959) 89 (Half-life) A.Rytz, Helv. Phys. Acta 34 (1961) 240 (Alpha-particle energies and emission probabilities) R.J.WALEN, V.NEDOVESOV, G.BASTIN-SCOFFIER, Nucl. Phys. 35 (1962) 232 (Alpha-particle energies and emission probabilities) M.GIANNINI, D.PROSPERI, S.SCIUTI, Nuovo Cim. 25 (1962) 1314 (Alpha-particle energies and emission probabilities) A.H.WAPSTRA, Nucl. Phys. 57 (1964) 48 (Alpha-particle energies and emission probabilities) H.W.KIRBY, K.C.JORDAN, J.Z.BRAUN, M.L.CURTIS, M.L.SALUTSKY, J. Inorg. Nucl. Chem. 27 (1965) 1881 (Half-life) P.POLAK, A.H.WAPSTRA, C.YTHIER, Priv. Comm. (1966) (Gamma-ray energies and emission probabilities) K.C.JORDAN, B.C.BLANKE, Proc. Symp. on Standardization of Radionuclides, STI/PUB/139, IAEA, Vienna (1967) 567(Half-life) CH.BRIANÇON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533 (Gamma-ray energies and emission probabilities) D.BERTAULT, M.VIDAL, G.Y.PETIT, J. Phys. (Paris) 30 (1969) 909 (Conversion electron spectra, 269 keV gamma-ray multipolarity) K.KRIEN, C.GUNTHER, J.D.BOWMAN, B.KLEMME, Nucl. Phys. A141 (1970) 75 (Gamma-ray energies and emission probabilities, E2/M1 mixing ratios) W.F.DAVIDSON, R.D.CONNOR, Nucl. Phys. A149 (1970) 363 (Alpha -particle and gamma-ray energies and emission probabilities, E2/M1 mixing ratios)

B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha-particle energies and emission probabilities) W.H.A.HESSELINK, Report NP-19781 (1972) (Gamma-ray energies and emission probabilities) B.RICHTER, M.J.CANTY, L.LEY, M.V.BANASCHIK, A.NESKAKIS, Nucl. Phys. A223 (1974) 234 (Conversion electron spectra, E2/M1 mixing ratios) K.BLATON-ALBICKA, B.KOTLINSKA-FILIPEK, M.MATUL, K.STRYCZNIEWICZ, M.NOWICKI, E.RUCHOWSKA-LUKASIAK, Nukleonika 21 (1976) 935 (Gamma-ray energies and emission probabilities) C.MAPLES, Nucl. Data Sheets 22 (1977) 243 (Alpha-particle energies and emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Atomic electron binding energies) G.J.MILLER, J.C.MCGEORGE, I.ANTHONY, R.O.OWENS, Phys. Rev. C36 (1987) 420 (Half-life) M.J.MARTIN, Nucl. Data Sheets 63 (1991) 723 (Branch of 223Ra decay by emission of 14C) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-particle energies and emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) R.K.SHELINE, C.F.LIANG, P.PARIS, Phys. Rev. C57 (1998) 104 (Gamma-ray energies and emission probabilities) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (Calculation of emission probabilities of X-rays and Auger electrons) E.BROWNE, Nucl. Data Sheets 93 (2001) 763 (Ra-223 alpha decay scheme and alpha decay data evaluation) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Band-Raman ICC for gamma-ray transitions)

$T_{1/2}$:	3.631	(2)	d
$Q^{'}_{lpha}$:	5788.85	(15)	keV
α	:	100		%
^{14}C	:	5	(1)	$\times 10^{-9}~\%$

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\begin{array}{c} \alpha_{0,4} \\ \alpha_{0,3} \\ \alpha_{0,2} \\ \alpha_{0,1} \\ \alpha_{0,0} \end{array}$	$\begin{array}{c} 5034.29 \ (18) \\ 5051.56 \ (17) \\ 5161.32 \ (18) \\ 5448.80 \ (15) \\ 5685.48 \ (15) \end{array}$	$\begin{array}{c} 0.0030 \ (5) \\ 0.0076 \ (10) \\ 0.0072 \ (8) \\ 5.25 \ (5) \\ 94.73 \ (5) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Rn)	5.58 - 11.48	0.498(16)
e_{AK}	(Rn) KLL KLX KXY	62.017 - 68.885 75.744 - 83.785 89.45 - 98.39	0.0151 (19) } } }
${ m ec_{1,0}~K} { m ec_{1,0}~L} { m ec_{1,0}~M} { m ec_{1,0}~N}$	(Rn) (Rn) (Rn) (Rn)	$\begin{array}{rrrr} 142.590 & (6) \\ 222.938 & - 226.376 \\ 236.513 & - 238.102 \\ 239.900 & - 240.764 \end{array}$	$\begin{array}{c} 0.46 \ (2) \\ 0.50 \ (3) \\ 0.134 \ (3) \\ 0.0347 \ (6) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Rn)	10.137 - 17.28		0.373(16)	
$XK\alpha_2$	(Rn)	81.07		0.130(3)	$K\alpha$
$XK\alpha_1$	(Rn)	83.78		0.214(4)	}
$XK\beta_3$	(Rn)	94.247	}		
$XK\beta_1$	(Rn)	94.868	}	0.0743~(18)	$\mathrm{K}eta_1'$
$ ext{XK}eta_5^{\prime\prime}$	(Rn)	95.449	}		
$XK\beta_2$	(Rn)	97.48	}		
$XK\beta_4$	(Rn)	97.853	}	0.0238(7)	$\mathrm{K}eta_2'$
$\rm XKO_{2,3}$	(Rn)	98.357	}		

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}({ m Rn}) \\ \gamma_{2,1}({ m Rn}) \\ \gamma_{3,1}({ m Rn}) \\ \gamma_{4,1}({ m Rn}) \\ \gamma_{3,0}({ m Rn})$	$\begin{array}{c} 240.986\ (6)\\ 292.7\ (1)\\ 404.45\ (9)\\ 422.04\ (10)\\ 645.44\ (9) \end{array}$	$\begin{array}{c} 5.26 \ (5) \\ 0.0072 \ (8) \\ 0.0022 \ (5) \\ 0.0030 \ (5) \\ 0.0054 \ (9) \end{array}$	E2 E2 E1 [E1] E1	$\begin{array}{c} 0.276 \ (4) \\ 0.1487 \ (21) \\ 0.01717 \ (24) \\ 0.01567 \ (22) \\ 0.00663 \ (10) \end{array}$	$\begin{array}{c} 4.12 \ (4) \\ 0.0063 \ (7) \\ 0.0022 \ (5) \\ 0.0030 \ (5) \\ 0.0054 \ (9) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

F.Asaro, F.Stephens Jr., I.Perlman, Phys. Rev. 92 (1953) 1495 (Alpha-particle emission probabilities) R.J.WALEN, Compt. Rend. Acad. Sci. (Paris) 255 (1962) 1604 (Alpha emission energies) R.D.LLOYD, C.W.MAYS, D.R.ATHERTON, D.O.CLARK, Report COO-225, Utah Univ. (1962) 88 (Half-life) G.BASTIN-SCOFFIER, Compt. Rend. Acad. Sci. (Paris) 254 (1962) 3854 (Alpha emission energies) A.PEGHAIRE, Nucl. Instrum. Methods 75 (1969) 66 (Gamma-ray emission probabilities) B.GRENNBERG, A.Rytz, Metrologia 7 (1971) 65 (Alpha emission energy) J.C.SOARES, J.P.RIBEIRO, A.GONCALVES, F.B.GIL, J.G.FERREIRA, Compt. Rend. Acad. Sci. (Paris) Ser. B 273 (1971) 985 (Alpha-particle emission probabilities) K.C.JORDAN, G.W.OTTO, R.P.RATAY, J. Inorg. Nucl. Chem. 33 (1971) 1215 (Half-life) J.DALMASSO, Thesis, Report FRNC-TH-441, Univ. Nice (1972) (Gamma-ray emission probabilities) J.DALMASSO, H.MARIA, C.YTHIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 277 (1973) 467 (Gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) W.Kurcewicz, N.Kaffrell, N.Trautmann, A.Plochocki, J.Zylicz, M.Matul, K.Stryczniewicz, Nucl. Phys. A289 (1977) 1 (Gamma-ray energies, Gamma-ray emission probabilities) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities) R.VANINBROUKX, H.H.HANSEN, Int. J. Appl. Radiat. Isotop. 34 (1983) 1395 (Gamma-ray emission probabilities) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma-ray emission probabilities) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) G.BORTELS, D.REHER, R.VANINBROUKX, Int. J. Appl. Radiat. Isotop. 35 (1984) 305 (Gamma-ray emission probabilities) P.B.PRICE, J.D.STEVENSON, S.W.BARWICK, H.L.RAVN, Phys. Rev. Lett. 54 (1985) 297 (Cluster decay) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energies) E.HOURANI, L.ROSIER, G.BERRIER-RONSIN, A.ELAYI, A.C.MUELLER, G.RAPPENECKER, G.ROTBARD, G.RENOU, A.LIEBE, L.STAB, H.L.RAVN, Phys. Rev. C44 (1991) 1424 (Cluster decay)

W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities) T.BABELIOWSKY, G.BORTELS, Appl. Radiat. Isot. 44 (1993) 1349 (Alpha-particle emission probabilities) G.ARDISSON, M.HUSSONNOIS, Radiochim. Acta 70/71 (1995) 123 (Cluster decay) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons) A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 157 (Nuclear structure, energies) S.P.TRETYAKOVA, V.L.MIKHEEV, Nuovo Cim. 110 (1997) 1043 (Cluster decay) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) H.SCHRADER, Appl. Radiat. Isot. 60 (2004) 317 (Half-life) N.J.STONE, J.R.STONE, M.LINDROOS, P.RICHARDS, M.VESKOVIC, D.A.WILLIAMS, Nucl. Phys. A793 (2007) 1 (Half-life) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)
$T_{1/2}$:	14.82	(19)	d
Q_{β^-}	:	356	(5)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,3}^-$	200(5)	< 0.01	2nd forbidden	>10.1
$\beta_{0,2}$	235(5)	<0.01	Ist forbidden unique	>9.9
$\beta_{0,1}^-$	316(5)	68.8(20)	Allowed	6.87
$\beta_{0,0}^-$	356~(5)	31.2 (20)	1st forbidden	7.38

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Ac)	5.87 - 19.69	15.7(7)	
$ec_{1,0} L ec_{1,0} M ec_{1,0} N$	$\left({ m Ac} ight) \ \left({$	20.24 - 24.22 35.09 - 36.87 38.82 - 39.78	$\begin{array}{c} 29.2 \ (8) \\ 7.2 \ (12) \\ 1.86 \ (27) \end{array}$	
$ \begin{array}{c} \beta_{0,3}^- \\ \beta_{0,2}^- \\ \beta_{0,1}^- \\ \beta_{0,0}^- \end{array} $	max: max: max: max:	$\begin{array}{ccc} 200 & (5) \\ 235 & (5) \\ 316 & (5) \\ 356 & (5) \end{array}$	< 0.01 < 0.01 68.8 (20) 31.2 (20)	avg: 54.0 (15) avg: 70.5 (16) avg: 88.3 (16) avg: 100.7 (16)

4 Photon Emissions

4.1 X-Ray Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	Photons per 100 disint.
XL	(Ac)	10.8701 - 18.9228	13.6(6)

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{1,0}(Ac)$	40.09(5)	68.8(17)	E1	1.293(19)	30.0(7)

5 References

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. 72 (1947) 253(Half-life) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435 (Half-life) L.B.MAGNUSSON, F.WAGNER JR., D.W.ENGELKEMEIR, M.S.FREEDMAN, Report ANL-5386, Argonne National Laboratory (1955) (Gamma-ray energies emission probabilities) F.S.STEPHENS, Report UCRL-2970, Univ. California (1955) (Gamma-ray energies emission probabilities) J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma-ray energies emission probabilities) R.G.HELMER, C.W.REICH, M.A.LEE, I.AHMAD, Int. J. Appl. Radiat. Isotop. 37 (1986) 139 (Gamma-ray emission probabilities) I.AHMAD, J.E.GINDLER, A.M.FRIEDMAN, R.R.CHASMAN, T.ISHII, Nucl. Phys. A472 (1987) 285 (Gamma-ray energies) G.J.MILLER, J.C.MCGEORGE, I.ANTHONY, R.O.OWENS, Phys. Rev. C36 (1987) 420 (Half-life) Y.A.AKOVALI, Nucl. Data Sheets 60 (1990) 617 (Decay scheme and levels) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	1600	(7)	у
$Q^{'}_{lpha}$:	4870.62	(25)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\begin{array}{c} \alpha_{0,4} \\ \alpha_{0,3} \\ \alpha_{0,2} \\ \alpha_{0,1} \\ \alpha_{0,0} \end{array}$	$\begin{array}{c} 4160 \ (2) \\ 4191 \ (2) \\ 4340 \ (1) \\ 4601 \ (1) \\ 4784.34 \ (25) \end{array}$	$\begin{array}{c} 0.0002\\ 0.0008\\ 0.0066\ (22)\\ 5.95\ (4)\\ 94.038\ (40) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
$ec_{1,0} K ec_{1,0} L ec_{1,0} M ec_{1,0} N$	(Rn) (Rn) (Rn) (Rn)	87.814 (13) 168.163 - 171.600 181.738 - 183.327 185.120 - 185.989	$\begin{array}{c} 0.675 \ (11) \\ 1.280 \ (18) \\ 0.342 \ (5) \\ 0.0892 \ (14) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

	Energy keV		Photons per 100 disint.	
(Rn)	10.14 - 17.26		0.807(14)	
(Rn) (Rn)	81.07 83.78		$\begin{array}{c} 0.192 \ (4) \\ 0.317 \ (6) \end{array}$	$K\alpha$
$\left({{ m Rn}} ight)$ $\left({{ m Rn}} ight)$ $\left({{ m Rn}} ight)$	94.247 94.868 95.449	} } }	0.1098 (25)	$\mathrm{K}\beta_1'$
$\left({{ m Rn}} ight)$ $\left({{ m Rn}} ight)$ $\left({{ m Rn}} ight)$	97.48 97.853 98.357	} } }	0.0351 (10)	$\mathrm{K}\beta_2'$
	(Rn) (Rn) (Rn) (Rn) (Rn) (Rn) (Rn) (Rn)	$\begin{array}{c c} & Energy \\ keV \\ \hline \\ (Rn) & 10.14 - 17.26 \\ (Rn) & 81.07 \\ (Rn) & 83.78 \\ (Rn) & 94.247 \\ (Rn) & 94.868 \\ (Rn) & 95.449 \\ (Rn) & 97.48 \\ (Rn) & 97.853 \\ (Rn) & 98.357 \\ \end{array}$	$\begin{array}{c c} & Energy \\ keV \\ \hline \\ (Rn) & 10.14 - 17.26 \\ \hline \\ (Rn) & 81.07 \\ \hline \\ (Rn) & 83.78 \\ \hline \\ (Rn) & 94.247 \\ \hline \\ (Rn) & 94.868 \\ \\ (Rn) & 95.449 \\ \hline \\ (Rn) & 97.48 \\ \hline \\ (Rn) & 97.853 \\ \hline \\ (Rn) & 98.357 \\ \hline \end{array}$	$\begin{array}{c c} Energy \\ keV \end{array} \begin{array}{c} Photons \\ per 100 \ disint. \end{array} \\ \hline \\ (Rn) & 10.14 - 17.26 & 0.807 \ (14) \\ (Rn) & 81.07 & 0.192 \ (4) \\ (Rn) & 83.78 & 0.317 \ (6) \\ \hline \\ (Rn) & 94.247 & \} \\ (Rn) & 94.868 & \} & 0.1098 \ (25) \\ (Rn) & 95.449 & \} \\ (Rn) & 97.48 & \} \\ (Rn) & 97.853 & \} & 0.0351 \ (10) \\ (Rn) & 98.357 & \} \end{array}$

_	${ m Energy}\ { m keV}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}({ m Rn}) \ \gamma_{2,1}({ m Rn}) \ \gamma_{3,1}({ m Rn}) \ \gamma_{4,1}({ m Rn}) \ \gamma_{3,0}({ m Rn})$	$\begin{array}{c} 186.211 \ (13) \\ 262.27 \ (5) \\ 414.60 \ (5) \\ 449.37 \ (10) \\ 600.66 \ (5) \end{array}$	$\begin{array}{c} 5.962 \ (48) \\ 0.0066 \ (22) \\ 0.0003 \\ 0.0002 \\ 0.0005 \end{array}$	E2 [E2] [E1] [E1] [E1]	$\begin{array}{c} 0.677 \ (10) \\ 0.209 \ (4) \\ 0.01628 \ (23) \\ 0.01373 \ (20) \\ 0.00762 \ (11) \end{array}$	$\begin{array}{c} 3.555 \ (19) \\ 0.0055 \ (18) \\ 0.0003 \\ 0.0002 \\ 0.0005 \end{array}$

4.2 Gamma Transitions and Emissions

5 References

I.CURIE, F.JOLIOT, Compt. Rend. (Paris) 187 (1928) 43 (Half-life) H.J.J.BRADDICK, H.M.CAVE, Proc. Roy. Soc. A 121 (1928) 367 (Half-life) S.W.WATSON, M.C.HENDERSON, Proc. Roy. Soc. A 118 (1928) 318 (Half-life) F.A.B.WARD, C.E.WYNN-WILLIAMS, H.M.CAVE, Proc. Roy. Soc. A 125 (1929) 713 (Half-life) L.MEITNER, W.ORTMANN, Z. Phys. 60 (1930) 143 (Half-life) E.GLEDITSCH, E.FOEYN, Am. J. Sci. 29 (1935) 253 (Half-life) P.GÜNTHER, Z. Phys. Chem. A185 (1939) 367 (Half-life) T.P.KOHMAN, D.P.AMES, J.SEDET, Report National Nuclear Energy Series 14B (1949) 1675 (Half-life) W.SEBAOUN, Ann. Phys. (Paris) 1 (1956) 680 (Half-life) G.R.MARTIN, D.G.TUCK, Int. J. Appl. Radiat. Isotop. 5 (1959) 141 (Half-life) G.V.GORSHKOV, Z.G.GRITCHENKO, A.T.ILYUNSKAYA, B.S.KUZNETSOV, N.S.SHIMANSKAYA, At. Energ. 7 (1959) 912(Half-life) F.S.STEPHENS, F.ASARO, I.PERLMAN, Phys. Rev. 119 (1960) 796 (Gamma-ray instensity) G.BASTIN-SCOFFIER, C.F.LEANG, R.J.WALEN, J. Phys. (Paris) 24 (1963) 854 (Alpha intensity) H.RAMTHUN, Nukleonika 8 (1966) 244 (Half-life) G.WALLACE, G.E.COOTE, Nucl. Instrum. Methods 74 (1969) 353 (Gamma-ray instensity) E.W.A.LINGEMAN, J.KONIJN, P.POLAK, A.H.WAPSTRA, Nucl. Phys. A133 (1969) 630 (Gamma-ray instensity) R.S.MOWATT, Can. J. Phys. 48 (1970) 2606 (Gamma-ray instensity) K.YA.GROMOV, B.M.SABIROV, J.J.URBANETS, Bull. Rus. Acad. Sci. Phys. 33 (1970) 1510 (Gamma-ray instensity) W.LOURENS, A.H.WAPSTRA, Z. Phys. 247 (1971) 147 (Gamma-ray instensity) A.G.DE PINHO, M.WESKLER, Z. Naturforsch. 28a (1973) 1635 (X-ray emission intensities) V.S.ALEKSANDROV, Report JINR-PL-7308, Joint Institute of Nuclear Research, Dubna (1973) (Gamma-ray instensity)

A.HACHEM, Compt. Rend. Acad. Sci. (Paris) Ser. B 281 (1975) 45 (Gamma-ray instensity) V.ZOBEL, E.EUBE, J.EBERTH, U.EBERTH, Nucl. Instrum. Methods 141 (1977) 329 (Gamma-ray instensity) G.MOUZE, Compt. Rend. Acad. Sci. (Paris) 292 (1981) 1243 (Gamma-ray instensity) H.AKCAY, G.MOUZE, D.MAILLARD, CH.YTHIER, Radiochem. Radioanal. Lett. 51 (1982) 1 (Gamma-ray instensity) M.A.FAROUK, A.M.AL-SORAYA, Nucl. Instrum. Methods 200 (1982) 593 (Gamma-ray instensity) D.G.OLSON, Nucl. Instrum. Methods 206 (1983) 313 (Gamma-ray instensity) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma-ray instensity) G.MOUZE, C.YTHIER, J.F.COMANDUCCI, Rev. Roum. Phys. 35 (1990) 337 (Gamma-ray instensity) N.E.HOLDEN, Pure Appl. Chem. 62 (1990) 941 (Half-life) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. Lett. 153 (1991) 137 (Gamma-ray instensity) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energies and probabilities) O.DIALLO, G.MOUZE, C.YTHIER, J.F.COMANDUCCI, NUOVO Cim. 106A (1993) 1321 (Gamma-ray instensity) Y.A.AKOVALI, Nucl. Data Sheets 77 (1996) 433 (Spin, parity and multipolarity) Y.A.AKOVALI, Nucl. Data Sheets 77 (1996) 271 (Spin, parity and multipolarity) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.MOREL, M.ETCHEVERRY, J.L.PICOLO, Appl. Radiat. Isot. 49 (1998) 1387 (Gamma-ray instensity) D.SARDARI, T.D.MCMAHON, J. Radioanal. Nucl. Chem. 244 (2000) 463 (Gamma-ray instensity) S.P.LAMONT, R.J.GEHRKE, S.E.GLOVER, R.H.FILBY, J. Radioanal. Nucl. Chem. 248 (2001) 247 (Alpha intensity) J.U.DELGADO, J.MOREL, M.ETCHEVERRY, Appl. Radiat. Isot. 56 (2002) 137 (Gamma-ray instensity) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129 (\mathbf{O}) G.L.MOLNAR, Z.S.RÉVAY, T.BELGYA, Proc. 11th Int. Symp. on Capture Gamma-ray Spectroscopy, 2-6 September 2002, Pruhonice (2003) 522 (Gamma-ray instensity) J.MOREL, S.SPEMAN, M.RASKO, E.TERECHTCHENKO, J.U.DELGADO, Appl. Radiat. Isot. 60 (2004) 341 (Gamma-ray instensity) R.G.HELMER, in Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications Vol. 1, STI/PUB/1287, IAEA, Vienna (2007) 19 (Gamma-ray instensity)

$T_{1/2}$:	5.75	(4)	У
Q_{β^-}	:	45.8	(7)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Prob ×	ability 100	Nature	$\log ft$
$\begin{array}{c} & \beta_{0,4}^- \\ \beta_{0,3}^- \\ \beta_{0,2}^- \\ \beta_{0,1}^- \end{array}$	$\begin{array}{c} 12.7 \ (7) \\ 25.6 \ (7) \\ 39.1 \ (7) \\ 39.5 \ (7) \end{array}$	$30 \\ 8.7 \\ 49 \\ 12$	(10) (9) (10) (10)	Allowed 1st forbidden Allowed 1st forbidden	$5.11 \\ 6.2 \\ 6.45 \\ 7.07$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Ac)	5.87 - 19.67	12 (5)	
$ec_{1,0 M}$	(Ac)	1.28 - 3.06	9(7)	
$ec_{1,0 N}$	(Ac)	5.01 - 5.97	2.5(21)	
ес _{2,0 М}	(Ac)	1.67 - 3.45	67~(11)	
$ec_{2,0 N}$	(Ac)	5.40 - 6.36	17.8(28)	
$ec_{3,2}$ M	(Ac)	8.52 - 10.30	7.17(46)	
$ec_{3,2 N}$	(Ac)	12.25 - 13.21	1.82(12)	
$ec_{4,2 L}$	(Ac)	6.6 - 10.5	21 (8)	
$ec_{4,2}$ M	(Ac)	21.4 - 23.2	5.2(19)	
$ec_{4,2}$ N	(Ac)	25.1 - 26.1	1.38(49)	
$ec_{4,3}$ M	(Ac)	7.88 - 9.66	1.53(31)	
$ec_{4,3}$ N	(Ac)	11.61 - 12.57	0.39(8)	
$\beta_{0.4}^{-}$	max:	12.7 (7)	30(10)	avg: $3.2(2)$
$\beta_{0,3}^{-}$	max:	25.6 (7)	8.7(9)	avg: $6.5(2)$
$\beta_{0.2}^{-}$	max:	39.1 (7)	49(10)	avg: $9.9(2)$
$\beta_{0,1}^{2,2}$	max:	39.5 (7)	12 (10)	avg: 10.0 (2)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.
XL	(Ac)	10.8701 - 18.9228	9.6 (19)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$ \begin{array}{c} \gamma_{1,0}({\rm Ac}) \\ \gamma_{2,0}({\rm Ac}) \\ \gamma_{4,3}({\rm Ac}) \\ \gamma_{3,2}({\rm Ac}) \\ \gamma_{4,2}({\rm Ac}) \end{array} $	$\begin{array}{c} 6.28 \ (3) \\ 6.67 \ (2) \\ 12.88 \ (11) \\ 13.520 \ (36) \\ 26.40 \ (11) \end{array}$	$12 (10) \\ 89 (14) \\ 2.30 (46) \\ 11.0 (7) \\ 28 (10)$	M2 E2 E1 E1 M1+E2	$\begin{array}{c} 6680000 \ (190000) \\ 1560000 \ (40000) \\ 6.67 \ (18) \\ 5.86 \ (10) \\ 201 \ (4) \end{array}$	$\begin{array}{c} 0.0000018 \ (15) \\ 0.000057 \ (9) \\ 0.30 \ (6) \\ 1.6 \ (1) \\ 0.14 \ (5) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, S.C.Lind, St.Meyer, E.Rutherford, E.Schweidler, Rev. Mod. Phys. 3 (1931) 427

(Half-life)

 ${\rm R.A.Dudley},$ Report NYO-9504, Massachusetts Institute of Technology (1960)85

(Half-life)

J.TOUSSET, A.MOUSSA, J. Phys. Radium 22 (1961) 683

(Beta emission energies, Beta emission probabilities, Gamma ray energies)

C.W.MAYS, D.R.ATHERTON, R.D.LLOYD, H.F.LUCAS, B.J.STOVER, F.W.BRUENGER, Report COO-225, Utah Univ. (1962) 92

(Half-life)

M.HERMENT, A.GIZON, Annual Report ISN Grenoble (1972) 115

(Beta emission energies)

P.C.Sood, A.Gizon, D.G.Burke, B.Singh, C.F.Liang, R.K.Sheline, M.J.Martin, R.W.Hoff, Phys. Rev. C52 (1995) 88

(Beta emission energies, Beta emission probabilities, Gamma ray energies, Gamma-ray emission probabilities, Multipolarities, Spin and Parity)

A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 723

(Spin and Parity, Multipolarities, Mixing ratio, Beta emission energies, Beta emission probabilities, Gamma ray energies, Half-life)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

$T_{1/2}$:	10.0	(1)	d
$Q^{'}_{lpha}$:	5935.1	(14)	keV
α	:	100		%

2 α Emissions

	$rac{\mathrm{Energy}}{\mathrm{keV}}$	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,48}$	4903.6(14)	0.0011(4)
$\alpha_{0,47}$	4992.7(14)	0.0013(3)
$\alpha_{0,46}$	5019.3(14)	0.00015(5)
$\alpha_{0,45}$	5025.5(14)	0.00083(21)
$\alpha_{0,44}$	5035.5(14)	0.0021(3)
$\alpha_{0,43}$	5064.1(14)	0.00114 (18)
$\alpha_{0,42}$	5076.8(14)	0.0038(19)
$\alpha_{0,41}$	5094.1(14)	0.015(7)
$\alpha_{0,40}$	5129.0(14)	0.0058 (8)
$\alpha_{0,39}$	5162.1(14)	0.00066(12)
$\alpha_{0,38}$	5195.1(14)	0.00015(5)
$\alpha_{0,37}$	5203.3(14)	0.0101(10)
$\alpha_{0,36}$	5210.2(14)	0.022(1)
$\alpha_{0,35}$	5239.3(14)	0.0026(5)
$\alpha_{0,34}$	5269.1(14)	0.048(19)
$\alpha_{0,33}$	5287.6(14)	0.214(10)
$\alpha_{0,32}$	5321.2(14)	0.007(7)
$\alpha_{0,31}$	5341.9(14)	0.0027(8)
$\alpha_{0,30}$	5356.2(14)	0.000097(2)
$\alpha_{0,29}$	5379.0(14)	0.0020(5)
$\alpha_{0,28}$	5391.2(14)	0.0006(4)
$\alpha_{0,27}$	5414.5(14)	0.0030(4)
$\alpha_{0,26}$	5428.3(14)	0.0023(3)
$\alpha_{0,25}$	5430.1(14)	0.0028(8)
$\alpha_{0,24}$	5435.8(14)	0.0083(6)
$\alpha_{0,23}$	5443.3(14)	0.098(19)
$\alpha_{0,22}$	5468.4(14)	0.00052(18)
$\alpha_{0,21}$	5487.4(14)	0.0020(3)
$\alpha_{0,20}$	5497.4(14)	0.0022(7)
$\alpha_{0,19}$	5515.2(14)	0.0052(19)
$\alpha_{0,18}$	5523.7(14)	0.013(6)
$\alpha_{0,17}$	5540.1(14)	0.0072(8)
$\alpha_{0,16}$	5546.5(14)	0.055(12)
$\alpha_{0,15}$	5555.3(14)	0.084(10)
$\alpha_{0,14}$	5563.3(14)	0.017(7)
$\alpha_{0,13}$	5580.5(14)	0.95(4)
$\alpha_{0,12}$	5599.3(14)	0.114(7)
$\alpha_{0,11}$	5609.0(14)	1.09(5)
$\alpha_{0,10}$	5037.3(14)	4.16(23)
$lpha_{0,9}$	5682.2(14)	1.31(4)
$lpha_{0,8}$	5686.4(14)	0.021(14)

CNDC /Huang Xiaolong, Wang Baosong

	$rac{\mathrm{Energy}}{\mathrm{keV}}$	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,7}$	5723.1 (14)	2.03(23)
$\alpha_{0,6}$	5730.5(14)	1.6(3)
$\alpha_{0,5}$	5731.6(14)	1.24(10)
$\alpha_{0,4}$	5731.9(17)	9.0(5)
$\alpha_{0,3}$	5791.7 (14)	6.2(9)
$\alpha_{0,2}$	5793.1 (21)	18.9 (20)
$\alpha_{0,1}$	5804.2(14)	0.3
$\alpha_{0,0}$	5829.6(14)	52.4(24)

3 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
e_{AL}	(Fr)	5.73 - 18.52	23.8(12)
e _{AK}	(Fr)		0.115(9)
	KLĹ	63.576 - 70.787	}
	KLX	77.720 - 86.101	}
	KXY	91.84 - 101.12	}
$ec_{13,9}$ K	(Fr)	2.4 (1)	0.015~(7)
$ec_{7,0}$ K	(Fr)	7.27 (3)	1.84(15)
$ec_{1,0 L}$	(Fr)	7.39 - 11.00	7.0(9)
$ec_{9,3 \rm K}$	(Fr)	10.40 (3)	0.088~(6)
$ec_{2,0}$ L	(Fr)	18.06 - 21.66	14.6(12)
$ec_{8,1~\rm K}$	(Fr)	18.72 (3)	$0.0191\ (12)$
$ec_{3,0 L}$	(Fr)	19.95 - 23.56	6.7~(6)
$ec_{1,0}$ M	(Fr)	21.38 - 23.03	1.88(25)
$ec_{11,6}\ {\rm K}$	(Fr)	22.62 (4)	0.0192~(14)
$ec_{11,5\ K}$	(Fr)	23.68 (3)	0.113(7)
$ec_{1,0 N}$	(Fr)	24.87 - 25.77	0.49(7)
$ec_{9,5 L}$	(Fr)	31.6 - 35.2	0.1080(16)
$ec_{2,0 M}$	(Fr)	32.05 - 33.70	$3.93\ (33)$
$ec_{3,0}$ M	(Fr)	33.94 - 35.59	1.81 (17)
$ec_{2,0 N}$	(Fr)	35.54 - 36.44	1.02 (9)
$ec_{3,0}$ N	(Fr)	37.43 - 38.33	0.474~(45)
$ec_{6,3}$ L	(Fr)	44.0 - 47.6	0.32(7)
$ec_{13,7}$ K	(Fr)	44.04 (3)	0.0221 (14)
$ec_{4,2}$ L	(Fr)	44.32 - 47.92	4.04(25)
$ec_{9,5 M}$	(Fr)	45.6 - 47.2	0.02914 (43)
$ec_{6,2 L}$	(Fr)	45.637 - 49.246	0.80(16)
$ec_{9,0 K}$	(Fr)	48.93 (2)	0.0968~(22)
$ec_{7,3}$ L	(Fr)	51.22 - 54.82	0.166~(42)
$ec_{13,4\ \rm K}$	(Fr)	52.80 (3)	0.0270 (18)
$ec_{7,2}$ L	(Fr)	53.10 - 56.71	0.411 (41)
$ec_{4,1 L}$	(Fr)	54.91 - 58.52	0.52(14)
$ec_{5,1 L}$	(Fr)	55.23 - 58.84	0.0562 (43)

		Energy keV	Electrons per 100 disint.
ес _{10,3 К}	(Fr)	56.12 (3)	1.12 (17)
$ec_{6,1 L}$	(Fr)	56.2 - 59.8	0.136(27)
$ec_{6,3 M}$	(Fr)	58.0 - 59.6	0.086(20)
$ec_{4,2}$ M	(Fr)	58.31 - 59.96	0.96(6)
$ec_{6,2}$ M	(Fr)	59.627 - 61.277	0.207(42)
$ec_{11.8 L}$	(Fr)	60.2 - 63.8	0.053(8)
ес _{7,3 М}	(Fr)	65.21 - 66.86	0.045(11)
$ec_{7,2}$ M	(Fr)	67.09 - 68.74	0.111(11)
$ec_{23,11}$ K	(Fr)	68.05 (4)	0.017(16)
$ec_{7,3 N}$	(Fr)	68.7 - 69.6	0.0118(30)
$ec_{10,7 L}$	(Fr)	68.78 - 72.38	0.86(6)
$ec_{4,1}$ M	(Fr)	68.90 - 70.55	0.142(37)
$ec_{5,1}$ M	(Fr)	69.22 - 70.87	0.0136(10)
$ec_{6,1}$ M	(Fr)	70.19 - 71.84	0.035(7)
$ec_{7,2 N}$	(Fr)	70.58 - 71.48	0.0292(29)
$ec_{11.8 M}$	(Fr)	74.2 - 75.8	0.0125 (19)
$ec_{10,6 L}$	(Fr)	76.3 - 79.9	0.261(25)
$ec_{10.5 L}$	(Fr)	77.53 - 81.13	0.149 (46)
ес _{16,7 К}	(Fr)	78.65 (4)	0.013 (11)
$ec_{4,0}$ L	(Fr)	81.02 - 84.62	1.76 (13)
$ec_{5,0 L}$	(Fr)	81.28 - 84.88	0.088(7)
$ec_{6,0 L}$	(Fr)	82.3 - 85.9	0.33 (14)
$ec_{10,7 M}$	(Fr)	82.77 - 84.42	0.204(15)
$ec_{13,9}$ L	(Fr)	84.85 - 88.46	0.011(6)
$ec_{11,2}$ K	(Fr)	86.84 (3)	0.0432(25)
$ec_{7,0}$ L	(Fr)	89.8 - 93.4	0.586(48)
ес _{10,6 М}	(Fr)	90.3 - 91.9	0.062~(6)
$ec_{10,5 M}$	(Fr)	91.52 - 93.17	0.040(13)
$ec_{9,3}$ L	(Fr)	92.9 - 96.5	0.0191 (13)
$ec_{10,0 K}$	(Fr)	94.62 (3)	0.16~(9)
$ec_{4,0 M}$	(Fr)	95.01 - 96.66	0.426(32)
$ec_{5,0}$ M	(Fr)	95.27 - 96.92	0.0212 (16)
$ec_{6,0 M}$	(Fr)	96.3 - 97.9	0.086 (39)
ес _{7,0 М}	(Fr)	103.8 - 105.4	0.148(14)
$ec_{11,5 L}$	(Fr)	106.18 - 109.78	0.0465(29)
$ec_{7,0 N}$	(Fr)	107.3 - 108.2	0.0388 (33)
ес _{13,2 К}	(Fr)	115.77 (3)	0.0186(12)
$ec_{11,5 M}$	(Fr)	120.17 - 121.82	0.0119(7)
$ec_{9,0 L}$	(Fr)	131.43 - 135.04	0.01940 (44)
$ec_{10,3}$ L	(Fr)	138.619 - 142.228	0.212(21)
ес _{10,3 М}	(Fr)	152.609 - 154.259	0.051(5)
$ec_{10,0 L}$	(Fr)	177.12 - 180.72	0.0465(29)
$ec_{10,0 M}$	(Fr)	191.11 - 192.76	0.0117~(9)
econ 4 17	(\mathbf{Fr})	$351\ 11$ (3)	0.0185(14)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Fr)	10.38 - 17.799		18.7(9)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Fr) (Fr)	$\begin{array}{c} 83.23\\ 86.1 \end{array}$		$1.00 (8) \\ 1.64 (12)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Fr) (Fr) (Fr)	96.815 97.474 98.069	} } }	0.57(5)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Fr) (Fr) (Fr)	$100.16 \\ 100.548 \\ 100.972$	} } }	0.19(2)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy	$P_{\gamma+ce}$	Multipolarity	$lpha_{ m T}$	P_{γ}
	Ke v	× 100			× 100
$\gamma_{2,1}(Fr)$	10.6	7.7(10)	M1	510(7)	0.015(2)
$\gamma_{1,0}(Fr)$	26.0(1)	9.4(13)	$\mathrm{E2}$	5940(150)	0.00159(21)
$\gamma_{2,0}(Fr)$	36.69(3)	19.8(17)	$\mathrm{E2}$	1092~(16)	0.0181~(15)
$\gamma_{3,0}(Fr)$	38.58(4)	9.1(9)	$\mathrm{E2}$	854(13)	0.0107~(10)
$\gamma_{8,4}(Fr)$	46.24(5)	0.0090 (13)	[E1]	0.841(12)	0.0049~(7)
$\gamma_{9,6}(Fr)$	49.12(4)	0.0137~(14)	[E1]	0.715(11)	0.0080(8)
$\gamma_{9,5}({ m Fr})$	50.2	0.15	[E2]	236.0(34)	0.00062
$\gamma_{34,32}(Fr)$	53.4(4)	0.074	[M1]	17.6(5)	0.004
$\gamma_{13,10}(Fr)$	57.71(4)	0.0075~(12)	(E1)	0.465(7)	0.0051~(8)
$\gamma_{6,3}(Fr)$	62.6~(3)	0.44(10)	[E2]	81.2(23)	0.0053~(12)
$\gamma_{4,2}(Fr)$	62.94(3)	5.81(36)	M1	10.85(15)	0.49(3)
$\gamma_{5,2}(Fr)$	63.5~(3)	0.0286~(41)	[E1]	0.360(7)	0.021~(3)
$\gamma_{6,2}(Fr)$	64.27(3)	1.13(21)	M1+E2	23~(4)	0.047~(4)
$\gamma_{7,3}({\rm Fr})$	69.86(5)	0.23~(6)	$\mathrm{E2}$	47.9(7)	0.0047~(12)
$\gamma_{7,2}(Fr)$	71.71(4)	0.57~(6)	$\mathrm{E2}$	42.3(6)	$0.0132\ (13)$
$\gamma_{4,1}({ m Fr})$	73.55~(9)	0.73(19)	$\mathrm{E2}$	37.5~(6)	0.019(5)
$\gamma_{5,1}(\mathrm{Fr})$	73.85(3)	0.383~(29)	${ m E1}$	0.240(3)	0.309(23)
$\gamma_{6,1}(Fr)$	74.82(5)	0.197(39)	(M1+E2)	12.15(18)	0.015~(3)
$\gamma_{11,8}(Fr)$	78.8	0.082(13)	M1	5.63(8)	$0.0123\ (19)$
$\gamma_{10,7}(Fr)$	87.41(3)	1.4(1)	M1	4.16(6)	$0.271 \ (19)$
$\gamma_{10,6}(Fr)$	94.90(2)	0.449(43)	M1	3.28(5)	0.105~(10)
$\gamma_{10,5}(Fr)$	96.16(5)	0.23~(7)	M1+E2	6.0(14)	0.033~(7)
$\gamma_{4,0}({ m Fr})$	99.67(5)	3.09(22)	M1+E2	3.06(11)	0.76~(5)
$\gamma_{5,0}({\rm Fr})$	99.89(6)	1.20(9)	${ m E1}$	0.1073(15)	1.08(8)
$\gamma_{6,0}(\mathrm{Fr})$	100.86(4)	0.54(19)	M1+E2	4.6(19)	0.096(8)
$\gamma_{13,9}(Fr)$	103.48(10)	0.033(12)	[M1,E2]	10(3)	0.0030(7)
$\gamma_{7,0}({\rm Fr})$	108.38(3)	2.87(19)	M1+E2	10.27~(25)	0.255(16)

	$rac{\mathrm{Energy}}{\mathrm{keV}}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathrm{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{9,3}(Fr)$	111.52(3)	0.427(29)	(E1)	0.363(5)	0.313(21)
$\gamma_{24.16}(Fr)$	112.80(2)	0.00284(41)	[E1]	0.353(5)	0.0021(3)
$\gamma_{23,15}(Fr)$	114	0.0094(14)	M1	9.86(14)	0.00087(13)
$\gamma_{8,1}(Fr)$	119.85(3)	0.104(7)	[E1]	0.305(4)	0.080(5)
$\gamma_{14,9}(Fr)$	121.06(7)	0.022(6)	(E1)	0.298(4)	0.017(5)
$\gamma_{11,6}(Fr)$	123.75(4)	0.112(8)	[E1]	0.282(4)	0.087~(6)
$\gamma_{11,5}(Fr)$	124.81(3)	0.205~(13)	M1+E2	6.01	0.0292(18)
$\gamma_{12,7}(Fr)$	126.10(5)	0.0100(9)	(E1)	0.270(4)	0.0079(7)
$\gamma_{15,9}(Fr)$	129.22(7)	0.016~(9)	[M1,E2]	5(2)	0.0027~(5)
$\gamma_{12,6}(Fr)$	133.60(3)	0.0242~(20)	(E1)	0.234(3)	0.0196~(16)
$\gamma_{12,4}(Fr)$	134.85(3)	0.0393~(37)	(E1)	0.229(3)	0.032(3)
$\gamma_{26,14}({\rm Fr})$	137.4(1)	0.0023~(3)			0.0023~(3)
$\gamma_{23,13}(Fr)$	139.6	0.0068~(26)	M1+E2	3.9(17)	0.00139(21)
$\gamma_{17,9}({\rm Fr})$	144.7(2)	0.0022~(6)	(M1+E2)	3.79	0.00046~(12)
$\gamma_{13,7}(Fr)$	145.15(3)	0.174(11)	(E1)	0.191~(3)	0.146~(9)
$\gamma_{9,0}(Fr)$	150.05(3)	0.815(14)	E1	0.1766~(25)	0.693(12)
$\gamma_{13,6}(Fr)$	152.64(3)	0.0230 (15)	[E1]	0.1694(24)	0.0197~(13)
$\gamma_{13,4}({ m Fr})$	153.92(3)	0.239(15)	${ m E1}$	0.1660(23)	0.205(13)
$\gamma_{10,3}({\rm Fr})$	157.25(3)	1.73(18)	M1+E2	3.8(3)	0.36(3)
$\gamma_{18,9}({ m Fr})$	161.35(7)	0.013(6)	[M1,E2]	2.5(13)	0.0036(9)
$\gamma_{23,11}(Fr)$	169.18(4)	0.037(20)	[M1,E2]	2.1(11)	0.012(5)
$\gamma_{10,1}(Fr)$	169.9	0.0139(14)			0.0139(14)
$\gamma_{15,7}(Fr)$	170.77(5)	0.015(8)	(E1)	0.1290(18)	0.013(7)
$\gamma_{15,6}({\rm Fr})$	178.29(3)	0.0180(13)	E1	0.1162(16)	0.0161(12)
$\gamma_{16,7}({ m Fr})$	179.78(4)	0.030(11)	(M1,E2)	1.8(10)	0.0108 (8)
$\gamma_{11,3}({ m Fr})$	186.1	0.0127(14)	-		0.0127(14)
$\gamma_{17,7}(\mathrm{Fr})$	186.29(3)	0.0046(6)	$\mathbf{E1}$	0.1045(15)	0.0042(5)
$\gamma_{16,6}(\mathrm{Fr})$	187.2	0.0103(7)	11	0 1000 (1 4)	0.0103(7)
$\gamma_{11,2}(Fr)$	187.96(3)	0.584(33)	EI	0.1023(14)	0.53(3)
$\gamma_{10,0}(\mathrm{Fr})$	195.74(3)	0.37(9)	M1+E2	1.5(6)	0.148(9)
$\gamma_{23,10}(\mathrm{Fr})$	197.50(3)	0.0284(33)	EI [D1]	0.0908(13)	0.026(3)
$\gamma_{12,2}(\mathrm{Fr})$	197.7(1)	0.041(5)	[E1]	0.0906(13)	0.038(5)
$\gamma_{11,1}(Fr)$	198.47(23)	0.0205(14)	[E1]	0.0898(13)	0.0188(13)
$\gamma_{29,13}(\text{Fr})$	205.07(11)	0.0015(5)	(\mathbf{F}_1)	0.0796(10)	0.0015(5)
$\gamma_{13,2}(Fr)$	210.89(3)	0.343(21)	(E1)	0.0726(10)	0.32(2)
$\gamma_{19,4}(\text{Fr})$	220.43(8)	0.0000(18)	[171]	0.0660.(0)	0.0000(18)
$\gamma_{11,0}(Fr)$	224.09(3)	0.119(9)		0.0009 (9)	0.112(8)
$\gamma_{13,1}(Fr)$	228.2(4)	0.0040(12)	(1)(1)	1 999 (10)	0.0040 (12)
$\gamma_{41,32}(\text{Fr})$	231.10(1)	0.012(7)	(M1)	1.338(19)	0.005(3)
$\gamma_{14,2}(Fr)$	230.0(0)	0.0017(3)	(M1)	1 995 (17)	0.0017(3)
$\gamma_{20,4}(Fr)$	200.04 (ð) 240.68 (2)	0.0022(1)	(1VII) [F1]	1.220(17)	0.0010(3) 0.0117(10)
$\gamma_{15,3}(Fr)$	240.00(3) 242.12(5)	0.0124(11) 0.0067(0)	[L]] [M1]	0.0000(0) 1.162(16)	0.0117 (10) 0.0021 (4)
$\gamma_{23,9}(Fr)$	243.12 (3) 240.60 (2)	0.0007 (9) 0.0170 (13)	[111] (F9)	1.103 (10) 0.258 (4)	0.0001 (4) 0.0135 (10)
$\gamma_{16,3}(\mathbf{rr})$	249.00 (0) 959 16 (9)	0.0170(13)	(Ľ2) [F1]	0.200(4)	0.0133(10) 0.129(0)
$\gamma_{13,0}(Fr)$	⊿JJ.40 (J) 256 0 (2)	0.139 (8)	[Ľ1] [F1]	0.0304(7)	0.132(0)
$\gamma_{17,3}(Fr)$	200.0(2) 270.18(2)	0.00039(1)	[Ľ1] F1	0.0492(1)	0.00037 (7)
$\gamma_{15,0}(\mathbf{rr})$	213.10(3) 282 1 (2)	$\begin{array}{c} 0.0317 (23) \\ 0.0007 (0) \end{array}$	[M1]	0.0403(0) 0.771(11)	0.0303(22) 0.00055(5)
/30,21(11)	202.I (2)	0.00031 (3)		0.111 (11)	0.00000 (0)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{23.7}(Fr)$	284.75(3)	0.0077(6)	[E1]	0.0385(5)	0.0074(6)
$\gamma_{25.7}(\text{Fr})$	298.33(5)	0.0028(7)	(M1, E2)	0.4(3)	0.0020(3)
$\gamma_{34,13}(Fr)$	317.23(18)	0.00065(33)	M1	0.558(8)	0.00042(21)
$\gamma_{27.6}(\text{Fr})$	321.77(4)	0.00340(41)	[E1]	0.0292(4)	0.0033(4)
$\gamma_{21.0}(Fr)$	348.33(5)	0.0030(3)	L]		0.0030(3)
$\gamma_{23,3}(Fr)$	354.56(6)	0.0020(7)	[E1]	0.0236(3)	0.0020(7)
$\gamma_{33,10}(Fr)$	356.6	0.00026(11)			0.00026(11)
$\gamma_{24,3}(Fr)$	362.38(3)	0.0055(5)	(E1)	0.0225(3)	0.0054(5)
$\gamma_{22,0}(Fr)$	367.74(12)	0.00052(18)			0.00052 (18)
$\gamma_{34,10}(Fr)$	374.98(5)	0.0019(5)	[E1]	0.0209(3)	0.0019(5)
$\gamma_{31,7}(Fr)$	388.07(7)	0.00125~(21)			$0.00125\ (21)$
$\gamma_{37,12}(Fr)$	403.13(10)	0.00019(16)			0.00019 (16)
$\gamma_{33,8}({\rm Fr})$	405.95(3)	0.0079~(5)	[E1]	$0.01759\ (25)$	0.0078~(5)
$\gamma_{32,5}(Fr)$	417.90(2)	0.0056~(5)			0.0056~(5)
$\gamma_{47,27}(Fr)$	429.80(18)	0.00038 (19)			0.00038 (19)
$\gamma_{36,10}({\rm Fr})$	434.82(5)	0.0029 (3)			0.0029~(3)
$\gamma_{40,14}(Fr)$	442.16(8)	0.0045~(7)			0.0045~(7)
$\gamma_{30,3}({\rm Fr})$	443.43(10)	0.0001			0.0001
$\gamma_{33,7}(Fr)$	443.43 (10)	0.0015(5)	[E2]	0.0494(7)	0.0014(5)
$\gamma_{28,0}({\rm Fr})$	446.31(10)	0.0006(4)			0.0006(4)
$\gamma_{33,6}({ m Fr})$	451.04(5)	0.0036(6)	[M1]	0.215(3)	0.0030(5)
$\gamma_{33,4}(Fr)$	452.23(3)	0.13(1)	[M1]	0.213(3)	0.107(8)
$\gamma_{29,0}(Fr)$	458.79 (8)	0.00053(13)		0.01000 (10)	0.00053(13)
$\gamma_{34,7}(Fr)$	462.43 (13)	0.00045(11)	[E1]	0.01338(19)	0.00044(11)
$\gamma_{34,6}(\mathrm{Fr})$	469.48(5)	0.0028(4)			0.0028(4)
$\gamma_{32,2}(Fr)$	480.85(11)	0.0340(22)			0.0340(22)
$\gamma_{32,1}(Fr)$	491.45(10)	0.00035(14)			0.00035(14)
$\gamma_{31,0}(\text{Fr})$	490.9(3)	0.0013(7)			0.0013(7)
$\gamma_{45,19}(\text{Fr})$	498.0(0) 5125(7)	0.00085(21) 0.00055(21)			0.00085(21) 0.00055(21)
(733,3(Ff)	512.0(7) 515 13(3)	0.00035(21) 0.0246(15)	[M1]	0.1506(21)	0.00035(21) 0.0214(13)
$\gamma_{33,2}(\mathbf{F}\mathbf{r})$	517.13(3) 517.51(3)	0.0240(13) 0.0150(10)		0.1500(21)	0.0214(13) 0.0150(10)
$\gamma_{32,0}(\mathbf{F}\mathbf{r})$	517.51(3) 592 14 (4)	0.0139(10) 0.00208(15)			0.0109(10) 0.00208(15)
$\gamma_{36,7}(11)$ $\gamma_{36,7}(11)$	522.14(4) 525.94(17)	0.00208(15) 0.0403(25)	[M1]	0.1425(20)	0.00208(10) 0.0353(22)
$\gamma_{26,6}(Fr)$	529.59(3)	0.0100(20) 0.0076(7)		0.1120 (20)	0.0000(22) 0.0076(7)
$\gamma_{26,4}(Fr)$	530.87(4)	0.0010(1) 0.0047(5)			0.0010(1) 0.0047(5)
$\gamma_{24,2}(Fr)$	532.11(9)	0.00077(21)	[E1]	0.01005(14)	0.00076(21)
$\gamma_{34,3}()$ $\gamma_{37,4}(Fr)$	538.1(1)	0.0038(10)	[]	0.010000 (11)	0.0038(10)
$\gamma_{43,4}()$ $\gamma_{43,12}(Fr)$	545.8(6)	0.00053(14)			0.00053(14)
$\gamma_{33,12}()$ $\gamma_{33,0}(Fr)$	551.79(3)	0.0059(16)	[M1]	0.1254(17)	0.0052(14)
$\gamma_{35,0}(-)$ $\gamma_{35,2}(Fr)$	564.34(11)	0.00022(9)			0.00022(9)
$\gamma_{40.8}(Fr)$	567.48 (5)	0.0012(4)			0.0012 (4)
$\gamma_{34.0}(Fr)$	570.69(3)	0.0040(5)	[E1]	0.00874(12)	0.0040(5)
$\gamma_{36.3}(Fr)$	590.42(5)	0.00083(14)			0.00083(14)
$\gamma_{36,2}(Fr)$	593.87(4)	0.0029(3)			0.0029(3)
$\gamma_{35,0}(Fr)$	600.92(3)	0.0024(5)			0.0024(5)
$\gamma_{37,2}(Fr)$	600.92(3)	0.006			0.006
$\gamma_{41,8}(Fr)$	603.09(4)	0.00173(21)			0.00173(21)

$\gamma_{43,9}(Fr)$ 62 $\gamma_{37,0}(Fr)$ 62 $\gamma_{38,0}(Fr)$ 64	$\begin{array}{cccc} 28.95 & (10) & 0. \\ 337.1 & (7) & 0. \\ 45.94 & (12) & 0. \end{array}$.00032 (7) .00012		0.00032(7)
$\begin{array}{cccc} \gamma_{41,5}({\rm Fr}) & 64\\ \gamma_{47,10}({\rm Fr}) & 65\\ \gamma_{42,7}({\rm Fr}) & 65\\ \gamma_{42,4}({\rm Fr}) & 66\\ \gamma_{46,9}({\rm Fr}) & 66\\ \gamma_{39,0}({\rm Fr}) & 67\\ \gamma_{47,9}({\rm Fr}) & 70\\ \gamma_{47,9}({\rm Fr}) & 70\\ \gamma_{47,4}({\rm Fr}) & 75\\ \gamma_{43,1}({\rm Fr}) & 75\\ \gamma_{42,0}({\rm Fr}) & 7\\ \gamma_{43,0}({\rm Fr}) & 7\\ \gamma_{44,0}({\rm Fr}) & 80\\ \gamma_{44,0}({\rm F$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} .00015 \ (5) \\ 0.0017 \ (5) \\ .00049 \ (21) \\ 0.0014 \ (3) \\ 0.0021 \ (18) \\ .00010 \ (5) \\ .00066 \ (12) \\ .00016 \ (7) \\ 0.0011 \ (4) \\ .00026 \ (7) \\ .00023 \ (7) \\ .00030 \ (6) \\ .00035 \ (14) \\ 0.0021 \ (3) \\ .00040 \end{array}$		$\begin{array}{c} 0.00012\\ 0.00015 \ (5)\\ 0.0017 \ (5)\\ 0.00049 \ (21)\\ 0.0014 \ (3)\\ 0.0021 \ (18)\\ 0.00010 \ (5)\\ 0.00066 \ (12)\\ 0.00016 \ (7)\\ 0.00011 \ (4)\\ 0.00026 \ (7)\\ 0.00023 \ (7)\\ 0.00030 \ (6)\\ 0.000055 \ (14)\\ 0.0021 \ (3)\\ 0.000040\end{array}$

5 References

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. 72 (1947) 253
(Half-life)
F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435
(Half-life)

G.GRAEFFE, K.VALLI, J.AALTONEN, Ann. Acad. Sci. Fenn., Ser. A, VI 145 (1964)

(Alpha energies and intensities)

G.BASTIN-SCOFFIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 265 (1967) 863

(Alpha energies and intensities)

B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, L.N.MOSKVIN, O.M.NAZARENKO, V.F.RODIONOV, Izv. Akad. Nauk SSSR, Ser. Fiz. 31 (1967) 568

(Alpha energies and intensities)

C.F.LEANG, Compt. Rend. Acad. Sci. (Paris) Ser. B 265 (1967) 417

(Gamma-ray energies and intensities)

C.F.LEANG, F.GAUTIER, J. Phys. (Paris) 30 (1969) 296

(Gamma-ray energies)

B.S.DZHELEPOV, A.V.ZOLOTAVIN, R.B.IVANOV, M.A.MIKHAILOVA, V.O.SERGEEV, M.I.SOVTSOV, Proc. 21st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Moscow Pt.1 (1971) 140

(Gamma-ray energies and intensities, Conversion electron intensities)

B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, V.O.SERGEEV, Izv. Akad. Nauk SSSR, Ser. Fiz. 36 (1972) 2080 (Gamma-ray energies and intensities, Conversion electron intensities)

N.A.GOLOVKOV, B.S.DZHELEPOV, R.B.IVANOV, M.A.BMIKHAILOVA, V.G.BCHUMIN, Sov. J. Nucl. Phys. 15 (1972) 349

(Alpha intensities)

T.Vylov, N.A.Golovkov, B.S.Dzhelepov, R.B.Ivanov, M.A.Mikhailova, Y.V.B Norseev, V.G.B Chumin, Bull. Rus. Acad. Sci. Phys. 41 (1977) 85

(Gamma-ray energies and intensities, Multipolarity)

A.Rytz, At. Data Nucl. Data Tables 23 (1979) 507

(Alpha energies and intensities)

J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331

(Gamma-ray energies and intensities)

R.G.HELMER, C.W.REICH, M.A.LEE, I.AHMAD, Int. J. Appl. Radiat. Isotop. 37 (1986) 139

 $(\mbox{Gamma-ray energies}, \mbox{intensities} \mbox{ and emission probabilities})$

G.ARDISSON, M.C.KOUASSI, J.DALMASSO, Priv. Comm. (1990) (Gamma-ray energies and intensities, Multipolarity) M.C.KOUASSI, J.DALMASSO, H.MARIA, G.ARDISSON, M.HUSSONNOIS, J. Radioanal. Nucl. Chem. 144 (1990) 387 (Gamma-ray energies and intensities) Y.A.AKOVALI, Nucl. Data Sheets 60 (1990) 617 (Decay scheme and levels) Y.A.AKOVALI, Nucl. Data Sheets 61 (1990) 623 (Decay scheme and levels) M.C.KOUASSI, J.DALMASSO, M.HUSSONNOIS, V.BARCI, G.ARDISSON, J.Radioanal. Nucl. Chem. 153 (1991) 293 (Gamma-ray energies and intensities) K.YA.GROMOV, M.YA.KUZNETSOVA, YU.N.NORSEEV, N.I.RUKHADZE, V.I.FOMINYKH, V.V.TSUPKO-SITNIKOV, V.G.CHUMIN, M.B.YULDASHEV, YU.S.BUTABAEV, R.A.NIYAZOV, Bull. Rus. Acad. Sci. Phys. 58 (1994) 29 (Gamma-ray energies and intensities) V.G.CHUMIN, S.S.ELISEEV, K.YA.GROMOV, YU.V.NORSEEV, V.I.FOMINYKH, V.V.TSUPKO-SITNIKOV, Bull. Rus. Acad. Sci. Phys. 59 (1995) 1854 (Gamma-ray energies, intensities and emission probabilities) R.K.SHELINE, C.F.LIANG, P.PARIS, Phys. Rev. C51 (1995) 1192 (Gamma-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) G.ARDISSON, J.GASPARRO, V.BARCI, R.K.SHELINE, Phys. Rev. C62 (2000) 064306 (Gamma-ray energies and intensities) J.GASPARRO, G.ARDISSON, V.BARCI, R.K.SHELINE, Phys. Rev. C62 (2000) 064305 (Gamma-ray energies, intensities and emission probabilities) S.A.KUDRYA, V.M.GOROZHANKIN, K.YA.GROMOV, SH.R.MALIKOV, L.A.MALOV, V.A.SERGIENKO, V.I.FOMINYKH, V.V.TSUPKO-SITNIKOV, V.G.CHUMIN, E.A.YAKUSHEV, Bull. Rus. Acad. Sci. Phys. 67 (2003) 7 (Gamma-ray energies and intensities, Alpha energies and intensities, Conversion electron energies and intensities, Multipolarity) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129 (\mathbf{Q})

$T_{1/2}$:	21.772	(3)	у
Q_{β^-}	:	44.8	(8)	keV
Q_{lpha}	:	5042.19	(14)	keV
β^-	:	98.620	(4)	%
α	:	1.380	(4)	%

2 β^- Transitions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,0}^{-}$	6.9 (8) 20.5 (8) 35.5 (8) 44.8 (8)	$0.3 \\ 10 \\ 35 \\ 53$	Allowed 1st forbidden 1st forbidden 1st forbidden	$6.9 \\ 6.8 \\ 7 \\ 7.1$

3 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,24}$	4362.83(15)	0.00004
$\alpha_{0,23}$	4422.03(28)	0.00008
$\alpha_{0,22}$	4447.12(26)	0.0007
$\alpha_{0,21}$	4459(7)	0.00007
$\alpha_{0,20}$	4512(5)	0.00004
$\alpha_{0,19}$	4581(7)	0.00004
$\alpha_{0,18}$	4594.21(17)	0.0003
$\alpha_{0,16}$	4712.89(20)	
$\alpha_{0,15}$	4713.68(19)	
$\alpha_{0,14}$	4714.88(15)	0.006(3)
$\alpha_{0,13}$	4734.41(17)	
$\alpha_{0,12}$	4737.50(16)	0.0012
$\alpha_{0,11}$	4767.47(15)	
$\alpha_{0,10}$	4769.35(17)	0.025~(7)
$\alpha_{0,9}$	4784.19(15)	0.0011
$\alpha_{0,8}$	4795.58(15)	0.014(7)
$lpha_{0,6}$	4821.09(15)	0.001
$\alpha_{0,5}$	4854.01 (15)	
$\alpha_{0,4}$	4855.36(15)	0.08(1)
$\alpha_{0,3}$	4872.55(15)	0.087(7)
$\alpha_{0,2}$	4899.23 (15)	0.0015
$\alpha_{0,1}$	4940.57 (15)	0.546(17)
$lpha_{0,0}$	4953.23 (14)	0.658(14)

ıs
Ĺ

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Th)	5.8 - 20.3	3.9	
e_{AL}	(Fr)	5.73 - 18.52	0.097(10)	
e_{AK}	(Fr) KLL KLX KXY	63.576 - 70.787 77.720 - 86.101 91.84 - 101.12	0.00050 (15) } } }	
$ec_{2,0 L}$	(Th)	3.9 - 8.0	7.1	
$ec_{1,0 M}$	(Th)	4.1 - 6.0	27	
$ec_{3,1 L}$	(Th)	8.1 - 12.3	0.1016~(21)	
$ec_{2,1}$ M	(Th)	10.0 - 11.9	0.11	
$ec_{3,0}$ L	(Th)	17.4 - 21.6	$0.0568\ (15)$	
$ec_{2,0 M}$	(Th)	19.2 - 21.0	1.8	
$ec_{3,1 M}$	(Th)	23.39 - 25.24	0.0259~(5)	
$ec_{3,0}$ M	(Th)	32.7 - 34.6	0.01411 (29)	
$ec_{1,0 M}$	(Fr)	8.3 - 9.9	0.528~(11)	
$ec_{4,2}$ L	(Fr)	26.1 - 29.7	0.018~(17)	
$ec_{3,1 L}$	(Fr)	50.65 - 54.26	0.053~(10)	
$ec_{3,0}$ L	(Fr)	63.6 - 67.2	0.0135~(16)	
$ec_{3,1 M}$	(Fr)	64.64 - 66.29	0.0140~(27)	
$ec_{4,1 L}$	(Fr)	68.1 - 71.7	0.022~(14)	
$ec_{4,0\ L}$	(Fr)	81.0 - 84.6	0.022(12)	
$\beta_{0,3}^-$	max:	6.9 (8)	0.3	avg: $1.7(3)$
$\beta_{0,2}^{-}$	max:	20.5 (8)	10	avg: $5.1(3)$
$\beta_{0,1}^{-}$	max:	35.5 (8)	35	avg: $9.0(3)$
$\beta_{0,0}^{\underline{1}}$	max:	44.8 (8)	53	avg: 11.4 (3)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Th)	11.118 - 19.599		2.64	
XL	(Fr)	10.381 - 17.839		0.074(8)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Fr) (Fr)	$\begin{array}{c} 83.23\\ 86.1 \end{array}$		$\begin{array}{c} 0.0043 \ (12) \\ 0.0070 \ (19) \end{array}$	$K\alpha$
$\begin{array}{l} {\rm XK}\beta_3\\ {\rm XK}\beta_1\\ {\rm XK}\beta_5^{\prime\prime}\end{array}$	(Fr) (Fr) (Fr)	96.815 97.474 98.069	} } }	0.0024 (7)	$\mathrm{K}\beta_1'$

		Energy keV		Photons per 100 disint.	
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Fr) (Fr) (Fr)	$100.16 \\ 100.548 \\ 100.972$	} } }	0.00079(22)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{1,0}(Th)$	9.3	36	E2	326000	0.00011
$\gamma_{1.0}(Fr)$	12.9(1)	0.698	(E2)	49860 (1000)	0.000014
$\gamma_{2,1}(Th)$	15.2(1)	0.15	M1	238(5)	0.00063
$\gamma_{2,0}(\mathrm{Th})$	24.33(5)	9.5	M1+E2	340(11)	0.028
$\gamma_{8,6}(\mathrm{Fr})$	25.95	0.00000055			0.00000055
$\gamma_{3,1}(Th)$	28.57(5)	0.18	${ m E1}$	3.24(7)	0.042
$\gamma_{6,5}(\mathrm{Fr})$	33.5(1)	0.00033~(9)	[E1]	1.99(4)	0.00011 (3)
$\gamma_{6,4}(\mathrm{Fr})$	35.0(2)	0.000078~(28)	[E1]	1.77(4)	0.000028 (10)
$\gamma_{3,0}(\mathrm{Th})$	37.90(3)	0.12	$\mathrm{E1}$	1.54(3)	0.049
$\gamma_{4,2}({ m Fr})$	44.7(1)	0.025~(23)	[M1+E2]	223 (200)	0.00011 (3)
$\gamma_{13,9}(Fr)$	51.06	0.0000028			0.0000028
$\gamma_{10,6}({\rm Fr})$	52.32	0.0000014			0.0000014
$\gamma_{14,11}({\rm Fr})$	53.7(2)	0.000064~(16)	[E1]	0.563~(11)	0.000041 (10)
$\gamma_{2,0}({ m Fr})$	55.0(1)	0.0077~(14)	M1+E2	16.4(8)	0.00044 (8)
$\gamma_{16,11}({\rm Fr})$	55.80(5)	0.0000039			0.0000039
$\gamma_{16,10}(Fr)$	57.56(5)	0.0000032			0.0000032
$\gamma_{8,5}(\mathrm{Fr})$	59.4(2)	0.000059(14)	[E1]	0.430(9)	0.000041 (10)
$\gamma_{8,4}(Fr)$	60.6(3)	0.000058 (14)	[E1]	0.408(9)	0.000041 (10)
$\gamma_{3,1}(Fr)$	69.28(8)	0.076~(14)	M1+E2	18.4(19)	0.0039~(6)
$\gamma_{14,10}(Fr)$	70.6(2)	0.0023~(18)	[M1+E2]	27 (19)	0.000083 (30)
$\gamma_{16,9}(Fr)$	72.5(2)	0.000086 (38)	[E1]	0.252~(5)	0.000069 (30)
$\gamma_{9,4}({ m Fr})$	72.5(2)	0.000086~(38)	[E1]	0.252~(5)	0.000069 (30)
$\gamma_{6,2}(Fr)$	79.54(8)	0.00132(12)	$\mathrm{E1}$	0.197(4)	0.0011(1)
$\gamma_{3,0}({ m Fr})$	82.2(1)	0.0192~(23)	E2	22.1(5)	0.00083 (10)
$\gamma_{15,8}({\rm Fr})$	83.0(1)	0.0000014			0.0000014
$\gamma_{12,6}({ m Fr})$	85.0(5)	0.000011			0.000011
$\gamma_{10,5}({ m Fr})$	86.1(1)	0.00047			0.00047
$\gamma_{4,1}({ m Fr})$	86.7(2)	0.034(20)	[M1+E2]	11(7)	0.0028(4)
$\gamma_{5,1}({ m Fr})$	88.1(1)	0.0076(43)	[M1+E2]	10(6)	0.00069(10)
$\gamma_{11,5}({ m Fr})$	88.1(1)	0.0076(43)	[M1+E2]	10(6)	0.00069(10)
$\gamma_{13,6}({ m Fr})$	88.5 (6)	0.0000097	5 — 13		0.0000097
$\gamma_{9,3}({ m Fr})$	90.0(1)	0.00021(8)	[E1]	0.142(3)	0.00018(7)
$\gamma_{4,0}({ m Fr})$	99.6(1)	0.036(16)	M1+E2	6(3)	0.0051(7)
$\gamma_{5,0}({ m Fr})$	101.0(1)	0.0048(29)	[M1+E2]	6(3)	0.00069(30)
$\gamma_{10,3}({ m Fr})$	105.0(2)	0.0046(16)	M1	12.4(25)	0.00034(10)
$\gamma_{11,3}({ m Fr})$	106.85(10)	0.0110(34)	M(+E2)	9(3)	0.0011(1)
$\gamma_{14,6}(\mathrm{Fr})$	108.0(3)	0.00041(16)	[M1+E2]	9 (3)	0.000041(10)
$\gamma_{12,5}(Fr)$	118.7(4)	0.000054(13)	[E1]	0.312(6)	0.000041(10)

KRI /V.P. Chechev, N.K. Kuzmenko

	Energy	$P_{\gamma+ce}$	Multipolarity	$lpha_{ m T}$	P_{γ}
	keV	× 100			× 100
$\gamma_{18,15}(Fr)$	121.6(1)	0.00155(39)	[E1]	0.295(6)	0.0012(3)
$\gamma_{6.1}(Fr)$	121.6(1)	0.00155(39)	[E1]	0.295(6)	0.0012(3)
$\gamma_{6,0}(Fr)$	134.5(1)	0.00068(12)	E1	0.230(5)	0.00055(10)
$\gamma_{12,3}(Fr)$	137.4(1)	0.00050(12)	[E1]	0.220(5)	0.00041(10)
$\gamma_{13,3}(Fr)$	140.9(1)	0.00025(7)	[E1]	0.206(4)	0.00021(6)
$\gamma_{14,4}(Fr)$	143.0(1)	0.00034(7)	[E1]	0.198(4)	0.00028(6)
$\gamma_{18,13}(Fr)$	143.0(1)	0.0013(6)	[M1+E2]	3.6(18)	0.00028(6)
$\gamma_{16,5}(Fr)$	143.65(5)	0.00015886	M1	5.11(11)	0.000026
$\gamma_{18,12}(Fr)$	146.0(2)	0.0000088			0.0000088
$\gamma_{8,1}(\mathrm{Fr})$	147.61(8)	0.00296 (36)	${ m E1}$	0.184(4)	0.0025~(3)
$\gamma_{7,0}(Fr)$	149.3(3)	0.000014			0.000014
$\gamma_{9,1}(Fr)$	159.2(1)	0.00063(12)	[E1]	0.153(3)	0.00055(10)
$\gamma_{8,0}(\mathrm{Fr})$	160.49(10)	0.00506(46)	E1	0.150(3)	0.0044(4)
$\gamma_{15,3}(Fr)$	161.4(4)	0.00049(23)	[M1+E2]	2.5(13)	0.00014(4)
$\gamma_{16,3}(Fr)$	162.6(2)	0.00019(12)	M1,E2	2.4(13)	0.000055 (30)
$\gamma_{9,0}(\mathrm{Fr})$	172.0(1)	0.00109(11)	${ m E1}$	0.127(3)	0.00097(10)
$\gamma_{10,1}(Fr)$	174.3(1)	$0.00081 \ (35)$	[M1+E2]	1.9(11)	0.00028~(6)
$\gamma_{18,11}(Fr)$	176.1(1)	0.000370 (45)	[E1]	0.120(3)	0.00033(4)
$\gamma_{11,1}(Fr)$	176.1(1)	0.00096~(40)	M1,E2	1.9(11)	0.00033~(6)
$\gamma_{12,1}(Fr)$	206.8(1)	$0.00105\ (11)$	$\mathrm{E1}$	0.0814(17)	0.00097~(10)
$\gamma_{17,1}(Fr)$	216.6(3)	0.00011 (7)	[M1+E2]	1.0(7)	0.000055~(30)
$\gamma_{-1,1}(Fr)$	219.2(4)	0.0000140(4)			0.0000140(4)
$\gamma_{14,1}(Fr)$	229.7(1)	0.00044~(7)	[E1]	$0.0634\ (13)$	0.00041~(7)
$\gamma_{15,1}(Fr)$	230.9(5)	0.0000252	[M1+E2]	0.8(5)	0.000014
$\gamma_{16,1}({\rm Fr})$	231.79(5)	0.0000072			0.0000072
$\gamma_{14,0}({ m Fr})$	242.6(2)	0.00030(7)	[E1]	0.0558(12)	0.00028 (7)
$\gamma_{15,0}({ m Fr})$	243.9(4)	$0.0000358\ (10)$	[E2]	0.279~(6)	0.0000280 (8)
$\gamma_{18,3}({ m Fr})$	283.4(3)	0.000057~(31)	[E1]	0.0389~(8)	0.000055~(30)
$\gamma_{23,11}(Fr)$	351.7(3)	0.000056 (31)	[E1]	0.0240(5)	0.000055~(30)
$\gamma_{22,4}(Fr)$	415.6(3)	0.00024~(7)		0.16(11)	0.00021~(6)
$\gamma_{23,5}(Fr)$	439.60(5)	0.000034(1)			0.000034(1)
$\gamma_{23,4}(Fr)$	441.0(4)	0.000056 (30)	[E1]	0.0148(3)	0.000055~(30)
$\gamma_{22,2}(Fr)$	460.2(3)	0.00024~(7)	M1+E2	0.12 (9)	0.00021~(6)
$\gamma_{23,1}(Fr)$	527.6(1)	0.000029			0.000029
$\gamma_{23,0}(Fr)$	540.40(5)	0.00007			0.00007

6 References

J.M.HOLLANDER, R.F.LEININGER, Phys. Rev. 80 (1950) 915
(Half-life)
J.TOBAILEM, J. Phys. Radium 16 (1955) 48
(Half-life)
N.S.SHIMANSKAYA, E.A.YASHUGINA, At. Energ. 1 (1956) 133
(Half-life)
G.I.NOVIKOVA, A.VOLKOVA, L.I.GOLDIN, D.M.ZIV, L.I.TRETYAKOVA, Zh. Eksp. Teor. Fiz. 37 (1959) 928
(Total alpha-transition probability, gamma-ray energies and alpha-energies, conversion electrons)
J.ROBERT, Ann. Phys. (Paris) 4 (1959) 89
(Half-life)
J.F.EICHELBERGER, G.R.GROVE, L.V.JONES, E.A.REMBOLD, Report MLM-1155, Mound Laboratory (1963) 12
(Half-life)

G.BASTIN, C.F.LEANG, R.J.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 262 (1966) 370 (Alpha-transition probabilities and alpha-energies) K.C.JORDAN, B.C.BLANKE, Proc. Symp. on Standardization of Radionuclides, STI/PUB/139, IAEA, Vienna (1967) 567(Half-life) H.W.KIRBY, J. Inorg. Nucl. Chem. 32 (1970) 2823 (Total alpha-transition probability) M.MONSECOUR, P.DE REGGE, A.DEMILDT, L.H.BAETSLE, J. Inorg. Nucl. Chem. 36 (1974) 719 (Total alpha-transition probability) A.Rytz, R.A.P.WILTSHIRE, M.KING, Nucl. Instrum. Methods Phys. Res. A253 (1986) 47 (Alpha-transition energies) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-transition energies) R.K.Sheline, C.F.Liang, P.Paris, J.Kvasil, D.Nosek, Phys. Rev. C51 (1995) 1708 (Gamma-ray energies) C.F.LIANG, P.PARIS, R.K.SHELINE, D.NOSEK, J.KVASIL, Phys. Rev. C51 (1995) 1199 (Beta emission probabilities) U.MULLER, P.SEVENICH, K.FREITAG, C.GUNTHER, P.HERZOG, G.D.JONES, C.KLIEM, J.MANNS, T.WEBER, B.WILL, THE ISOLDE COLLABORATION, Phys. Rev. C55 (1997) 2267 (Gamma-ray energies) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (2000) 527 (EMISSION computer code) E.BROWNE, Nucl. Data Sheets 93 (2001) 763 (Decay scheme of 227Ac, gamma-ray multipolarities, admixture coefficients) E.BROWNE, Nucl. Data Sheets 93 (2001) 920 (Decay scheme of 231U, gamma-ray emission probabilities of gamma (2,0) and gamma (2,1) in 227Th) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR, P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 91 (2002) 1 (Theoretical internal conversion coefficients) M.-M.BÉ, R.HELMER, V.CHISTÉ, J. Nucl. Sci. Technol. (Tokyo) suppl.2 (2002) 481 (Saisinuc software) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q})

$T_{1/2}$:	6.15	(3)	h
$Q_{\beta^{-}}$:	2123.8	(27)	keV
Q_{lpha}	:	4814	(50)	keV
β^{-}	:	100		%
α	:	5.5	(22)	$\times 10^{-8}~\%$

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,60}^{-}$	0.7(27)	0.0047(11)	Allowed	3.3
$\beta_{0.59}^{-}$	86.8(27)	0.0069(11)	Allowed	7.38
$\beta_{0.58}^{-}$	94.0(27)	0.026(4)	Allowed	6.91
$\beta_{0.57}^{-}$	101.0(27)	0.061 (6)	Allowed or 1st forbidden	6.64
$\beta_{0.56}^{-}$	110.2(27)	0.0032(10)	Allowed	8.03
$\beta_{0.55}^{$	113.7(27)	0.238(15)	Allowed	6.2
$\beta_{0.54}^{-}$	136.3(27)	0.07(4)	Allowed	7
$\beta_{0.53}^{}$	158.8(27)	0.0132(14)	Allowed	7.91
$\beta_{0.52}^{-}$	165.1(27)	0.0038 (8)	Allowed	8.5
$\beta_{0.51}^{-}$	178.9(27)	0.307~(22)	Allowed	6.7
$\beta_{0,50}^{-}$	186.6(27)	0.053~(6)	Allowed	7.52
$\beta_{0,49}$	195.2~(27)	0.061 (8)	Allowed	7.52
$\beta_{0,48}^{-}$	217.2(27)	0.025 (5)	Allowed	8.05
$\beta_{0,47}$	223.9(27)	0.069 (8)	Allowed	7.65
$\beta_{0,46}^{-}$	230.8(27)	0.109(8)	Allowed	7.5
$\beta_{0,45}$	326.2(27)	0.051 (8)	Allowed	8.3
$\beta_{0,44}$	327.9(27)	0.035 (6)	Allowed	8.48
$\beta_{0,43}^{-}$	363.6~(27)	0.139(12)	Allowed	8.02
$\beta_{0,42}^{-}$	365.6(27)	0.060 (8)	Allowed	8.39
$\beta_{0,41}^{-}$	379.9(27)	$0.378\ (16)$	Allowed	7.65
$\beta_{0,40}^{-}$	388.4(27)	0.149(11)	Allowed	8.08
$\beta_{0,39}^{-}$	399.5~(27)	1.93 (8)	Allowed	7.01
$\beta_{0,38}^-$	435.4(27)	2.50(16)	Allowed	7.02
$\beta_{0,37}^{-}$	440.0(27)	0.20 (3)	1st forbidden	8.13
$\beta_{0,36}^-$	441.0(27)	1.21 (4)	Allowed	7.35
$\beta_{0,35}^-$	477.8(27)	4.12(20)	Allowed	6.94
$\beta_{0,34}^{-}$	480.7(27)	0.82(3)	1st forbidden	7.64
$\beta_{0,33}^-$	485.5(27)	1.23 (6)	Allowed	7.48
$\beta_{0,32}^-$	506.0(27)	0.071~(10)	Allowed	8.78
$\beta_{0,31}^-$	535.5(27)	8.8(23)	1st forbidden	6.77
$\beta_{0,30}^-$	584.6(27)	0.030 (6)	Allowed	9.36
$\beta_{0,27}^-$	691.8(27)	1.6(5)	Allowed	7.88
$\beta_{0,26}^-$	707.7(27)	0.060 (8)	Allowed or 1st forbidden	9.34
$\beta_{0,25}^-$	779.7(27)	0.208(18)	1st forbidden	8.94
$\beta_{0,24}^-$	826.4(27)	1.46(11)	1st forbidden unique	8.18
$\beta_{0,23}^-$	897.2(27)	0.67 (8)	1st forbidden	8.65
$\beta_{0,22}^-$	948.4(27)	0.166~(19)	Allowed	9.34

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.20}^{-}$	955.4(27)	3.39(13)	1st forbidden	8.04
$\beta_{0.19}^{-}$	970.3(27)	6(3)	Allowed	7.8
$\beta_{0.18}^{-10}$	1000.8(27)	6.67(18)	1st forbidden	7.81
$\beta_{0.16}^{-10}$	1063.9(27)	0.099(11)	1st forbidden	9.74
$\beta_{0.15}^{-,10}$	1101.3(27)	3.0(4)	Allowed	8.31
$\beta_{0.14}^{-1}$	1107.4(27)	0.39(6)	Allowed or 1st forbidden	9.2
$\beta_{0.13}^{-1}$	1144.3(27)	0.238(20)	Allowed	9.47
$\beta_{0.12}^{-10}$	1154.8(27)	31 (4)	Allowed	7.37
$\beta_{0.11}^{-1}$	1155.4(27)	0.18(3)	1st forbidden	9.6
$\beta_{0.10}^{-1}$	1179.6(27)	0.087(16)	Allowed or 1st forbidden	9.95
$\beta_{0.8}^{-}$	1249.3(27)	0.17(10)	Allowed	9.7
$\beta_{0.5}^{-}$	1727.7(27)	12.4(5)	1st forbidden	8.4
$\beta_{0.4}^{-}$	1745.6(27)	0.147(21)	2nd forbidden unique	12.29
$\beta_{0.3}^{-1}$	1795.8(27)	0.72(23)	1st forbidden unique	10.65
$\beta_{0.2}^{-}$	1937.0(27)	0.6(5)	Allowed	10
$\beta_{0,1}^{-1}$	2066.0 (27)	6 (4)	Allowed	9

3 Electron Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	Electrons per 100 disint.	Energy keV
e_{AL}	(Th)	5.8 - 20.3	39.9(21)	
e_{AK}	(Th)		0.27(8)	
	KLL	68.406 - 76.745	}	
	KLX	83.857 - 93.345	}	
	KXY	99.29 - 109.64	}	
ес _{35,29 К}	(Th)	4.830 (13)	0.05~(5)	
ес _{28,27} м	(Th)	13.233 - 15.083	0.038~(8)	
$ec_{2,1 K}$	(Th)	19.414 (6)	0.660(21)	
$ec_{38,35}$ L	(Th)	21.97 - 26.10	0.32(11)	
ес _{31,28 К}	(Th)	28.291 (17)	0.168(24)	
$ec_{20,15}$ K	(Th)	36.198 (8)	0.0264~(10)	
$ec_{31,29}$ L	(Th)	36.389 - 40.600	5.2(35)	
ес _{38,35} м	(Th)	37.26 - 39.11	0.076~(25)	
$ec_{1,0 L}$	(Th)	37.287 - 41.500	52.7~(21)	
$ec_{38,35}$ N	(Th)	41.11 - 42.10	0.020~(7)	
$ec_{18,12}$ K	(Th)	44.333 (8)	0.1037~(35)	
$ec_{31,29}$ M	(Th)	51.679 - 53.529	1.4(11)	
$ec_{1,0 M}$	(Th)	52.577 - 54.427	14.4(6)	
$ec_{31,29}$ N	(Th)	55.530 - 56.526	0.40(26)	
$ec_{1,0 N}$	(Th)	56.430 - 57.424	$3.87\ (15)$	
$ec_{19,12}$ K	(Th)	74.849 (11)	4.3(22)	
$ec_{29,27}$ L	(Th)	79.023 - 83.200	$3.65\ (13)$	
$ec_{18,15\rm\ L}$	(Th)	79.952 - 84.100	0.259(14)	
$ec_{4,2}$ K	(Th)	81.706 (11)	0.0227~(14)	

		Energy keV	Electrons per 100 disint.	Energy keV
ec. 10 V	(Th)	89.757 (7)	0.0225(18)	
ec25 20 I	(Th)	94.01 - 98.20	0.0220(10) 0.033(15)	
есэо эт м	(Th)	94.313 - 96.163	0.881(31)	
eC24.15 K	(Th)	94 388 (9)	0.83(6)	
ecis 15 M	(Th)	95.242 - 97.092	0.0701(38)	
ec20.27 N	(Th)	98.16 - 99.16	0.234(8)	
ecis 15 N	(Th)	99.090 - 100.089	0.0191(10)	
есь э к	(Th)	99.605 (6)	0.267(10)	
$ec_{2,2}$ K	(Th)	108.592 - 112.800	6.35(20)	
есэ <u>я эз</u> к	(Th)	114.179 (12)	0.086(9)	
eC31 28 L	(Th)	117.469 - 121.600	0.0321(46)	
eC _{2.1 M}	(Th)	123.882 - 125.732	1.74(5)	
$ec_{2,1}$ N	(Th)	127.730 - 128.729	0.468(15)	
ec _{18,12} L	(Th)	133.511 - 137.700	0.0218(7)	
ec _{27 21 K}	(Th)	147.821 (19)	0.0294(20)	
$ec_{3.1 \text{ K}}$	(Th)	160.594 (6)	0.1335(43)	
ec _{19.8 K}	(Th)	169.344 (21)	0.10 (8)	
$ec_{4,2}$ L	(Th)	170.884 - 175.100	0.0589(37)	
$ec_{28,20}$ K	(Th)	172.369 (11)	0.036(38)	
$ec_{24,15}$ L	(Th)	183.566 - 187.700	0.286(21)	
$ec_{4.2 M}$	(Th)	186.174 - 188.024	0.0161(10)	
$ec_{5,2 L}$	(Th)	188.783 - 193.000	0.0529(19)	
$ec_{24,15 M}$	(Th)	198.856 - 200.706	0.074(5)	
$ec_{24,15 N}$	(Th)	202.710 - 203.703	0.0202~(14)	
$ec_{28,23}$ L	(Th)	203.357 - 207.500	$0.0166\ (17)$	
$ec_{5,2}$ M	(Th)	204.073 - 205.923	0.01274 (46)	
$ec_{19,7 \rm \ K}$	(Th)	211.994 (14)	0.0147~(9)	
$ec_{3,0 K}$	(Th)	218.353 (4)	0.0745(30)	
$ec_{5,1 K}$	(Th)	228.669 (6)	0.261~(10)	
$ec_{27,17 \text{ K}}$	(Th)	231.31 (1)	0.029~(8)	
$ec_{51,31\rm\ K}$	(Th)	246.910 (18)	$0.011\ (11)$	
$ec_{3,1}$ L	(Th)	249.772 - 253.900	0.0254(8)	
$ec_{19,8 L}$	(Th)	258.522 - 262.700	0.024~(7)	
$ec_{28,20}$ L	(Th)	261.547 - 265.700	0.0108~(45)	
$ec_{27,15 K}$	(Th)	299.802 (8)	0.32~(26)	
$ec_{19,7 L}$	(Th)	301.172 - 305.300	0.0125(8)	
$ec_{3,0}$ L	(Th)	307.531 - 311.700	0.0138(5)	
$ec_{5,1}$ L	(Th)	317.847 - 322.000	0.0483~(18)	
$ec_{27,17}$ L	(Th)	320.49 - 324.70	0.0183(12)	
$ec_{29,17}$ K	(Th)	330.81 (1)	0.0303(24)	
$ec_{5,1}$ M	(Th)	333.137 - 334.987	0.01156(44)	
$ec_{27,12}$ K	(Th)	353.361 (8)	0.139(8)	
$ec_{27,15}$ L	(Th)	388.98 - 393.20	0.077(32)	
$ec_{29,15}$ K	('Th)	399.297 (8)	0.0444(35)	
$ec_{27,15}$ M	(Th)	404.27 - 406.12	0.018(8)	
$ec_{27,12}$ L	(Th)	442.539 - 446.700	0.0665(37)	
$ec_{29,12}$ K	('I'h) (TTh)	452.856 (8)	0.062(45)	
$ec_{27,12}$ M	('Th)	457.829 - 459.679	0.0174(10)	

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
ec20 10 K	(Th)	461.166 (12)	0.022(6)	
ес <u>11</u> 5 к	(Th)	462.641 (21)	0.011(8)	
ec29 15 L	(Th)	488.475 - 492.600	0.0100(8)	
ec29 12 L	(Th)	542.034 - 546.200	0.013(7)	
ec _{39,15} K	(Th)	592.106 (8)	0.0124(10)	
ec _{39.12} K	(Th)	645.665 (8)	0.0580(24)	
ес _{20,5 К}	(Th)	662.647 (7)	0.0283(20)	
ес _{18,3 К}	(Th)	685.298 (7)	0.057(5)	
$ec_{15,2 K}$	(Th)	726.054 (7)	0.0178(8)	
$ec_{20,3 \text{ K}}$	(Th)	730.722 (6)	0.01008~(44)	
$ec_{39,12}$ L	(Th)	734.843 - 739.000	0.01067~(44)	
$ec_{18,3 L}$	(Th)	774.476 - 778.600	0.0147~(9)	
$ec_{12,1}$ K	(Th)	801.559 (6)	0.236~(8)	
$ec_{15,1}$ K	(Th)	855.118 (7)	$0.0426\ (17)$	
$ec_{12,0\ K}$	(Th)	859.318 (5)	0.1282 (45)	
$ec_{12,1 L}$	(Th)	890.737 - 894.900	0.0579(19)	
$ec_{12,1}$ M	(Th)	906.027 - 907.877	0.01438(49)	
$ec_{12,0}$ L	(Th)	948.496 - 952.700	0.0304(11)	
$ec_{35,1}$ K	(Th)	1478.545 (13)	0.017(7)	
$\beta_{0,60}^-$	max:	0.7 (27)	0.0047~(11)	avg: $0.18(68)$
$\beta^{0,59}$	max:	86.8 (27)	0.0069(11)	avg: $22.4(8)$
$\beta_{0,58}^-$	max:	94.0 (27)	0.026~(4)	avg: $24.3(7)$
$\beta_{0,57}^-$	max:	101.0 (27)	0.061~(6)	avg: $26.2(7)$
$\beta_{0,56}^-$	max:	110.2 (27)	0.0032~(10)	avg: $28.7(7)$
$\beta_{0,55}^-$	max:	113.7 (27)	0.238~(15)	avg: $29.7(8)$
$\beta_{0,54}^{-}$	max:	136.3 (27)	0.07~(4)	avg: $35.9(8)$
$\beta_{0,53}^-$	max:	158.8 (27)	0.0132(14)	avg: $42.2 (8)$
$\beta_{0,52}^{-}$	max:	165.1 (27)	0.0038 (8)	avg: $43.9(8)$
$\beta_{0,51}^{-}$	max:	178.9 (27)	0.307~(22)	avg: $47.8(8)$
$\beta_{0,50}^{-}$	max:	186.6 (27)	0.053~(6)	avg: $50.0(8)$
$\beta_{0,49}^{-}$	max:	195.2 (27)	0.061~(8)	avg: $52.5 (8)$
$\beta_{0,48}^{-}$	max:	217.2 (27)	0.025~(5)	avg: $58.8(8)$
$\beta_{0,47}^-$	max:	223.9 (27)	0.069(8)	avg: $60.8(8)$
$\beta_{0,46}^{-}$	max:	230.8 (27)	0.109(8)	avg: $62.8(8)$
$\beta_{0,45}^{-}$	max:	326.2 (27)	0.051~(8)	avg: $91.4(8)$
$\beta_{0,44}^{-}$	max:	327.9 (27)	0.035~(6)	avg: $91.9(8)$
$\beta_{0,43}^{-}$	max:	363.6 (27)	$0.139\ (12)$	avg: 103.0 (9)
$\beta_{0,42}^-$	max:	365.6 (27)	0.060(8)	avg: $103.6 (9)$
$\beta_{0,41}^{-}$	max:	379.9 (27)	$0.378\ (16)$	avg: $108.1 (9)$
$\beta_{0,40}^-$	max:	388.4 (27)	0.149(11)	avg: $110.7 (9)$
$\beta^{0,39}$	max:	399.5 (27)	1.93(8)	avg: $114.3 (9)$
$\beta^{0,38}$	max:	435.4 (27)	2.50(16)	avg: $125.7 (9)$
$\beta^{0,37}$	max:	440.0 (27)	0.20(3)	avg: 127.2 (9)
$\beta_{0,36}^-$	max:	441.0 (27)	1.21 (4)	avg: $127.5 (9)$
$\beta^{0,35}$	max:	477.8 (27)	4.12(20)	avg: $139.5 (9)$
$\beta_{0,34}^-$	max:	480.7 (27)	0.82(3)	avg: 140.4 (9)
$\beta_{0,33}^-$	max:	485.5 (27)	1.23~(6)	avg: 142.0 (9)

		${ m Energy}\ { m keV}$		Electrons per 100 disint.	$rac{\mathrm{Energy}}{\mathrm{keV}}$	
$\beta_{0.32}^{-}$	max:	506.0	(27)	0.071(10)	avg:	148.7(9)
$\beta_{0.31}^{-}$	max:	535.5	(27)	8.8 (23)	avg:	158.5(9)
$\beta_{0,30}^{-}$	max:	584.6	(27)	0.030(6)	avg:	175.0(9)
$\beta_{0.27}^{-}$	max:	691.8	(27)	1.6(5)	avg:	211.8 (10)
$\beta_{0.26}^{-1}$	max:	707.7	(27)	0.060(8)	avg:	217.3(10)
$\beta_{0.25}^{-}$	max:	779.7	(27)	0.208(18)	avg:	242.7(10)
$\beta_{0,24}^{-}$	max:	826.4	(27)	1.46(11)	avg:	259.4(10)
$\beta_{0,23}$	max:	897.2	(27)	0.67~(8)	avg:	285.1(10)
$\beta_{0,22}^{-}$	max:	948.4	(27)	0.166(19)	avg:	303.9(10)
$\beta_{0,20}^{-}$	max:	955.4	(27)	3.39(13)	avg:	306.4(10)
$\beta_{0,19}^{-}$	max:	970.3	(27)	6(3)	avg:	311.9(10)
$\beta_{0,18}^{-}$	max:	1000.8	(27)	6.67(18)	avg:	323.2(10)
$\beta_{0,16}^{-}$	max:	1063.9	(27)	0.099(11)	avg:	346.7(11)
$\beta_{0,15}^{-}$	max:	1101.3	(27)	3.0(4)	avg:	360.8(11)
$\beta_{0,14}^{-}$	max:	1107.4	(27)	0.39~(6)	avg:	$363.1\ (11)$
$\beta_{0,13}^{-}$	max:	1144.3	(27)	0.238~(20)	avg:	$377.1\ (11)$
$\beta_{0,12}^{-}$	max:	1154.8	(27)	$31 \ (4)$	avg:	381.1(11)
$\beta_{0,11}^{-}$	max:	1155.4	(27)	0.18(3)	avg:	381.4(11)
$\beta_{0,10}^{-}$	max:	1179.6	(27)	0.087~(16)	avg:	390.6(11)
$\beta_{0,8}^{-}$	max:	1249.3	(27)	0.17(10)	avg:	417.2(11)
$\beta_{0,5}^{-}$	max:	1727.7	(27)	12.4(5)	avg:	605.7(11)
$\beta_{0,4}^{-}$	max:	1745.6	(27)	0.147~(21)	avg:	587.3(11)
$\beta_{0,3}^{\perp}$	max:	1795.8	(27)	0.72~(23)	avg:	605.4(11)
$\beta_{0,2}^{\perp}$	max:	1937.0	(27)	0.6~(5)	avg:	690.2(11)
$\beta_{0,1}^-$	max:	2066.0	(27)	6~(4)	avg:	742.8(11)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Th)	11.1177 - 19.5043		37~(4)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\93.351$		$\begin{array}{c} 2.5 \ (7) \\ 4.1 \ (11) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Th) (Th) (Th)	$104.819 \\ 105.604 \\ 106.239$	} } }	1.5 (4)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	$108.509 \\ 108.955 \\ 109.442$	} } }	0.49 (13)	$\mathrm{K}\beta_2'$

	Energy keV	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{28,27}({ m Th})$	18.415(12)	0.142(30)	${ m E1}$	6.46(10)	0.019(4)
$\gamma_{38,35}(Th)$	42.46 (5)	0.43(14)	M1	46.3(7)	0.009(3)
$\gamma_{31,29}(Th)$	56.88(5)	8 (8)	E1 + [M2]	360(220)	0.020(5)
$\gamma_{1,0}(Th)$	57.752(13)	72.5(28)	E2	153.2(22)	0.470(17)
$\gamma_{20.17}(Th)$	77.34 (3)	0.027(6)	E1	0.232(4)	0.027(6)
$\gamma_{29,27}(Th)$	99.505(12)	6.10(21)	M1	3.84(6)	1.26(4)
$\gamma_{18,15}(Th)$	100.41(3)	0.114(6)	E1+M2	3.10(5)	0.114(6)
$\gamma_{35,29}(Th)$	114.56(7)	0.102(46)	M1+E2	9(4)	0.0102(22)
$\gamma_{2,1}(Th)$	129.065(3)	11.85 (36)	E2	3.74(6)	2.50(7)
$\gamma_{23,17}(Th)$	135.507(22)	0.024(6)	$\mathrm{E1}$	0.238(4)	0.024(6)
$\gamma_{31,28}(Th)$	137.936(22)	0.239(34)	M1	7.52(11)	0.028(4)
$\gamma_{6.4}(Th)$	140.999(20)	0.055(11)	${ m E1}$	0.217(3)	0.045(9)
$\gamma_{20.15}(Th)$	145.842(20)	0.169(6)	E1	0.200(3)	0.169(6)
$\gamma_{18,12}(Th)$	153.967(11)	0.754(23)	${ m E1}$	0.1757(25)	0.754(23)
$\gamma_{25,22}(Th)$	168.53(12)	0.0127(31)	M1+E2	2.7(15)	0.0111(27)
$\gamma_{49,43}(\mathrm{Th})$	168.53(12)	0.0093(46)	M1+E2	2.7(15)	0.0025(7)
$\gamma_{19,13}(\mathrm{Th})$	173.96(3)	0.036(5)	M1+E2	2.5(14)	0.036(5)
$\gamma_{19,12}(\mathrm{Th})$	184.547 (19)	5.5(29)	E0+M1	100(40)	0.054(19)
$\gamma_{4,2}(Th)$	191.351(17)	0.236(14)	E2	0.776(11)	0.133(8)
$\gamma_{20.12}(Th)$	199.402(15)	0.299(23)	${ m E1}$	0.0950(14)	0.299(23)
$\gamma_{24.15}(Th)$	204.029(11)	0.114 (8)	M2	10.65(15)	0.114(8)
$\gamma_{5,2}(\mathrm{Th})$	209.248 (7)	4.31 (14)	${ m E1}$	0.0848(12)	3.97(13)
$\gamma_{19,9}(\mathrm{Th})$	214.89(10)	0.047(8)	E2	0.514(8)	0.031(5)
$\gamma_{28,23}(Th)$	223.793(21)	0.058(6)	M1+E2	1.85(4)	0.058(6)
$\gamma_{22,10}(Th)$	231.42(10)	0.026(4)	E2	0.392(6)	0.026(4)
$\gamma_{27,21}(\mathrm{Th})$	257.482(21)	0.0286(19)	M1	1.285(18)	0.0286(19)
$\gamma_{27,20}(Th)$	263.58(10)	0.0451(31)	${ m E1}$	0.0498(7)	0.043(3)
$\gamma_{3,1}(\mathrm{Th})$	270.245(7)	3.72(10)	${ m E1}$	0.0470(7)	3.55(10)
$\gamma_{19,8}(\mathrm{Th})$	278.80(15)	0.33(9)	M1+E2	0.6(4)	0.204(28)
$\gamma_{27,19}(\mathrm{Th})$	278.80(15)	0.038(6)	E2	0.212(3)	0.031(5)
$\gamma_{28,20}(\mathrm{Th})$	282.02(4)	0.14(6)	M1+E2	0.6(4)	0.09(3)
$\gamma_{19,7}(\mathrm{Th})$	321.646(8)	0.232(14)	E2	0.1369(20)	0.232(14)
$\gamma_{42,27}(\mathrm{Th})$	326.04(20)	0.035~(6)	E2	$0.1315\ (19)$	0.035~(6)
$\gamma_{3,0}(\mathrm{Th})$	328.004(7)	3.13(11)	$\mathrm{E1}$	0.0305~(5)	3.04(11)
$\gamma_{6,2}(\mathrm{Th})$	332.371~(6)	0.38~(6)	$\mathrm{E1}$	0.0297~(5)	0.37~(6)
$\gamma_{5,1}(\mathrm{Th})$	338.320(5)	11.72(41)	E1	0.0285~(4)	11.4(4)
$\gamma_{27,17}(\mathrm{Th})$	340.969(21)	0.405~(20)	E2+M1	0.133~(21)	0.405~(20)
$\gamma_{51,31}(\mathrm{Th})$	356.7(3)	0.032~(15)	E1+M2	0.8~(8)	0.0178(21)
$\gamma_{55,33}(\mathrm{Th})$	372.59(3)	0.0070(17)	E2	0.0902~(13)	0.0070(17)
$\gamma_{29,19}(\mathrm{Th})$	377.99(10)	0.033~(6)	M1+E2	0.27~(18)	0.026~(3)
$\gamma_{57,33}(\mathrm{Th})$	384.47(9)	0.0070(17)	E2	0.0828(12)	0.0070(17)
$\gamma_{49,30}(\mathrm{Th})$	389.32(13)	0.0108(17)	M1+E2	0.25(17)	0.0108(17)
$\gamma_{50,30}(\mathrm{Th})$	397.95(10)	0.029(3)			0.029(3)
$\gamma_{41,25}(\mathrm{Th})$	399.83(14)	0.0316~(41)	E1	0.0200(3)	0.031(4)
$\gamma_{27,15}(\mathrm{Th})$	409.460(13)	2.02~(6)	E2+M1	0.21 (15)	2.02~(6)
$\gamma_{30,18}(\mathrm{Th})$	415.96(14)	0.0138~(23)	E1	0.0184(3)	$0.0138\ (23)$
$\gamma_{35,23}(\mathrm{Th})$	419.38(7)	0.0224(31)	E1	0.0181(3)	0.022(3)

4.2 Gamma Transitions and Emissions

_

	Energy	$P_{\gamma+ce}$	Multipolarity	$lpha_{ m T}$	P_{γ}
	keV	\times 100			\times 100
$\gamma_{20,17}(Th)$	440,450 (24)	0.166(13)	M1	0.295(5)	0.128(10)
$\gamma_{23,11}$ (Th) $\gamma_{11.6}$ (Th)	449.11 (6)	0.053(6)	E2	0.0554(8)	0.050(6)
$\gamma_{27,13}(Th)$	452.50(6)	0.0199(19)	E2	0.0544(8)	0.0199(19)
$\gamma_{27,13}()$ $\gamma_{37,23}(Th)$	457.18 (15)	0.0186(39)	M1+E2	0.16(11)	0.016(3)
$\gamma_{27,23}()$ $\gamma_{27,12}(Th)$	463.002 (6)	4.45(24)	E2	0.0514(8)	4.45(24)
$\gamma_{33,20}(Th)$	470.21 (20)	0.0142(30)	E1	0.01428(20)	0.014(3)
$\gamma_{26,10}(Th)$	471.77 (15)	0.0357(42)	E2	0.0491(7)	0.034(4)
$\gamma_{20,10}(Th)$	474.79 (10)	0.026(5)	M1+E2	0.14(10)	0.023(4)
$\gamma_{8.5}(Th)$	478.40 (5)	0.227(19)	E1	0.01379(20)	0.224(19)
$\gamma_{48,26}(Th)$	490.33 (15)	0.0116(25)	E2	0.0447(7)	0.0116(25)
$\gamma_{35,19}(Th)$	492.29 (8)	0.0282(41)	M1+E2	0.13(9)	0.025(3)
$\gamma_{39,23}(Th)$	497.64 (10)	0.0062(19)	M2	0.581(9)	0.0062(19)
$\gamma_{7,3}(Th)$	503.819(23)	0.173(19)	E1	0.01243(18)	0.171(19)
$\gamma_{29,15}(Th)$	508.955(13)	0.568(45)	E2+M1	0.1130(16)	0.51(4)
$\gamma_{33,18}(Th)$	515.12 (7)	0.051(6)	E1	0.01189(17)	0.051(6)
$\gamma_{34,18}(Th)$	520.16(3)	0.070(7)	M1+E2	0.11(8)	0.070(7)
$\gamma_{35,18}(Th)$	523.129 (22)	0.129(10)	E1	0.01153(17)	0.129(10)
$\gamma_{16.6}(Th)$	540.67 (5)	0.0297(38)	M1+E2	0.10(7)	0.027(3)
$\gamma_{8,3}(Th)$	546.445(21)	0.201(16)	E1	0.01058(15)	0.199(16)
$\gamma_{39,22}(Th)$	548.73 (11)	0.0264(47)	M1+E2	0.10(7)	0.024(4)
$\gamma_{35,17}(Th)$	555.07 (16)	0.048(6)	M1+E2		0.048(6)
$\gamma_{29,12}(Th)$	562.496 (7)	0.97(7)	E2+M1	0.09(6)	0.89(4)
$\gamma_{39,19}(Th)$	570.88(4)	0.22(6)	M1	0.1472(21)	0.19(5)
$\gamma_{11.5}(Th)$	572.10(5)	0.170(22)	M1+E2	0.09(6)	0.156(18)
$\gamma_{13,5}(Th)$	583.391 (10)	0.120(11)	E1	0.00932(13)	0.120(11)
$\gamma_{9,3}(Th)$	610.65(10)	0.024(5)	$\mathbf{E1}$	0.00853(12)	0.024(5)
$\gamma_{10,3}(Th)$	616.21(3)	0.085(7)	$\mathbf{E1}$	0.00838(12)	0.084(7)
$\gamma_{14.5}(Th)$	620.32(7)	0.084(7)			0.084(7)
$\gamma_{35,15}(Th)$	623.48(22)	0.0128(33)	M1+E2	0.07(5)	0.012(3)
$\gamma_{34,14}(Th)$	626.80(22)	0.015(3)			0.015(3)
$\gamma_{35,14}(Th)$	629.41 (5)	0.047(5)	E2	0.0254(4)	0.047(5)
$\gamma_{11,3}(Th)$	640.32(4)	0.058(6)	E2	0.0245(4)	0.057(6)
$\gamma_{20.6}(Th)$	649.02(12)	0.043(11)	E2	0.0238(4)	0.0332(36)
$\gamma_{32.12}(Th)$	649.02(12)	0.0086(9)			0.0086(9)
$\gamma_{13,3}(\mathrm{Th})$	651.53(3)	0.094(10)	${ m E1}$	0.00754(11)	0.094(10)
$\gamma_{36.15}(\mathrm{Th})$	660.1(3)	0.00572(38)	M1+E2	0.06(4)	0.0054(3)
$\gamma_{16.5}(\mathrm{Th})$	663.88(8)	0.029(6)	M1+E2	0.06(4)	0.029(6)
$\gamma_{46,23}(Th)$	666.45(5)	0.0068(7)	${ m E1}$	0.00722(11)	0.0068(7)
$\gamma_{35,13}(Th)$	666.45(5)	0.061(7)	M1+E2	0.06(4)	0.058(6)
$\gamma_{38,14}(\mathrm{Th})$	671.95(8)	0.027(8)			0.027(8)
$\gamma_{34,12}(\mathrm{Th})$	674.63(4)	0.105(10)	M1+E2	0.06(4)	0.105(10)
$\gamma_{35,12}(Th)$	677.08 (10)	0.065(6)	M1+E2	0.06(4)	0.065(6)
$\gamma_{14.3}(Th)$	688.12(4)	0.070(7)			0.070(7)
$\gamma_{34,10}(Th)$	698.99 (10)	0.038(6)	E2	0.0203(3)	0.038(6)
$\gamma_{39,15}(Th)$	701.742 (15)	0.181(15)	M1	0.0850(12)	0.181(15)
$\gamma_{23,6}(Th)$	707.42 (5)	0.162(18)	E2	0.0198(3)	0.162(18)
$\gamma_{51,23}(Th)$	718.30(3)	0.0191(40)	E1	0.00628(9)	0.019(4)
$\gamma_{18,5}(\mathrm{Th})$	726.88 (10)	0.68(8)	E2	0.0187(3)	0.68(8)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
$\gamma_{43,15}(Th)$	737.74(5)	0.039(5)	M1+E2	0.05(3)	0.039(5)
$\gamma_{39,19}()$ $\gamma_{39,19}(Th)$	755.313(9)	1.102(43)	M1	0.070(1)	1.03(4)
$\gamma_{20.5}(Th)$	772.291 (7)	1.52(6)	M1+E2	0.0244(14)	1.52(6)
$\gamma_{7,1}(Th)$	774.07 (10)	0.0630(41)	E2	0.01649(23)	0.062(4)
$\gamma_{51,20}(Th)$	776.51(3)	0.020(6)			0.020(6)
$\gamma_{12,2}(Th)$	782.140 (6)	0.508(41)	E2	0.01615(23)	0.50(4)
$\gamma_{51,19}(Th)$	791.43(9)	0.0149(42)	M1	0.0618(9)	0.014(4)
$\gamma_{43,12}(Th)$	791.43(9)	0.0104(31)	M1+E2	0.039(23)	0.010(3)
$\gamma_{13,2}(Th)$	792.69 (10)	0.082(5)	E2	0.01572(22)	0.081(5)
$\gamma_{18,3}(Th)$	794.942 (14)	4.31 (14)	E2+M1	0.0179(14)	4.31 (14)
$\gamma_{38.8}(Th)$	813.88 (10)	0.0073(17)	M1+E2	0.036(22)	0.0073(17)
$\gamma_{8,1}(Th)$	816.82 (10)	0.0321(42)	M1+E2	0.036(21)	0.031(4)
$\gamma_{25.6}(\mathrm{Th})$	824.931 (25)	0.054(6)	E2	0.01452(21)	0.053(6)
$\gamma_{23,5}(\mathrm{Th})$	830.481 (8)	0.61(6)	E2+M1	0.0150(3)	0.61(6)
$\gamma_{15,2}(Th)$	835.704 (8)	1.70(7)	E2	0.01415(20)	1.70(7)
$\gamma_{20,3}(\mathrm{Th})$	840.372 (9)	0.984(41)	E2	0.0140(2)	0.97(4)
$\gamma_{51,17}(\mathrm{Th})$	853.96(8)	0.0128(21)	M1+E2	0.032(19)	0.0124(20)
$\gamma_{46,15}(\mathrm{Th})$	870.47 (7)	0.046(5)	M1	0.0481(7)	0.046(5)
$\gamma_{16,2}(\mathrm{Th})$	873.10 (15)	0.032(7)	E1	0.00440(7)	0.032(7)
$\gamma_{8,0}(\mathrm{Th})$	874.45(8)	0.051(11)	E2	0.01294(19)	0.050(11)
$\gamma_{47,15}(\mathrm{Th})$	877.38(7)	0.0144(31)	M1+E2	0.030(18)	0.014(3)
$\gamma_{9,1}(\mathrm{Th})$	880.76(10)	0.0066~(19)	E2	0.01276(18)	0.0065~(19)
$\gamma_{55,18}(\mathrm{Th})$	887.26(10)	0.029~(3)	M1+E2	0.029~(17)	0.029~(3)
$\gamma_{24,5}(\mathrm{Th})$	901.38(3)	0.0172~(40)	E2	0.01220(17)	0.017~(4)
$\gamma_{17,2}(\mathrm{Th})$	904.20(5)	0.78(4)	E2	0.01212(17)	0.78~(4)
$\gamma_{12,1}(\mathrm{Th})$	911.196~(6)	26.5(8)	E2	$0.01194\ (17)$	26.2(8)
$\gamma_{55,17}(\mathrm{Th})$	919.03~(12)	0.028~(3)			0.028~(3)
$\gamma_{13,1}(\mathrm{Th})$	921.87(12)	0.0158(24)	M1+E2	0.027~(15)	0.0154~(23)
$\gamma_{28,6}(\mathrm{Th})$	930.99~(7)	0.0026~(24)	M1+E2	$0.026\ (15)$	0.0025~(23)
$\gamma_{47,12}(\mathrm{Th})$	930.99~(7)	0.004(1)			0.004(1)
$\gamma_{58,17}(\mathrm{Th})$	$939.89\ (15)$	0.009~(3)			0.009(3)
$\gamma_{10,0}(\mathrm{Th})$	944.19(3)	0.102(10)	E1+M2	0.025(14)	0.10(1)
$\gamma_{25,5}(\mathrm{Th})$	947.976(24)	0.111(10)	M1+E2	0.025~(14)	0.111(10)
$\gamma_{14,1}(\mathrm{Th})$	958.59(4)	0.29(5)			0.29(5)
$\gamma_{15,1}(\mathrm{Th})$	964.786(8)	4.99 (17)	E2+M1	0.01119(23)	4.99(17)
$\gamma_{12,0}(Th)$	968.960 (9)	16.1(5)	E2	0.01061 (15)	15.9(5)
$\gamma_{51,12}(Th)$	975.98 (5)	0.052(6)	M1	0.0356(5)	0.052(6)
$\gamma_{13,0}(\mathrm{Th})$	979.49(10)	0.0283(30)	E2	0.01039(15)	0.028(3)
$\gamma_{21,2}(Th)$	987.87 (10)	0.14(6)	M1+E2	0.022(13)	0.14(6)
$\gamma_{22,2}(Th)$	988.65(20)	0.081(14)	E2	0.01021 (15)	0.081(14)
$\gamma_{51,10}(\text{Th})$	1000.68 (10) 1012.55 (12)	0.0054(3)			0.0054(3)
$\gamma_{58,14}(Th)$	1013.55 (13) 1016.44 (10)	0.0097 (10)	M1 + E9	0.001.(10)	0.0097 (10)
$\gamma_{14,0}(Th)$	1010.44(10) 1017.04(20)	0.0194(31)	M1+E2 F2+M2	0.021 (12)	0.019(3)
$\gamma_{54,12}(Th)$	1017.94(20)	0.032(32)	E2+M3	0.07(7)	0.03(3)
$\gamma_{26,5}(Th)$	1019.88 (10) 1022.944 (92)	0.022(5)	Бð	0 00020 (14)	0.022(5)
$\gamma_{17,1}(Th)$	1033.244 (23) 1030.92 (7)	0.204 (12)	EZ	0.00938 (14)	0.204 (12)
$\gamma_{23,2}(1h)$	1039.83 (7) 1040.04 (15)	0.030(18)	$\mathbf{F}0 + \mathbf{M}0$	0.07(6)	0.000 (18) 0.047 (10)
$\gamma_{55,12}(Th)$	1040.94(15)	0.047(10)	E2+M3	0.07 (6)	0.047(10)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
(771)	1052 11 (00)	0.0149 (41)	M1 + E0	0.010 (10)	0.014 (4)
$\gamma_{57,12}(1h)$	1053.11(20) 1054.12(20)	0.0143(41)	M1+E2 M1+E2	0.019(10)	0.014(4)
$\gamma_{28,5}(1n)$	1034.13(20) 1062.57(15)	0.019(0)	M1+E2	0.019(10)	0.019(0)
$\gamma_{50,8}(1n)$	1002.57 (15) 1065 169 (15)	0.011(4) 0.125(8)			0.011(4) 0.125(8)
$\gamma_{18,1}(1n)$	1005.108(15) 1074.73(15)	0.135(6) 0.011(4)			0.133(6) 0.011(4)
$\gamma_{48,7}(11)$	1074.73(13) 1088.20(15)	0.011(4)			0.011(4) 0.0062(14)
$\gamma_{26,3}(11)$	1005.20(13) 1005.671(23)	0.0002(14) 0.126(10)	$M1 \perp F2$	0.017(0)	0.0002(14) 0.126(10)
$\gamma_{19,1}(Th)$	1030.071(20) 1103/13(10)	0.120(10) 0.0102(11)	E3	0.017(3) 0.0195(3)	0.120(10) 0.0102(11)
$\gamma_{27,3}(Th)$	1100.49(10) 1110.604(9)	0.0102(11) 0.285(22)	E1	0.0133(3) 0.00288(4)	0.0102(11) 0.284(22)
$\gamma_{20,1}(Th)$	1110.004(9) 1110.604(9)	0.203(22) 0.0273(21)	E1	0.00288(4)	0.204(22) 0.0272(21)
$\gamma_{24,2}(Th)$	1117.65(10)	0.0275(21) 0.061(7)		0.00200 (4)	0.0272(21) 0.061(7)
$\gamma_{22,1}(Th)$	$1135\ 26\ (15)$	0.001(1)			0.001(17)
$\gamma_{29,5}(Th)$ $\gamma_{20,5}(Th)$	1142.87(15)	0.0102(11) 0.0108(22)			0.0102(11) 0.0108(22)
$\gamma_{50,5}(Th)$	1148 17 (14)	0.0100(22) 0.0062(14)	M1+E2	0.015(8)	0.0100(22) 0.0062(14)
$\gamma_{10,0}(Th)$	1153.27(4)	0.148(13)	E1+M2	0.03(3)	0.148(13)
$\gamma_{19,0}(Th)$ $\gamma_{25,2}(Th)$	1157.16(15)	0.0073(14)	E1+M2	0.03(3)	0.0073(14)
$\gamma_{23,2}(=-)$ $\gamma_{37.6}(Th)$	1164.55(7)	0.067(7)	M1+E2	0.015(8)	0.067(7)
γ_{220} (Th)	1175.33(10)	0.0257(42)	E1+M2	0.027(24)	0.025(4)
$\gamma_{57,7}(Th)$	1190.83(20)	0.0065(17)	M1+E2	0.014(7)	0.0065(17)
$\gamma_{40.6}(Th)$	1217.03(10)	0.022(4)	·		0.022(4)
$\gamma_{26,2}(Th)$	1229.42(15)	0.0078(25)			0.0078(25)
$\gamma_{27,2}(Th)$	1245.15(6)	0.110 (8)	M1+E2	0.013(6)	0.110 (8)
$\gamma_{34.5}(Th)$	1247.10(5)	0.524(24)	M1	0.0187(3)	0.524(24)
$\gamma_{35.5}(\mathrm{Th})$	1250.06(5)	0.065(6)			0.065(6)
$\gamma_{44.6}(\mathrm{Th})$	1276.72(10)	0.015(3)			0.015(3)
$\gamma_{25,1}(\mathrm{Th})$	1286.29(20)	0.052(11)	E1+M2		0.052(11)
$\gamma_{37,5}(\mathrm{Th})$	1287.77 (8)	0.109(25)	M1+E2	0.012(6)	0.109(25)
$\gamma_{33,3}(\mathrm{Th})$	1309.76(20)	0.020(7)	E1+M2	0.020(18)	0.020(7)
$\gamma_{34,3}(\mathrm{Th})$	1315.33(10)	0.0152(30)	M1+E2	0.011(6)	0.015(3)
$\gamma_{29,2}(\mathrm{Th})$	$1344.62\ (15)$	0.0094~(20)	M1+E2	0.011(5)	0.0094~(20)
$\gamma_{41,5}(\mathrm{Th})$	$1347.50\ (15)$	0.0163~(41)	E1+M2	0.019(17)	0.016~(4)
$\gamma_{40,4}(\mathrm{Th})$	$1357.81\ (15)$	0.021~(5)			0.021~(5)
$\gamma_{41,4}(\mathrm{Th})$	$1365.71\ (12)$	0.0144~(31)	E2+M3	0.03~(3)	0.014(3)
$\gamma_{27,1}(\mathrm{Th})$	1374.24(7)	0.0196(14)	E2+M3	0.03~(3)	$0.0196\ (14)$
$\gamma_{45,5}(\mathrm{Th})$	$1401.52\ (10)$	0.0132(31)	E1+M2	0.017~(15)	0.013~(3)
$\gamma_{41,3}(\mathrm{Th})$	$1415.55\ (14)$	0.022~(5)	E3	0.01141 (16)	0.022~(5)
$\gamma_{32,2}(\mathrm{Th})$	1430.99(10)	0.037~(8)			0.037~(8)
$\gamma_{28,0}(\mathrm{Th})$	$1451.43\ (15)$	0.0111(22)	M1+E2	0.009(4)	0.0111 (22)
$\gamma_{35,2}(\mathrm{Th})$	$1459.131\ (22)$	0.89~(6)	E2	0.00498~(7)	0.87~(5)
$\gamma_{45,3}(\mathrm{Th})$	1469.74(15)	0.021~(5)	E1+M2	0.015~(14)	0.021~(5)
$\gamma_{36,2}(\mathrm{Th})$	1495.904(16)	0.924(30)	$\mathrm{E2}$	0.00477~(7)	0.92(3)
$\gamma_{38,2}(\mathrm{Th})$	1501.59(5)	0.513(17)			0.513(17)
$\gamma_{39,2}(\mathrm{Th})$	1537.89(10)	0.049(6)	E2+M3	0.023(19)	0.049(6)
$\gamma_{40,2}(\mathrm{Th})$	1548.65(6)	0.040(5)			0.040(5)
$\gamma_{41,2}(\mathrm{Th})$	1557.13(7)	0.173(9)	E2+M1	0.0070(6)	0.173(9)
$\gamma_{32,1}(\mathrm{Th})$	1560.02(7)	0.021(5)			0.021(5)
$\gamma_{42,2}(\mathrm{Th})$	1571.55(20)	0.0059(17)			0.0059(17)
$\gamma_{43,2}(\mathrm{Th})$	1573.389(24)	0.0341 (40)	E2	0.00438(7)	0.034~(4)

	${ m Energy}\ { m keV}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{33,1}(Th)$	1580.531(25)	0.624(40)	M1+E2	0.007(3)	0.62(4)
$\gamma_{35,1}(Th)$	1588.200(25)	3.06(12)	E2	0.007(3)	3.06(12)
$\gamma_{54 4}(Th)$	1609.44(15)	0.0081(17)	$\mathrm{E2}$	0.00422(6)	0.0081(17)
$\gamma_{36,1}(Th)$	1625.09(4)	0.270(23)	E2+M3	0.020(17)	0.270(23)
$\gamma_{38.1}(Th)$	1630.618(20)	1.52(6)	M1+E2	0.007(3)	1.52(6)
$\gamma_{33,0}(\mathrm{Th})$	1638.272(23)	0.462(30)	E2	0.00410(6)	0.46(3)
$\gamma_{39,1}(\mathrm{Th})$	1666.514(13)	0.173(9)	M1	0.00895(13)	0.173(9)
$\gamma_{40,1}(\mathrm{Th})$	1677.66 (6)	0.057(6)			0.057(6)
$\gamma_{41,1}(Th)$	1686.22(11)	0.094(7)	E2	0.00391~(6)	0.094(7)
$\gamma_{42,1}(\mathrm{Th})$	1700.62(20)	0.0105~(25)			0.0105~(25)
$\gamma_{43,1}(\mathrm{Th})$	1702.40(8)	0.055~(7)	E2+M3	0.018(15)	0.055~(7)
$\gamma_{46,2}(\mathrm{Th})$	1706.17(7)	0.0089(12)	M1+E2	0.0078(12)	0.0089(12)
$\gamma_{47,2}(\mathrm{Th})$	1713.49(20)	0.0057(11)	E2+M3	0.018(14)	0.0057(11)
$\gamma_{39,0}(\mathrm{Th})$	1724.19(5)	0.030(4)	E1+M2		0.030(4)
$\gamma_{44,1}(\mathrm{Th})$	1738.46(5)	0.018~(4)			0.018~(4)
$\gamma_{45,1}(\mathrm{Th})$	1740.5(3)	0.011~(4)			0.011~(4)
$\gamma_{49,2}(\mathrm{Th})$	1742.1(3)	0.0084~(25)	M1+E2		0.0084~(25)
$\gamma_{50,2}(\mathrm{Th})$	1750.58(20)	0.0084(9)			0.0084(9)
$\gamma_{51,2}(\mathrm{Th})$	1758.11(5)	0.0361 (40)	E2+M1	0.00371~(6)	0.036~(4)
$\gamma_{52,2}(\mathrm{Th})$	1772.2(3)	0.0019(5)	E2+M3	0.016~(13)	0.0019(5)
$\gamma_{60,3}(\mathrm{Th})$	1795.13~(6)	0.0022~(8)			0.0022(8)
$\gamma_{45,0}(\mathrm{Th})$	1797.5(5)	0.0022(8)	E1+M2	0.009(8)	0.0022(8)
$\gamma_{54,2}(\mathrm{Th})$	1800.9(2)	0.0046(8)			0.0046(8)
$\gamma_{55,2}(\mathrm{Th})$	1823.22(10)	0.046(5)			0.046(5)
$\gamma_{56,2}(\mathrm{Th})$	1826.8(3)	0.0022(8)			0.0022(8)
$\gamma_{46,1}(\mathrm{Th})$	1835.29(10)	0.0381(40)	E2+M1	0.00382(10)	0.038(4)
$\gamma_{47,1}(\mathrm{Th})$	1842.15 (8)	0.037(6)	M1+E2	0.0055(4)	0.037(6)
$\gamma_{59,2}(\mathrm{Th})$	1850.17(20)	0.0046(8)			0.0046(8)
$\gamma_{49,1}(\mathrm{Th})$	1870.82(9)	0.0257(24)	M1+E2	0.0051(18)	0.0257(24)
$\gamma_{50,1}(Th)$	1879.6(3)	0.0013(5)	\mathbf{D}_{0} , \mathbf{M}_{1}		0.0013(5)
$\gamma_{51,1}(Th)$	1887.13(5)	0.094(7)	E2+M1	0.0050(17)	0.094(7)
$\gamma_{47,0}(\text{Th})$	1900.16(20)	0.0030(6)	E1+M2	0.008(7)	0.0030(6)
$\gamma_{53,1}(Th)$	1907.14(11)	0.0124(13)	$\mathbf{D}0 + \mathbf{M}0$	0.019(10)	0.0124(13)
$\gamma_{54,1}(Th)$	1929.78(20)	0.0208(14)	E2+M3	0.013(10)	0.0208(14)
$\gamma_{60,2}(Th)$	1930.3(3)	0.0022(6)	$\mathbf{E}0 + \mathbf{M}0$	0.019(10)	0.0022(6)
$\gamma_{55,1}(Th)$	1902.37 (10) 1055.0 (5)	0.002(3)	E2+1/13	0.013(10)	0.002(3)
$\gamma_{56,1}(Th)$	1900.9(0) 10594(0)	0.0008(3)	$\mathbf{E}1 + \mathbf{M}9$		0.0008(3)
$\gamma_{52,0}(Th)$	1900.4 (0) 1065 00 (10)	0.0010 (9)	D1 + W12 M1 + D2	0.0046.(15)	0.0010(9)
$\gamma_{57,1}(Th)$	1900.22 (12) 1072 0 (2)	0.0223 (22)	1011十凸2	0.0040(13)	0.0223 (22)
$\gamma_{58,1}(Th)$	1972.0 (3) 1070 2 (2)	0.0038 (8) 0.0010 (5)			0.0038 (8) 0.0010 (5)
$\gamma_{59,1}(Th)$	1979.3 (J) 2020 4 (E)	0.0019(3)	$\mathbf{F1} + \mathbf{M2}$	0.007(6)	0.0019(3)
$\gamma_{58,0}(Th)$	2029.4(5)	0.0013(2)	E1+M2	0.007 (0)	0.0018 (9)

5 References

O.HAHN, O.ERBACHER, Z. Phys. 27 (1926) 531 (Half-life) M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, C.Lind, St.Meyer, E.Rutherford, E.Scweidler, Rev. Mod. Phys. 3 (1931) 427 (Half-life) F.LUX, N.KAUBISCH, Angewandte Chemie Int. Ed. 8 (1969) 911 (Proposed alpha decay) M.ARNOUX, A.GIZON, Compt. Rend. Acad. Sci. (Paris) Ser. B 269 (1969) 317 (Gamma emissions) M.HERMENT, C.VIEU, Compt. Rend. Acad. Sci. (Paris) Ser. B 273 (1971) 1058 (Gamma emissions and conversion coefficients) H.W.TAYLOR, Int. J. Appl. Radiat. Isotop. 24 (1973) 593 (Gamma emissions) W.Kurcewicz, N.Kaffrell, N.Trautmann, A.Plochocki, J.Zylicz, M.Matul, K.Stryczniewicz, Nucl. Phys. A289 (1977) 1 (Gamma emissions) R.G.HELMER, Nucl. Instrum. Methods 164 (1979) 355 (Reference gamma-ray energies) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251 (Gamma emissions) A.S.MAHAJAN, M.S.BIDARKUNDI, Indian J. Phys. 20 (1982) 701 (Gamma emissions and conversion coefficients) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma emissions) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma emissions) G.SKARNEMARK, M.SKÅLBERG, Int. J. Appl. Radiat. Isotop. 36 (1985) 439 (Half-life) J.DALMASSO, H.MARIA, Phys. Rev. C36 (1987) 2510 (Decay scheme and gamma emissions) T.W.BURROWS, Report BNL-NSC-52142, Brookhaven National Laboratory (1988) (RADLST) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma emissions) H.BALTZER, K.FRIETAG, C.GUNTHER, P.HERZOG, J.MANNS, U.MULLER, R.PAULSEN, P.SEVENICH, T.WEBER, B.WILL, Z. Phys. A352 (1995) 47 (Gamma in 228Pa decay) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 723 (Decay scheme) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Reference gamma-ray energies) A.H.WAPSTRA, G.AUDI, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKOYA, C.W.NESTOR JR., Report ANU-P/1684, Canberra (2005) (Theoretical ICC) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	698.55	(32)	d
$Q^{'}_{lpha}$:	5520.08	(22)	keV
α	:	100		%
^{20}O	:	1.13	(22)	$\times 10^{-11}~\%$

2 α Emissions

	Energy keV	Probability × 100
$\alpha_{0,8}$	4448.00 (23)	0.0000045(7)
$\alpha_{0,7}$	4522.97(23)	0.000017(3)
$\alpha_{0,6}$	4952.5(3)	0.000024(5)
$\alpha_{0,5}$	4997.76(24)	0.000010(2)
$\alpha_{0,4}$	5137.97(22)	0.036(6)
$lpha_{0,3}$	5176.86(22)	0.218(4)
$\alpha_{0,2}$	5211.05(22)	0.408(7)
$\alpha_{0,1}$	5340.35(22)	26.0(5)
$lpha_{0,0}$	5423.24(22)	73.4(5)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	
e_{AL}	(Ra)	5.71 - 12.04	10.4(4)	
e _{AK}	(Ra) KLL KLX KXY	65.149 - 72.729 79.721 - 88.466 94.27 - 103.91	0.0020 (3) } } }	
$\begin{array}{c} {\rm ec}_{1,0} \ {\rm L} \\ {\rm ec}_{1,0} \ {\rm M} \\ {\rm ec}_{1,0} \ {\rm N} + \\ {\rm ec}_{2,0} \ {\rm K} \\ {\rm ec}_{3,1} \ {\rm K} \\ {\rm ec}_{3,1} \ {\rm L} \\ {\rm ec}_{3,1} \ {\rm M} + \end{array}$	(Ra) (Ra) (Ra) (Ra) (Ra) (Ra) (Ra)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 18.5 \ (5) \\ 5.0 \ (2) \\ 1.65 \ (5) \\ 0.015 \ (6) \\ 0.023 \ (1) \\ 0.069 \ (2) \\ 0.025 \ (1) \end{array}$	

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Ra)	10.622 - 18.412		8.6(4)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	$\begin{array}{c} (\mathrm{Ra}) \\ (\mathrm{Ra}) \end{array}$	$85.43 \\ 88.47$		$0.0180(3) \\ 0.0295(5)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Ra) (Ra) (Ra)	99.432 100.13 100.738	} } }	0.01034 (21)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Ra) (Ra) (Ra)	$102.89 \\ 103.295 \\ 103.74$	} } }	0.00339(9)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{4,2}({ m Ra})$ $\gamma_{1,0}({ m Ra})$ $\gamma_{2,1}({ m Ra})$ $\gamma_{5,4}({ m Ra})$ $\gamma_{5,3}({ m Ra})$ $\gamma_{4,1}({ m Ra})$ $\gamma_{2,0}({ m Ra})$ $\gamma_{6,3}({ m Ra})$ $\gamma_{7,2}({ m Ra})$ $\gamma_{8,3}({ m Ra})$	$\begin{array}{c} 74.38 \ (4) \\ 84.373 \ (3) \\ 131.612 \ (5) \\ 142.71 \ (11) \\ 166.410 \ (4) \\ 182.29 \ (10) \\ 205.99 \ (4) \\ 215.985 \ (4) \\ 228.42 \ (18) \\ 700.36 \ (7) \\ 741.87 \ (6) \end{array}$	$\begin{array}{c} 0.015 \ (5) \\ 26.4 \ (7) \\ 0.158 \ (3) \\ 0.0000041 \ (13) \\ 0.217 \ (4) \\ 0.0000057 \ (20) \\ 0.0204 \ (5) \\ 0.265 \ (4) \\ 0.000025 \ (6) \\ 0.000003 \ (1) \\ 0.0000014 \ (4) \end{array}$	[E2] E2 E1 [E2] E2 [E1] [E1] E1 [E2] E1 [E2]	$\begin{array}{c} 38.6 \ (6) \\ 21.2 \ (3) \\ 0.247 \ (4) \\ 2.14 \ (3) \\ 1.164 \ (17) \\ 0.1126 \ (16) \\ 0.0841 \ (12) \\ 0.0752 \ (11) \\ 0.366 \ (6) \\ 0.00611 \ (9) \\ 0.01625 \ (23) \end{array}$	$\begin{array}{c} 0.00039 \ (14) \\ 1.19 \ (3) \\ 0.127 \ (2) \\ 0.0000013 \ (4) \\ 0.1004 \ (14) \\ 0.0000051 \ (18) \\ 0.0188 \ (5) \\ 0.246 \ (4) \\ 0.000018 \ (4) \\ 0.000003 \ (1) \\ 0.0000014 \ (4) \end{array}$
$\gamma_{7,1}(\mathrm{Ra})$ $\gamma_{8,1}(\mathrm{Ra})$ $\gamma_{8,0}(\mathrm{Ra})$	$\begin{array}{c} 831.97 \ (7) \\ 908.28 \ (6) \\ 992.65 \ (6) \end{array}$	$\begin{array}{c} 0.000014 \ (2) \\ 0.0000017 \ (5) \\ 0.0000014 \ (4) \end{array}$	E2 [M1+50%E2] [E2]	$\begin{array}{c} 0.01289 \ (18) \\ 0.024 \ (3) \\ 0.00913 \ (13) \end{array}$	$\begin{array}{c} 0.000014 \ (2) \\ 0.0000017 \ (5) \\ 0.0000014 \ (4) \end{array}$

5 References

L.MEITNER, Phys. Zeitschr. 19 (1918) 257
(Half-life)
F.ASARO, F.STEPHENS JR., I.PERLMAN, Phys. Rev. 92 (1953) 1495
(Alpha-particle energies, alpha-particle emission probabilities, gamma-ray emission probabilities, internal conversion coefficients)
H.W.KIRBY, G.R.GROVE, D.L.TIMMA, Phys. Rev. 102 (1956) 1140
(Half-life)
C.W.MAYS, D.R.ATHERTON, R.D.LLOYD, D.O.CLARK, Report COO-225, Utah Univ. (1962) 90
(Half-life)
M.O.COSTA, M.R.S.GRADE, Port. Phys. 4 (1966) 267
(Conversion-electron emission probabilities, internal conversion coefficients)
J.DALMASSO, C.MARSOL, Compt. Rend. Acad. Sci. (Paris) Ser. B 267 (1968) 1366 (Gamma-ray energies) C.L.DUKE, W.L.TALBERT JR., Phys. Rev. 173 (1968) 1125 (Internal conversion coefficients) A.PEGHAIRE, Nucl. Instrum. Methods 75 (1969) 66 (Alpha-particle emission probabilities, gamma-ray emission probabilities, internal conversion coefficients) S.A.BARANOV, V.M.SHATINSKII, V.M.KULAKOV, Y.F.RODIONOV, Sov. J. Nucl. Phys. 11 (1970) 515 (Alpha-particle energies, alpha-particle emission probabilities) D.L.SPENNY, A.A.BARTLETT, Report COO-535-620, Utah Univ. (1970) 102 (L- and M-subshell ratios) K.C.JORDAN, G.W.OTTO, R.P.RATAY, J. Inorg. Nucl. Chem. 33 (1971) 1215 (Half-life) B.GRENNBERG, A.Rytz, Metrologia 7 (1971) 65 (Alpha-particle energies) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting on Transactinium Nucl. Data, Karlsruhe, Vol.III, IAEA-186, IAEA, Vienna (1976) 249 (Alpha-particle energies, alpha-particle emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies) W.Kurcewicz, N.Kaffrell, N.Trautmann, A.Plochocki, J.Zylicz, M.Matul, K.Stryczniewicz, Nucl. Phys. A289 (1977) 1 (Gamma-ray energies, Gamma-ray emission probabilities) W.KURCEWICZ, E.RUCHOWSKA, N.KAFFRELL, N.TRAUTMANN, Nucl. Instrum. Methods 146 (1977) 613 (Gamma-ray energies) W.Kurcewicz, E.Ruchowska, N.Kaffrell, T.Bjoernstad, G.Nyman, Nucl. Phys. A356 (1981) 15 (908.28-keV gamma-ray emission probability) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-particle energies, alpha-particle emission probabilities) M.P.UNTERWEGER, D.D.HOPPES, F.J.SCHIMA, Nucl. Instrum. Methods Phys. Res. A312 (1992) 349 (Half-life) R.BONETTI, C.CHIESA, A.GUGLIELMETTI, C.MIGLIORINO, A.CESANA, M.TERRANI, Nucl. Phys. A556 (1993) 115 (Cluster decay) T.BABELIOWSKY, G.BORTELS, Appl. Radiat. Isot. 44 (1993) 1349 (Alpha-particle emission probabilities) G.ARDISSON, M.HUSSONNOIS, Radiochim. Acta 70/71 (1995) 123 (Cluster decay) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons) A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 227 (Nuclear structure, energies) S.P.TRETYAKOVA, V.L.MIKHEEV, Nuovo Cim. 110A (1997) 1043 (Cluster decay) Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1 (Alpha decay, r0 parameter) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (X-ray emission probabilities) M.P.UNTERWEGER, Appl. Radiat. Isot. 56 (2002) 125 (Half-life) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (Q)

M.-M.BÉ, V.P.CHECHEV, R.DERSCH, O.A.M.HELENE, R.G.HELMER, M.HERMAN, S.HLAVÁC, A.MARCINKOWSKI, G.L.MOLNÁR, A.L.NICHOLS, E.SCHÖNFELD, V.R.VANIN, M.J.WOODS, in Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications Vol. 1, STI/PUB/1287, IAEA, Vienna (2007) (Half-life)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

$T_{1/2}$:	7.88	(12)	$\times 10^3$ y
$Q^{'}_{lpha}$:	5167.6	(10)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0.44}$	4478(3)	0.005
$\alpha_{0,43}$	4484(2)	0.03(2)
$\alpha_{0,40}$	4599(3)	0.02(1)
$\alpha_{0,38}$	4608(2)	0.050(8)
$\alpha_{0,36}$	4667	0.001
$\alpha_{0,33}$	4690(2)	0.23~(8)
$lpha_{0,30}$	4694(2)	0.12(2)
$\alpha_{0,29}$	4737	0.01
$\alpha_{0,28}$	4748	0.005
$\alpha_{0,27}$	4754	0.05
$\alpha_{0,26}$	4761(2)	1.0(4)
$\alpha_{0,24}$	4797.8(12)	1.5(2)
$\alpha_{0,23}$	4809	0.22
$\alpha_{0,22}$	4814.6(12)	9.30(8)
$\alpha_{0,20}$	4833	0.29
$\alpha_{0,19}$	4838(2)	5.0(2)
$\alpha_{0,18}$	4845.3(12)	56.2(2)
$\alpha_{0,17}$	4852	0.03
$\alpha_{0,15}$	4861(2)	0.28(10)
$\alpha_{0,14}$	4865	0.03
$\alpha_{0,13}$	4878	0.03
$\alpha_{0,12}$	4901.0(12)	10.20(8)
$lpha_{0,10}$	4930(2)	0.16(5)
$lpha_{0,8}$	4967.5(12)	5.97(6)
$lpha_{0,6}$	4978.5(12)	3.17(4)
$lpha_{0,5}$	5009(2)	0.09(1)
$\alpha_{0,4}$	5023(2)	0.009(3)
$lpha_{0,3}$	5036(2)	0.24(2)
$\alpha_{0,2}$	5047(2)	0.2
$\alpha_{0,1}$	5053(2)	6.6(1)
$lpha_{0,0}$	5078(2)	0.05(1)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Ra)	5.71 - 12.04	132 (7)
e _{AK}	(Ra)		1.60(21)
	KLĹ	65.149 - 72.729	}
	KLX	79.721 - 88.466	}
	KXY	94.27 - 103.91	}
$ec_{3,1 L}$	(Ra)	1.92 - 1.92	0.52~(26)
ес _{10,3 К}	(Ra)	3.193 (8)	7.6(16)
$ec_{4,2}$ L	(Ra)	4.4 - 8.2	0.218(21)
ес _{15,8 К}	(Ra)	5.285 (8)	0.45~(11)
$ec_{1,0}$ L	(Ra)	6.16 - 9.95	43(21)
$ec_{12,5 \text{ K}}$	(Ra)	6.417 (10)	0.037~(4)
$ec_{12,10 L}$	(Ra)	10.7 - 14.5	18.4(33)
$ec_{6,5 L}$	(Ra)	11.9 - 15.7	1.56(15)
$ec_{2,0 L}$	(Ra)	12.3 - 16.1	2.14(8)
$ec_{22,18 L}$	(Ra)	12.34 - 16.13	4.7(7)
$ec_{3,1 M}$	(Ra)	12.54 - 14.26	18 (9)
$ec_{15,6}$ K	(Ra)	16.065 (8)	0.402(3)
$ec_{3,1 N}$	(Ra)	16.15 - 17.08	4.6(23)
$ec_{5,2 L}$	(Ra)	18.6 - 22.4	2.4(12)
$ec_{4,2}$ M	(Ra)	18.8 - 20.5	0.053~(5)
$ec_{19,9 K}$	(Ra)	19.278 (11)	0.035~(5)
$ec_{1,0 M}$	(Ra)	20.57 - 22.28	11 (6)
$ec_{10,1}$ K	(Ra)	20.63 (5)	4.63(41)
$ec_{18,8 \rm K}$	(Ra)	20.74 (5)	4.95(41)
$ec_{17,6}$ K	(Ra)	22.5650 (17)	0.05~(1)
$ec_{33,22\rm\ K}$	(Ra)	22.565 (17)	0.032~(3)
$ec_{8,5 L}$	(Ra)	23.1 - 26.9	0.068~(7)
$ec_{3,0 L}$	(Ra)	23.59 - 27.38	9.0(23)
$ec_{1,0 N}$	(Ra)	24.18 - 25.11	3.0(15)
$ec_{5,1 L}$	(Ra)	24.76 - 28.55	0.491~(23)
$ec_{12,10}$ M	(Ra)	25.1 - 26.8	4.6(8)
$ec_{6,5}$ M	(Ra)	26.3 - 28.0	0.391~(38)
$ec_{2,0 M}$	(Ra)	26.7 - 28.4	0.536~(20)
$ec_{22,18~\rm M}$	(Ra)	26.75 - 28.46	1.12(17)
$ec_{19,8 K}$	(Ra)	28.011 (5)	1.91(7)
$ec_{6,5 N}$	(Ra)	29.9 - 30.8	0.10(1)
$ec_{24,10}$ K	(Ra)	30.275 (20)	0.0165(7)
$ec_{2,0 N}$	(Ra)	30.3 - 31.2	0.137(5)
$ec_{13,5}$ K	(Ra)	30.3 (1)	0.051(8)
$ec_{22,18 N}$	(Ra)	30.36 - 31.29	0.297(44)
$ec_{26,23 \rm \ L}$	(Ra)	30.518 - 34.306	0.42(6)
$ec_{9,5 L}$	(Ra)	31.76 - 35.55	0.29(7)
$ec_{5,2}$ M	(Ra)	33.0 - 34.7	0.65(33)
$ec_{12,3}$ K	(Ra)	33.075 (4)	6.04(18)
$ec_{26,22} \ _L$	(Ra)	34.52 - 38.31	0.158(43)

		Energy keV	Electrons per 100 disint.
$ec_{5,2 N}$	(Ra)	36.6 - 37.5	0.17 (9)
$ec_{18,12 L}$	(Ra)	37.286 - 41.074	4.1(12)
$ec_{8,5 M}$	(Ra)	37.5 - 39.2	$0.0166\ (17)$
$ec_{3,0}$ M	(Ra)	38.00 - 39.72	2.2(7)
$ec_{19,6}$ K	(Ra)	39.047 (5)	1.83(6)
$ec_{5,1}$ M	(Ra)	39.17 - 40.89	0.121~(6)
$ec_{3,0 N}$	(Ra)	41.61 - 42.54	0.61~(16)
$ec_{5,1 N}$	(Ra)	42.78 - 43.71	$0.0311\ (15)$
$ec_{22,9 K}$	(Ra)	43.725 (30)	0.031~(2)
$ec_{12,2 K}$	(Ra)	44.24 (4)	0.129(9)
$ec_{26,23}$ M	(Ra)	44.928 - 46.645	0.10(2)
$ec_{10,0 K}$	(Ra)	46.12 (3)	0.20~(6)
$ec_{9,5}$ M	(Ra)	46.17 - 47.89	0.068~(16)
$ec_{33,19}$ K	(Ra)	47.7 (3)	$0.0960\ (15)$
$ec_{26,23 N}$	(Ra)	48.542 - 49.471	0.034~(5)
$ec_{12,8 L}$	(Ra)	48.86 - 52.65	0.76~(30)
$ec_{26,22~M}$	(Ra)	48.93 - 50.64	0.038~(10)
$ec_{8,3 L}$	(Ra)	49.60 - 53.39	5.6(5)
$ec_{9,5 N}$	(Ra)	49.78 - 50.71	0.0180(43)
$ec_{12,1 \text{ K}}$	(Ra)	50.42 (1)	2.5(7)
$ec_{18,12}~{}_{\rm M}$	(Ra)	51.696 - 53.413	0.96(27)
$ec_{22,8 K}$	(Ra)	52.494 (9)	4.19 (12)
$ec_{26,22 N}$	(Ra)	52.54 - 53.47	0.0100(27)
$ec_{33,18}$ K	(Ra)	54.50 (12)	0.17(7)
$ec_{18,12}$ N	(Ra)	55.310 - 56.239	0.25(7)
$ec_{6,1}$ L	(Ra)	55.9 - 59.7	16.5(35)
$ec_{26,19}$ L	(Ra)	59.068 - 62.856	0.041(7)
$ec_{30,17}$ K	(Ra)	59.425 (40)	0.069(7)
$ec_{18,5 \text{ K}}$	(Ra)	63.061 (50)	0.023(2)
$ec_{12,8}$ M	(Ra)	63.27 - 64.98	0.19(7)
$ec_{22,6}$ K	(Ra)	63.53 (8)	0.145(29)
$ec_{8,3}$ M	(Ra)	64.01 - 65.72	1.52(15)
$ec_{12,8}$ N	(Ra)	00.88 - 07.81	0.048(22)
$ec_{8,1}$ L	(Ra)	67.02 - 70.81	3.0(8)
$ec_{18,10}$ L	(Ra)	07.2 - 71.0	93.0(13)
$ec_{8,3 N}$	(Ra)	07.02 - 08.00	0.401 (39) 0.202 (27)
ec _{24,8 K}	(na) (Pa)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.292(21)
$ec_{6,1}$ M	(Ra)	70.3 - 72.0 72.0 - 74.9	4.0(10) 1 18(25)
$ec_{6,1}$ N	(\mathbf{Ra})	13.9 - 14.0 75.408 70.286	1.10(20)
ec _{10,4} L	(\mathbf{Ra})	75.842 (60)	0.020(3)
CC12,0 K	$(\mathbf{R}_{\mathbf{a}})$	80.013 (8)	0.039 (0) 0.394 (16)
ec _{24,6 K}	(\mathbf{Ra})	81.43 83.14	0.324(10) 1 30(21)
CC8,1 M	$(\mathbf{R}_{\mathbf{a}})$	01.40 - 00.14 816 - 822	1.09 (21) 22 20 (25)
Co 1 N	$(\mathbf{R}_{\mathbf{a}})$	85.04 - 85.07	22.09 (00) A 26 (6)
$CU_{8,1}$ N	$(\mathbf{R}_{\mathbf{a}})$	85.9 = 86.1	5 00 (U) 5 00 (11)
C18,10 N	(Ra)	87 876 - 01 664	1.78(40)
C10,3 L	(Ra)	89.60 (5)	1.10 (49) 8 0
ec18,3 K	(ma)	09.00 (0)	0.9

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
ес _{15.8 L}	(Ra)	89.968 - 93.756	0.085(22)
$ec_{15,1 K}$	(Ra)	90.385 (70)	0.034(5)
$ec_{19,3 \text{ K}}$	(Ra)	96.892 (80)	0.011(2)
$ec_{22,10}$ L	(Ra)	98.868 - 102.656	0.043(5)
$ec_{15,6 L}$	(Ra)	100.748 - 104.536	0.075(5)
$ec_{18,2}$ K	(Ra)	100.775 (80)	0.041(6)
$ec_{10,3}$ M	(Ra)	102.286 - 104.003	0.44(14)
$ec_{15,8}$ M	(Ra)	104.378 - 106.095	0.023~(5)
$ec_{10,1 L}$	(Ra)	105.32 - 109.11	0.86~(8)
$ec_{18,8 L}$	(Ra)	105.42 - 109.21	0.92(8)
$ec_{10,3 N}$	(Ra)	105.900 - 106.829	0.113(41)
$ec_{26,8 K}$	(Ra)	106.24 (8)	0.29~(6)
$ec_{18,1 \text{ K}}$	(Ra)	106.938 (3)	4.25(46)
$ec_{33,22} \ _L$	(Ra)	107.248 - 111.036	0.016~(2)
$ec_{17,6 L}$	(Ra)	107.248 - 111.036	0.025~(3)
$ec_{19,8 L}$	(Ra)	112.694 - 116.482	0.355~(14)
$ec_{22,10\ M}$	(Ra)	113.278 - 114.995	0.0116~(23)
$ec_{19,1 \rm \ K}$	(Ra)	114.239 (17)	0.248~(28)
$ec_{24,10}$ L	(Ra)	114.958 - 118.746	0.0109~(6)
$ec_{15,6}$ M	(Ra)	115.158 - 116.875	0.018(2)
$ec_{26,6\ K}$	(Ra)	117.305 (100)	0.032(5)
$ec_{12,3 L}$	(Ra)	117.76 - 121.55	1.125(33)
$ec_{10,1 M}$	(Ra)	119.73 - 121.44	0.206(18)
$ec_{18,8}$ M	(Ra)	119.83 - 121.54	0.221(18)
$ec_{26,12}$ L	(Ra)	122.768 - 126.556	0.016(3)
$ec_{10,1 N}$	(Ra)	123.34 - 124.27	0.0544(48)
$ec_{18,8}$ N	(Ra)	123.44 - 124.37	0.0583(48)
$ec_{19,6}$ L	(Ra)	123.730 - 127.518 197.104 - 199.991	0.341(11)
$ec_{19,8}$ M	(Ra)	127.104 - 128.821 199.09 199.71	0.0851(33)
$ec_{12,2 L}$	(Ra)	128.92 - 152.71 120.719 - 121.647	0.0203(18)
$ec_{19,8 N}$	$(\mathbf{n}\mathbf{a})$	130.710 - 131.047 120.91 - 124.60	0.0224(9)
$ec_{10,0}$ L	$(\mathbf{n}\mathbf{a})$	130.81 - 134.00 120.17 - 122.80	0.047(0)
$ec_{12,3}$ M	(na)	102.17 - 100.09 120.224 (100)	0.209(0)
ec _{18,0 K}	$(\mathbf{n}\mathbf{a})$	132.334 (100) 132.4 136.2	0.021 (3) 0.01782 (28)
ec33,19 L	(\mathbf{Ra})	132.4 - 130.2 135.104 - 138.802	0.01782(28) 0.55(6)
C12,1 L	(\mathbf{Ra})	135.78 - 136.71	0.00(0)
$ec_{12,3}$ N	(\mathbf{Ra})	137.177 - 140.965	0.0705(21) 0.777(23)
CC22,8 L	(\mathbf{Ra})	137.177 = 140.900 138 140 = 139 857	0.0816(27)
$ec_{19,0}$ M	(Ra)	138.685 (110)	0.0010(21)
C22,1 K	(Ra)	13919 - 14298	0.03(1) 0.032(6)
~~ээ,18 L ӨС10 с м	(Ra)	141.754 - 142.683	0.0215(7)
C20 17 T	(Ra)	144.108 - 147.896	0.013(2)
есто м	(Ra)	145.22 - 146.94	0.0114(18)
ec18 5 T.	(\mathbf{Ra})	147.744 - 151.532	0.046(5)
есээ а т	(Ra)	148.22 - 152.01	0.027(5)
ec _{12.1} M	(Ra)	149.514 - 151.231	0.139(23)
ec _{22.8} M	(Ra)	151.587 - 153.304	0.186 (5)
,	` '		

		Energy keV	Electrons per 100 disint.
$ec_{12,1 N}$	(Ra)	153.128 - 154.057	0.035~(5)
$ec_{24,8 L}$	(Ra)	153.694 - 157.482	0.054~(5)
$ec_{24,1 \text{ K}}$	(Ra)	155.165 (130)	0.031~(4)
ec _{22,8} N	(Ra)	155.201 - 156.130	0.0489(14)
ес _{12,0} L	(Ra)	160.525 - 164.313	0.099(16)
ес _{24,6} L	(Ra)	164.696 - 168.484	0.060(3)
ес _{24,8 М}	(Ra)	168.104 - 169.821	0.0129(12)
$ec_{18,3 L}$	(Ra)	174.29 - 178.08	1.6
ес _{12,0 М}	(Ra)	174.935 - 176.652	0.027~(6)
$ec_{15,1 L}$	(Ra)	175.068 - 178.856	0.011~(2)
ес _{24,6 М}	(Ra)	179.106 - 180.823	0.0144(7)
ес _{19,3 L}	(Ra)	181.575 - 185.363	0.022~(3)
ес _{18,3 М}	(Ra)	188.70 - 190.42	0.4
ec _{26,8} L	(Ra)	190.92 - 194.71	0.054(11)
$ec_{18,1 L}$	(Ra)	191.621 - 195.409	0.78(8)
$ec_{18,3 N}$	(Ra)	192.31 - 193.24	0.14
$ec_{19,1 L}$	(Ra)	198.922 - 202.710	0.046(5)
ес _{26,8 М}	(Ra)	205.33 - 207.04	0.0128(27)
ес _{22,3 L}	(Ra)	206.028 - 209.816	0.012(2)
ес _{18,1 М}	(Ra)	206.031 - 207.748	0.187(20)
ec _{18,1 N}	(Ra)	209.645 - 210.574	0.049(5)
$ec_{19,1 M}$	(Ra)	213.332 - 215.049	0.0109(12)
$ec_{18,0 L}$	(Ra)	217.017 - 220.805	0.028(3)
$ec_{22,1 L}$	(Ra)	223.368 - 227.156	0.017(2)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Ra)	10.62 - 18.41		106 (7)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Ra) (Ra)	$85.43 \\ 88.47$		$\begin{array}{c} 14.3 \ (6) \\ 23.4 \ (9) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Ra) (Ra) (Ra)	99.432 100.13 100.738	} } }	8.2 (4)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Ra) (Ra) (Ra)	$102.89 \\ 103.295 \\ 103.74$	} } }	2.69 (12)	$\mathrm{K}\beta_2'$

	Energy keV	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{8,6}(\text{Ra})$	11.10(8)	12.0 (18)	(M1+E2)	60000 (6)	0.00020 (3)
$\gamma_{43,42}(\text{Ra})$	11.79(20) 17.260(26)	0.0000	$(\mathbf{M1})$	199 9 (91)	0.0003
$\gamma_{3,1}(\text{Ra})$	17.300 (30)	24(12) 0.201(24)	(M1 + F2)	100.2 (21) 0.41.22	0.10(9)
$\gamma_{4,2}(\text{Ra})$	23.0 25.20 (2)	0.291(24)	(M1+E2)	241.33 7940 (110)	0.0012(1)
$\gamma_{1,0}(Ra)$	23.39(2)	0.10(29)	$(\mathbf{E}\mathbf{Z})$	7240 (110)	0.006(4)
$\gamma_{23,19}(\mathrm{Ra})$	28.68(10)	0.10(3)	(M1 + D0)	002	0.10(3)
$\gamma_{12,10}(\text{Ra})$	29.9(1)	24.6(45)	(M1+E2)	223	0.11(2)
$\gamma_{10,9}(\text{Ra})$	29.9(1)	0.002	(\mathbf{D}_{1})	9.49.(4)	0.002
$\gamma_{6,5}(\text{Ra})$	31.10(5)	2.92(28)	(E1)	2.48(4)	0.84(8)
$\gamma_{2,0}(\text{Ra})$	31.50(5)	4.03(14)		2.39(4)	1.19(4)
$\gamma_{22,18}(\text{Ra})$	31.57(9)	6.3(9)	(M1)	91.1(15)	0.068(10)
$\gamma_{25,21}(\mathrm{Ra})$	33.04(20)	0.01		1000 (00)	0.01
$\gamma_{5,2}({ m Ra})$	37.8(1)	3.3(16)	(E2)	1023(20)	0.0032(16)
$\gamma_{8,5}({ m Ra})$	42.3(1)	0.172(17)	(E1)	1.094(17)	0.082(8)
$\gamma_{3,0}({ m Ra})$	42.82(5)	12.2(31)	(M1+E2)	75 (19)	0.16(1)
$\gamma_{5,1}({ m Ra})$	43.99(1)	1.31(6)	E1	0.985(14)	0.66(3)
$\gamma_{22,15}({ m Ra})$	46.52(4)	0.021(2)			0.021(2)
$\gamma_{26,23}({ m Ra})$	49.75 (8)	0.58(5)	(M1)	25.2	0.022(2)
$\gamma_{9,5}({ m Ra})$	50.99(4)	0.39(9)	(M1)	22.2(4)	0.017(4)
$\gamma_{26,22}(\text{Ra})$	53.75(20)	0.22(6)	(M1)	19.0(4)	0.011(3)
$\gamma_{4,0}({ m Ra})$	55.11(3)	0.0042(6)	(E1)	0.540(8)	0.0027(4)
$\gamma_{18,12}(\text{Ra})$	56.518(5)	5.5(15)	M1(+E2)	18(5)	0.29(2)
$\gamma_{12,9}({ m Ra})$	59.33(10)	0.012(2)			0.012(2)
$\gamma_{24,15}({ m Ra})$	63.7(2)	0.005(2)			0.005(2)
$\gamma_{9,4}({ m Ra})$	64.96(10)	0.087(11)			0.087(11)
$\gamma_{25,17}({ m Ra})$	65.91 (10)	0.161(17)			0.161(17)
$\gamma_{12,8}({ m Ra})$	68.09(4)	1.04(38)	M1+E2	14(5)	0.069(10)
$\gamma_{15,11}({ m Ra})$	68.8(1)	0.04			0.04
$\gamma_{20,12}({ m Ra})$	68.8(10)	0.09			0.09
$\gamma_{8,3}({ m Ra})$	68.83(3)	7.7(7)	$\mathrm{E2}$	55.9(8)	$0.136\ (13)$
$\gamma_{33,26}(\text{Ra})$	72.739(10)	0.14(2)			0.14(2)
$\gamma_{6,1}(\mathrm{Ra})$	75.1(1)	23.1 (49)	$\mathrm{E2}$	36.9~(6)	0.61~(13)
$\gamma_{16,10}(\text{Ra})$	75.19(10)	0.002(1)			0.002(1)
$\gamma_{9,3}({ m Ra})$	77.63(5)	0.055~(7)	(E1)	0.216~(3)	0.045~(6)
$\gamma_{26,19}({ m Ra})$	78.3(2)	$0.059\ (15)$	(M1)	6.33(10)	0.008(2)
$\gamma_{8,1}({ m Ra})$	86.25~(4)	8.7(11)	M1+E2	5.7(7)	1.3(1)
$\gamma_{18,10}({ m Ra})$	86.40(5)	100.0(19)	M1	4.75(7)	26.0(1)
$\gamma_{29,21}({ m Ra})$	89.09(20)	0.01			0.01
$\gamma_{36,27}({ m Ra})$	89.09(20)	0.005			0.005
$\gamma_{9,2}({ m Ra})$	89.09(20)	0.14			0.14
$\gamma_{26,17}({ m Ra})$	94.7(1)	0.028~(10)			0.028(10)
$\gamma_{10,4}({ m Ra})$	94.73~(8)	0.304(23)	(E1)	0.1274(18)	0.27~(2)
$\gamma_{9,1}(\mathrm{Ra})$	94.92(8)	$0.0146\ (34)$	(E1)	0.1268(18)	0.013~(3)
$\gamma_{40,30}({ m Ra})$	97.01~(12)	0.011(3)			0.011~(3)
$\gamma_{20,10}({ m Ra})$	98.86(10)	0.120(15)			0.120(15)
$\gamma_{26,15}(\mathrm{Ra})$	101.1(2)	0.018(3)			0.018(3)
$\gamma_{7,0}({ m Ra})$	$101.58\ (10)$	0.049~(7)			0.049(7)

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{33,25}(\text{Ra})$	101.58 (10)	0.049(7)			0.049(7)
$\gamma_{27,16}({ m Ra})$	102.54(2)	0.160(19)			0.160(19)
$\gamma_{24,12}({ m Ra})$	104.6(2)	0.058~(30)	(M1+E2)	5.4(25)	0.009(3)
$\gamma_{10,3}({ m Ra})$	107.108(8)	10.8(10)	M1(+E2)	12.3(11)	0.81(4)
$\gamma_{15,8}({ m Ra})$	109.1(1)	0.58(11)	(M1)	12.15(18)	0.044(8)
$\gamma_{21,10}(\text{Ra})$	110.3(5)	0.009(2)			0.009(2)
$\gamma_{12,5}({ m Ra})$	110.332(8)	0.171(17)	(E1)	0.377~(6)	0.124(12)
$\gamma_{42,38}(\text{Ra})$	114.75(10)	0.0151~(22)			0.0151~(22)
$\gamma_{14,6}({ m Ra})$	115.85(10)	0.01			0.01
$\gamma_{18,9}({ m Ra})$	115.85(10)	0.014	(E1)	0.336~(5)	0.01
$\gamma_{10,2}(\text{Ra})$	118.1(1)	0.007(3)			0.007(3)
$\gamma_{22,10}(\text{Ra})$	118.1(1)	0.074(23)	(E2)	4.72(7)	0.013(4)
$\gamma_{15,6}(\mathrm{Ra})$	119.98(2)	0.52(21)	(M1)	9.30(13)	0.05(2)
$\gamma_{19,9}({ m Ra})$	123.193 (13)	0.195(9)	(E1)	0.290(4)	0.151(7)
$\gamma_{10,1}(\mathrm{Ra})$	124.55(5)	6.5(6)	(M1)	8.36(12)	0.69(6)
$\gamma_{18.8}(\mathrm{Ra})$	124.65(5)	6.9(6)	(M1)	8.34(12)	0.74(6)
$\gamma_{33,22}(Ra)$	126.48 (10)	0.061(34)	(M1,E2)	5.8(23)	0.009(4)
$\gamma_{17.6}(\text{Ra})$	126.48 (10)	0.095(42)	(M1.E2)	5.8(23)	0.014(4)
$\gamma_{10.8}(\text{Ra})$	131.926(5)	2.71(10)	M1	7.1(1)	0.335(12)
$\gamma_{13,5}(\mathrm{Ra})$	134.19(10)	0.073(12)	(M1)	6.76(10)	0.0094(15)
$\gamma_{24,10}(\text{Ra})$	134.19(10)	0.022(11)	(E2)	2.75(4)	0.006(3)
$\gamma_{22,10}(100)$	134.19(10)	0.0014(7)	()	(_)	0.0014(7)
$\gamma_{12,21}(1.00)$ $\gamma_{12,2}(Ra)$	136.990(4)	8.71 (25)	M1	6.38(9)	1.18(3)
$\gamma_{12,3}(\mathrm{Ra})$ $\gamma_{20,8}(\mathrm{Ra})$	137.0(1)	0.04(1)		0.00 (0)	0.04(1)
$\gamma_{20,0}(Ra)$	139.8(1)	0.0045(10)			0.0045(10)
$\gamma_{21,9}(100)$ $\gamma_{26,19}(Ba)$	142.0(1)	0.0015(10) 0.035(10)	(E2)	2.18(4)	0.0010(10)
$\gamma_{20,12}(100)$ $\gamma_{10,c}(Ba)$	142.962(5)	2.69(9)	(112) M1	5.65(8)	0.011(0) 0.404(12)
$\gamma_{19,0}(Ra)$	147.64(5)	0.237(24)	E1	0.187(3)	0.101(12) 0.20(2)
$\gamma_{22,9}(\mathbf{Ra})$ $\gamma_{12,2}(\mathbf{Ra})$	148.15(4)	1.04(7)	E1	0.181(0) 0.186(3)	0.20(2) 0.88(6)
$\gamma_{12,2}(\mathbf{Ra})$ $\gamma_{10,0}(\mathbf{Ra})$	150.04(3)	0.33	(M1+E2)	45(8)	0.06
$\gamma_{10,0}(Ra)$	150.04(3) 151.6(3)	0.025	(111 + 112)	4.0 (0)	0.00
$\gamma_{11,0}(\mathbf{R}_2)$	151.0(3) 151.6(3)	0.15	(M1)	1 78 (8)	0.025
$\gamma_{33,19(11a)}$	151.0(3) 154.336(10)	3.0 (6)	$M1 \perp E2$	4.10(0)	0.023 0.77(2)
$\gamma_{12,1}(\mathbf{Ra})$	154.00(10) 156.400(0)	6.40(18)	M1	4.38(7)	1.10(2)
$\gamma_{22,8}(\mathbf{n}a)$	150.409(9) 158/19(19)	0.40(10) 0.26(7)	$M1(\pm E2)$	4.56(1)	1.19(5)
$\gamma_{33,18}(\mathrm{Ita})$	163.42(12) 163.34(17)	0.20(7)	(M1)	3.87(6)	0.040(5)
$\gamma_{30,17}(na)$	166.076(7)	0.097 (34) 0.234 (11)	$(\mathbf{F1})$	0.1301(0)	0.020(1)
$\gamma_{18,5}(na)$	100.970(7) 167.45(5)	0.234(11) 0.220(46)	$(\mathbf{L}1)$	2.61(5)	0.203(10)
$\gamma_{22,6}(Ra)$	107.40(0) 160.2(2)	0.230(40)		3.01(0)	0.03(1)
$\gamma_{31,16}(Ra)$	109.2(3) 160.2(3)	0.0029(14)			0.0029(14)
$\gamma_{16,4}(\text{Ra})$	109.2(3)	0.0010(5)			0.0010(5)
$\gamma_{30,15}(\text{Ka})$	109.2 (3) 171.76 (5)	0.0039(14)			0.0039(14)
$\gamma_{23,6}(\text{Ra})$	1(1.(0)(5))	0.040(4)	እ / 1	2 00 (5)	0.040(4)
$\gamma_{24,8}(\text{Ra})$	172.920(18)	0.472(43)	1/11	3.29(5)	0.11(1)
$\gamma_{19,5}(\text{Ra})$	174.05(7)	0.0023		0.1258(18)	0.002
$\gamma_{30,14}({ m Ra})$	174.05(11)	0.0071(18)			0.0071(18)
$\gamma_{33,15}(\mathrm{Ra})$	174.05(11)	0.0067(18)			0.0067 (18)
$\gamma_{37,23}(\text{Ra})$	174.7(2)	0.030(3)	50		0.030(3)
$\gamma_{12,0}({ m Ra})$	179.757(7)	0.368~(28)	E2	0.867~(13)	0.197(15)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{16,3}(\text{Ra})$	182.12 (10)	0.0054(11)			0.0054(11)
$\gamma_{35,15}({ m Ra})$	183.0(1)	0.0071 (12)			0.0071(12)
$\gamma_{24,6}({ m Ra})$	$183.928\ (8)$	0.541 (27)	M1(+E2)	2.92	0.138(7)
$\gamma_{38,25}(\text{Ra})$	185.6(1)	0.002			0.002
$\gamma_{28,10}({ m Ra})$	185.6(1)	0.002			0.002
$\gamma_{37,21}({ m Ra})$	186.1(1)	0.013~(5)			0.013~(5)
$\gamma_{42,35}({ m Ra})$	189.25~(6)	0.0104~(21)			0.0104~(21)
$\gamma_{21,5}(\text{Ra})$	190.63(20)	0.0101(20)			0.0101(20)
$\gamma_{16,2}(\text{Ra})$	193.52(5)	0.0007(3)			0.0007(3)
$\gamma_{18,3}(\text{Ra})$	193.52(5)	15.53	M1	2.53	4.4
$\gamma_{15,1}({ m Ra})$	194.3(3)	0.08(6)	(M1,E2)	1.5(9)	0.03(2)
$\gamma_{19,3}({ m Ra})$	200.807(16)	0.1088(48)	(E2)	0.577(8)	0.069(3)
$\gamma_{18,2}({ m Ra})$	204.690(5)	0.640(33)	(E1)	0.0854(12)	0.59(3)
$\gamma_{26,8}(\mathrm{Ra})$	210.15(8)	0.55(12)	(M1)	1.90(3)	0.19(4)
$\gamma_{18,1}({ m Ra})$	210.853(3)	8.1(9)	M1	1.89(3)	2.8(3)
$\gamma_{41,26}(\text{Ra})$	213.48(5)	0.0087(16)	(\mathbf{D}_{1})	0.0750 (11)	0.0087(16)
$\gamma_{24,5}(\mathrm{Ra})$	215.10(1)	0.147(11)	(E1)	0.0759(11)	0.137(10)
$\gamma_{27,8}(\text{Ra})$	216.0(1)	0.053(6)			0.053(6)
$\gamma_{21,3}(\text{Ra})$	217.41(10)	0.0065(11)	N /1	1 715 (04)	0.0065(11)
$\gamma_{19,1}(\mathrm{Ra})$	218.154(17)	0.49(5)	M1	1.715(24)	0.18(2)
$\gamma_{34,12}(\text{Ra})$	219.8(1)	0.0033(8)			0.0033(8)
$\gamma_{37,17}(Ra)$	219.0(1) 221.22(5)	0.0008	$(\mathbf{M1})$	1 650 (94)	0.0008
$\gamma_{26,6}(\text{Ra})$	221.22(0) 225.26(10)	0.038(10) 0.002(1)	$(\mathbf{M}\mathbf{I}\mathbf{I})$	1.030(24)	0.022(0)
$\gamma_{16,0}(Ra)$	225.20(10) 225.26(10)	0.003(1)	$(\mathbf{F9})$	0.284(6)	0.003(1)
$\gamma_{22,3}(Ra)$	223.20(10)	0.000(8)	(E2)	0.364(0)	0.002(0)
$\gamma_{21,2}(\text{Ra})$	226.0(1) 234.8(1)	0.0000(2)			0.0000(2)
$\gamma_{21,1}(Ra)$	234.0(1) 234.8(1)	0.0008(2)			0.0008(2)
$\gamma_{38,19}(Ra)$	234.0(1) 236.240(20)	0.0008 0.231 (12)	E9	0.327(5)	0.00034 0.174 (0)
$\gamma_{18,0}(Ra)$	230.249(20) 242.6(2)	0.231(12) 0.189(18)	112 M1	1.975(18)	0.174(3) 0.083(8)
$\gamma_{22,1}(10a)$	242.0(2) 244.4(1)	0.0013(3)	IVII	1.210 (10)	0.003(0)
$\gamma_{31,10}(\mathrm{Ra})$	244.4(1) 250 1 (1)	0.0013(3)			0.0013(3)
$\gamma_{25,3}(\mathrm{Ra})$	250.1(1) 252.43(3)	0.00004(10) 0.100(13)	(E1)	0.0522(8)	0.00094(10) 0.095(12)
$\gamma_{26,5}(Ra)$	252.49(0) 259.08(4)	0.07(1)	(M1)	1.063(15)	0.030(12) 0.034(5)
$\gamma_{24,1}(Ra)$ $\gamma_{25,1}(Ra)$	267.4(1)	0.008(1)	(1111)	1.000 (10)	0.001(0)
$\gamma_{23,1}(\mathrm{Ra})$ $\gamma_{22,0}(\mathrm{Ra})$	274.1(1)	0.0007(2)			0.0007(2)
$\gamma_{43,9}(100)$ $\gamma_{43,97}(Ra)$	276.85(10)	0.0042(10)			0.0042(10)
$\gamma_{30.8}(\text{Ra})$	278.65(5)	0.0068(8)			0.0068(8)
$\gamma_{44.27}(\text{Ra})$	281.27(10)	0.007(1)			0.007(1)
$\gamma_{33,8}(Ra)$	282.6(1)	0.0038(7)			0.0038(7)
$\gamma_{30.6}(\mathrm{Ra})$	289.62(5)	0.0150(17)			0.0150(17)
$\gamma_{33.6}(\text{Ra})$	293.78 (10)	0.0065 (8)			0.0065 (8)
$\gamma_{26.1}(\text{Ra})$	296.21 (10)	0.0191(20)	(E2)	0.1581(23)	0.0165(17)
$\gamma_{38,12}(Ra)$	298.72(12)	0.0070(8)	× /	~ /	0.0070(8)
$\gamma_{28,2}(\text{Ra})$	303.75 (10)	0.0017(30)			0.0017(30)
$\gamma_{39.12}(Ra)$	307.3(1)	0.006(3)			0.006(3)
$\gamma_{28,1}(\mathrm{Ra})$	310.1(1)	0.0020(3)			0.0020(3)
$\gamma_{45,29}({ m Ra})$	313.3(1)	0.0037(11)			0.0037(11)

	$\frac{\rm Energy}{\rm keV}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{29,2}({ m Ra})$	317.8(1)	0.00055(14)			0.00055(14)
$\gamma_{42,23}({ m Ra})$	320.8(1)	0.00016(7)			0.00016~(7)
$\gamma_{31,5}({ m Ra})$	324.6(1)	0.00043~(13)			0.00043~(13)
$\gamma_{45,28}({ m Ra})$	327.9(1)	0.003			0.003
$\gamma_{27,0}({ m Ra})$	327.9(1)	0.016~(3)			0.016~(3)
$\gamma_{38,10}({ m Ra})$	328.2(1)	0.0020 (8)			0.0020 (8)
$\gamma_{34,5}({ m Ra})$	329.9(2)	0.0006(2)			0.0006~(2)
$\gamma_{37,8}({ m Ra})$	334.74(10)	0.00043(11)			0.00043(11)
$\gamma_{43,22}({ m Ra})$	336.7(1)	0.0082(1)			0.0082(1)
$\gamma_{39,10}({ m Ra})$	336.7(1)	0.0001			0.0001
$\gamma_{45,26}({ m Ra})$	341.1(1)	0.0008(2)			0.0008~(2)
$\gamma_{34,4}({ m Ra})$	344.3(1)	0.0001			0.0001
$\gamma_{36,5}({ m Ra})$	347.4(1)	0.0006(1)			0.0006(1)
$\gamma_{42,19}(\mathrm{Ra})$	349.4(1)	0.0001			0.0001
$\gamma_{29,0}({ m Ra})$	349.4(1)	0.0004(1)			0.0004(1)
$\gamma_{32,3}({ m Ra})$	351.7(1)	0.0005(1)			0.0005(1)
$\gamma_{38.9}(\mathrm{Ra})$	358.0(1)	0.006(1)			0.006(1)
$\gamma_{43,19}(\text{Ra})$	361.0(1)	0.0006(1)			0.0006(1)
$\gamma_{38.8}(\text{Ra})$	366.5(1)	0.0004(1)			0.0004(1)
$\gamma_{39.9}(\text{Ra})$	366.5(1)	0.0001			0.0001
$\gamma_{43.18}(\text{Ra})$	368.1(1)	0.0019(3)			0.0019(3)
$\gamma_{31,1}(\text{Ra})$	368.9(1)	0.0019(3)			0.0019(3)
$\gamma_{39.8}(\text{Ra})$	375.1(1)	0.0003(1)			0.0003(1)
$\gamma_{38.6}(\text{Ra})$	377.4(1)	0.0029(3)			0.0029(3)
$\gamma_{43,16}(\text{Ra})$	379.4(1)	0.0013(2)			0.0013(2)
$\gamma_{39.6}(\text{Ra})$	386.4(1)	0.0008(2)			0.0008(2)
$\gamma_{32.0}(\text{Ra})$	395.3(2)	0.0008(1)			0.0008(1)
$\gamma_{34.0}(\text{Ra})$	399.9(2)	0.00014(6)			0.00014(6)
$\gamma_{35,0}(\text{Ra})$	403.3 (1)	0.0018(2)			0.0018(2)
$\gamma_{38,5}(\text{Ra})$	408.5(1)	0.0010(1)			0.0010(1)
γ_{41} g(Ra)	414.61 (10)	0.0003(1)			0.0003(1)
$\gamma_{39.5}(\text{Ra})$	417.4 (1)	0.0014(2)			0.0014(2)
$\gamma_{45,19}(\text{Ra})$	419.9 (2)	0.0006(1)			0.0006(1)
$\gamma_{43,12}(Ra)$	424.8 (1)	0.0032(3)			0.0032(3)
$\gamma_{38,3}(Ra)$	435.3 (1)	0.0031(4)			0.0031(4)
$\gamma_{39,3}(\text{Ra})$	444.1 (1)	0.0005(1)			0.0005(1)
$\gamma_{38,1}(Ra)$	452.6(1)	0.0017(2)			0.0017(2)
$\gamma_{43,10}(Ra)$	454.76 (10)	0.0105(11)			0.0105(11)
$\gamma_{44,10}(\text{Ra})$	459.1(3)	0.001			0.001
$\gamma_{41,10}(-\infty)$ $\gamma_{41,5}(\text{Ra})$	465(1)	0.0001			0.0001
$\gamma_{380}(\text{Ra})$	478.0(1)	0.0037(4)			0.0037(4)
$\gamma_{45,19}(\text{Ra})$	483.7(1)	0.0018(2)			0.0018(2)
$\gamma_{20.0}(\text{Ra})$	487.3(2)	0.0004(1)			0.0004(1)
739,0(100) 749.0(Ra)	492.9(1)	0.00152(16)			0.0004(1)
$\gamma_{43,0}(100)$ $\gamma_{43,6}(R_3)$	503.6(1)	0.00005			0.00005
$\gamma_{43,0}(100)$	503.6(1)	0.00000			0.00000
$\gamma_{41,2}(100)$	513.5(2)	0.00012(0)			0.00012(0)
/45,10(ma)	010.0 (2)	0.0001 (2)			0.0001(2)

Energy keV

535.1(1)

535.1(1)

543.0(3)

549.8(5)

551.7(2)

561.8(1)

565.7(3)

573.0(1)

579.2(2)

592.5(1)

594.4(3)

0.0001

0.00011(4)

0.0019(2)

0.0009(1)

0.0028(3)

0.0006(1)

0.0003(1)

0.0001

$P_{\gamma+ce}$	Multipolarity	$lpha_{ m T}$	P_{γ}
\times 100			\times 100
0.0013(2)			0.0013(2)
0.0002			0.0002
0.0001			0.0001

0.0001

0.00011(4)

0.0019(2)

0.0009(1)

0.0028(3)

0.0006(1)

0.0003(1)

0.0001

5 References

 $\gamma_{41,0}(Ra)$

 $\gamma_{43.5}(\text{Ra})$

 $\gamma_{45.9}(\text{Ra})$

 $\gamma_{42,3}(\text{Ra})$

 $\gamma_{45,8}(\text{Ra})$

 $\gamma_{43,3}(\text{Ra})$

 $\gamma_{44,3}(\text{Ra})$

 $\gamma_{43,2}(\text{Ra})$

 $\gamma_{43,1}(\text{Ra})$

 $\gamma_{42,0}(\text{Ra})$

 $\gamma_{45,5}(\text{Ra})$

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. C72 (1947) 253(Half-life) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, A.GHIORSO, G.T.SEABORG, Phys. Rev. 72 (1947) 252 (Half-life) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435 (Half-life, Production modes) S.A.BARANOV, V.M.SHATINSKII, V.M.KULAKOV, Y.F.RODIONOV, Yad. Fiz. 11 (1970) 925 (Alpha energy) E.F.TRETYAKOV, N.I.TRETYAKOVA, V.F.KONYAEV, Y.V.KHRUDEV, A.C.BEDA, G.F.KARTASHEV, I.N.VISHNEV-SKII, Izv. Akad. Nauk SSSR, Ser. Fiz. 34 (1970) 856 (Alpha energies, 225Ra levels, gamma-ray energies, conversion electrons) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Electron Binding Energies) A.Rytz, At. Data Nucl. Data Tables 23 (1979) 507 (Alpha energies) J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma-ray energies and intensities) S.S.RATTAN, A.V.R.REDDY, V.S.MALLAPURKAR, R.J.SINGH, SATYA PRAKASH, M.V.RAMANIAH, Phys. Rev. 27 (1983) 327(Gamma-ray energies and abundances, Ra X-ray intensities) R.G.HELMER, C.W.REICH, M.A.LEE, I.AHMAD, Int. J. Appl. Radiat. Isotop. 37 (1986) 139 (Gamma-ray energies and emission probabilities) R.G.HELMER, M.A.LEE, C.W.REICH, I.AHMAD, Nucl. Phys. A474 (1987) 77 (Alpha energies, alpha intensities, gamma-ray energies, gamma-ray intensities, conversion coefficient) G.J.MILLER, J.C.MCGEORGE, I.ANTHONY, R.O.OWENS, Phys. Rev. C36 (1987) 420 (Half-life of daughter 225Ra) N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483 (Half-life) S.J.GOLDSTEIN, M.T.MURRELL, R.W.WILLIAMS, Phys. Rev. C40 (1989) 2793 (229Th Half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Halflife of 229Th) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996) (Electron Binding energies) E.Schönfeld, G.Rodloff, Report PTB-6.11-98-1, Braunschweig (1998) 1 (Auger electrons) VECC Kolkata /G. Mukherjee

E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) 1 (KX-rays)

E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595

(X-ray and Auger Electron emission probabilities)

J.GASPARRO, G.ARDISSON, V.BARCI, Phys. Rev. C62 (2000) 064305

(Gamma-ray energies and intensities)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (Q)

A.K.JAIN, R.RAUT, J.K.TULI, Nucl. Data Sheets 110 (2009) 1409

(Alpha energies, alpha intensities, gamma-ray energies, gamma-ray intensities, Ra-225 levels)

$T_{1/2}$:	25.52	(1)	h
Q_{β^-}	:	391.6	(15)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.14}^{-}$	39.8(15)	0.0032 (2)		7.33
$\beta_{0.13}^{-,11}$	71.4 (15)	0.066 (2)	1st forbidden	6.79
$\beta_{0.12}^{-10}$	73.6(15)	0.00078 (5)		8.76
$\beta_{0,11}^{-1}$	144.3(15)	2.7 (4)	Allowed	6.11
$\beta_{0,10}^{-}$	173.4(15)	0.31~(23)		7.3
$\beta_{0,9}$	208.1(15)	12.2(15)	Allowed	5.95
$\beta_{0,8}^{-}$	217.4(15)	1.36(24)		6.96
$\beta_{0,6}^{-}$	289.3(15)	13 (8)	Allowed	6.4
$\beta_{0,5}^{-}$	290.2(15)	41 (16)	Allowed	5.88
$\beta_{0,4}^{-}$	307.4(15)	29(18)	Allowed	6.1
$\beta_{0,3}^{-}$	$313.9\ (15)$	0.43~(2)	1st forbidden	7.97
$\beta_{0,2}^{-}$	333.0(15)	0.17(17)	1st forbidden	8.2
$\beta_{0,0}^{-}$	$391.6\ (15)$	0.022 (7)	1st forbidden	9.57

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Pa)	5.9 - 21.0	68(3)	
e _{AK}	(Pa) KLL KLX KXY	70.081 - 78.822 85.989 - 95.858 101.87 - 112.59	0.038 (5) } } }	
$ec_{4,2}$ L $ec_{5,4}$ M $ec_{9,2}$ K $ec_{6,4}$ M $ec_{4,2}$ M $ec_{5,2}$ L $ec_{10,8}$ L $ec_{11,5}$ K $ec_{2,0}$ L $ec_{5,2}$ M $ec_{5,2}$ M $ec_{11,5}$ K	(Pa) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 45.3 \ (24) \\ 31 \ (11) \\ 0.01333 \ (41) \\ 8.2 \ (36) \\ 11.7 \ (6) \\ 0.0507 \ (14) \\ 0.16 \ (16) \\ 0.49 \ (11) \\ 0.110 \ (33) \\ 54.5 \ (20) \\ 0.0125 \ (7) \\ 0.041 \ (40) \\ 0.59 \ (26) \end{array}$	
$ec_{3,1}$ L	(Pa)	47.4 - 51.8	0.316(9)	

CNDC /Huang Xiaolong, Wang Baosong

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\frac{\rm Energy}{\rm keV}$	Electrons per 100 disint.	E	Energy keV
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ес _{11,4 К}	(Pa)	50.509 (4)	0.61(7)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{8,5 L}$	(Pa)	51.647 - 56.019	0.0549(37)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{2,0 M}$	(Pa)	53.211 - 55.130	15.0(5)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ес _{11,9 М}	(Pa)	58.50 - 60.42	0.16(7)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{9,6}$ L	(Pa)	60.123 - 64.495	5.5(9)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{9,5}$ L	(Pa)	60.982 - 65.354	2.47(38)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ес _{8,0 К}	(Pa)	61.56 (2)	0.032(29)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{3,1}$ M	(Pa)	63.1 - 65.1	0.0873(28)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{4,0 L}$	(Pa)	63.110 - 67.482	11.86(18)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{8,5}$ M	(Pa)	67.391 - 69.310	0.0134(9)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{8,4}$ L	(Pa)	68.84 - 73.22	0.1222(42)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ес9,6 м	(Pa)	75.867 - 77.786	1.36(27)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ес9,5 м	(Pa)	76.726 - 78.645	0.63(13)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{9,4}$ L	(Pa)	78.176 - 82.548	0.607(42)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{4,0}$ M	(Pa)	78.854 - 80.773	3.8(7)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{6,0 L}$	(Pa)	81.16 - 85.54	0.0379(10)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$e_{8,4 M}$	(Pa)	84.59 - 86.51	0.0297(10)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ес9,4 м	(Pa)	93.920 - 95.839	0.155(12)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$e_{11,7 L}$	(Pa)	114.562 - 118.934	0.112(15)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$c_{11,5}$ L	(Pa)	124.836 - 129.208	0.0411(36)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$e_{11,7 M}$	(Pa)	130.306 - 132.225	0.0279(48)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$e_{11,5 M}$	(Pa)	140.580 - 142.499	0.0107(14)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{11.4} L	(Pa)	142.000 - 146.372	0.122(5)		
$ec_{11,4 \ M}$ (Pa)157.744 - 159.663 $0.0296 \ (17)$ $\beta_{0,14}^{-}$ max:39.8(15) $0.0032 \ (2)$ avg:10.1 $\beta_{0,13}^{-}$ max:71.4(15) $0.0066 \ (2)$ avg:18.3 $\beta_{0,12}^{-}$ max:73.6(15) $0.00078 \ (5)$ avg:18.9 $\beta_{0,11}^{-}$ max:144.3(15) $2.7 \ (4)$ avg:38.1 $\beta_{0,10}^{-}$ max:173.4(15) $0.31 \ (23)$ avg:46.2 $\beta_{0,9}^{-}$ max:208.1(15)12.2 \ (15)avg:58.9 $\beta_{0,6}^{-}$ max:289.3(15)13 \ (8)avg:80.1 $\beta_{0,5}^{-}$ max:290.2 \ (15)41 \ (16)avg:80.4 $\beta_{0,4}^{-}$ max:307.4 \ (15)0.43 \ (2)avg:87.6 $\beta_{0,3}^{-}$ max:333.0 \ (15)0.17 \ (17)avg:93.4	$ec_{8,0}$ L	(Pa)	153.06 - 157.43	0.0122(10)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ес₁1,4 м	(Pa)	157.744 - 159.663	0.0296 (17)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,14}^{-}$	max:	39.8 (15)	0.0032(2)	avg:	10.1 (5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,13}^{-}$	max:	71.4 (15)	0.066~(2)	avg:	18.3(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,12}^{-}$	max:	73.6 (15)	0.00078~(5)	avg:	18.9(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,11}^{-}$	max:	144.3 (15)	2.7~(4)	avg:	38.1(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,10}^{-}$	max:	173.4 (15)	0.31~(23)	avg:	46.2(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.9}^{-}$	max:	208.1 (15)	12.2 (15)	avg:	56.2(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.8}^{-}$	max:	217.4 (15)	1.36(24)	avg:	58.9(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.6}^{}$	max:	289.3 (15)	13(8)	avg:	80.1(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.5}^{2.5}$	max:	290.2 (15)	41 (16)	avg:	80.4 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,4}^{-}$	max:	307.4 (15)	29 (18)	avg:	85.6 (5)
$\beta_{0,2}^{-}$ max: 333.0 (15) 0.17 (17) avg: 93.4	$\beta_{0,3}^{-}$	max:	313.9 (15)	0.43(2)	avg:	87.6 (5)
0,2 $0,2$	$\beta_{0,2}^{-}$	max:	333.0 (15)	0.17(17)	avg:	93.4(5)
$D_{0,0} = \max(391,0) (15) = 0.022 (7) = av\sigma(-111,0)$	$\beta_{0,2}^{-}$	max	391.6 (15)	0.022(7)	avg.	111.6(5)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pa)	11.3676 - 20.1126		65~(3)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pa) (Pa)	92.288 95.869		$\begin{array}{c} 0.37 \ (4) \\ 0.59 \ (7) \end{array}$	} Κα }
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pa) (Pa) (Pa)	107.595 108.422 109.072	} } }	0.21(2)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pa) (Pa) (Pa)	$111.405 \\ 111.87 \\ 112.38$	} } }	0.071 (8)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{4,2}(\text{Pa})$	25.64(2)	74.6(39)	$\mathrm{E1}$	4.37(7)	13.9(7)
$\gamma_{5,2}(Pa)$	42.86(7)	0.1275(34)	[E1]	1.14(2)	0.0596(15)
$\gamma_{10.8}(\text{Pa})$	44.08 (17)	0.22(23)	[M1+E2]	300(300)	0.00074(21)
$\gamma_{2,0}(\text{Pa})$	58.5700(24)	75.1(27)	E2	155.5(22)	0.480(16)
$\gamma_{11,9}(\text{Pa})$	63.86(3)	0.82(36)	M1+E2	34(15)	0.0235(21)
$\gamma_{3,1}(Pa)$	68.5(1)	0.438(13)	$\mathrm{E2}$	73.3(12)	0.00590(15)
$\gamma_{8,5}(\text{Pa})$	72.7510(25)	0.333(22)	[E1]	0.280(4)	0.260(17)
$\gamma_{3,0}(Pa)$	77.69	0.0042(7)			0.0042(7)
$\gamma_{9,6}(\text{Pa})$	81.2280(14)	8.2(13)	M1(+E2)	8.1(14)	0.905~(23)
$\gamma_{9,5}(\text{Pa})$	82.0870(13)	3.7~(6)	M1(+E2)	7.9(13)	0.418(13)
$\gamma_{4,0}(\text{Pa})$	84.2140(13)	23.4(17)	${ m E1}$	2.50(25)	6.70(7)
$\gamma_{8,4}(Pa)$	89.95~(2)	1.171 (35)	${ m E1}$	0.1598(22)	1.01(3)
$\gamma_{6,1}(\text{Pa})$	93.02~(4)	0.0459(34)	[E1]	0.1463(21)	0.040(3)
$\gamma_{9,4}(\text{Pa})$	99.278(3)	0.96(7)	M1+E2	6.0(4)	0.137~(6)
$\gamma_{6,0}(\mathrm{Pa})$	102.2700(13)	0.491(12)	${ m E1}$	0.1141(16)	0.441(11)
$\gamma_{9,3}(\mathrm{Pa})$	105.81(3)	0.0087~(6)	[E1]	$0.1043\ (15)$	0.0079~(5)
$\gamma_{10,7}(\text{Pa})$	106.61(3)	0.0197~(8)	[E1]	0.1023(14)	0.0179(7)
$\gamma_{8,2}(Pa)$	115.63(3)	0.0121 (47)	[M1+E2]	10(4)	0.00110(16)
$\gamma_{10,5}(\text{Pa})$	116.82(2)	0.0302(12)	${ m E1}$	0.342(5)	0.0225~(9)
$\gamma_{9,2}(Pa)$	124.914(17)	0.0763(20)	${ m E1}$	0.294(4)	0.0590(15)
$\gamma_{10,4}(\text{Pa})$	134.03(2)	0.0318(10)	${ m E1}$	0.249(4)	0.0255(8)
$\gamma_{11,7}(\text{Pa})$	135.664(11)	0.72(9)	M1(+E2)	8.0(11)	0.0797(22)
$\gamma_{13,9}(\text{Pa})$	136.75(7)	0.00547(19)	[E1]	0.237(3)	0.00442(15)
$\gamma_{10,3}(\text{Pa})$	140.54(4)	0.0047(19)	[M1+E2]	5.3(25)	0.00074(7)
$\gamma_{11,6}(\text{Pa})$	145.06(4)	0.0201(11)	[E2]	2.46(3)	0.0058(3)
$\gamma_{11,5}(\text{Pa})$	145.94(2)	0.198(27)	M1+E2	5.1(8)	0.0324(12)
$\gamma_{11,4}({ m Pa})$	163.101(4)	0.92(7)	M1(+E2)	4.9(4)	0.156(5)

CNDC /Huang Xiaolong, Wang Baosong

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{8,1}(Pa)$ $\gamma_{11,3}(Pa)$ $\gamma_{8,0}(Pa)$ $\gamma_{9,0}(Pa)$ $\gamma_{11,2}(Pa)$ $\gamma_{13,6}(Pa)$ $\gamma_{13,4}(Pa)$ $\gamma_{12,3}(Pa)$ $\gamma_{14,3}(Pa)$ $\gamma_{14,5}(Pa)$ $\gamma_{14,4}(Pa)$	$\begin{array}{c} \mathrm{keV} \\ \hline 165.00 \ (5) \\ 169.66 \ (3) \\ 174.15 \ (2) \\ 183.480 \ (25) \\ 188.76 \ (2) \\ 217.94 \ (3) \\ 236.01 \ (3) \\ 240.27 \ (5) \\ 242.50 \ (4) \\ 249.60 \ (7) \\ 250.45 \ (7) \\ 267.62 \ (8) \\ 274.1 \ (1) \end{array}$	\times 100 0.00857 (35) 0.00161 (8) 0.067 (27) 0.0375 (9) 0.00378 (33) 0.0434 (9) 0.01002 (32) 0.000308 (43) 0.0016 (6) 0.00085 (7) 0.00071 (7) 0.000148 (15) 0.00058 (27)	$\begin{bmatrix} E2 \\ [E1] \\ [M1+E2] \\ E1 \\ [E1] \\ E1 \\ [E1] \\ [M1+E2] \end{bmatrix}$	$\begin{array}{c} 1.464 \ (2) \\ 0.1421 \ (20) \\ 2.7 \ (15) \\ 0.1181 \ (17) \\ 0.1105 \ (15) \\ 0.0789 \ (11) \\ 0.0657 \ (9) \\ 0.0630 \ (9) \\ 1.0 \ (7) \\ 0.0578 \ (8) \\ 0.0573 \ (8) \\ 0.0493 \ (7) \\ 0.7 \ (5) \end{array}$	\times 100 0.00348 (14) 0.00141 (7) 0.0180 (6) 0.0335 (8) 0.0034 (3) 0.0402 (8) 0.0004 (3) 0.00029 (4) 0.00082 (5) 0.00080 (7) 0.00067 (7) 0.00141 (14) 0.000224 (12)
$\begin{array}{l} \gamma_{14,3}(\mathrm{Pa}) \\ \gamma_{12,1}(\mathrm{Pa}) \\ \gamma_{13,1}(\mathrm{Pa}) \\ \gamma_{12,0}(\mathrm{Pa}) \\ \gamma_{13,0}(\mathrm{Pa}) \\ \gamma_{14,0}(\mathrm{Pa}) \end{array}$	$\begin{array}{c} 274.1 \ (1) \\ 308.78 \ (7) \\ 311.00 \ (5) \\ 317.87 \ (8) \\ 320.15 \ (8) \\ 351.8 \ (1) \end{array}$	$\begin{array}{c} 0.000058 \ (27) \\ 0.0003748 \ (19) \\ 0.005 \ (1) \\ 0.0001039 \ (5) \\ 0.00022 \ (7) \\ 0.000090 \ (24) \end{array}$	$[M1+E2] \\ [E1] \\ M1+E2 \\ [E1] \\ [M1+E2] \\ [M1+E2] \\ [M1+E2] \\ [M1+E2] \\ \label{eq:main_select}$	$\begin{array}{c} 0.7 (5) \\ 0.0358 (5) \\ 0.6 (3) \\ 0.0336 (5) \\ 0.5 (4) \\ 0.35 (25) \end{array}$	$\begin{array}{c} 0.000034 \ (12) \\ 0.0003618 \ (18) \\ 0.00315 \ (14) \\ 0.0001005 \ (5) \\ 0.00015 \ (3) \\ 0.000067 \ (13) \end{array}$

5 References

G.B.KNIGHT, R.L.MACKLIN, Phys. Rev. 75 (1949) 34 (Half-life) A.H.JAFFEY, J.LERNER, S.WARSHAW, Phys. Rev. 82 (1951) 498 (Half-life) M.S.FREEDMAN, A.H.JAFFEY, F.WAGNER JR., J.MAY, Phys. Rev. 89 (1953) 302 (Gamma-ray intensities) M.J.CABELL, Can. J. Phys. 36 (1958) 989 (Half-life) F.Asaro, F.S.Stephens, J.M.Hollander, I.Perlman, Phys. Rev. 117 (1960) 492 (Gamma-ray emission probabilities) K.KOBAYASHI, T.HASHIMOTO, I.KIMURA, J. Nucl. Sci. Technol. (Tokyo) 8 (1971) 492 (Half-life,Gamma-ray energies,intensities and emission probabilities) E.BROWNE, F.ASARO, Phys. Rev. C7 (1973) 2545 (Gamma-ray energies, intensities and emission probabilities) W.TEOH, Nucl. Instrum. Methods 109 (1973) 509 (Gamma-ray energies and intensities) P.HORNSHOJ, P.TIDEMAND-PETERSSON, R.KACZAROWSKI, B.KOTLINSKA, J.ZYLICZ, Nucl. Phys. A248 (1975) 406 (Gamma-ray energies and intensities, Internal conversion electrons intensities, beta emission probabilities, Multipolarity) S.A.BARANOV, V.M.SHATINSKII, A.G.ZELENKOV, V.A.PCHELIN, Sov. J. Nucl. Phys. 26 (1977) 486 (Gamma-ray energies and intensities) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251 (Gamma-ray energies) R.VANINBROUKX, B.DENECKE, Nucl. Instrum. Methods 193 (1982) 191 (Gamma-ray emission probabilities) C.BAKTASH, E.DER MATEOSIAN, O.C.KISTNER, A.W.SUNYAR, D.HORN, C.J.LISTER, Bull. Am. Phys. Soc. 28 (1983) 41(Gamma-ray intensities and emission probabilities) H.CHATANI, Nucl. Instrum. Methods 205 (1983) 501 (Half-life,Gamma-ray emission probabilities)

R.G.HELMER, C.W.REICH, Int. J. Appl. Radiat. Isotop. 35 (1984) 783
(Gamma-ray emission probabilities)
E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527
(Atomic data)
H.CHATANI, Nucl. Instrum. Methods Phys. Res. A425 (1999) 277
(Gamma-ray energies, intensities and emission probabilities)
E.BROWNE, Nucl. Data Sheets 93 (2001) 763
(Decay scheme and levels)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129
(Q)
T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods
Phys. Res. A589 (2008) 202
(Theoretical ICC)

$T_{1/2}$:	14.02	(6)	$\times 10^9 { m y}$
$Q^{'}_{lpha}$:	4081.6	(14)	keV
α	:	100		%
$^{24-26}Ne$:	1.15		$ imes 10^{-9}$ %
SF	:	$<\!\!2.78$		$\times 10^{-10} \%$

2 α Emissions

	Energy keV	Probability × 100
$lpha_{0,2} lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 3810.0 \ (14) \\ 3948.5 \ (14) \\ 4011.2 \ (14) \end{array}$	$\begin{array}{c} 0.068 \ (20) \\ 21.0 \ (13) \\ 78.9 \ (13) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Ra)	5.71 - 19.09	8.18(29)
e_{AK}	(Ra) KLL KLX KXY	65.149 - 72.729 79.721 - 88.466 94.27 - 103.91	0.00019 (6) } } }

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Ra)	10.624 - 18.354		7.2(3)	
$\begin{array}{l} { m XK} lpha_2 \ { m XK} lpha_1 \end{array}$	$\begin{array}{c} (\mathrm{Ra}) \\ (\mathrm{Ra}) \end{array}$	$85.43 \\ 88.47$		0.0017(5) 0.0028(8)	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Ra) (Ra) (Ra)	99.432 100.13 100.738	} } }	0.00097(28)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Ra) (Ra) (Ra)	$102.89 \\ 103.295 \\ 103.74$	} } }	0.00032 (10)	$\mathrm{K}\beta_2'$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(\mathrm{Ra})$ $\gamma_{2,1}(\mathrm{Ra})$	$63.811 (10) \\ 140.88 (1)$	$\begin{array}{c} 21.1 \ (13) \\ 0.068 \ (20) \end{array}$	E2 E2	80.4(12) 2.26(4)	0.259(15) 0.021(6)

4.2 Gamma Transitions and Emissions

5 References

A.F.KOVARIK, N.I.ADAMS JR., Phys. Rev. 54 (1938) 413 (Half-life) D.C.DUNLAVEY, G.T.SEABORG, Phys. Rev. 87 (1952) 165 (Alpha emission probabilities) G.PHILBERT, J.GENIN, L.VIGNERON, J. Phys. Radium 15 (1954) 16 (Alpha emission) R.L.MACKLIN, H.S.POMERANCE, J. Nucl. Energy 2 (1956) 243 (Half-life) G.Albouy, Ann. Phys. (Paris) 1 (1956) 99 (Alpha emission probabilities) E.PICCIOTTO, S.WILGAIN, Nuovo Cim. 4 (1956) 1525 (Half-life) F.E.SENFTLE, T.A.FARLEY, N.LAZAR, Phys. Rev. 104 (1956) 1629 (Half-life) B.G.HARVEY, H.G.JACKSON, T.A.EASTWOOD, G.C.HANNA, Can. J. Phys. 35 (1957) 258 (Alpha emission energies) G.E.KOCHAROV, A.P.KOMAR, G.A.KOROLEV, Sov. Phys. - JETP 9 (1959) 48 (Alpha emission probabilities) R.E.BELL, S.BJORNHOLM, J.C.SEVERIENS, Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 32,12 (1960) (Half-life) T.A.FARLEY, Can. J. Phys. 38 (1960) 1059 (Half-life) G.E.KOCHAROV, G.A.KOROLEV, Izv. Akad. Nauk SSSR, Ser. Fiz. 25 (1961) 237 (Alpha emission energies, Alpha emission probabilities) G.A.KOROLEV, G.E.KOCHAROV, Izv. Akad. Nauk SSSR, Ser. Fiz. 26 (1962) 233 (Alpha emission energies) L.J.LEROUX, L.E.GLENDENIN, Nat. Conf. Nucl. Energy, Application of Isotopes and Radiation, Pretoria, South Africa, Ed. F.L.Warren (1963) 83 (Half-life) H.W.TAYLOR, Int. J. Appl. Radiat. Isotop. 24 (1973) 593 (Gamma-ray emission probabilities) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities) T.MITSUGASHIRA, M.MAKI, S.SUZUKI, Y.SHIOKAWA, Radiochem. Radioanal. Lett. 58 (1983) 199 (Gamma-ray emission probabilities, Gamma-ray energies, Alpha emission probabilities) J.-C.ROY, L.BRETON, J.-E.COTE, J.TURCOTTE, Nucl. Instrum. Methods 215 (1983) 409 (Gamma-ray emission probabilities) S.K.SAHA, S.M.SAHAKUNDU, J. Phys. (London) G15 (1989) 73 (Alpha emission energies, Alpha emission probabilities, Gamma-ray energies, Gamma-ray emission probabilities) N.E.HOLDEN, Pure Appl. Chem. 62 (1990) 941 (Half-life evaluation) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission probabilities, Alpha emission energies) R.BONETTI, C.CHIESA, A.GUGLIELMETTI, R.MATHEOUD, G.POLI, V.L.MIKHEEV, S.P.TRETYAKOVA, Phys. Rev. C51 (1995) 2530 (Spontaneous fission probability, cluster decay) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 529 (Atomic Data)

A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 723

(Spin and Parity, Multipolarities)

I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1

(Conversion electron emission probabilities and energies)

G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., Proc. Int. Conf. on Nuclear Data for Science and Technology, 26 Sept.-1 Oct. 2004, Santa Fe, New Mexico; AIP Conf. Proc. 769 (2005) 268 (Conversion electron emission energies and probabilities)

$T_{1/2}$:	22.15	(8)	\min
Q_{β^-}	:	1243.1	(14)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Probability × 100	Nature	$\log ft$
$\beta_{0.20}^{-}$	224.4(14)	0.0434 (9)		6.7
$\beta_{0.19}^{-}$	258.3(14)	0.205 (2)	Allowed	6.2
$\beta_{0.18}^{-1}$	431.5(14)	0.385(4)	Allowed	6.6
$\beta_{0,17}^{-1}$	478.5(14)	1.19(3)	Allowed	6.3
$\beta_{0.16}^{-}$	573.2(14)	0.0174(22)	1st forbidden	8.4
$\beta_{0.15}^{-1}$	657.6(14)	0.15(3)	Allowed	7.6
$\beta_{0.14}^{-1}$	689.2(14)	1.23 (3)	Allowed	6.8
$\beta_{0.13}^{-1}$	788.7 (14)	0.217(13)	Allowed	7.7
$\beta_{0.12}^{-10}$	795.3(14)	0.821(14)	1st forbidden	7.2
$\beta_{0,11}^{\underline{\gamma}}$	985.8(14)	0.60(3)	1st forbidden unique	8.1
$\beta_{0.8}^{-}$	1041.4(14)	0.074 (8)	Allowed	8.6
$\beta_{0.7}^{7}$	1073.9(14)	0.692(12)	Allowed	7.7
$\beta_{0.5}^{-1}$	1148.4(14)	10.4(4)	Allowed	6.6
$\beta_{0,1}^{-1}$	1236.4(14)	50 (6)	1st forbidden	6.1
$\beta_{0,0}^{-,1}$	1243.1(14)	34(6)	1st forbidden	6.2

3 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.	Energy keV
e_{AL}	(Pa)	5.9 - 21.6	8.6 (10)	
e _{AK}	(Pa) KLL KLX KXY	70.081 - 78.822 88.03 - 95.56 101.78 - 112.40	0.041 (5) } }	
$ec_{1,0}$ M $ec_{8,4}$ K $ec_{9,5}$ K $ec_{1,0}$ N $ec_{4,2}$ L $ec_{8,3}$ K $ec_{10,6}$ K $ec_{4,2}$ M $ec_{4,2}$ N $ec_{4,2}$ N $ec_{10,5}$ K $ec_{2,0}$ L	(Pa) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 34.2 \ (9) \\ 0.013 \\ 0.0270 \ (31) \\ 9.27 \ (26) \\ 4.97 \ (19) \\ 0.013 \\ 0.015 \\ 1.272 \ (49) \\ 0.332 \ (12) \\ 0.057 \ (16) \\ 6.39 \ (23) \end{array}$	

Th - 233

		Energy	Electrons	E	Energy
		keV	per 100 disint.		keV
$ec_{3,1 L}$	(Pa)	42.82 - 47.19	0.052(22)		
$ec_{3,0 L}$	(Pa)	49.38 - 53.76	0.020(17)		
$ec_{7,1 \text{ K}}$	(Pa)	49.908 (12)	0.0206~(6)		
$ec_{11,5 K}$	(Pa)	50	0.01968(29)		
$ec_{2,0}$ M	(Pa)	51.7 - 53.7	1.76(6)		
$ec_{7,5 L}$	(Pa)	53.40 - 57.78	0.299(14)		
$ec_{2,0 N}$	(Pa)	55.7 - 56.7	0.475(16)		
ес _{7.0 К}	(Pa)	56.57 (1)	0.0281(7)		
ec _{11.4 K}	(Pa)	58.00 (6)	0.0557(14)		
$ec_{3.1 \text{ M}}$	(Pa)	58.56 - 60.48	0.014(6)		
ec_{40L}	(Pa)	65.372 - 69.744	2.08(8)		
ec17 15 K	(Pa)	66.45 (8)	0.075(22)		
ecs 1 L	(Pa)	66.88 - 71.26	0.0217(6)		
ес <u>7</u> 5 м	(Pa)	69.15 - 71.07	0.0720(34)		
$ec_{7,5}$ M	(Pa)	73.13 - 74.16	0.0193(9)		
ecro I	(Pa)	73 54 - 77 91	0.0814(18)		
ес <u>11 р</u> К	(Pa)	74.20 (18)	0.0011(10) 0.031(27)		
ec10.11 V	(Pa)	77.956 (14)	0.001(21) 0.224(6)		
CC12,11 K	(Pa)	81 116 - 83 035	0.224(0) 0.41(7)		
ес4,0 M	$(\mathbf{P}_{\mathbf{n}})$	80.20 01.21	0.41(7) 0.01002(45)		
CC5,0 M	$(\mathbf{P}_{\mathbf{n}})$	09.29 - 91.21 08.07 (8)	0.01332 (43) 0.020 (16)		
ес _{17,14} К	$(\mathbf{P}_{\mathbf{n}})$	104 (0)	0.020(10)		
ec _{13,10} K	$(\mathbf{P}_{\mathbf{a}})$	104 (2) 1135 (2)	0.029 0.0275 (12)		
ec _{18,15} K	$(\mathbf{I} \mathbf{a})$ $(\mathbf{D} \mathbf{a})$	110.0 (2) 192.12 126.50	0.0275(12) 0.0138(20)		
ес _{10,5} L	$(\mathbf{I} \mathbf{a})$	122.12 - 120.00 120.4 - 124.9	0.0138(20)		
ec _{10,4} L	(Γa)	130.4 - 134.0 140.19 (0)	0.011		
ec _{13,8} K	(Γa)	140.10 (9) 144.70 (15)	0.014 0.021 (21)		
ec _{11,0} K	(Γa)	144.70 (13) 140.5 152.0	0.031(31)		
$ec_{11,4}$ L	(Pa)	149.0 - 100.9 157.05 - 160.20	0.01100(33)		
$ec_{17,15}$ L	(Pa)	107.90 - 102.02 165 7 170 1	0.0107(0)		
$ec_{11,3}$ L	(Pa)	100.7 - 170.1 160.447 - 172.810	0.0111(3)		
$ec_{12,11}$ L	(Pa)	109.447 - 173.019 179.64 (7)	0.0450(11)		
$ec_{13,7}$ K	(Pa)	1/2.04 (7)	0.017		
$ec_{12,11}$ M	(Pa)	185.191 - 18(.110)	0.01037(27)		
$ec_{12,3}$ K	(Pa)	204.07 (11)	0.015		
$ec_{12,1}$ K	(Pa)	328.34 (4)	0.046(8)		
$ec_{12,0}$ K	(Pa)	335.17 (2)	0.0240(42)		
$ec_{14,5}$ K	(Pa)	346.626 (7)	0.227(6)		
$ec_{12,3}$ L	(Pa)	356.2 - 360.6	0.029		
$ec_{15,5}$ K	(Pa)	378.2 (6)	0.035		
$ec_{15,4}$ K	(Pa)	386.42 (4)	0.042		
$ec_{14,5 L}$	(Pa)	438.117 - 442.489	0.043(1)		
$ec_{17,8\ \rm K}$	(Pa)	450.33 (8)	0.01		
$ec_{14,5}$ M	(Pa)	453.861 - 455.780	0.01035(24)		
$ec_{17,7\ \rm K}$	(Pa)	482.79 (6)	0.02		
$ec_{17,5}$ K	(Pa)	557.305 (16)	0.0423 (10)		
$\beta_{0,20}^-$	max:	224.4 (14)	0.0434 (9)	avg:	60.9(4)
$\beta_{0,19}^{-1}$	max:	258.3 (14)	0.205~(2)	avg:	70.8(4)
$\beta_{0.18}^{-1}$	max:	431.5 (14)	0.385~(4)	avg:	124.3(5)

		Ener ke	rgy V	Electrons per 100 disint.	E	Energy keV
$\beta_{0.17}^{-}$	max:	478.5	(14)	1.19(3)	avg:	139.5(5)
$\beta_{0.16}^{-}$	max:	573.2	(14)	0.0174~(22)	avg:	170.8(5)
$\beta_{0.15}^{-}$	max:	657.6	(14)	0.15(3)	avg:	199.6(5)
$\beta_{0.14}^{-}$	max:	689.2	(14)	1.23(3)	avg:	210.5(5)
$\beta_{0,13}^{-}$	max:	788.7	(14)	0.217~(13)	avg:	245.5(5)
$\beta_{0.12}$	max:	795.3	(14)	0.821(14)	avg:	247.8(5)
$\beta_{0.11}^{-1}$	max:	985.8	(14)	0.60(3)	avg:	317.0(6)
$\beta_{0.8}^{-}$	max:	1041.4	(14)	0.074(8)	avg:	337.6(6)
$\beta_{0.7}^{-}$	max:	1073.9	(14)	0.692~(12)	avg:	349.7~(6)
$\beta_{0.5}^{-}$	max:	1148.4	(14)	10.4(4)	avg:	377.8~(6)
$\beta_{0,1}^{-}$	max:	1236.4	(14)	50(6)	avg:	411.2(6)
$\beta_{0,0}^{\underline{\cdot},1}$	max:	1243.1	(14)	34 (6)	avg:	413.8 (6)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy		Photons	
		keV		per 100 disint.	
XL	(Pa)	11.366 - 21.6		8.2(9)	
$XK\alpha_2$	(Pa)	92.288		0.39(1)	$K\alpha$
$XK\alpha_1$	(Pa)	95.869		0.615(13)	}
$XK\beta_3$	(Pa)	107.595	}		
$XK\beta_1$	(Pa)	108.422	}	0.235~(6)	$\mathrm{K}eta_1'$
$ ext{XK}eta_5''$	(Pa)	109.072	}		
$XK\beta_2$	(Pa)	111.405	}		
$XK\beta_4$	(Pa)	111.87	}	0.079~(3)	${ m K}eta_2'$
$\rm XKO_{2,3}$	(Pa)	112.38	}		

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Pa)$	6.65(5)	51(6)	(M1)	3080(60)	0.0165(18)
$\gamma_{4,2}(\mathrm{Pa})$	29.373(10)	8.83(31)	E1	3.07(6)	2.17(7)
$\gamma_{2,0}(\text{Pa})$	57.10(2)	8.81(33)	$\mathrm{E2}$	176(4)	0.0498(15)
$\gamma_{3,1}(\text{Pa})$	63.92(6)	0.072(31)	(E2)	102.1(21)	0.0007(3)
$\gamma_{3,0}(\text{Pa})$	70.49(10)	0.029(27)	[M1+E2]	40 (30)	0.0007(4)
$\gamma_{7,5}(\text{Pa})$	74.51 (5)	0.436(20)	[M1]	9.85(20)	0.0402(17)
$\gamma_{4,0}(\mathrm{Pa})$	86.477 (10)	4.48 (16)	E1	1.43 (8)	1.843(22)
$\gamma_{5,1}(\text{Pa})$	87.99(3)	0.1985(24)	[E1]	0.169(3)	0.1698(20)
$\gamma_{5,0}(\mathrm{Pa})$	94.65(5)	0.884 (11)	E1	0.140(3)	0.775 (9)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{-1.2}(\text{Pa})$	105.2(1)	0.041			0.041
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{9.6}(\text{Pa})$	108.5(1)	0.0027	M1+E2	3.5(6)	0.0006
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{8,4}(\text{Pa})$	115.14(5)	0.03(8)	[M1+E2]	10(4)	0.003(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{9.5}(\text{Pa})$	117.692 (20)	0.038(4)	M1+E2	12.2(4)	0.0029(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{8,3}(Pa)$	131.101(25)	0.0641(17)	${ m E1}$	0.262(5)	0.0508(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{10,6}(\text{Pa})$	134.285(20)	0.016(5)	[M1+E2]	8.0(14)	0.0018(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{10,5}(\text{Pa})$	143.23(2)	0.088(15)	M1+E2	6.7(12)	0.0114(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{-1,3}(\text{Pa})$	147.5	0.0018(6)			0.0018(6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{10,4}(\text{Pa})$	151.409(20)	0.040(4)	[M1+E2]	4.9(6)	0.0067(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{11,6}(\text{Pa})$	153.49(18)	0.0480(8)	[E1]	0.180(4)	0.0407(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{9,2}(\mathrm{Pa})$	155.239(20)	0.000270 (35)	E1	0.176(4)	0.00023 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{11,5}(\text{Pa})$	162.504	0.185	[E1]	0.157(3)	0.16
$\gamma_{7,0}(Pa)$ 169.162 (10) 0.287 (5) [E1] 0.1431 (29) 0.251 (4)	$\gamma_{7,1}(\mathrm{Pa})$	162.504(12)	0.194(3)	[E1]	0.157(3)	0.1674(26)
	$\gamma_{7,0}({ m Pa})$	169.162(10)	0.287~(5)	[E1]	0.1431 (29)	0.251~(4)
$\gamma_{11,4}(\text{Pa})$ 170.60 (6) 0.578 (10) [E1] 0.1403 (28) 0.507 (9)	$\gamma_{11,4}(\text{Pa})$	170.60(6)	0.578(10)	[E1]	0.1403(28)	0.507~(9)
$\gamma_{17,15}(\text{Pa})$ 179.05 (8) 0.125 (25) (M1+E2) 3.5 (8) 0.0278 (7)	$\gamma_{17,15}(\text{Pa})$	179.05(8)	0.125~(25)	(M1+E2)	3.5(8)	0.0278~(7)
$\gamma_{10,2}(Pa)$ 180.76 (3) 0.000123 (3) [E1] 0.1223 (24) 0.00011 (3)	$\gamma_{10,2}(Pa)$	180.76(3)	0.000123 (3)	[E1]	0.1223~(24)	0.00011 (3)
$\gamma_{11,3}(Pa)$ 186.80 (18) 0.067 (27) [M1+E2] 2.2 (13) 0.0209 (9)	$\gamma_{11,3}(\text{Pa})$	186.80(18)	0.067~(27)	[M1+E2]	2.2(13)	0.0209 (9)
$\gamma_{12,11}(Pa)$ 190.552 (14) 0.367 (8) M1 3.26 (6) 0.0861 (15)	$\gamma_{12,11}(\text{Pa})$	190.552(14)	0.367~(8)	M1	3.26~(6)	0.0861~(15)
$\gamma_{8,1}(Pa)$ 194.97 (7) 0.1183 (19) E1 0.1024 (20) 0.1073 (17)	$\gamma_{8,1}(Pa)$	194.97(7)	0.1183~(19)	${ m E1}$	0.1024~(20)	$0.1073\ (17)$
$\gamma_{8,0}(Pa)$ 201.62 (5) 0.0242 (9) E1 0.0946 (19) 0.0221 (8)	$\gamma_{8,0}({ m Pa})$	201.62(5)	0.0242~(9)	${ m E1}$	$0.0946\ (19)$	0.0221 (8)
$\gamma_{17,14}$ (Pa) 210.67 (8) 0.044 (18) [M1+E2] 1.5 (10) 0.0178 (11)	$\gamma_{17,14}(\text{Pa})$	210.67(8)	0.044~(18)	[M1+E2]	1.5(10)	0.0178(11)
$\gamma_{-1,4}(\text{Pa})$ 211.3 (2) 0.0202 (9) 0.0202 (9)	$\gamma_{-1,4}(\mathrm{Pa})$	211.3(2)	0.0202 (9)			0.0202~(9)
$\gamma_{9,0}(Pa)$ 212.34 (5) 0.0070 (7) E1 0.0839 (17) 0.0065 (6)	$\gamma_{9,0}(\mathrm{Pa})$	212.34(5)	0.0070(7)	${ m E1}$	0.0839(17)	0.0065~(6)
$\gamma_{13,10}(\text{Pa})$ 216.54 (8) 0.031 (12) (M1+E2) 1.4 (9) 0.0130 (7)	$\gamma_{13,10}(\text{Pa})$	216.54(8)	0.031(12)	(M1+E2)	1.4(9)	0.0130(7)
$\gamma_{18,15}(Pa)$ 226.1 (2) 0.0516 (22) M1+(E2) 2.02 (4) 0.0171 (7)	$\gamma_{18,15}(\text{Pa})$	226.1(2)	0.0516(22)	M1+(E2)	2.02(4)	0.0171(7)
$\gamma_{10,0}(Pa)$ 237.86 (6) 0.00202 (43) [E1] 0.0645 (13) 0.0019 (4)	$\gamma_{10,0}(\text{Pa})$	237.86(6)	0.00202(43)	[E1]	0.0645(13)	0.0019(4)
$\gamma_{-1,5}(\text{Pa})$ 242.3 0.0029 (6) 0.0029 (6) 0.0029 (6)	$\gamma_{-1,5}(\text{Pa})$	242.3	0.0029(6)	[12]		0.0029(6)
$\gamma_{12,8}(Pa) = 246.14(6) = 0.0043(6) $ [E1] $0.0596(12) = 0.0041(6)$	$\gamma_{12,8}(\text{Pa})$	246.14(6)	0.0043(6)	[E1]	0.0596(12)	0.0041(6)
$\gamma_{11,1}(Pa) = 250.65 (16) = 0.0062 (4) [E2] = 0.317 (6) = 0.0047 (3)$	$\gamma_{11,1}(\text{Pa})$	250.65(16)	0.0062(4)	[E2]	0.317(6)	0.0047(3)
$\gamma_{13,8}(Pa) = 252.78 (9) = 0.0152 (21) [M1+E2] = 1.3 (3) = 0.0066 (3)$	$\gamma_{13,8}(\text{Pa})$	252.78(9)	0.0152(21)	[M1+E2]	1.3(3)	0.0066(3)
$\gamma_{11,0}(Pa) = 257.30 (15) = 0.09 (3) [M1+E2] = 0.8 (6) = 0.0524 (12)$	$\gamma_{11,0}(\text{Pa})$	257.30(15)	0.09(3)	[M1+E2]	0.8(6)	0.0524(12)
$\gamma_{12,7}(Pa) = 278.7(4) = 0.0047(6) = 0.0154(0)$	$\gamma_{12,7}(Pa)$	278.7(4)	0.0047(6)		0.04 (99)	0.0047(6)
$\gamma_{13,7}(Pa) = 285.24$ (7) 0.030 (4) [M1+E2] 0.94 (22) 0.0154 (9)	$\gamma_{13,7}(\text{Pa})$	285.24(7)	0.030(4)	[M1+E2]	0.94(22)	0.0154(9)
$\gamma_{-1,6}(Pa) = 309.9 = 0.0032(3) = 0.0032(3) = 0.0032(3)$	$\gamma_{-1,6}(\text{Pa})$	309.9	0.0032(3)	131	0.0240.(7)	0.0032(3)
$\gamma_{14,10}(Pa) = 310.1 = 0.00383 (41) = E1 = 0.0340 (7) = 0.0037 (4)$	$\gamma_{14,10}(\text{Pa})$	310.1	0.00383(41)	E1 [N/[1]	0.0340(7)	0.0037(4)
$\gamma_{15,10}(Pa) = 347.04(0) = 0.0234(13) [M1] = 0.013(12) = 0.0145(8)$	$\gamma_{15,10}(\text{Pa})$	347.04(0)	0.0234(13) 0.1255(21)		0.013(12)	0.0145(8)
$\gamma_{13,5}(Pa) = 359.74(4) = 0.1355(21)$ MI $= 0.599(11) = 0.0809(12)$	$\gamma_{13,5}(Pa)$	339.74(4)	0.1355(21)		0.359(11)	0.0809(12)
$\gamma_{12,4}(Pa) = 501.265(22) = 0.0224(0) $ [E1] $0.0255(5) = 0.0218(0)$	$\gamma_{12,4}(Pa)$	301.263(22) 267.02(7)	0.0224(0) 0.0056(11)	[L] [M1]	0.0235(3)	0.0218(0) 0.0027(7)
$\gamma_{13,4}(Pa) = 507.92(7) = 0.0050(11) [M11] = 0.525(10) = 0.0057(7)$ $\gamma_{13,4}(Pa) = 377.27(11) = 0.040(3) [M1+F2] = 0.46(8) = 0.0275(0)$	$\gamma_{13,4}(Pa)$	307.92(7) 377.97(11)	0.0050(11)	[M1 + F2]	0.525(10)	0.0037(7) 0.0275(0)
$\gamma_{12,3}(ra) = 0.40(0) = 0.40(0) = 0.40(0) = 0.40(0) = 0.40(0) = 0.0213(9) = 0.40(0) = 0.0010(6) = 0.0010(6)$	$\gamma_{12,3}(Pa)$	383 5	0.040 (3) 0.0010 (6)		0.40 (0)	0.0213(9) 0.0010(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma = 1, \gamma$ (ra)	308 8 (5)	0.0019(0) 0.0158(10)	[M1]	0 422 (8)	0.0013(0) 0.0111(7)
$\gamma_{19,15}(1a) = 0.005 (0) = 0.000 (10) [WII] = 0.422 (0) = 0.0111 (7) = 0.0005 (4) = 0.0005 (4)$	$\gamma_{19,15}(1a)$	408.8(5)	0.0100(10)		0.422 (0)	0.00111(1) 0.0005(4)
$\gamma_{1-1,8}(1, \alpha) = 412.5 (5) = 0.0005 (4) =$	1-1,8(1 a)	4195(5)	0.0005(4) 0.0115(10)	[M1]	0.385 (8)	0.0000 (4) 0.0083 (7)
$\gamma_{10}(11(13)) = 418.4 (5) = 0.0011 (10) [1011] = 0.000 (0) = 0.0003 (7) = 0.0001 (7) = 0.0001 (7)$	$\gamma_{10,11}(1a)$	412.0(0) 418.4(5)	0.0110(10) 0.0001(7)		0.000 (0)	0.0000(7)
$\gamma_{10,14}(Pa) = 430.9 (4) = 0.0239 (5) (M1) = 0.342 (6) = 0.0091 (7) = 0.0091 (7)$	$\gamma_{10,14}(P_{2})$	4309(4)	0.0031(7) 0.0239(5)	(M1)	0.342(6)	0.0031(1) 0.0178(4)
$\gamma_{20.15}(Pa)$ 433.2 (4) 0.0117 (4) 0.0117 (4)	$\gamma_{20.15}(Pa)$	433.2 (4)	0.0117(4)	()	0.012 (0)	0.0117(4)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{12,1}(Pa)$	440.94 (4)	0.249(10)	(M1 + E2)	0.30(5)	0.1912(23)
$\gamma_{12,0}(\text{Pa})$	447.762 (20)	0.134(5)	[M1+E2]	0.29(4)	0.1043(14)
$\gamma_{-1,10}(\text{Pa})$	454.2(5)	0.04			0.04
$\gamma_{14,5}(\text{Pa})$	459.222(7)	1.274(17)	M1	0.288~(6)	0.989(12)
$\gamma_{-1,11}(\text{Pa})$	464.8	0.0026(3)			0.0026 (3)
$\gamma_{14,4}(\text{Pa})$	467.40(6)	0.0167(17)	[M1,E2]	0.16(11)	0.0144~(4)
$\gamma_{-1,12}(\text{Pa})$	473.9(5)	0.0033~(7)			0.0033~(7)
$\gamma_{15,5}(\text{Pa})$	490.80(6)	0.1338(21)	M1	0.241(5)	0.1078(16)
$\gamma_{-1,13}(\text{Pa})$	497.1(4)	0.0128~(4)			0.0128~(4)
$\gamma_{15,4}({ m Pa})$	499.02(4)	0.1938~(27)	M1	0.230(5)	0.1576(21)
$\gamma_{-1,14}(\text{Pa})$	505.5~(6)	0.0055~(3)			0.0055~(3)
$\gamma_{-1,15}(\text{Pa})$	513.4(4)	0.0133~(4)			0.0133~(4)
$\gamma_{-1,16}(\text{Pa})$	517.0(4)	0.0046~(3)			0.0046(3)
$\gamma_{17,10}({ m Pa})$	526.69~(6)	0.052~(4)	[M1,E2]	0.12(8)	0.0463~(11)
$\gamma_{-1,17}(\text{Pa})$	531.8(4)	0.0070(7)			0.0070(7)
$\gamma_{17,9}({ m Pa})$	552.21(8)	0.0194(6)	(M1)	0.1754(35)	0.0165(5)
$\gamma_{-1,18}(\text{Pa})$	553.7	0.0030(3)			0.0030(3)
$\gamma_{-1,19}(\text{Pa})$	554.9	0.0031~(3)			0.0031 (3)
$\gamma_{17,8}({ m Pa})$	562.93~(8)	0.0636~(8)	[M1]	0.167(3)	0.0545(7)
$\gamma_{18,10}({ m Pa})$	573.7~(4)	0.0384~(12)	[M1]	0.158(3)	0.0332~(10)
$\gamma_{-1,20}(\text{Pa})$	578.7	0.0017(5)			0.0017(5)
$\gamma_{-1,21}(\text{Pa})$	583.2	0.0016(5)			0.0016(5)
$\gamma_{17,7}(\text{Pa})$	595.39(6)	0.1346(19)	(M1)	0.143(3)	0.1178(16)
$\gamma_{18,9}(Pa)$	599.3(2)	0.0335(6)	[M1]	0.141(3)	0.0294(5)
$\gamma_{18,8}(Pa)$	610.0(3)	0.0643(14)	[M1]	0.134(3)	0.0567(12)
$\gamma_{18,7}(\text{Pa})$	642.4(2)	0.0226(6)	[M1]	0.1171(23)	0.0202(5)
$\gamma_{16,1}(\text{Pa})$	663.3(5)	0.0041(6)	[M1]	0.1075(22)	0.0037(5)
$\gamma_{16,0}(\mathrm{Pa})$	669.9(5)	0.0018			0.0018
$\gamma_{17,5}(\mathrm{Pa})$	669.901(16)	0.557(7)	[M1]	0.1047(21)	0.504(6)
$\gamma_{17,4}(\mathrm{Pa})$	678.04(10)	0.0686(28)	[M1, E2]	0.06(4)	0.0647(9)
$\gamma_{-1,22}(\text{Pa})$	681.2(6)	0.0143(4)			0.0143(4)
$\gamma_{-1,23}(\text{Pa})$	690	0.0021(5)			0.0021(5)
$\gamma_{-1,24}(\text{Pa})$	698.5(6)	0.0106(5)			0.0106(5)
$\gamma_{-1,25}(\text{Pa})$	703.7(6)	0.0091(5)		0.0000 (4)	0.0091(5)
$\gamma_{18,6}(Pa)$	707.8(3)	0.0093(5)	[E2]	0.0209(4)	0.0091(5)
$\gamma_{18,5}(\text{Pa})$	717.0(2)	0.0458(10)	(M1)	0.0874(17)	0.0421(9)
$\gamma_{18,4}(\text{Pa})$	725.1(2)	0.0687(11)	(M11)	0.0848(17)	0.0633(10)
$\gamma_{-1,26}(Pa)$	(27.8)	0.0029(2)	[17,1]	0.0001F(10)	0.0029(2)
$\gamma_{18,3}(\text{Pa})$	741.1(2)	0.0237(5)	[E1]	0.00615(12)	0.0236(5)
$\gamma_{-1,27}(\text{Pa})$	744.9(5)	0.0053(2)			0.0053(2)
$\gamma_{-1,28}(Pa)$	(51.0 (6))	0.0023(4)			0.0023(4)
$\gamma_{17,1}(Pa)$	101.90 (1) 764 55 (6)	0.0324(1)			0.0324(1)
$\gamma_{17,0}(Pa)$	104.33 (0) 767 5	0.0891(13)			0.0691 (13)
$\gamma_{-1,29}(Pa)$	101.0 774.0 (4)	0.0032(2)			0.0032(2)
$\gamma_{-1,30}(Pa)$	((4.U(4) 792 D(5)	0.0108(3)	[]] [1]	0.0609.(1.4)	0.0108(3)
$\gamma_{19,8}(Pa)$	(03.2 (3)) 784 9 (5)	0.00000 (32)		0.0092 (14)	0.0000 (3)
$\gamma_{-1,31}(Pa)$	104.2 (0)	0.0022 (2) 0.0215 (6)	[F 1]	0.00520 (11)	0.0022 (2) 0.0914 (6)
718,1(Pa)	000.0(2)	0.0210(0)		0.00029 (11)	0.0214(0)

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\begin{array}{c} \gamma_{20,9}({\rm Pa}) \\ \gamma_{18,0}({\rm Pa}) \\ \gamma_{19,7}({\rm Pa}) \\ \gamma_{20,8}({\rm Pa}) \\ \gamma_{-1,32}({\rm Pa}) \\ \gamma_{-1,33}({\rm Pa}) \\ \gamma_{-1,35}({\rm Pa}) \\ \gamma_{-1,35}({\rm Pa}) \\ \gamma_{19,6}({\rm Pa}) \\ \gamma_{19,6}({\rm Pa}) \\ \gamma_{19,5}({\rm Pa}) \\ \gamma_{19,4}({\rm Pa}) \\ \gamma_{-1,37}({\rm Pa}) \\ \gamma_{-1,37}({\rm Pa}) \\ \gamma_{-1,38}({\rm Pa}) \\ \gamma_{-1,39}({\rm Pa}) \\ \gamma_{-1,39}({\rm Pa}) \\ \gamma_{-1,40}({\rm Pa}) \\ \gamma_{-1,41}({\rm Pa}) \\ \gamma_{-1,42}({\rm Pa}) \\ \gamma_{19,1}({\rm Pa}) \\ \gamma_{19,0}({\rm Pa}) \\ \gamma_{-1,45}({\rm Pa}) \\ \gamma_{-1,46}({\rm Pa}) \\ \gamma_{-1,47}({\rm Pa}) \end{array}$	Energy keV 806.4 (5) 811.6 (2) 815.9 (4) 817.0 (6) 832.0 (3) 846.8 (7) 849.5 (5) 870.7 (7) 874.0 (5) 890.1 (5) 890.1 (5) 890.1 (5) 935.2 (7) 941.9 (8) 942.8 942.8 948.3 (5) 955 (1) 960.8 (8) 962.8 (9) 968.2 (9) 978.2 (5) 984.8 (5) 994 (1) 1001 (1) 1007 (1) 1011 (1)	$\begin{array}{c} P_{\gamma+ce} \\ \times 100 \\ \hline \\ 0.0123 \ (5) \\ 0.0060 \ (2) \\ 0.0207 \ (6) \\ 0.0095 \ (5) \\ 0.0075 \\ 0.0013 \\ 0.0039 \ (3) \\ 0.0031 \ (2) \\ 0.00120 \ (4) \\ 0.0098 \ (4) \\ 0.1104 \ (15) \\ 0.0023 \ (4) \\ 0.006 \\ 0.0369 \ (7) \\ 0.0048 \ (3) \\ 0.0019 \ (3) \\ 0.0019 \ (3) \\ 0.0041 \ (2) \\ 0.0015 \ (2) \\ 0.0083 \ (3) \\ 0.00582 \ (30) \\ 0.0008 \ (2) \\ 0.0014 \ (2) \\ 0.0019 \ (2) \\ 0.0019 \ (2) \\ \end{array}$	Multipolarity [E1] [M1] E2 [M1] [M1] [M1] [E1] [E1]	$\alpha_{\rm T}$ 0.00521 (10) 0.0621 (12) 0.0135 (3) 0.0493 (10) 0.0481 (10) 0.00374 (7) 0.00369 (7)	$\begin{array}{c} P_{\gamma} \\ \times 100 \\ \hline \\ 0.0123 \ (5) \\ 0.0060 \ (2) \\ 0.0195 \ (6) \\ 0.0095 \ (5) \\ 0.0075 \\ 0.0013 \\ 0.0031 \ (2) \\ 0.0031 \ (2) \\ 0.00120 \ (4) \\ 0.0097 \ (4) \\ 0.1052 \ (14) \\ 0.0022 \ (4) \\ 0.006 \\ 0.0369 \ (7) \\ 0.0048 \ (3) \\ 0.0019 \ (3) \\ 0.0019 \ (3) \\ 0.0041 \ (2) \\ 0.0015 \ (2) \\ 0.0083 \ (3) \\ 0.0015 \ (2) \\ 0.0083 \ (3) \\ 0.0058 \ (3) \\ 0.0006 \ (1) \\ 0.0008 \ (2) \\ 0.0014 \ (2) \\ 0.0019 \ (2) \\ \end{array}$
$\begin{array}{l} \gamma_{-1,48}({\rm Pa}) \\ \gamma_{-1,49}({\rm Pa}) \\ \gamma_{-1,50}({\rm Pa}) \\ \gamma_{-1,51}({\rm Pa}) \\ \gamma_{-1,52}({\rm Pa}) \\ \gamma_{-1,53}({\rm Pa}) \end{array}$	$1026.5 (10) \\1092.5 (10) \\1132.1 \\1139.1 \\1144 (1) \\1201 (1)$	$\begin{array}{c} 0.0075\\ 0.006\\ 0.0006\ (2)\\ 0.0004\ (1)\\ 0.0027\\ 0.006\end{array}$			$\begin{array}{c} 0.0075\\ 0.006\\ 0.0006\\ (2)\\ 0.0004\\ (1)\\ 0.0027\\ 0.006\end{array}$

5 References

W.C.RUTLEDGE, J.M.CORK, S.B.BURSON, Phys. Rev. 86 (1952) 775 (Half-life)
E.N.JENKINS, Analyst 80 (1955) 301 (Half-life)
M.S.FREEDMAN, D.W.ENGELKEMEIR, F.T.PORTER, F.WAGNER JR., P.DAY, Priv. Comm. (1957) (Gamma-ray emission probabilities, beta-transition energies)
B.J.DROPESKY, L.M.LANGER, Phys. Rev. 108 (1957) 90 (Half-life, energy of beta(0,0)-transition)
R.DAMS, F.ADAMS, Radiochim. Acta 10 (1968) 1 (Gamma-ray energies)
E.BROWNE, F.ASARO, Report UCRL-17989, Univ. California (1968) 1 (Gamma-ray energies)
J.M.VARA, R.GAETA, Nucl. Phys. A130 (1969) 586 (Gamma-ray energies)

W.HOEKSTRA, Thesis, Technische Hogeschool, Delft. (1969) (Half-life, KX-ray emission probabilities, gamma - ray relative probabilities) C.SEBILLE, G.BASTIN, C.F.LEANG, R.PIEPENBRING, M.F.PERRIN, Compt. Rend. Acad. Sci. (Paris) Ser. A 270 (1970) 354 (Gamma-ray energies) C.SEBILLE-SCHUCK, Thesis, Report FRNC-TH-255, Univ. Paris (1972) (Gamma-ray relative probabilities, gamma-ray multipolarities, conversion electron characteristics) M.DE BRUIN, P.J.M.KORTHOVEN, J. Radioanal. Chem. 10 (1972) 125 (Gamma-ray energies) T.VON EGIDY, O.W.B.SCHULT, D.RABENSTEIN, J.R.ERSKINE, O.A.WASSON, R.E.CHRIEN, D.BREITIG, R.P.SHARMA, H.A.BAADER, H.R.KOCH, Phys. Rev. C6 (1972) 266 (Gamma-ray energies) M.SKALSEY, R.D.CONNOR, Can. J. Phys. 54 (1976) 1409 (Gamma-ray energies) P.JEUCH, Thesis, Tech. Univ. Munchen (1976) (Gamma-ray multipolarities, conversion electron characteristics) L.GONZALEZ, R.GAETA, E.VANO, J.M.LOS ARCOS, Nucl. Phys. A324 (1979) 126 (Gamma-ray energies) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251 (Gamma-ray energies) S.A.WOODS, P.CHRISTMAS, P.CROSS, S.M.JUDGE, W.GELLETLY, Nucl. Instrum. Methods Phys. Res. A264 (1988) 333 (Gamma-ray energies, ICC for gamma (4,0)) A.Abzouzi, M.S.Antony, V.B.Ndocko Ndongue, J. Radioanal. Nucl. Chem. 135 (1989) 1 (Half-life) K.USMAN, T.D.MCMAHON, S.I.KAFALA, Appl. Radiat. Isot. 49 (1998) 1329 (Half-life) M.-M.BÉ, R.HELMER, V.CHISTÉ, J. Nucl. Sci. Technol. (Tokyo) suppl.2 (2002) 481 (SAISINUC software) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) B.SINGH, J.K.TULI, Nucl. Data Sheets 105 (2005) 109 (Decay data evaluations, multipolarities, decay scheme, Pa233 level energies, multipolarities) D.J.DEVRIES, H.C.GRIFFIN, Appl. Radiat. Isot. 66 (2008) 1999 (Uncertainties of LX-ray absolute emission probabilities) V.M.GOROZHANKIN, M.-M.BE, Appl. Radiat. Isot. 66 (2008) 722 (ICC for anomalous E1 gamma-ray transitions) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC) D.J.DEVRIES, H.C.GRIFFIN, Appl. Radiat. Isot. 66 (2008) 1999 (Absolute and relative gamma-ray and X-ray emission probabilities)

$T_{1/2}$:	24.10	(3)	d
$Q_{\beta^{-}}$:	272	(10)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\frac{\text{Proba}}{\times 1}$	bility 00	Nature	$\log ft$
$\begin{array}{c} \beta_{0,7}^{-} \\ \beta_{0,6}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,4}^{-} \\ \beta_{0,2}^{-} \end{array}$	$\begin{array}{c} 85 \ (10) \\ 95 \ (10) \\ 105 \ (10) \\ 106 \ (10) \\ 198 \ (10) \end{array}$	$ 1.6 \\ 0.016 \\ 6.5 \\ 14.1 \\ 77.8 $	$(6) \\ (5) \\ (7) \\ (12) \\ (15)$	Allowed 1st forbidden Allowed 1st forbidden 1st forbidden	$7 \\ 9.1 \\ 6.7 \\ 6.3 \\ 6.4$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Pa)	5.9 - 21.6	7.7~(6)	
e _{AK}	(Pa) KLL KLX KXY	70.081 - 78.822 85.989 - 95.858 101.87 - 112.59	0.0014 (9) } } }	
$ec_{3,2 L}$	(Pa)	8.4 - 12.8	3.95(45)	
ес _{7,5 М}	(Pa)	14.65 - 16.57	0.63(28)	
$ec_{7,5 N}$	(Pa)	18.63 - 19.65	0.17(8)	
$ec_{3,2}$ M	(Pa)	24.1 - 26.1	1.08(12)	
$ec_{3,2}$ N	(Pa)	28.1 - 29.1	0.292 (34)	
$ec_{4,3 L}$	(Pa)	41.78 - 46.15	0.31~(8)	
$ec_{5,3 L}$	(Pa)	42.2 - 46.6	1.144(31)	
$ec_{1,0 L}$	(Pa)	52.82 - 57.19	0.106~(12)	
$ec_{4,3}$ M	(Pa)	57.52 - 59.44	0.079~(20)	
$ec_{5,3}$ M	(Pa)	57.9 - 59.9	0.281~(7)	
$ec_{4,3}$ N	(Pa)	61.50 - 62.53	0.021~(5)	
$ec_{5,3 N}$	(Pa)	61.9 - 62.9	0.0739~(19)	
$ec_{1,0 M}$	(Pa)	68.56 - 70.48	0.0258~(29)	
$ec_{4,2}$ L	(Pa)	71.27 - 75.65	8.7(8)	
$ec_{5,2 L}$	(Pa)	71.7 - 76.1	0.239~(21)	
$ec_{4,2}$ M	(Pa)	87.02 - 88.94	2.09(18)	
$ec_{5,2}$ M	(Pa)	87.4 - 89.4	0.058~(5)	
$ec_{4,2}$ N	(Pa)	91.00 - 92.02	0.56~(5)	
$ec_{5,2 N}$	(Pa)	91.4 - 92.4	$0.0154\ (14)$	
$ec_{7,2}$ L	(Pa)	91.70 - 96.08	$0.0143\ (15)$	
$\beta_{0,7}^-$	max:	85 (10)	1.6(6)	avg: 22 (3)

		Energy keV		Electrons per 100 disint.	Energy keV	
$\begin{array}{c} \beta_{0,6}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,4}^{-} \\ \beta_{0,2}^{-} \end{array}$	max: max: max: max:	95 105 106 198	(10) (10) (10) (10)	$\begin{array}{c} 0.016 \ (5) \\ 6.5 \ (7) \\ 14.1 \ (12) \\ 77.8 \ (15) \end{array}$	avg: avg: avg: avg:	$\begin{array}{c} 25 \ (3) \\ 27 \ (3) \\ 28 \ (3) \\ 53 \ (3) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

_		Energy keV	Photons per 100 disint.		
XL	(Pa)	11.3676 - 20.1126		7.1(3)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pa) (Pa)	92.288 95.869		$\begin{array}{c} 0.013 \ (9) \\ 0.021 \ (13) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pa) (Pa) (Pa)	107.595 108.422 109.072	} } }	0.007(5)	$\mathrm{K}\beta_1'$
$\begin{array}{l} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Pa) (Pa) (Pa)	$ 111.405 \\ 111.87 \\ 112.38 $	} } }	0.0025 (16)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{7,5}(Pa)$ $\gamma_{3,2}(Pa)$ $\gamma_{4,3}(Pa)$ $\gamma_{5,3}(Pa)$ $\gamma_{1,0}(Pa)$ $\gamma_{7,3}(Pa)$ $\gamma_{4,2}(Pa)$	$\begin{array}{c} 20.01 \ (2) \\ 29.50 \ (2) \\ 62.88 \ (2) \\ 63.30 \ (2) \\ 73.92 \ (2) \\ 83.31 \ (5) \\ 92.38 \ (1) \\ 92.80 \ (2) \end{array}$	$\begin{array}{c} 1.2 \ (6) \\ 5.4 \ (6) \\ 0.43 \ (11) \\ 5.27 \ (11) \\ 0.154 \ (17) \\ 0.073 \ (6) \\ 13.7 \ (12) \\ 2.47 \ (22) \end{array}$	$\begin{array}{c} {\rm M1+E2} \\ {\rm E2} \\ {\rm M1+E2} \\ {\rm E1} \\ {\rm M1+E2} \\ {\rm E1} \\ {\rm M1} \\ {\rm F1} \end{array}$	$\begin{array}{c} 240 \ (70) \\ 4390 \ (70) \\ 25 \ (5) \\ 0.405 \ (6) \\ 10.6 \ (4) \\ 0.196 \ (3) \\ 5.27 \ (8) \\ 0.1472 \ (21) \end{array}$	$\begin{array}{c} 0.0051 \ (21) \\ 0.00123 \ (14) \\ 0.0164 \ (28) \\ 3.75 \ (8) \\ 0.0133 \ (14) \\ 0.061 \ (5) \\ 2.18 \ (19) \\ 2.15 \ (10) \end{array}$
$\gamma_{5,2}(Pa)$ $\gamma_{6,2}(Pa)$ $\gamma_{7,2}(Pa)$	$\begin{array}{c} 52.80(2) \\ 103.35(10) \\ 112.81(5) \end{array}$	$\begin{array}{c} 2.47 & (22) \\ 0.0154 & (48) \\ 0.264 & (40) \end{array}$	M1 E1	$\begin{array}{c} 3.81 \ (6) \\ 0.23 \ (14) \end{array}$	$\begin{array}{c} 2.13 (19) \\ 0.0032 (10) \\ 0.215 (22) \end{array}$

5 References

G.KIRSCH, Report Radium Institute Mitteilungen 127, Vienna; Wien Ber. Iia. 129 (1920) 309 (Half-life)
M.CURIE, A.DEBIERNE, A.S.EVE, H.GEIGER, O.HAHN, S.C.LIND, ST.MEYER, E.RUTHERFORD, E.SCHWEIDLER, Rev. Mod. Phys. 3 (1931) 427

(Half-life)

B.W.SARGENT, Can. J. Res. A17 (1939) 103 (Half-life) G.B.KNIGHT, R.L.MACKLIN, Phys. Rev. 74 (1948) 1540 (Half-life) J.S.GEIGER, R.L.GRAHAM, T.A.EASTWOOD, Report AECL-1472 PR-P-52, Atomic Energy of Canada Ltd (1961) 26(L ICC (for 29 keV and 63 keV), Gamma-ray energies) J.-P.BRIAND, Compt. Rend. Acad. Sci. (Paris) 254 (1962) 84 (L ICC (for 29 keV))S.BJORNHOLM, O.B.NIELSEN, Nucl. Phys. 42 (1963) 642 (Conversion electron emission energies, Conversion electron emission probabilities, Beta emission energies) H.ABOU-LEILA, Compt. Rend. Acad. Sci. (Paris) 258 (1964) 5632 (Half-life) R.FOUCHER, Bull. Rus. Acad. Sci. Phys. 29 (1966) 99 (Multipolarities) H.W.TAYLOR, Int. J. Appl. Radiat. Isotop. 24 (1973) 593 (Gamma-ray energies, Gamma-ray relative intensities) J.GODART, A..GIZON, Nucl. Phys. A217 (1973) 159 (Beta and Conversion electron emission energies and probabilities, Gamma-ray energies and transitions probabilities, Multipolarities) T.E.SAMPSON, Nucl. Instrum. Methods 111 (1973) 209 (Gamma-ray energies, Gamma-ray relative intensities) Y.Y.Chu, G.Scharff-Goldhaber, Phys. Rev. C17 (1978) 1507 (Gamma-ray relative intensities) M.H.MOMENI, Nucl. Instrum. Methods 193 (1982) 185 (Gamma-ray energies, Gamma-ray emission probabilities) H.L.SCOTT, K.W.MARLOW, Nucl. Instrum. Methods A286 (1990) 549 (Gamma-ray emission probabilities) N.COURSOL, F.LAGOUTINE, B.DUCHEMIN, Nucl. Instrum. Methods A286 (1990) 589 (Half-life, Beta emission probabilities, Gamma-ray emission probabilities, X-ray emission probabilities) G.A.SUTTON, S.T.NAPIER, M.JOHN, A.TAYLOR, The Science of the Total Environment 130/131 (1993) 393 (Gamma-ray emission probabilities) I.Adsley, J.S.Backhouse, A.L.Nichols, J.Toole, Appl. Radiat. Isot. 49 (1998) 1337 (Gamma-ray emission probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) S.Abousahl, P.VAN BELLE, B.LYNCH, H.OTTMAR, Nucl. Instrum. Methods A517 (2004) 211 (Gamma-ray emission probabilities) F.S.AL-SALEH, AL-J.H.AL-MUKREN, M.A.FAROUK, Nucl. Instrum. Methods A568 (2006) 734 (Gamma-ray emission probabilities) E.BROWNE, J.K.TULI, Nucl. Data Sheets 108 (2007) 681 (Multipolarities, Mixing ratio, Spin and Parity, Gamma-ray emission probabilities, Gamma-ray energies, Beta emission energies)
1 Half-life, Q-value and Decay mode

$T_{1/2}$:	32670	(260)	у
$Q^{'}_{lpha}$:	5149.9	(8)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,25}$	4415.6(9)	0.0021 (5)
$\alpha_{0,24}$	4507.6(8)	0.0036(3)
$\alpha_{0,23}$	4533.0(8)	0.00076~(20)
$\alpha_{0,22}$	4568.1(9)	0.008(4)
$\alpha_{0,21}$	4599.6(8)	0.015~(7)
$\alpha_{0,20}$	4630.3(8)	0.078~(21)
$\alpha_{0,19}$	4633.0(8)	0.0504(11)
$\alpha_{0,18}$	4642.5(8)	0.080~(6)
$\alpha_{0,17}$	4680.1(8)	1.8(3)
$\alpha_{0,16}$	4712.3(8)	1.20(22)
$\alpha_{0,15}$	4736.3(8)	8.4(4)
$\alpha_{0,14}$	4761.2(8)	0.0032~(9)
$\alpha_{0,12}$	4794.1(8)	0.040(15)
$\alpha_{0,11}$	4853.5(8)	1.40(15)
$\alpha_{0,8}$	4903.4(22)	0.002(1)
$lpha_{0,7}$	4936.0(8)	2.9(3)
$lpha_{0,6}$	4952.6(8)	22.5(5)
$lpha_{0,5}$	4977.6(8)	0.4(1)
$\alpha_{0,4}$	4987.8(8)	1.6(2)
$lpha_{0,3}$	5015.1(8)	25.3(5)
$\alpha_{0,2}$	5031.2~(8)	20(2)
$\alpha_{0,1}$	5033.8~(8)	2.8(3)
$lpha_{0,0}$	5060.7(8)	11.7(5)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Ac)	5.87 - 19.69	52.6(15)
e _{AK}	(Ac) KLL KLX KXY	66.769 - 74.715 81.775 - 90.882 96.76 - 106.75	0.078 (11) } } }

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Ac)	10.8701 - 18.9228		44.3(13)	
$ ext{XK} lpha_2 \\ ext{XK} lpha_1 ext{}$	(Ac) (Ac)	87.768 90.885		$\begin{array}{c} 0.715 \ (23) \\ 1.16 \ (4) \end{array}$	$K\alpha$
$\begin{array}{l} \mathrm{XK}\beta_{3} \\ \mathrm{XK}\beta_{1} \\ \mathrm{XK}\beta_{5}^{\prime\prime} \end{array}$	$({ m Ac})$ $({ m Ac})$ $({ m Ac})$	$102.101 \\ 102.841 \\ 103.462$	} } }	0.410 (15)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	$\left({ m Ac} ight) \ \left({$	$105.679 \\ 106.098 \\ 106.563$	} } }	0.136(6)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{3,2}(Ac)$	16.370(14)	2.12(9)	${ m E1}$	8.58(12)	0.221 (9)
$\gamma_{3,1}(Ac)$	18.980(14)	42(4)	M1	113.2(16)	0.37~(3)
$\gamma_{11,9}(Ac)$	23.46(6)	1.16(15)	M1	241 (4)	0.0048~(6)
$\gamma_{16,15}(Ac)$	24.46(4)	1.05(21)	M1	214 (4)	0.0049(10)
$\gamma_{6,5}(Ac)$	25.390(22)	18.3(14)	M1	191 (3)	0.095~(7)
$\gamma_{1,0}(Ac)$	27.37(1)	$59\ (7)$	E1	4.5(6)	10.8(4)
$\gamma_{2,0}(Ac)$	29.98(1)	26~(3)	M1+E2	270(30)	0.097~(4)
$\gamma_{6,4}(Ac)$	35.800(22)	0.045~(3)	$\mathrm{E1}$	1.746(25)	0.0163(10)
$\gamma_{5,3}(Ac)$	38.200(14)	$13 \ (3)$	M1+E2	89(19)	0.144~(6)
$\gamma_{4,2}(Ac)$	44.160(14)	2.11(16)	M1	37.4~(6)	0.055~(4)
$\gamma_{3,0}(Ac)$	46.35(1)	0.357~(19)	$\mathrm{E1}$	0.879(13)	0.19(1)
$\gamma_{20,17}({\rm Ac})$	50.73~(5)	0.057~(21)	M1	24.9(4)	0.0022(8)
$\gamma_{7,4}(Ac)$	52.720(22)	1.77(10)	M1	22.2~(4)	0.076~(4)
$\gamma_{5,2}(Ac)$	54.570(14)	0.110~(6)	$\mathrm{E1}$	0.569~(8)	0.070(4)
$\gamma_{15,13}({\rm Ac})$	56.90(3)	0.18(4)	M1+E2	37~(6)	0.0047~(7)
$\gamma_{5,1}(Ac)$	57.180(14)	4.6(5)	E2	148.1(21)	0.031~(3)
$\gamma_{17,15}({\rm Ac})$	57.190(22)	0.7~(3)	E2	148.0(21)	0.0046~(21)
$\gamma_{9,7}({ m Ac})$	60.46(4)	0.0076~(10)	$\mathrm{E1}$	0.433~(7)	0.0053~(7)
$\gamma_{6,3}(Ac)$	63.590(22)	3.99(16)	E2	88.8(13)	0.0446~(17)
$\gamma_{-1,1}(Ac)$	70.49(5)	0.0051 (8)			0.0051 (8)
$\gamma_{10,7}({ m Ac})$	71.85(5)	0.019~(7)	M1	8.98(13)	0.0019(7)
$\gamma_{12,10}({\rm Ac})$	72.58(7)	0.029~(7)	M1	8.71(13)	0.0030(7)
$\gamma_{4,0}({ m Ac})$	74.14(1)	0.97~(4)	E2	42.6(6)	0.0223~(9)
$\gamma_{9,6}({ m Ac})$	77.38(4)	0.50(4)	M1	7.23(11)	0.061(4)
$\gamma_{7,2}(Ac)$	96.880(22)	1.10(4)	E2	12.02(17)	0.084(3)
$\gamma_{11,6}(Ac)$	100.84(5)	0.248(10)	E2	9.97~(15)	0.0226 (9)
$\gamma_{9,5}(Ac)$	102.77~(3)	0.20(4)	E2	9.12(13)	0.019(4)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathrm{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{10,4}(Ac)$	124.57(4)	0.0217~(20)	$\mathrm{E2}$	4.04(6)	0.0043~(4)
$\gamma_{12,7}({\rm Ac})$	144.43~(6)	0.037~(3)	E2	2.18(3)	0.0115~(9)
$\gamma_{13,4}(Ac)$	199.00(3)	0.0030(12)			0.0030(12)
$\gamma_{14,4}(Ac)$	230.59(5)	0.0017~(8)			0.0017~(8)
$\gamma_{-1,2}(Ac)$	242.18(8)	0.0099(10)			0.0099(10)
$\gamma_{13,2}(Ac)$	243.16(3)	0.065(11)	M1+E2	0.80(17)	0.036~(5)
$\gamma_{15,5}({ m Ac})$	245.490(14)	0.042(3)	M2	5.24(8)	0.0067(5)
$\gamma_{13,1}(Ac)$	245.77(3)	0.013(4)	E1	0.0570(8)	0.012(4)
$\gamma_{15,4}(Ac)$	255.900(14)	0.134(3)	E2	0.264(4)	0.1059(22)
$\gamma_{14,3}(Ac)$	258.38(5)	0.0015(4)			0.0015(4)
$\gamma_{17,7}(Ac)$	260.37(3)	0.282(21)	M1+E2	0.55(11)	0.182(4)
$\gamma_{13,0}(Ac)$	273.14(3)	0.101(7)	M1+E2	0.74(11)	0.0579(12)
$\gamma_{17,6}(Ac)$	277.29(3)	0.10(6)	E1+M2	0.5(9)	0.0680(15)
$\gamma_{15,3}({ m Ac})$	283.690 (14)	1.72(3)	E1	0.0410(6)	1.65(3)
$\gamma_{-1,3}(Ac)$	286.58(10)	0.0104(5)			0.0104(5)
$\gamma_{15,2}(Ac)$	300.060(14)	4.25(10)	M1+E2	0.764(17)	2.41(5)
$\gamma_{15,1}(Ac)$	302.670(14)	2.4(3)	EI	0.0355(5)	2.3(3)
$\gamma_{17,5}(Ac)$	302.680(22)	0.22(10)	$\mathbf{E1}$	0.0355(5)	0.21(10)
$\gamma_{-1,4}(Ac)$	310.0(1)	0.00092(20)		0.91(0)	0.00092(20)
$\gamma_{17,4}(Ac)$	313.090(22)	0.129(9)	M1+E2	0.31(9)	0.0987(20)
$\gamma_{16,1}(Ac)$	327.13(4)	0.0372(11)		0.0298(5)	0.0361(11)
$\gamma_{15,0}(Ac)$	330.04(1)	2.09(5)	M1+E2	0.541(19)	1.30(3)
$\gamma_{17,3}(Ac)$	340.880(22)	0.196(7)	E1+M2	0.11(3)	0.177(4)
$\gamma_{18,4}(Ac)$	351.45(3)	0.0029(12) 0.1004(22)	E1 M1 + E9	0.0255(4) 0.1275(20)	0.0028(12)
$\gamma_{16,0}(Ac)$	354.50(4)	0.1094(23)	M1 + E2 M1 + E2	0.1375(20)	0.0962(20)
$\gamma_{17,2}(Ac)$	337.230(22)	0.240(18)	M1+E2	0.43(10)	0.108(4)
$\gamma_{17,1}(Ac)$	363.800(22)	0.0080(3)			0.0080(3)
$\gamma_{20,4}(Ac)$	303.82 (4) 274.05 (10)	0.0080(3) 0.0045(2)			0.0080(3) 0.0045(2)
$\gamma_{-1,5}(Ac)$	374.95(10) 370.24(2)	0.0043(3)	M1 + F2	0.22(11)	0.0043(3) 0.0408(11)
$\gamma_{18,3}(Ac)$	379.24(3) 384.60(6)	0.000(0)	M11+L2	0.32(11)	0.0498(11) 0.00365(22)
$\gamma_{21,5}(Ac)$	364.09(0) 387.02(2)	0.00303(22) 0.00032(11)	$\mathbf{F}0$	0.0772(11)	0.00303(22)
$\gamma_{17,0}(Ac)$	301.23(2) 301.61(4)	0.00032(11) 0.00687(22)	E_2 F1	0.0773(11) 0.0202(3)	0.0003(1) 0.00673(22)
$\gamma_{20,3}(Ac)$	391.01(4) 305.61(3)	0.00087(22) 0.00230(22)	E1	0.0202(3)	0.00075(22) 0.00226(22)
$\gamma_{18,2}(Ac)$	395.01(3) 308.22(3)	0.00230(22)	121	0.0138(3)	0.00220(22)
$\gamma_{18,1}(Ac)$	$407\ 820\ (22)$	0.0035(3) 0.0475(11)	M1	0.334(5)	0.0035(3)
$\gamma_{19,1}(Ac)$	401.020(22) 410.59(4)	0.0470(11) 0.00183(22)	E1	0.004(0) 0.0183(3)	0.0390(0)
$\gamma_{20,1}(Ac)$	410.05(4)	0.00103(22)	121	0.0100 (0)	0.00100(22)
$\gamma_{22,4}(AC)$	435 19 (2)	0.0001 (4) 0.00294 (17)			0.0001 (4) 0.00294 (17)
$\gamma_{19,0}(Ac)$	437.96(4)	0.00294(11) 0.0045(3)			0.00294(11) 0.0045(3)
$\gamma_{20,0}(\mathrm{Ac})$	438.72(10)	0.0043(3) 0.0013(4)			0.0043(3) 0.0013(4)
$\gamma_{24.4}(Ac)$	488.66(10)	0.00165(17)			0.00165(17)
$\gamma_{23,3}(Ac)$	490.65(10)	0.0004(1)			0.0004(1)
$\gamma_{22,3}(Ac)$	501.28(7)	0.00076(18)			0.00076(18)
$\gamma_{23,1}(Ac)$	509.63(10)	0.00036(17)			0.00036(17)
$\gamma_{23,1}(10)$ $\gamma_{24,3}(Ac)$	516.45(10)	0.00137(15)			0.00137(15)
$\gamma_{24,3}(10)$ $\gamma_{24,1}(Ac)$	535.43(10)	0.00061(12)			0.00061(12)
$\gamma_{25,6}(Ac)$	546.5(3)	0.00083(13)			0.00083(13)

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	${ m P}_{\gamma+{ m ce}} \ imes 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{25,5}(Ac)$ $\gamma_{25,4}(Ac)$ $\gamma_{25,3}(Ac)$	571.9 (3) 582.3 (3) 610.1 (3)	$\begin{array}{c} 0.00048 \ (20) \\ 0.00031 \ (17) \\ 0.0005 \ (4) \end{array}$			$\begin{array}{c} 0.00048 \ (20) \\ 0.00031 \ (17) \\ 0.0005 \ (4) \end{array}$

5 References

A.V.GROSSE, Naturwissenschaften 20 (1932) 505 (Half-life) Q.VAN WINKLE, R.G.LARSON, L.I.KATZIN, J. Am. Chem. Soc. 71 (1949) 2585 (Half-life) P.FALK-VAIRANT, M.RIOU, J. Phys. Radium 14,2 (1953) 65 (Gamma-ray emission probabilities and energies) J.P.HUMMEL, Thesis, Univ. California (1956) (Alpha-particle emission probabilities) F.Asaro, F.S.Stephens, J.M.Hollander, I.Perlman, Phys. Rev. 117 (1960) 492 (L- and M-shell conversion coefficients) R.FOUCHER, Compt. Rend. Acad. Sci. (Paris) 250 (1960) 1249 (Gamma-ray emission probabilities) F.BRAGANCA GIL, G.Y.PETIT, J. Phys. Radium 22 (1961) 680 (Spin and parity, mixing ratio, half-life excited level) H.W.KIRBY, J. Inorg. Nucl. Chem. 18 (1961) 8 (Half-life) S.A.BARANOV, V.M.KULAKOV, P.S.SAMOILOV, A.G.ZELENKOV, Y.F.RODIONOV, S.V.PIROZHKOV, Sov. Phys. -JETP 14 (1961) 1053 (Alpha-particle emission energies and probabilities, experimental conversions) V.B.SUBRAHMANYAM, Thesis, Univ. California (1963) (Alpha-particle emission probabilities) H.Abou-Leila, R.Foucher, A.G.De Pinho, N.Perrin, M.Valadares, J. Phys. (Paris) 24 (1963) 857 (Spin and parity, multipolarities) G.BASTIN, C.F.LEANG, R.J.WALES, Compt. Rend. Acad. Sci. (Paris) T.262 (1966) 89 (Alpha-particle emission energies) D.BROWN, S.N.DIXON, K.M.GLOVER, F.J.G.ROGERS, J. Inorg. Nucl. Chem. 30 (1968) 19 (Half-life) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 7,4 (1968) 442 (Alpha-particle emission energies) G.R.HAGEE, R.C.LANGE, A.G.BARNETT, A.R.CAMPBELL, C.R.COTHERN, D.F.GRIFFING, H.J.HENNECKE, Nucl. Phys. A115 (1968) 157 (Spin and parity, conversion electron emission probabilities) A.G.BARNETT, A.R.CAMPBELL, G.R.HAGEE, J. Inorg. Nucl. Chem. 31 (1969) 1553 (Multipolarities, conversion electron emission probabilities, mixing ratio) R.C.LANGE, G.R.HAGEE, Nucl. Phys. A124 (1969) 412 (Gamma-ray emission energies and probabilities) J.ROBERT, C.F.MIRANDA, R.MUXART, Radiochim. Acta 11 (1969) 104 (Half-life) A.G.DE PINHO, E.F.DA SILVEIRA, N.L.DA COSTA, Phys. Rev. C2,2 (1970) 572 (Gamma-ray emission energies and probabilities, ICC) C.F.LEANG, J. Phys. (Paris) 31 (1970) 269 (Gamma-ray emission energies and probabilities) C.F.LEANG, J. Phys. (Paris) 32,2-3 (1971) 95 (Spin and parity) R.K.GARG, S.D.CHAUHAN, S.SANYAL, S.C.PANCHOLI, S.L.GUPTA, N.K.SAHA, Z. Phys. 257 (1972) 124 (Half-life of excited level) A.G.DE PINHO, L.T.AULER, A.G.DA SILVA, Phys. Rev. C9,5 (1974) 2056 (X-ray emission probabilities, gamma-ray emission probabilities, ICC)

S.A.BARANOV, Sov. J. At. Energy 41 (1976) 342 (Alpha-particle emission energies and probabilities) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting on Transactinium Nucl. Data, Karlsruhe, Vol.III, IAEA-186, IAEA, Vienna (1976) 249 (Alpha-particle emission energies and probabilities) W.TEOH, R.D.CONNOR, R.H.BETTS, Nucl. Phys. A319 (1979) 122 (Gamma-ray emission energies and probabilities, Multipolarities, ICC) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251 (Gamma-ray emission energies) I.ANICIN, I.BIKIT, C.GIRIT, H.GUVEN, W.D.HAMILTON, A.A.YOUSIF, Nucl. Phys. 8 (1982) 369 (Gamma-ray emission probabilities) M.F.BANHAM, R.JONES, Int. J. Appl. Radiat. Isotop. 34 (1983) 1225 (Gamma-ray emission probabilities) T.ISHII, I.AHMAD, J.E.GINDLER, A.M.FRIEDMAN, R.R.CHASMAN, S.B.KAUFMAN, Nucl. Phys. A444 (1985) 237 (Half-life first excited state) A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Gamma-ray emission energies and probabilities, alpha-particle emission energies and probabilities) N.E.HOLDEN, Pure Appl. Chem. 62 (1990) 941 (Half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Evaluated alpha-particle emission energies and probabilities) Y.A.Akovali, Nucl. Data Sheets 84 (1998) 1 (R0, radius parameter) E.BROWNE, Nucl. Data Sheets 93 (2001) 763 (Spin, parity, energy levels, multipolarities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	26.98	(2)	d
Q_{β^-}	:	570.1	(20)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,11}^{-}$	114.1 (20)	0.0011 (2)	1st forbidden	10.6
$\beta_{0.10}^{-}$	154.3(20)	25.4(16)	1st forbidden	6.7
$\beta_{0,9}$	171.5(20)	15.4 (8)	1st forbidden	7
$\beta_{0,8}^{-}$	189.8(20)	0.020 (3)	1st forbidden unique	9.4
$\beta_{0,7}^{-}$	229.6(20)	25.9(32)	1st forbidden	7.2
$\beta_{0,6}^{-}$	249.4(20)	0.020 (5)	2nd forbidden	10.4
$\beta_{0.5}^{-}$	258.2(20)	26.6(32)	1st forbidden	7.3
$\beta_{0,4}^{-}$	268.1(20)	0.010 (2)	Allowed	11.8
$\beta_{0.3}^{-}$	271.3(20)	0.12(5)	Allowed	9.8
$\beta_{0.1}^{-1}$	529.8(20)	0.3~(19)	1st forbidden unique	10.2
$\beta_{0,0}^{\underline{0,1}}$	570.1 (20)	6.3(23)	1st forbidden	9.1

3 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.	Energy keV
e_{AL}	(U)	5.9 - 21.6	42.2(13)	
e_{AK}	(U)		0.95~(13)	
	KLL	71.78 - 80.95	}	
	KLX	88.15 - 98.34	}	
	KXY	104.42 - 115.40	}	
$ec_{7,5}$ L	(U)	6.80 - 11.39	16.5(21)	
ес _{10,9 М}	(U)	11.714 - 13.710	1.53	
$ec_{1,0}$ L	(U)	18.59 - 23.18	10.3 (15)	
$ec_{7,3 L}$	(U)	19.9 - 24.5	0.013~(3)	
$ec_{7,5 M}$	(U)	23.01 - 25.01	4.3(6)	
$ec_{7,5 N}$	(U)	27.118 - 28.180	1.14(15)	
$ec_{2,1 L}$	(U)	30.05 - 34.64	0.04	
$ec_{1,0}$ M	(U)	34.8 - 36.8	2.8(4)	
$ec_{1,0 N}$	(U)	38.908 - 39.970	0.77(12)	
$ec_{2,1}$ M	(U)	46.26 - 48.26	0.011	
$ec_{10,7 L}$	(U)	53.51 - 58.10	11.2(12)	
$ec_{9,5 L}$	(U)	64.84 - 69.43	10.6~(6)	
$ec_{10,7 M}$	(U)	69.72 - 71.72	2.7(3)	
$ec_{2,0 L}$	(U)	70.40 - 74.99	0.034	
$ec_{10,7 N}$	(U)	73.828 - 74.890	0.74(9)	
$ec_{9,5}$ M	(U)	81.05 - 83.04	2.57 (14)	

		$rac{\mathrm{Energy}}{\mathrm{keV}}$	Electrons per 100 disint.	E	lnergy keV
ес _{10.5 L}	(U)	82.10 - 86.69	2.70 (13)		
$ec_{9,5 N}$	(U)	85.154 - 86.216	0.695(38)		
$ec_{10,5 M}$	(U)	98.31 - 100.31	0.66(4)		
$ec_{10,5 N}$	(U)	102.42 - 103.48	0.18(1)		
$ec_{5,1}$ K	(U)	155.95 (1)	0.0292(6)		
$ec_{7,1}$ K	(U)	184.527 (5)	4.62(20)		
$ec_{5,0 K}$	(U)	196.302 (5)	24.5(8)		
$ec_{7,0 K}$	(U)	224.874 (5)	2.24(9)		
$ec_{7,2 L}$	(U)	226.62 - 231.21	0.0107(3)		
$ec_{5,1 L}$	(U)	249.80 - 254.39	0.0396(9)		
ес _{10,1 К}	(U)	259.802 (5)	0.0336(8)		
$ec_{5,1}$ M	(U)	266.01 - 268.00	0.0108(3)		
$ec_{7,1}$ L	(U)	278.37 - 282.96	0.88(4)		
ес _{9,0 К}	(U)	282.890 (5)	0.0618(12)		
$ec_{5,0 L}$	(U)	290.15 - 294.74	4.83(17)		
$ec_{7,1}$ M	(U)	294.58 - 296.58	0.22(1)		
$ec_{7,1 N}$	(U)	298.688 - 299.750	0.0659(25)		
ес _{10,0 К}	(U)	300.162 (7)	0.16(10)		
$ec_{5,0}$ M	(U)	306.36 - 308.35	1.19(4)		
$ec_{5,0 N}$	(U)	310.463 - 311.525	0.343(6)		
$ec_{7,0 L}$	(U)	318.72 - 323.31	0.460(14)		
$ec_{7,0 M}$	(U)	334.93 - 336.93	0.098(5)		
$ec_{7,0 N}$	(U)	339.035 - 340.097	0.024(8)		
$ec_{10,1 L}$	(U)	353.65 - 358.24	0.0246(5)		
$ec_{9,0}$ L	(U)	376.73 - 381.32	0.0410(9)		
$ec_{9,0}$ M	(U)	392.94 - 394.94	0.01094(25)		
$ec_{10,0}$ L	(U)	394.01 - 398.60	0.056(16)		
$ec_{10,0}$ M	(U)	410.22 - 412.21	0.014(3)		
$\beta_{0,11}^{-}$	max:	114.1 (20)	0.0011(2)	avg:	29.8(5)
$\beta_{0,10}^{-}$	max:	154.3 (20)	25.4(16)	avg:	40.9(5)
$\beta_{0,9}^{-}$	max:	171.5 (20)	15.4(8)	avg:	45.7(5)
$\beta_{0.8}^{-}$	max:	189.8 (20)	0.020(3)	avg:	50.9(6)
$\beta_{0.7}^{-1}$	max:	229.6 (20)	25.9(32)	avg:	62.4(6)
$\beta_{0.6}^{}$	max:	249.4 (20)	0.020(5)	avg:	68.2(6)
$\beta_{0.5}^{-}$	max:	258.2 (20)	26.6(32)	avg:	70.8 (6
$\beta_{0.4}^{-}$	max:	268.1 (20)	0.010(2)	avg:	73.7 (6
$\beta_{0,3}^{2,1}$	max:	271.3 (20)	0.12(5)	avg:	74.6 (6
$\beta_{0,1}^{-1}$	max:	529.8 (20)	0.3(19)	avg:	156.1 (6
β_{-}^{-}	mav	570.1 (20)	6.3(23)	avg	160 6 (6)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	11.619 - 20.714		40.6(11)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(U) (U)	$94.666 \\98.44$		$\begin{array}{c} 9.10 \ (26) \\ 14.6 \ (4) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	$110.421 \\111.298 \\111.964$	} } }	5.25 (18)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(U) (U) (U)	$114.407 \\115.012 \\115.377$	} } }	1.80 (7)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{10,9}(U)$	17.262~(6)	2.07	M1+1.66%E2	503	0.0041
$\gamma_{7,5}(U)$	28.559(10)	22.3(28)	M1+2.44%E2	313 (18)	0.071~(8)
$\gamma_{1,0}(U)$	40.349(5)	13.9(19)	M1+54%E2	$580 \ (60)$	0.024(2)
$\gamma_{7,3}(U)$	41.663(10)	0.032~(7)	[E1]	$1.253\ (25)$	0.014(3)
$\gamma_{2,1}(U)$	51.81(4)	0.055	[M1+28%E2]	108	0.0005
$\gamma_{10,7}(U)$	75.269(10)	16.1(16)	M1+2.2%E2	11.4(12)	1.30(3)
$\gamma_{9,5}(U)$	86.595~(5)	16.1 (9)	M1+0.31%E2	7.08(14)	1.99(10)
$\gamma_{2,0}(U)$	92.16(4)	0.0492	[E2]	19.5	0.0024
$\gamma_{10,5}(U)$	103.86(1)	4.44(18)	M1 + (1% E2)	4.21(21)	0.853~(6)
$\gamma_{6,2}(U)$	228.57(5)	0.0042~(7)			0.0042~(7)
$\gamma_{7,2}(U)$	248.38(4)	0.082(2)	[E2]	0.346(7)	0.0609(11)
$\gamma_{3,1}(U)$	258.45(2)	0.0289~(6)	[E1]	0.0547(11)	0.0274~(6)
$\gamma_{5,1}(U)$	271.555 (10)	0.406(4)	$\mathrm{E2}$	0.258~(5)	0.323~(3)
$\gamma_{6,1}(U)$	280.61(5)	0.011(2)			0.011(2)
$\gamma_{8,2}(U)$	288.42(10)	0.016~(3)			0.016~(3)
$\gamma_{3,0}(U)$	298.81(2)	0.12(5)	[E1]	0.0396~(8)	0.12(5)
$\gamma_{7,1}(U)$	300.129(5)	12.3~(4)	$\mathrm{M1}{+}0.6\%\mathrm{E2}$	0.87(2)	6.60(21)
$\gamma_{4,0}(U)$	301.99(10)	0.010(2)			0.010(2)
$\gamma_{5,0}(U)$	311.904(5)	68.9(12)	M1+1%E2	0.80(2)	38.3(5)
$\gamma_{6,0}(U)$	320.73(10)	0.0051~(4)			0.0051~(4)
$\gamma_{7,0}(U)$	340.476(5)	7.24(10)	M1+5%E2	0.62(2)	4.47(3)
$\gamma_{10,1}(U)$	375.404(5)	0.751(7)	$\mathrm{E2}$	0.0981~(20)	0.684(7)
$\gamma_{8,0}(U)$	380.28(10)	0.0037~(9)			0.0037~(9)
$\gamma_{9,0}(U)$	398.492(5)	1.526(15)	E2	0.0835~(17)	1.408(14)
$\gamma_{10,0}(U)$	415.764(5)	1.97(12)	$\mathrm{M1}{+}83\%\mathrm{E2}$	0.13~(8)	1.747(7)
$\gamma_{11,0}(\mathrm{U})$	455.96(10)	0.0011(2)			0.0011(2)

5 References

A.V.GROSSE, E.T.BOOTH, J.R.DUNNING, Phys. Rev. 59 (1941) 322 (Half-life) C.I.BROWNE JR., Thesis, Report UCRL-1764, Univ. California (1952) (Gamma-ray energies) W.D.BRODIE, Proc. Phys. Soc. (London) 67A (1954) 397 (Measured energies and probabilities of beta-transitions) ONG PING HOK, P.KRAMER, Physica 21 (1955) 676 (Measured energies and probabilities of beta-transitions) L.D.MCISAAC, E.C.FREILING, Nucleonics 14 (1956) 65 (Half-life) H.W.WRIGHT, E.T.WYATT, S.A.REYNOLDS, W.S.LYON, T.H.HANDLEY, Nucl. Sci. Eng. 2 (1957) 427 (Half-life) J.P.UNIK, Thesis, Report UCRL-9105, Univ. California (1960) (Measured energies and probabilities of beta-transitions) R.G.Albridge, J.M.Hollander, C.J.Gallagher, J.H.Hamilton, Nucl. Phys. 27 (1961) 529 (Gamma-ray energies and multipolarities, E2 admixtures) G.SCHULTZE, J.AHLF, Nucl. Phys. 30 (1962) 163 (Multipolarities, E2 admixtures) S.BJØRNHOLM, M.LEDERER, F.ASARO, I.PERLMAN, Phys. Rev. 130 (1963) 2000 (Energies and probabilities of beta-transitions) K.M.BISGARD, P.DAHL, P.HORNSHOJ, A.B.KNUTSEN, Nucl. Phys. 41 (1963) 21 (Multipolarities, E2 admixtures) M.J.ZENDER, Thesis, Univ. Vanderbilt (1966) (Multipolarities, E2 admixtures) CH.BRIANÇON, C.F.LEANG, P.PARIS, Compt. Rend. Acad. Sci. (Paris) Ser. B 264 (1967) 1522 (Gamma-ray energies) S.G.MALMSKOG, M.HOJEBERG, Ark. Fys. 35 (1968) 197 (Gamma-ray energies) T.VON EGIDY, O.W.B.SCHULT, W.KALLINGER, D.BREITIG, R.P.SHARMA, H.R.KOCH, H.A.BAADER, Naturforsch. 26a (1971) 1092 (Gamma-ray energies) M.DE BRUIN, P.J.M.KORTHOVEN, J. Radioanal. Chem. 10 (1972) 125 (Gamma-ray energies) T.VALKEAPAA, A.SIIVOLA, G.GRAEFFE, Phys. Fenn. 9 (1973) 43 (Gamma-ray energies and emission probabilities) W.P.POENITZ, D.I.SMITH, Report ANL/NDM-42, Argonne National Laboratory (1978) (Gamma-ray emission probabilities) R.J.GEHRKE, R.G.HELMER, C.W.REICH, Nucl. Sci. Eng. 70 (1979) 298 (X- and gamma-ray emission probabilities) R.VANINBROUKX, G.BORTELS, B.DENECKE, Int. J. Appl. Radiat. Isotop. 35 (1984) 905 (X- and gamma-ray emission probabilities) M.J.DE BETTENCOURT, Thesis, Univ. Paris-Sud (Orsay) (1985) (Tentative gamma-rays) K.S.KRANE, Nucl. Phys. A459 (1986) 1 (Multipolarities, E2 admixtures) R.T.JONES, J.S.MERRITT, A.OKAZAKI, Nucl. Sci. Eng. 93 (1986) 171 (Half-life) S.A.WOODS, P.CHRISTMAS, P.CROSS, S.M.JUDGE, W.GELLETLY, Nucl. Instrum. Methods Phys. Res. A264 (1988) 333(Gamma-ray energies) E.BROWNE, B.SUR, E.B.NORMAN, Nucl. Phys. A501 (1989) 477 (Experimental ICC, gamma multipolarities, beta transition probabilities) Y.A.AKOVALI, Nucl. Data Sheets 59 (1990) 263 (A=233 NDS evaluation, gamma-ray multipolarities, E2 admixtures) M.C.KOUASSI, C.ARDISSON-MARSOL, G.ARDISSON, J. Phys. (London) G16 (1990) 1881 (Level scheme, multipolarities, absolute KX-ray emission probability and gamma-ray energies) J.PEARCEY, S.A.WOODS, P.CHRISTMAS, Nucl. Instrum. Methods Phys. Res. A294 (1990) 516 (E2 gamma-ray admixtures)

M.U.RAJPUT, T.D.MCMAHON, Nucl. Instrum. Methods Phys. Res. A312 (1992) 298 (Evaluation technique) YU.S.POPOV, G.A.TIMOFEEV, Radiokhimiya (in Russian) 41 (1999) 27 (Half-life) K.USMAN, T.D.MCMAHON, Appl. Radiat. Isot. 52 (2000) 475 (Half-life) S.A.WOODS, D.H.WOODS, P.DE LAVISON, S.M.JEROME, J.L.MAKEPEACE, M.J.WOODS, L.J.HUSBAND, S.LINEHAM, Appl. Radiat. Isot. 52 (2000) 475 (Gamma-ray emission probabilities) V.P.CHECHEV, A.G.EGOROV, Appl. Radiat. Isot. 52 (2000) 601 (Evaluation technique) D.SMITH, M.I.WOODS, D.H.WOODS, Preliminary Report, NPL, Teddington, 2000 (2000) (Gamma-ray and X-ray emission probabilities) U.SCHÖTZIG, E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 883 (Gamma-ray and X-ray emission probabilities) A.LUCA, M.ETCHEVERRY, J.MOREL, Appl. Radiat. Isot. 52 (2000) 481 (Gamma-ray emission probabilities) A.LUCA, S.SEPMAN, K.IAKOVLEV, G.SHCHUKIN, M.ETCHEVERRY, J.MOREL, Appl. Radiat. Isot. 56 (2002) 173 (Gamma-ray and X-ray emission probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) G.Shchukin, K.Iakovlev, J.Morel, Appl. Radiat. Isot. 60 (2004) 239 (Gamma-ray emission probabilities) X.HUANG, P.LIU, B.WANG, Appl. Radiat. Isot. 62 (2005) 797 (Evaluation of 233Pa Decay Data) B.SINGH, J.K.TULI, Nucl. Data Sheets 105 (2005) 109 (A=233 NDS evaluation, 233U level energies, gamma-ray energies and multipolarities) V.P.CHECHEV, N.K.KUZMENKO, Appl. Radiat. Isot. 64 (2006) 1403 (233Pa decay data evaluation) H.HARADA, S.NAKAMURA, M.OHTA, T.FUJII, H.YAMANA, J. Nucl. Sci. Technol. (Tokyo) 43 (2006) 1289 (Gamma-ray emission probabilities) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC) D.J.DEVRIES, H.C.GRIFFIN, Appl. Radiat. Isot. 66 (2008) 1999

(Uncertainties of LX-ray absolute emission probabilities)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	6.70	(5)	h
Q_{β^-}	:	2195	(4)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Proba × 1	bility 00	Nature	$\log ft$
$\beta_{0,77}^{-}$	51(4)	0.42	(5)		4.98
$\beta_{0.76}^{-}$	79(4)	0.21	(3)		5.87
$\beta_{0.75}^{-}$	94(4)	0.064	(11)		6.6
$\beta_{0,74}^{-}$	126(4)	0.40	(7)		6.21
$\beta_{0.73}^{-}$	129(4)	0.140	(24)		6.69
$\beta_{0,72}^{-}$	158(4)	0.055	(8)		7.37
$\beta_{0,71}^{-}$	161(4)	0.90	(15)		6.19
$\beta_{0,70}^{-}$	175(4)	0.112	(16)		7.2
$\beta_{0.69}^{-}$	195(4)	0.122	(16)		7.31
$\beta_{0.68}^{-}$	214(4)	0.59	(8)		6.75
$\beta_{0.67}^{-}$	226~(4)	0.044	(12)		7.95
$\beta_{0.66}^{-}$	236(4)	0.44	(19)		7.01
$\beta_{0.65}^{-}$	254(4)	0.35	(5)		7.22
$\beta_{0.64}^{-}$	267(4)	0.22	(4)		7.49
$\beta_{0.63}^{-}$	279(4)	0.21	(3)		7.56
$\beta_{0.62}^{-}$	313(4)	0.25	(3)		7.65
$\beta_{0.61}^{}$	332(4)	0.029	(7)		8.66
$\beta_{0.60}^{-}$	351(4)	0.17	(3)		7.97
$\beta_{0.59}^{$	383(4)	1.43	(15)		7.17
$\beta_{0.58}^{}$	402(4)	0.41	(8)		7.78
$\beta_{0.57}^{-}$	411 (4)	0.061	(11)		8.64
$\beta_{0.56}^{}$	412(4)	8	(3)		6.53
$\beta_{0.55}^{}$	424(4)	0.129	(17)		8.36
$\beta_{0.54}^{-}$	433(4)	2.8	(4)		7.05
$\beta_{0.53}^{}$	457(4)	0.78	(19)		7.68
$\beta_{0.52}^{-}$	458(4)	1.16	(14)		7.51
$\beta_{0.50}^{50}$	472(4)	8.4	(9)	1st forbidden	6.7
$\beta_{0.51}^{}$	472(4)	36	(5)	Allowed	6.06
$\beta_{0.49}^{-}$	502(4)	6.9	(8)	1st forbidden	6.87
$\beta_{0.48}^{-10}$	542(4)	0.95	(13)		7.84
$\beta_{0.47}^{-10}$	545(4)	0.18	(4)		8.64
$\beta_{0.46}^{-,11}$	576(4)	0.035	(20)		9.36
$\beta_{0.45}^{-,10}$	606(4)	< 0.7	. ,		>8.1
$\beta_{0.44}^{5,10}$	613(4)	0.05	(3)		9.3
$\beta_{0.43}^{-}$	642(4)	19.6	(18)	Allowed	6.77
$\beta_{0.42}^{-}$	647(4)	0.078	(20)		9.18
$\beta_{041}^{5,12}$	651(4)	0.10	(9)		9.1
$\beta_{0.40}^{-40}$	658(4)	< 0.9	. /		>8.1
$\beta_{0,39}^{5,10}$	662(4)	0.21	(4)		8.79

	Energy keV	Proba × 1	bility 00	Nature	$\log ft$
$\beta_{0.38}^{-}$	693(4)	0.25	(4)		8.78
$\beta_{0.37}^{-3,00}$	699(4)	$<\!\!2.7$			>7.8
$\beta_{0.36}^{}$	709(4)	0.12	(3)		9.14
$\beta_{0,34}^{-}$	747(4)	0.11	(3)		9.25
$\beta_{0,31}^{-1}$	883(4)	0.109	(18)		9.5
$\beta_{0,26}^{-}$	980(4)	0.30	(12)		9.22
$\beta_{0.25}^{-}$	1000(4)	< 1.5			> 8.5
$\beta_{0,22}^{-}$	1067~(4)	1.9	(10)		8.54
$\beta_{0,18}^{-1}$	1104(4)	0.69	(20)		9.04
$\beta_{0.16}^{-}$	1126~(4)	$<\!\!8$		1st forbidden	>8
$\beta_{0.15}^{-}$	1171(4)	1.5	(13)		8.8
$\beta_{0,14}^{-}$	1171(4)	$<\!\!5$		1st forbidden	> 8.3
$\beta_{0,13}^{-}$	1206~(4)	< 3.1		1st forbidden unique	> 8.5
$\beta_{0,12}^{-}$	1227~(4)	$<\!\!2.5$		Allowed	> 8.6
$\beta_{0.11}^{-}$	1232~(4)	< 0.4			>9.4
$\beta_{0.10}^{-1}$	1247(4)	< 0.8		Allowed	>9.2
$\beta_{0,7}^{-}$	1346~(4)	< 0.8		1st forbidden	>9.3
$\beta_{0,2}^{-}$	2052 (4)	$<\!\!5$		Allowed	>9.2

3 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.	Energy keV
e_{AL}	(U)	5.9 - 21.6	77 (10)	
e_{AK}	(U)		1.08(6)	
	KLL	71.776 - 80.954	}	
	KLX	88.153 - 98.429	}	
	KXY	104.51 - 115.59	}	
ес _{25,16 К}	(U)	9.86 (1)	0.171(26)	
$ec_{14,13 L}$	(U)	12.5 - 17.1	6.1(7)	
$ec_{43,33}$ K	(U)	15.70 (1)	3.71(33)	
$ec_{51,45}$ K	(U)	19.01 (2)	0.86(17)	
$ec_{1,0 L}$	(U)	21.73 - 26.32	62(16)	
$ec_{16,14}$ L	(U)	23.69 - 28.28	5.1(32)	
$ec_{13,7 \rm K}$	(U)	24.55 (2)	1.5(11)	
$ec_{49,43}$ K	(U)	25.31 (3)	0.054~(9)	
$ec_{33,30\rm\ K}$	(U)	28.18 (2)	1.04(16)	
$ec_{14,13}$ M	(U)	28.8 - 30.7	1.69(18)	
$ec_{14,13 N}$	(U)	32.9 - 33.9	0.46(5)	
$ec_{15,12}$ L	(U)	33.20 - 37.79	0.8(8)	
$ec_{45,39}$ L	(U)	33.69 - 38.28	0.012(4)	
$ec_{30,22}\ {}_{\rm K}$	(U)	34.28 (3)	0.0161 (48)	
$ec_{22,16 L}$	(U)	36.4 - 41.0	0.34(11)	
$ec_{3,2}$ K	(U)	37.11 (2)	1.30(15)	
$ec_{56,51} \ _L$	(U)	37.43 - 42.02	2.2(18)	

CNDC /Huang Xiaolong, Wang Baosong

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	Electrons per 100 disint.	Energy keV
ec _{10 M}	(U)	37.94 - 39.94	17.2(43)	
$ec_{16,14}$ M	(U)	39.9 - 41.9	1.4 (9)	
ec _{13.9} L	(Ú)	40.9 - 45.5	0.51(16)	
$ec_{1.0 N}$	(U)	42.05 - 43.11	4.7(12)	
ес _{33,28} к	(U)	43.88 (2)	0.086(13)	
ec _{16,14} N	(U)	44.01 - 45.07	0.38(25)	
$ec_{25,22}$ L	(U)	45.49 - 50.08	1.5(5)	
$ec_{25,20 L}$	(U)	47.70 - 52.29	0.58~(49)	
$ec_{22,11\ \rm K}$	(U)	49.34 (5)	0.11 (12)	
$ec_{15,12} \rm \ M$	(U)	49.41 - 51.41	0.24(20)	
$ec_{22,16}$ M	(U)	52.7 - 54.6	0.095~(32)	
$ec_{15,12}$ N	(U)	53.52 - 54.58	0.07~(6)	
$ec_{56,51}$ M	(U)	53.64 - 55.64	0.6~(5)	
$ec_{51,43}$ K	(U)	55.25 (2)	1.96(27)	
$ec_{22,16 N}$	(U)	56.8 - 57.8	0.026~(9)	
$ec_{13,9}$ M	(U)	57.2 - 59.2	0.127~(40)	
$ec_{56,51 N}$	(U)	57.75 - 58.81	0.16(14)	
$ec_{16,13}$ L	(U)	58.08 - 62.67	1.7~(6)	
$ec_{14,7 \rm K}$	(U)	58.95 (3)	0.32~(31)	
$ec_{13,9}$ N	(U)	61.3 - 62.3	0.033~(10)	
$ec_{25,22}~{}_{\rm M}$	(U)	61.7 - 63.7	0.41 (15)	
$ec_{25,20}~{\rm M}$	(U)	63.91 - 65.91	0.16(15)	
$ec_{51,41}\ {\rm K}$	(U)	64.20 (8)	0.15(5)	
$ec_{25,22}$ N	(U)	65.81 - 66.87	0.112(40)	
$ec_{25,20}$ N	(U)	68.02 - 69.08	0.043(38)	
$ec_{51,40}$ K	(U)	70.55 (2)	5.4(6)	
$ec_{16,13}$ M	(U)	74.29 - 76.29	0.48(17)	
$ec_{14,9}$ L	(U)	75.41 - 80.00	0.024(9)	
$ec_{2,1 L}$	(U)	78.10 - 82.69	31(6)	
$ec_{56,45}$ K	(U)	78.13 (3)	0.7(7)	
$ec_{16,13}$ N	(U)	(8.40 - (9.40)	0.131(40)	
$ec_{16,12}$ L	(U)	79.13 - 83.72	0.0115(22)	
ес _{23,12} к	(U)	81.20 (5)	0.1(1)	
$ec_{22,14}$ L	(\mathbf{U})	82.01 - 80.00	1.90(33)	
$ec_{21,9 \text{ K}}$	(U)	84.50 (0) 84.02 80.51	0.1 (1) 0.104 (22)	
$ec_{16,11}$ L	(\mathbf{U})	85.27 (2)	0.104(32) 0.138(20)	
$ec_{4,3}$ K	(\mathbf{U})	87.57 (3) 87.52 (2)	0.138(20) 1.0(5)	
ec _{13,5 K}	(\mathbf{U})	01.02 (3) 04.21 06.21	1.0(5) 8.7(16)	
$ec_{2,1}$ M	(U)	94.31 - 90.31 08.22 100.22	0.7(10)	
ec _{22,14} M	(U)	98.22 - 100.22 98.42 - 99.48	0.54(9) 2.36(44)	
$ec_{2,1}$ N	(U)	90.42 - 99.40 101 13 - 103 13	2.30(44) 0.025(8)	
ec _{16,11} M	(U)	101.13 - 103.13 102.33 - 103.39	0.025(0) 0.148(25)	
eCor 16 I	(U)	102.00 - 100.09 103.70 - 108.90	2.60(20)	
0025,16 L ӨС1с 7 V	(U)	104.40 (8)	0.276 (47)	
0016,7 К ӨСлэрэл	(U)	109.5 - 11/1	0.210(41) 0.84(8)	
0043,33 L ӨСээ эт 17	(U)	110.90 (3)	4 4 (16)	
0033,25 K	(U)	111.65 (3)	10 (1)	
0001,37 K	(\circ)		10 (1)	

		Energy keV	Electrons per 100 disint.	Energy keV
ес _{51,45} L	(U)	112.85 - 117.44	0.169(34)	
ес _{25,11 К}	(U)	116.61 (3)	0.16(15)	
$ec_{13,7 L}$	(U)	118.39 - 122.98	0.90(18)	
$ec_{49,43}$ L	(U)	119.15 - 123.74	0.0120(19)	
ec _{25,16} M	(U)	119.91 - 121.91	0.75(11)	
ес _{33,30} L	(U)	122.02 - 126.61	0.49(8)	
ec _{25,16} N	(U)	124.02 - 125.08	0.203~(31)	
$ec_{58,43}$ K	(U)	124.6 (1)	0.042~(40)	
ес _{43,33 М}	(U)	125.8 - 127.8	0.205~(18)	
ес _{30,22} L	(U)	128.12 - 132.71	0.111 (34)	
ес _{51,45} м	(U)	129.06 - 131.06	0.041(8)	
ес _{56,40 К}	(U)	129.77 (2)	1.06(15)	
ec _{43,33} N	(U)	129.9 - 130.9	0.0546 (49)	
$ec_{3,2}$ L	(U)	130.95 - 135.54	8.4(10)	
$ec_{51,45 N}$	(U)	133.17 - 134.23	0.0110(22)	
$ec_{33,24}$ K	(U)	133.62 (1)	0.118(19)	
$ec_{13,7}$ M	(U)	134.6 - 136.6	0.24~(6)	
ес _{33,28} L	(U)	137.72 - 142.31	0.0186~(28)	
ес _{33,30} м	(U)	138.23 - 140.23	0.129(20)	
$ec_{13,7}$ N	(U)	138.71 - 139.77	0.065~(15)	
$\mathrm{ec}_{68,51~\mathrm{K}}$	(U)	141.6 (1)	0.036~(35)	
ec _{33,30} N	(U)	142.34 - 143.40	0.035~(5)	
$ec_{22,11 L}$	(U)	143.18 - 147.77	0.047~(21)	
$ec_{30,22}$ M	(U)	144.33 - 146.33	0.031~(9)	
$ec_{3,2}$ M	(U)	147.16 - 149.16	2.33~(27)	
$ec_{51,43}$ L	(U)	149.09 - 153.68	0.38~(5)	
$ec_{3,2}$ N	(U)	151.27 - 152.33	0.63~(7)	
$ec_{26,10 \text{ K}}$	(U)	151.52 (5)	0.11 (9)	
$ec_{14,7 L}$	(U)	152.79 - 157.38	0.126~(23)	
$ec_{49,33}$ K	(U)	156.68 (5)	0.83(11)	
$ec_{51,41 L}$	(U)	158.0 - 162.6	0.029(10)	
ес _{22,11} м	(U)	159.39 - 161.39	0.012~(6)	
$ec_{21,8}$ K	(U)	159.4 (1)	0.056~(49)	
$ec_{51,40}$ L	(U)	164.39 - 168.98	1.04(11)	
$ec_{51,43}$ M	(U)	165.3 - 167.3	0.092~(13)	
$ec_{14,7}$ M	(U)	169 - 171	0.033~(7)	
$ec_{51,43 N}$	(U)	169.41 - 170.47	0.0249(34)	
$ec_{56,45}$ L	(U)	171.97 - 176.56	0.255~(42)	
$ec_{23,12}$ L	(U)	175.0 - 179.6	0.035~(11)	
ес _{33,22 К}	(U)	178.19 (5)	0.84(29)	
$ec_{21,9 L}$	(U)	178.19 - 182.78	0.035~(11)	
$ec_{4,3 L}$	(U)	179.21 - 183.80	0.38~(6)	
$ec_{33,20}\ {\rm K}$	(U)	180.31 (8)	0.07~(6)	
$ec_{51,40}$ M	(U)	180.6 - 182.6	0.253~(27)	

(U)

(U)

(U)

(U)

 $ec_{13,5 L}$

 $ec_{51,40}$ N

 $ec_{56,45}$ M

ec_{56,45} N

181.36 - 185.95

184.71 - 185.77

188.18 - 190.18

192.29 - 193.35

0.52(6)

0.068(7)

0.066(11)

0.0178(30)

_		Energy keV	Electrons per 100 disint.	Energy keV
ec71 51 k	(U)	194.6 (1)	0.029(30)	
ес <u>4 з м</u>	(U)	195.42 - 197.42	0.105(15)	
$ec_{13.5 M}$	(U)	197.57 - 199.57	0.138(17)	
ec _{23.8 K}	(U)	197.9 (1)	0.042(42)	
$ec_{16.7 L}$	(U)	198.242 - 202.832	0.053(9)	
$ec_{4,3}$ N	(U)	199.53 - 200.59	0.0285(41)	
$ec_{37,29}$ L	(U)	200.07 - 204.66	0.020(6)	
$ec_{13,5 N}$	(U)	201.68 - 202.74	0.0373 (46)	
$ec_{33,25 L}$	(U)	204.7 - 209.3	1.46(19)	
$ec_{34,22}~{}_{\rm K}$	(U)	204.8 (1)	0.021~(16)	
$ec_{51,37}$ L	(U)	205.49 - 210.08	1.94(20)	
$ec_{25,11}$ L	(U)	210.45 - 215.04	0.049(12)	
$ec_{16,7}$ M	(U)	214.452 - 216.450	0.0129~(22)	
$ec_{33,18}$ K	(U)	214.80 (5)	0.0198~(23)	
$ec_{58,43}$ L	(U)	218.4 - 223.0	0.012(6)	
$ec_{33,25}$ M	(U)	221 - 223	0.372(47)	
$ec_{51,37}$ M	(U)	221.7 - 223.7	0.469(49)	
$ec_{56,40}$ L	(U)	223.61 - 228.20	0.205(30)	
$ec_{33,25}$ N	(U)	225.1 - 226.1	0.100(13)	
$ec_{51,37}$ N	(U)	225.81 - 226.87	0.126(13)	
$ec_{25,11}$ M	(U)	226.66 - 228.66	0.0126(24)	
$ec_{33,24}$ L	(\mathbf{U})	227.46 - 232.05	0.0234(38)	
$ec_{33,16}$ K	(U)	236.3 (1)	0.0233(28)	
$ec_{56,40}$ M	(U)	239.82 - 241.82	0.050(7)	
$ec_{46,28}$ K	(U)	242.3 (1) 242.02 244.00	0.010(8)	
$ec_{56,40}$ N	(\mathbf{U})	243.93 - 244.99 245.26 - 240.05	0.0134(19)	
eC _{26,10} L	(U)	240.30 - 249.90 250.52 - 255.11	0.031(10) 0.104(25)	
ec _{49,33} L	(U)	250.52 - 255.11 253.28 - 257.87	0.194(20) 0.015(5)	
ec _{21,8} L	(U)	253.20 - 201.01 253.90 (5)	1.12(14)	
C 40.02 K	(U)	256.30 (0) 256.4 (1)	0.50(6)	
ec40,23 K	(U)	26673 - 26873	0.00(0) 0.048(6)	
ec49,33 M	(U)	270.84 - 271.90	0.0130(17)	
ec33 22 L	(U)	272.03 - 276.62	0.33(5)	
ec _{33.20} L	(U)	274.15 - 278.74	0.018 (7)	
ес _{33 15 К}	(U)	282.1 (3)	0.027(7)	
$ec_{33,22}$ M	(U)	288.24 - 290.24	0.085(13)	
ес _{23,8} L	(U)	291.7 - 296.3	0.0104(44)	
$ec_{33,22}$ N	(U)	292.35 - 293.41	0.0228(34)	
$ec_{33,16}$ L	(U)	330.1 - 334.7	0.0191(23)	
ec _{40,18 K}	(U)	331.0 (1)	0.0307~(41)	
$ec_{33,11}\ {}_{\rm K}$	(U)	343.08 (5)	0.125~(47)	
$ec_{37,21}$ L	(U)	347.7 - 352.3	0.216~(26)	
$ec_{40,23}$ L	(U)	350.242 - 354.832	0.100(11)	
$ec_{37,15}$ K	(U)	356.7 (1)	0.083~(9)	
ес _{37,21} м	(U)	364 - 366	0.052~(6)	
ес _{71,43} к	(U)	365.4 (1)	0.040~(31)	
$ec_{40,23}$ M	(U)	366.452 - 368.450	0.0242~(28)	

_

$\begin{array}{c} ec_{37,21} & (U) & 368.1 - 369.1 & 0.0141 (17) \\ ec_{45,18} & (U) & 382.4 & (1) & 0.0125 (24) \\ ec_{37,13} & (U) & 391.16 & (5) & 0.0138 (15) \\ ec_{40,15} & (U) & 397.8 & (1) & 0.0703 (11) \\ ec_{37,12} & (U) & 412.4 & (1) & 0.069 (9) \\ ec_{33,11} & (U) & 436.92 - 441.51 & 0.032 (7) \\ ec_{45,15} & (U) & 449.8 & (1) & 0.149 (16) \\ ec_{37,15} & (U) & 450.5 - 455.1 & 0.0159 (18) \\ ec_{40,12} & (U) & 453.5 & (2) & 0.51 (8) \\ ec_{40,12} & (U) & 453.5 & (2) & 0.51 (8) \\ ec_{37,9} & (U) & 451.1 & (1) & 0.0247 (37) \\ ec_{40,15} & (U) & 491.6 - 496.2 & 0.01341 (19) \\ ec_{53,21} & (U) & 490.6 & (1) & 0.044 (6) \\ ec_{37,12} & (U) & 506.23 - 510.82 & 0.0131 (17) \\ ec_{40,16} & (U) & 508.8 & (1) & 0.028 (4) \\ ec_{48,15} & (U) & 514.0 & (1) & 0.038 (6) \\ ec_{54,22} & (U) & 518.9 & (2) & 0.0142 (25) \\ ec_{50,16} & (U) & 538.3 & (1) & 0.046 (8) \\ ec_{45,15} & (U) & 547.9 - 552.5 & 0.248 (32) \\ ec_{40,12} & (U) & 547.9 - 552.5 & 0.248 (32) \\ ec_{40,12} & (U) & 547.9 - 552.5 & 0.248 (32) \\ ec_{40,12} & (U) & 547.9 - 552.5 & 0.248 (32) \\ ec_{37,9} & (U) & 566.3 - 569.3 & 0.0161 (21) \\ ec_{51,16} & (U) & 577.2 & (1) & 0.104 (11) \\ ec_{7,2} & (U) & 590.6 & (1) & 0.0130 (13) \\ ec_{41,11} & (U) & 615.6 & (2) & 0.025 (19) \\ ec_{51,18} & (U) & 617.96 (5) & 0.50 (6) \\ ec_{51,12} & (U) & 643.6 & (1) & 0.0108 (11) \\ ec_{51,12} & (U) & 643.6 & (1) & 0.0108 (11) \\ ec_{51,12} & (U) & 677.0 - 675.6 & 0.0197 (21) \\ ec_{51,18} & (U) & 677.0 - 675.6 & 0.0197 (21) \\ ec_{51,19} & (U) & 680.8 & (1) & 0.0225 (38) \\ ec_{61,14} & (U) & 711.80 - 716.39 & 0.095 (11) \\ ec_{51,12} & (U) & 709.9 & (2) & 0.0223 (24) \\ ec_{50,13} & (U) & 716.3 & (1) & 0.0178 (21) \\ ec_{51,12} & (U) & 763.2 & (4) & 0.065 (8) \\ ec_{51,22} & (U) & 763.3 & (1) & 0.0228 (26) \\ ec_{51,12} & (U) & 763.3 & (1) & 0.0228 (26) \\ ec_{51,12} & (U) & 763.3 & (1) & 0.0228 (26) \\ ec_{51,12} & (U) & 763.3 & (1) & 0.0228 (26) \\ ec_{51,12} & (U) & 763.3 & (1) & 0.0228 (26) \\ ec_{51,12} & (U) & 763.3 & (1) & 0.0228 (26) \\ ec_{51,12} & (U) & 763.3 & (1) & 0.0269 (25) \\ ec_{51,22} & (U) & 7$			$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	Electrons per 100 disint.	Energy keV
$\begin{array}{c} \mathrm{ec}_{45,18} & \mathrm{(U)} & 382.4 & (1) & 0.0125 (24) \\ \mathrm{ec}_{37,13} & \mathrm{(U)} & 391.16 & (5) & 0.0138 (15) \\ \mathrm{ec}_{40,15} & \mathrm{(U)} & 491.2 & (1) & 0.0703 (11) \\ \mathrm{ec}_{63,12} & \mathrm{(U)} & 412.4 & (1) & 0.069 (9) \\ \mathrm{ec}_{33,11} & \mathrm{(U)} & 436.92 - 441.51 & 0.032 (7) \\ \mathrm{ec}_{45,15} & \mathrm{K} & \mathrm{(U)} & 445.8 & (1) & 0.149 (16) \\ \mathrm{ec}_{37,15} & \mathrm{L} & \mathrm{(U)} & 450.5 - 455.1 & 0.0159 (18) \\ \mathrm{ec}_{40,12} & \mathrm{K} & \mathrm{(U)} & 453.5 & (2) & 0.51 (8) \\ \mathrm{ec}_{37,9} & \mathrm{K} & \mathrm{(U)} & 453.5 & (1) & 0.0247 (37) \\ \mathrm{ec}_{40,15} & \mathrm{L} & \mathrm{(U)} & 491.6 - 496.2 & 0.01341 (19) \\ \mathrm{ec}_{53,21} & \mathrm{K} & \mathrm{(U)} & 491.6 - 496.2 & 0.01341 (19) \\ \mathrm{ec}_{53,21} & \mathrm{K} & \mathrm{(U)} & 506.23 - 510.82 & 0.0131 (17) \\ \mathrm{ec}_{49,16} & \mathrm{K} & \mathrm{(U)} & 518.9 & (2) & 0.0142 (25) \\ \mathrm{ec}_{50,16} & \mathrm{K} & \mathrm{(U)} & 518.9 & (2) & 0.0142 (25) \\ \mathrm{ec}_{50,16} & \mathrm{K} & \mathrm{(U)} & 538.3 & (1) & 0.046 (8) \\ \mathrm{ec}_{45,15} & \mathrm{L} & \mathrm{(U)} & 547.9 - 552.5 & 0.248 (32) \\ \mathrm{ec}_{40,12} & \mathrm{L} & \mathrm{(U)} & 547.9 - 552.5 & 0.248 (32) \\ \mathrm{ec}_{40,12} & \mathrm{L} & \mathrm{(U)} & 563.6 - 566.2 & 0.060 (16) \\ \mathrm{ec}_{37,9} & \mathrm{L} & \mathrm{(U)} & 568.3 - 569.3 & 0.0161 (21) \\ \mathrm{ec}_{51,16} & \mathrm{K} & \mathrm{(U)} & 577.2 & (1) & 0.014 (11) \\ \mathrm{ec}_{72} & \mathrm{K} & \mathrm{(U)} & 509.6 & (1) & 0.0130 (13) \\ \mathrm{ec}_{41,16} & \mathrm{(U)} & 677.48 & (5) & 0.50 (6) \\ \mathrm{ec}_{51,14} & \mathrm{(U)} & 617.96 & (5) & 0.50 (6) \\ \mathrm{ec}_{51,14} & \mathrm{(U)} & 617.96 & (5) & 0.50 (6) \\ \mathrm{ec}_{51,12} & \mathrm{(U)} & 639.7 & (1) & 0.049 (37) \\ \mathrm{ec}_{51,12} & \mathrm{(U)} & 639.7 & (1) & 0.049 (37) \\ \mathrm{ec}_{51,12} & \mathrm{(U)} & 639.7 & (1) & 0.032 (38) \\ \mathrm{ec}_{10,2} & \mathrm{(U)} & 688.9 & (1) & 0.0225 (38) \\ \mathrm{ec}_{10,2} & \mathrm{(U)} & 688.9 & (1) & 0.0225 (38) \\ \mathrm{ec}_{51,12} & \mathrm{(U)} & 711.80 & -716.39 & 0.095 (11) \\ \mathrm{ec}_{51,12} & \mathrm{(U)} & 716.3 & (1) & 0.0178 (21) \\ \mathrm{ec}_{51,12} & \mathrm{(U)} & 716.3 & (1) & 0.0228 (26) \\ \mathrm{ec}_{51,12} & \mathrm{(U)} & 765.32 & (4) & 0.065 (8) \\ \mathrm{ec}_{51,12} & \mathrm{(U)} & 765.32 & (4) & 0.065 (8) \\ \mathrm{ec}_{51,22} & \mathrm{(U)} & 765.32 & (4) & 0.065 (8) \\ \mathrm{ec}_{51,22} & \mathrm{(U)} & 765.32 & (4) & 0.065 (8) \\ \mathrm{ec}_{51,24} & \mathrm{(U)} &$	ес _{37.21} N	(U)	368.1 - 369.1	0.0141(17)	
$\begin{array}{ccccc} ee a_{7,13} & {\rm K} & ({\rm U}) & 391.16 & (5) & 0.0138 & (15) \\ ec a_{0,15} & {\rm K} & ({\rm U}) & 397.8 & (1) & 0.0703 & (11) \\ ec a_{7,12} & {\rm K} & ({\rm U}) & 412.4 & (1) & 0.069 & (9) \\ ec a_{3,11} & {\rm L} & ({\rm U}) & 430.92 & -441.51 & 0.032 & (7) \\ ec a_{5,15} & {\rm K} & ({\rm U}) & 440.8 & (1) & 0.149 & (16) \\ ec a_{7,15} & {\rm L} & ({\rm U}) & 450.5 & -455.1 & 0.0159 & (18) \\ ec a_{0,12} & {\rm K} & ({\rm U}) & 453.5 & (2) & 0.51 & (8) \\ ec a_{0,12} & {\rm K} & ({\rm U}) & 454.1 & (1) & 1.30 & (17) \\ ec a_{50,26} & {\rm K} & ({\rm U}) & 491.6 & -496.2 & 0.01341 & (19) \\ ec a_{52,11} & {\rm L} & ({\rm U}) & 496.6 & (1) & 0.044 & (6) \\ ec a_{7,12} & {\rm L} & ({\rm U}) & 508.8 & (1) & 0.028 & (4) \\ ec a_{8,15} & {\rm K} & ({\rm U}) & 508.8 & (1) & 0.028 & (4) \\ ec a_{8,15} & {\rm K} & ({\rm U}) & 514.0 & (1) & 0.038 & (6) \\ ec a_{4,12} & {\rm K} & ({\rm U}) & 514.0 & (1) & 0.038 & (6) \\ ec a_{4,12} & {\rm K} & ({\rm U}) & 514.0 & (1) & 0.038 & (6) \\ ec a_{4,12} & {\rm L} & ({\rm U}) & 547.3 & -551.9 & 0.096 & (16) \\ ec a_{7,9} & {\rm L} & ({\rm U}) & 547.3 & -551.9 & 0.096 & (16) \\ ec a_{7,9} & {\rm L} & ({\rm U}) & 564.2 & -566.2 & 0.060 & (8) \\ ec a_{7,9} & {\rm M} & ({\rm U}) & 564.2 & -566.2 & 0.060 & (8) \\ ec a_{7,9} & {\rm M} & ({\rm U}) & 564.3 & -569.3 & 0.0161 & (21) \\ ec a_{4,11} & {\rm K} & ({\rm U}) & 615.6 & (2) & 0.025 & (19) \\ ec a_{5,11} & {\rm K} & ({\rm U}) & 615.6 & (2) & 0.025 & (19) \\ ec a_{5,11} & {\rm K} & ({\rm U}) & 617.96 & (5) & 0.50 & (6) \\ ec a_{5,11} & {\rm K} & ({\rm U}) & 617.96 & (5) & 0.0108 & (11) \\ ec a_{5,1,12} & {\rm K} & ({\rm U}) & 639.7 & (1) & 0.049 & (37) \\ ec a_{5,1,13} & {\rm K} & ({\rm U}) & 639.7 & (1) & 0.049 & (37) \\ ec a_{5,1,14} & {\rm K} & ({\rm U}) & 639.6 & (1) & 0.0325 & (38) \\ ec a_{5,1,2} & {\rm K} & ({\rm U}) & 630.4 & (1) & 0.027 & (34) \\ ec a_{5,1,3} & {\rm K} & ({\rm U}) & 711.80 & -716.39 & 0.095 & (11) \\ ec a_{5,1,2} & {\rm K} & ({\rm U}) & 733.5 & -738.1 & 0.0106 & (6) \\ ec a_{1,2,2} & {\rm K} & ({\rm U}) & 765.32 & (4) & 0.065 & (8) \\ ec a_{5,1,2} & {\rm K} & ({\rm U}) & 765.32 & (4) & 0.065 & (8) \\ ec a_{5,1,2} & {\rm K} & ({\rm U}) & 765.32 & (4$	$ec_{45.18}$ K	(U)	382.4 (1)	0.0125(24)	
$\begin{array}{ccccc} ec_{40,15 \ K} & (U) & 397.8 & (1) & 0.0703 (11) \\ ec_{37,12 \ K} & (U) & 412.4 & (1) & 0.069 (9) \\ ec_{33,11 \ L} & (U) & 436.92 - 441.51 & 0.032 (7) \\ ec_{45,15 \ K} & (U) & 449.8 & (1) & 0.149 (16) \\ ec_{37,15 \ L} & (U) & 450.5 - 455.1 & 0.0159 (18) \\ ec_{50,26 \ K} & (U) & 451.5 & (2) & 0.51 (8) \\ ec_{50,26 \ K} & (U) & 451.5 & (1) & 0.0247 (37) \\ ec_{50,26 \ K} & (U) & 491.6 - 496.2 & 0.01341 (19) \\ ec_{53,21 \ K} & (U) & 496.6 & (1) & 0.044 (6) \\ ec_{37,12 \ L} & (U) & 506.23 - 510.82 & 0.0131 (17) \\ ec_{40,16 \ K} & (U) & 508.8 & (1) & 0.028 (4) \\ ec_{48,15 \ K} & (U) & 514.0 & (1) & 0.038 (6) \\ ec_{54,22 \ K} & (U) & 518.9 & (2) & 0.0142 (25) \\ ec_{50,16 \ K} & (U) & 538.3 & (1) & 0.046 (8) \\ ec_{43,15 \ L} & (U) & 547.3 - 551.9 & 0.096 (16) \\ ec_{37,9 \ L} & (U) & 547.3 - 551.9 & 0.096 (16) \\ ec_{37,9 \ L} & (U) & 547.3 - 551.9 & 0.096 (16) \\ ec_{37,9 \ L} & (U) & 568.3 - 569.3 & 0.0161 (21) \\ ec_{40,12 \ M} & (U) & 568.3 - 569.3 & 0.0161 (21) \\ ec_{54,16 \ K} & (U) & 577.2 & (1) & 0.104 (11) \\ ec_{7,2 \ K} & (U) & 605.6 & (2) & 0.025 (19) \\ ec_{51,18 \ K} & (U) & 617.96 & (5) & 0.50 (6) \\ ec_{54,14 \ K} & (U) & 622.7 & (1) & 0.081 (9) \\ ec_{51,18 \ K} & (U) & 671.0 - 675.6 & 0.0197 (21) \\ ec_{54,16 \ K} & (U) & 671.0 - 675.6 & 0.0197 (21) \\ ec_{54,16 \ L} & (U) & 671.0 - 675.6 & 0.0197 (21) \\ ec_{54,16 \ L} & (U) & 671.0 - 675.6 & 0.0197 (21) \\ ec_{54,16 \ L} & (U) & 671.0 - 675.6 & 0.0197 (21) \\ ec_{54,16 \ L} & (U) & 671.0 - 675.6 & 0.0197 (21) \\ ec_{54,16 \ L} & (U) & 671.0 - 675.6 & 0.0197 (21) \\ ec_{54,16 \ L} & (U) & 671.0 - 675.6 & 0.0197 (21) \\ ec_{54,16 \ L} & (U) & 671.0 - 675.6 & 0.0197 (21) \\ ec_{54,16 \ L} & (U) & 670.0 - 711. & 0.044 (37) \\ ec_{54,16 \ L} & (U) & 670.0 - 711. & 0.049 (37) \\ ec_{54,16 \ L} & (U) & 711.80 - 716.39 & 0.095 (11) \\ ec_{54,16 \ L} & (U) & 709.9 & (2) & 0.0223 (24) \\ ec_{50,13 \ L} & (U) & 716.3 & (1) & 0.0269 (25) \\ ec_{51,12 \ L} & (U) & 760.8 \ (1) & 0.0269 (25) \\ ec_{51,12 \ L} & (U) & 760.32 \ (4) & 0.0104 (423) \\ ec_{91,1 \ K} & (U) & 768.26 \$	ес _{37,13 К}	(U)	391.16 (5)	0.0138(15)	
ec37,12 K (U) 412.4 (1) 0.069 (9) ec33,11 L (U) 436.92 - 441.51 0.032 (7) ec45,15 K (U) 449.8 (1) 0.149 (16) ec37,15 L (U) 450.5 - 455.1 0.0159 (18) ec40,12 K (U) 450.5 - 455.1 0.0247 (37) ec40,15 L (U) 491.6 - 496.2 0.0131 (19) ec53,21 K (U) 491.6 - 496.2 0.0131 (17) ec40,15 L (U) 490.6 (1) 0.028 (4) ec53,21 K (U) 506.23 - 510.82 0.0131 (17) ec49,16 K (U) 518.9 (2) 0.0142 (25) ec50,16 K (U) 538.3 (1) 0.046 (8) ec44,12 L (U) 547.3 - 551.9 0.096 (16) ec37,9 L (U) 547.3 - 551.9 0.0261 (6) ec37,9 N (U) 564.2 - 566.2 0.060 (8) ec37,9 N (U) 564.2 - 566.2 0.060 (8) ec37,9 N (U) 564.6 (1) 0.0130 (13) ec4,12 M (U) 677.4 (1) 0.0180 (13)	ес _{40,15} к	(U)	397.8 (1)	0.0703(11)	
ec33.11 L (U) 436.92 - 441.51 0.032 (7) ec45.15 K (U) 449.8 (1) 0.149 (16) ec37.9 K (U) 453.5 (2) 0.51 (8) ec37.9 K (U) 453.5 (2) 0.51 (8) ec37.9 K (U) 454.1 (1) 1.30 (17) ec59.26 K (U) 481.5 (1) 0.0247 (37) ec40.15 L (U) 496.6 (1) 0.044 (6) ec37.12 L (U) 506.23 510.82 0.0131 (17) ec49.16 K (U) 508.8 (1) 0.028 (4) ec48.15 K (U) 514.0 (1) 0.038 (6) ec45.15 L (U) 538.3 (1) 0.046 (8) ec45.15 L (U) 543.6 548.2 0.0232 (30) ec43.15 K (U) 543.6 565.6 0.0232 (39) ec43.15 K (U) 564.2 565.6 0.0232 (39) ec43.17 M (U) 564.2 565.6 0.0232 (39) ec37.9 N (U) 564.3 565.6 <t< td=""><td>ес_{37,12} к</td><td>(U)</td><td>412.4 (1)</td><td>0.069(9)</td><td></td></t<>	ес _{37,12} к	(U)	412.4 (1)	0.069(9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{33,11}$ L	(U)	436.92 - 441.51	0.032(7)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{45,15}$ K	(U)	449.8 (1)	0.149(16)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{37,15 L}$	(U)	450.5 - 455.1	0.0159~(18)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{40,12}\ {\rm K}$	(U)	453.5 (2)	0.51~(8)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{37,9}$ K	(U)	454.1 (1)	1.30(17)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{59,26}$ K	(U)	481.5 (1)	0.0247~(37)	
ec53,21 K(U)496.6(1) 0.044 (6)ec37,12 L(U)506.23 - 510.82 0.0131 (17)ec49,16 K(U)508.8(1) 0.028 (4)ec48,15 K(U)514.0(1) 0.038 (6)ec54,22 K(U)518.9(2) 0.0142 (25)ec50,16 K(U)538.3(1) 0.046 (8)ec40,12 L(U)543.6- 548.2 0.0233 (30)ec40,12 L(U)547.3- 551.9 0.096 (16)ec37,9 L(U)563.6- 565.6 0.0232 (39)ec37,9 M(U)563.6- 566.2 0.060 (8)ec37,9 N(U)568.3- 569.3 0.0161 (21)ec54,16 K(U)577.2(1) 0.104 (11)ec7,2 K(U)590.6(1) 0.0130 (13)ec49,11 K(U)615.6(2) 0.025 (19)ec54,14 K(U)627.482(5) 0.0108 (11)ec54,16 L(U)671.0- 675.6 0.0197 (21)ec54,16 L(U)670.6(D) 0.0223 (24) <t< td=""><td>$ec_{40,15}$ L</td><td>(U)</td><td>491.6 - 496.2</td><td>0.01341 (19)</td><td></td></t<>	$ec_{40,15}$ L	(U)	491.6 - 496.2	0.01341 (19)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{53,21}$ K	(U)	496.6 (1)	0.044~(6)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{37,12}$ L	(U)	506.23 - 510.82	$0.0131\ (17)$	
ec48,15 K (U) 514.0 (1) 0.038 (6) ec54,22 K (U) 518.9 (2) 0.0142 (25) ec50,16 K (U) 538.3 (1) 0.046 (8) ec45,15 L (U) 547.3 - 551.9 0.096 (16) ec37.9 L (U) 547.3 - 552.5 0.248 (32) ec40,12 M (U) 564.2 - 566.2 0.060 (8) ec37.9 M (U) 568.3 - 569.3 0.0161 (21) ec54,16 K (U) 577.2 (1) 0.104 (11) ec7.2 K (U) 590.6 (1) 0.0130 (13) ec49,11 K (U) 615.6 (2) 0.025 (19) ec50,13 K (U) 617.96 5) 0.50 (6) ec51,12 K (U) 627.7 (1) 0.081 (9) ec5,15 K (U) 627.482 (5) 0.0108 (11) ec51,12 K (U) 639.7 (1) 0.049 (37) ec54,16 L (U) 671.0 675.6 0.0197 (21) ec51,9 K (U) 680.8 ($ec_{49,16}$ K	(U)	508.8 (1)	0.028(4)	
ec54,22 K(U)518.9(2) 0.0142 (25)ec50,16 K(U)538.3(1) 0.046 (8)ec45,15 L(U)543.6 $-$ 548.2 0.0283 (30)ec40,12 L(U)547.3 $-$ 551.9 0.096 (16)ec37,9 L(U)563.6 $-$ 565.6 0.0232 (39)ec37,9 M(U)564.2 $-$ 566.2 0.060 (8)ec37,9 N(U)564.3 $-$ 569.3 0.0161 (21)ec54,16 K(U)577.2(1) 0.104 (11)ec7,2 K(U)590.6(1) 0.0130 (13)ec49,11 K(U)615.6(2) 0.025 (19)ec53,13 K(U)617.96(5) 0.50 (6)ec54,14 K(U)622.7(1) 0.081 (9)ec51,12 K(U)639.7(1) 0.010 (8)ec54,16 L(U)671.0 $-$ 675.6 0.0197 (21)ec51,9 K(U)680.8(1) 0.0325 (38)ec10,2 K(U)680.8(1) 0.0325 (38)ec10,2 K(U)709.9(2) 0.0223 (24)ec53,13 L(U)716.3(1) 0.0178 (21)ec54,14 L(U)716.3(1) 0.0126 (17)ec50,13 L(U)765.32(4) 0.065 (8)ec1,2 K(U)765.32(4) 0.0164 (23)ec54,14 L(U)765.32(4) 0.0164 (23)ec54,14 L(U)765.32(4) 0.0164 (23)ec54,14 L <td>$ec_{48,15}$ K</td> <td>(U)</td> <td>514.0 (1)</td> <td>0.038(6)</td> <td></td>	$ec_{48,15}$ K	(U)	514.0 (1)	0.038(6)	
ec50.16 K(U)538.3(1)0.046 (8)ec45.15 L(U)543.6 $-$ 548.20.0283 (30)ec40.12 L(U)547.3 $-$ 551.90.096 (16)ec37.9 L(U)567.9 $-$ 552.50.248 (32)ec40.12 M(U)563.6 $-$ 565.60.0232 (39)ec37.9 M(U)564.2 $-$ 566.20.060 (8)ec37.9 N(U)568.3 $-$ 569.30.0161 (21)ec54.16 K(U)577.2(1)0.104 (11)ec7.2 K(U)590.6(1)0.0130 (13)ec49.11 K(U)615.6(2)0.025 (19)ec50.13 K(U)617.96(5)0.50 (6)ec54.14 K(U)622.7(1)0.081 (9)ec51.12 K(U)630.7(1)0.049 (37)ec54.16 L(U)671.0 $-$ 675.60.0107 (21)ec51.9 K(U)680.8(1)0.0325 (38)ec10.2 K(U)680.8(1)0.0325 (38)ec10.2 K(U)709.9(2)0.0223 (24)ec5.13 L(U)711.80716.390.095 (11)ec22.3 K(U)716.3(1)0.0178 (21)ec51.12 L(U)765.32(4)0.0164 (23)ec51.12 L(U)768.32(4)0.010 (6)ec23.14 L(U)765.32(4)0.0164 (23)ec53.15 K(U)768.06(4)0.101 (12)ec54.16 L(U)765.32(4) <td>$ec_{54,22}$ K</td> <td>(U)</td> <td>518.9 (2)</td> <td>0.0142(25)</td> <td></td>	$ec_{54,22}$ K	(U)	518.9 (2)	0.0142(25)	
ec45,15 L (U) 543.6 - 548.2 0.0283 (30) ec40,12 L (U) 547.3 - 551.9 0.096 (16) ec37,9 L (U) 547.9 - 552.5 0.248 (32) ec40,12 M (U) 563.6 - 565.6 0.0232 (39) ec37,9 M (U) 564.2 - 566.2 0.060 (8) ec37,9 N (U) 568.3 - 569.3 0.0161 (21) ec54,16 K (U) 577.2 (1) 0.104 (11) ec7.2 K (U) 590.6 (1) 0.0130 (13) ec49,11 K (U) 615.6 (2) 0.025 (19) ec50,13 K (U) 627.482 (5) 0.0108 (11) ec51,12 K (U) 639.7 (1) 0.049 (37) ec56,15 K (U) 643.6 (1) 0.0325 (38) ec1,2 K (U) 671.0 -675.6 0.0197 (21) ec51,9 K (U) 680.8 (1) 0.0325 (38) ec1,2 K (U) 709.9 (2) 0.0223 ($ec_{50,16}$ K	(U)	538.3 (1)	0.046 (8)	
ec40,12 L (U) 547.3 - 551.9 0.096 (16) ec37,9 L (U) 547.3 - 552.5 0.248 (32) ec40,12 M (U) 563.6 - 565.6 0.0232 (39) ec37,9 M (U) 564.2 - 566.2 0.060 (8) ec37,9 N (U) 568.3 - 569.3 0.0161 (21) ec54,16 K (U) 577.2 (1) 0.104 (11) ec7,2 K (U) 590.6 (1) 0.0130 (13) ec49,11 K (U) 615.6 (2) 0.025 (19) ec50,13 K (U) 617.96 (5) 0.50 (6) ec54,14 K (U) 622.7 (1) 0.018 (1) ec51,12 K (U) 639.7 (1) 0.049 (37) ec54,16 L (U) 671.0 - 675.6 0.0197 (21) ec54,16 L (U) 680.8 (1) 0.0325 (38) ec10,2 K (U) 688.9 (1) 0.097 (34) ec7,1 K (U) 690.60 (5) 0.0112 (14) ec1,2 K (U) 711.80 - 716.39 0.095 (11) <td>$ec_{45,15}$ L</td> <td>(U)</td> <td>543.6 - 548.2</td> <td>0.0283(30)</td> <td></td>	$ec_{45,15}$ L	(U)	543.6 - 548.2	0.0283(30)	
ec_{37,9 L}(U) 547.9 552.5 $0.248 (32)$ ec_{40,12 M}(U) 563.6 565.6 $0.0232 (39)$ ec_{37,9 M}(U) 564.2 566.2 $0.060 (8)$ ec_{37,9 N}(U) 568.3 569.3 $0.0161 (21)$ ec_{54,16 K}(U) 577.2 (1) $0.104 (11)$ ec_{7,2 K}(U) 590.6 (1) $0.0130 (13)$ ec_{49,11 K}(U) 615.6 (2) $0.025 (19)$ ec_{50,13 K}(U) $617.96 (5)$ $0.50 (6)$ ec_{51,1K}(U) $627.482 (5)$ $0.0108 (11)$ ec_{51,12 K}(U) $639.7 (1)$ $0.049 (37)$ ec_{56,15 K}(U) $643.6 (1)$ $0.010 (8)$ ec_{51,16 L}(U) $671.0 - 675.6$ $0.0197 (21)$ ec_{51,9 K}(U) $688.9 (1)$ $0.0325 (38)$ ec_{7,1 K}(U) $680.8 (1)$ $0.0097 (34)$ ec_{7,1 K}(U) $690.60 (5)$ $0.0112 (14)$ ec_{50,13 L}(U) $716.3 (1)$ $0.0178 (21)$ ec_{51,3 M} (U) $728.01 - 730.01$ $0.0223 (24)$ ec_{51,3 M} (U) $728.01 - 730.01$ $0.0228 (26)$ ec_{51,12 L}(U) $733.5 - 738.1$ $0.010 (6)$ ec_{24,3 K} (U) $766.32 (4)$ $0.065 (8)$ ec_{14,2 K} (U) $765.32 (4)$ $0.066 (8)$ ec_{14,2 K} (U) $782.7 - 787.3$ $0.069 (24)$ ec_{5,3 K} (U) $783.46 (5)$ $0.0122 (15)$	$ec_{40,12}$ L	(U)	547.3 - 551.9	0.096(16)	
$ec_{40,12 M}$ (U) 563.6 565.6 0.0232 (39) $ec_{37,9 M}$ (U) 564.2 $ 566.2$ 0.060 (8) $ec_{37,9 N}$ (U) 568.3 $ 569.3$ 0.0161 (21) $ec_{54,16 K}$ (U) 577.2 (1) 0.104 (11) $ec_{7,2 K}$ (U) 590.6 (1) 0.0130 (13) $ec_{49,11 K}$ (U) 615.6 (2) 0.025 (19) $ec_{50,13 K}$ (U) 617.96 (5) 0.50 (6) $ec_{54,14 K}$ (U) 622.7 (1) 0.081 (9) $ec_{51,12 K}$ (U) 639.7 (1) 0.049 (37) $ec_{56,15 K}$ (U) 643.6 (1) 0.010 (8) $ec_{54,16 L}$ (U) 671.0 $ 675.6$ 0.0197 (21) $ec_{51,9 K}$ (U) 680.8 (1) 0.0325 (38) $ec_{10,2 K}$ (U) 680.8 (1) 0.0325 (32) $ec_{7,1 K}$ (U) 690.60 (5) 0.0112 (14) $ec_{12,2 K}$ (U) 709.9 (2) 0.0223 (24) $ec_{50,13 L}$ (U) 716.3 (1) 0.0178 (21) $ec_{51,12 L}$ (U) 733.5 $ 738.1$ 0.010 (6) $ec_{24,14 L}$ (U) 766.8 (1) 0.0228 (26) $ec_{51,12 L}$ (U) 733.5 $ 738.1$ 0.010 (6) $ec_{24,3 K}$ (U) 766.32 (4) 0.0164 (23) $ec_{9,1 K}$ (U) 768.06 (4) 0.101 (12)	$ec_{37,9}$ L	(U)	547.9 - 552.5	0.248(32)	
$ec_{37,9 M}$ (U) 564.2 560.2 $0.060(8)$ $ec_{37,9 N}$ (U) 568.3 -569.3 $0.0161(21)$ $ec_{54,16 K}$ (U) 577.2 (1) $0.104(11)$ $ec_{7,2 K}$ (U) 590.6 (1) $0.0130(13)$ $ec_{49,11 K}$ (U) 615.6 (2) $0.025(19)$ $ec_{50,13 K}$ (U) 617.96 (5) $0.50(6)$ $ec_{51,1K}$ (U) 622.7 (1) $0.081(9)$ $ec_{51,1K}$ (U) 627.482 (5) $0.0108(11)$ $ec_{51,12 K}$ (U) 639.7 (1) $0.049(37)$ $ec_{54,16 L}$ (U) 643.6 (1) $0.010(8)$ $ec_{54,16 L}$ (U) 671.0 -675.6 $0.0197(21)$ $ec_{51,9 K}$ (U) 680.8 (1) $0.0325(38)$ $ec_{10,2 K}$ (U) 690.60 (5) $0.0112(14)$ $ec_{7,1 K}$ (U) 690.60 (5) $0.0112(14)$ $ec_{21,2 K}$ (U) 716.3 $1)$ $0.0178(21)$ $ec_{50,13 L}$ (U) 716.3 (1) $0.0128(26)$ $ec_{51,12 L}$ (U) 733.5 738.1 $0.010(6)$ $ec_{24,3 K}$ (U) 765.32 (4) $0.0164(23)$ $ec_{14,2 K}$ (U) $768.66(4)$ $0.101(12)$ $ec_{12,2 L}$ (U) 782.7 787.3 $0.069(24)$ $ec_{25,3 K}$ (U) $783.46(5)$ $0.0122(15)$	$ec_{40,12}$ M	(U)	563.6 - 565.6	0.0232(39)	
$ec_{37,9 N}$ (U) 508.3 - 509.3 $0.0161(21)$ $ec_{54,16 K}$ (U) 577.2 (1) $0.104(11)$ $ec_{7,2 K}$ (U) 590.6 (1) $0.0130(13)$ $ec_{49,11 K}$ (U) 615.6 (2) $0.025(19)$ $ec_{50,13 K}$ (U) 617.96 (5) $0.50(6)$ $ec_{54,14 K}$ (U) 622.7 (1) $0.081(9)$ $ec_{5,1 K}$ (U) 627.482 (5) $0.0108(11)$ $ec_{51,12 K}$ (U) 639.7 (1) $0.049(37)$ $ec_{56,15 K}$ (U) 643.6 (1) $0.010(8)$ $ec_{54,16 L}$ (U) 671.0 675.6 $0.0197(21)$ $ec_{51,9 K}$ (U) 680.8 (1) $0.0325(38)$ $ec_{10,2 K}$ (U) $690.60(5)$ $0.0112(14)$ $ec_{7,1 K}$ (U) $690.60(5)$ $0.0112(14)$ $ec_{12,2 K}$ (U) 716.3 (1) $0.0178(21)$ $ec_{50,13 L}$ (U) 716.3 (1) $0.0178(21)$ $ec_{51,12 L}$ (U) 728.01 730.01 $0.0228(26)$ $ec_{51,12 L}$ (U) 765.32 (4) $0.0164(23)$ $ec_{14,2 K}$ (U) 765.32 (4) $0.0164(23)$ $ec_{24,3 K}$ (U) $768.06(4)$ $0.101(12)$ $ec_{12,2 L}$ (U) 782.7 787.3 $0.069(24)$ $ec_{25,3 K}$ (U) $783.46(5)$ $0.0122(15)$	$ec_{37,9}$ M	(U)	564.2 - 566.2	0.060(8)	
$ec_{54,16}$ K(U) 577.2 (1) 0.104 (11) $ec_{7,2}$ K(U) 590.6 (1) 0.0130 (13) $ec_{49,11}$ K(U) 615.6 (2) 0.025 (19) $ec_{50,13}$ K(U) 617.96 (5) 0.50 (6) $ec_{54,14}$ K(U) 622.7 (1) 0.081 (9) $ec_{5,1}$ K(U) 627.482 (5) 0.0108 (11) $ec_{51,12}$ K(U) 639.7 (1) 0.049 (37) $ec_{56,15}$ K(U) 643.6 (1) 0.010 (8) $ec_{54,16}$ L(U) 671.0 - 675.6 0.0197 (21) $ec_{51,9}$ K(U) 680.8 (1) 0.0325 (38) $ec_{10,2}$ K(U) 690.60 (5) 0.0112 (14) $ec_{7,1}$ K(U) 690.60 (5) 0.0112 (14) $ec_{23,3}$ K(U) 711.80 - 716.39 0.095 (11) $ec_{23,3}$ K(U) 716.3 (1) 0.0178 (21) $ec_{51,12}$ L(U) 728.01 - 730.01 0.0228 (26) $ec_{51,12}$ L(U) 765.32 (4) 0.0164 (23) $ec_{24,3}$ K(U) 765.32 (4) 0.065 (8) $ec_{14,2}$ K(U) 765.32 (4) 0.0164 (23) $ec_{9,1}$ K(U) 782.7 - 787.3 0.069 (24) $ec_{25,3}$ K(U) 783.46 (5) 0.0122 (15)	$ec_{37,9}$ N	(U)	568.3 - 569.3	0.0161(21)	
$ec_{7,2 \ K}$ (U) 390.6 (1) $0.0130 \ (13)$ $ec_{49,11 \ K}$ (U) 615.6 (2) $0.025 \ (19)$ $ec_{50,13 \ K}$ (U) $617.96 \ (5)$ $0.50 \ (6)$ $ec_{54,14 \ K}$ (U) $622.7 \ (1)$ $0.081 \ (9)$ $ec_{5,1 \ K}$ (U) $627.482 \ (5)$ $0.0108 \ (11)$ $ec_{51,12 \ K}$ (U) $639.7 \ (1)$ $0.049 \ (37)$ $ec_{56,15 \ K}$ (U) $643.6 \ (1)$ $0.010 \ (8)$ $ec_{54,16 \ L}$ (U) $671.0 \ - \ 675.6$ $0.0197 \ (21)$ $ec_{51,9 \ K}$ (U) $680.8 \ (1)$ $0.0325 \ (38)$ $ec_{10,2 \ K}$ (U) $688.9 \ (1)$ $0.097 \ (34)$ $ec_{7,1 \ K}$ (U) $690.60 \ (5)$ $0.0112 \ (14)$ $ec_{23,3 \ K}$ (U) $716.3 \ (1)$ $0.0178 \ (21)$ $ec_{50,13 \ L}$ (U) $716.3 \ (1)$ $0.0122 \ (26)$ $ec_{51,12 \ L}$ (U) $728.01 \ - \ 730.01$ $0.0228 \ (26)$ $ec_{51,12 \ L}$ (U) $760.8 \ (1)$ $0.0269 \ (25)$ $ec_{14,2 \ K}$ (U) $765.32 \ (4)$ $0.0164 \ (23)$ $ec_{9,1 \ K}$ (U) $768.06 \ (4)$ $0.101 \ (12)$ $ec_{10,2 \ L}$ (U) $782.7 \ - \ 787.3$ $0.069 \ (24)$ $ec_{25,3 \ K}$ (U) $783.46 \ (5)$ $0.0122 \ (15)$	ес _{54,16} к	(U)	577.2 (1)	0.104(11)	
$ec_{49,11}$ K(U) 613.6 (2) 0.025 (19) $ec_{50,13}$ K(U) 617.96 (5) 0.50 (6) $ec_{54,14}$ K(U) 622.7 (1) 0.081 (9) $ec_{5,1}$ K(U) 627.482 (5) 0.0108 (11) $ec_{51,12}$ K(U) 639.7 (1) 0.049 (37) $ec_{56,15}$ K(U) 643.6 (1) 0.010 (8) $ec_{54,16}$ L(U) 671.0 -675.6 0.0197 (21) $ec_{51,9}$ K(U) 680.8 (1) 0.0325 (38) $ec_{10,2}$ K(U) 680.8 (1) 0.097 (34) $ec_{7,1}$ K(U) 690.60 (5) 0.0112 (14) $ec_{12,2}$ K(U) 709.9 (2) 0.0223 (24) $ec_{50,13}$ L(U) 716.3 (1) 0.0178 (21) $ec_{54,14}$ L(U) 716.5 721.1 0.0154 (17) $ec_{50,13}$ M(U) 728.01 730.01 0.0228 (26) $ec_{51,12}$ L(U) 733.5 738.1 0.010 (6) $ec_{24,3}$ K(U) 765.32 (4) 0.065 (8) $ec_{15,2}$ K(U) 765.32 (4) 0.0164 (23) $ec_{9,1}$ K(U) 782.7 787.3 0.069 (24) $ec_{25,3}$ K(U) 783.46 (5) 0.0122 (15)	$ec_{7,2}$ K	(\mathbf{U})	$ \begin{array}{ccc} 590.0 & (1) \\ 615.6 & (2) \end{array} $	0.0130(13) 0.025(10)	
$ec_{50,13}$ K(U) 617.36 (S) 0.30 0.00 $ec_{54,14}$ K(U) 622.7 (1) 0.081 (9) $ec_{51,12}$ K(U) 627.482 (5) 0.0108 (11) $ec_{51,12}$ K(U) 639.7 (1) 0.049 (37) $ec_{56,15}$ K(U) 643.6 (1) 0.010 (8) $ec_{54,16}$ L(U) 671.0 -675.6 0.0197 (21) $ec_{51,9}$ K(U) 680.8 (1) 0.0325 (38) $ec_{10,2}$ K(U) 690.60 (5) 0.0112 (14) $ec_{7,1}$ K(U) 690.60 (5) 0.0112 (14) $ec_{50,13}$ L(U) 711.80 -716.39 0.095 (11) $ec_{22,3}$ K(U) 716.3 (1) 0.0178 (21) $ec_{51,12}$ L(U) 716.5 721.1 0.0154 (17) $ec_{50,13}$ M(U) 728.01 730.01 0.0228 (26) $ec_{51,12}$ L(U) 733.5 738.1 0.010 (6) $ec_{24,3}$ K(U) 765.32 (4) 0.065 (8) $ec_{14,2}$ K(U) 765.32 (4) 0.0164 (23) $ec_{9,1}$ K(U) 783.46 (5) 0.0122 (15)	$ec_{49,11}$ K	(U)	010.0 (2) 617.06 (5)	0.025 (19) 0.50 (6)	
$ec_{54,14}$ K(U) 622.7 (1) 0.081 (9) $ec_{5,1}$ K(U) 627.482 (5) 0.0108 (11) $ec_{51,12}$ K(U) 639.7 (1) 0.049 (37) $ec_{56,15}$ K(U) 643.6 (1) 0.010 (8) $ec_{51,9}$ K(U) 671.0 -675.6 0.0197 (21) $ec_{51,9}$ K(U) 680.8 (1) 0.0325 (38) $ec_{10,2}$ K(U) 688.9 (1) 0.097 (34) $ec_{7,1}$ K(U) 690.60 (5) 0.0112 (14) $ec_{12,2}$ K(U) 709.9 (2) 0.0223 (24) $ec_{50,13}$ L(U) 711.80 -716.39 0.095 (11) $ec_{22,3}$ K(U) 716.3 (1) 0.0178 (21) $ec_{51,12}$ L(U) 716.5 721.1 0.0154 (17) $ec_{51,12}$ L(U) 733.5 738.1 0.010 (6) $ec_{24,3}$ K(U) 765.32 (4) 0.0269 (25) $ec_{14,2}$ K(U) 765.32 (4) 0.0164 (23) $ec_{9,1}$ K(U) 782.7 787.3 0.069 (24) $ec_{25,3}$ K(U) 783.46 (5) 0.0122 (15)	$ec_{50,13}$ K	(\mathbf{U})	$ \begin{array}{ccc} 017.90 & (0) \\ 622.7 & (1) \end{array} $	0.30(0)	
$ec_{5,1 \ K}$ (U) 627.462 (5) $0.0103 (11)$ $ec_{51,12 \ K}$ (U) 639.7 (1) $0.049 (37)$ $ec_{56,15 \ K}$ (U) 643.6 (1) $0.010 (8)$ $ec_{51,9 \ K}$ (U) $671.0 - 675.6$ $0.0197 (21)$ $ec_{51,9 \ K}$ (U) 680.8 (1) $0.0325 (38)$ $ec_{10,2 \ K}$ (U) 688.9 (1) $0.097 (34)$ $ec_{7,1 \ K}$ (U) 690.60 (5) $0.0112 (14)$ $ec_{12,2 \ K}$ (U) 709.9 (2) $0.0223 (24)$ $ec_{50,13 \ L}$ (U) $711.80 - 716.39$ $0.095 (11)$ $ec_{54,14 \ L}$ (U) $716.5 - 721.1$ $0.0154 (17)$ $ec_{51,12 \ L}$ (U) $733.5 - 738.1$ $0.010 (6)$ $ec_{51,12 \ L}$ (U) $760.8 (1)$ $0.0269 (25)$ $ec_{15,2 \ K}$ (U) $765.32 (4)$ $0.065 (8)$ $ec_{9,1 \ K}$ (U) $768.06 (4)$ $0.101 (12)$ $ec_{10,2 \ L}$ (U) $783.46 (5)$ $0.0122 (15)$	ec _{54,14} K	(U)	622.7 (1) 627.482 (5)	0.001(9) 0.0108(11)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{5,1}$ K	(U)	630.7 (1)	0.0108(11) 0.049(37)	
$ec_{56,15}$ K (U) 643.6 (1) 0.0107 (21) $ec_{54,16}$ L (U) 680.8 (1) 0.0325 (38) $ec_{10,2}$ K (U) 688.9 (1) 0.097 (34) $ec_{7,1}$ K (U) 690.60 (5) 0.0112 (14) $ec_{12,2}$ K (U) 709.9 (2) 0.0223 (24) $ec_{50,13}$ L (U) 711.80 -716.39 0.095 (11) $ec_{22,3}$ K (U) 716.3 (1) 0.0178 (21) $ec_{54,14}$ L (U) 716.5 -721.1 0.0154 (17) $ec_{50,13}$ M (U) 728.01 -730.01 0.0228 (26) $ec_{51,12}$ L (U) 733.5 -738.1 0.010 (6) $ec_{24,3}$ K (U) 765.32 (4) 0.065 (8) $ec_{14,2}$ K (U) 765.32 (4) 0.0164 (23) $ec_{9,1}$ K (U) 782.7 -787.3 0.069 (24) $ec_{25,3}$ K (U) 783.46 (5) 0.0122 (15)	ec _{51,12} K	(U)	6/3.6 (1)	0.049(31) 0.010(8)	
$cc_{54,16}$ L (0) 611.6 $e - 616.6$ 0.0151 (21) $ec_{51,9}$ K (U) 680.8 (1) 0.0325 (38) $ec_{10,2}$ K (U) 690.60 (5) 0.0112 (14) $ec_{7,1}$ K (U) 690.60 (5) 0.0122 (14) $ec_{12,2}$ K (U) 709.9 (2) 0.0223 (24) $ec_{50,13}$ L (U) 711.80 $- 716.39$ 0.095 (11) $ec_{22,3}$ K (U) 716.3 (1) 0.0178 (21) $ec_{54,14}$ L (U) 716.5 $- 721.1$ 0.0154 (17) $ec_{50,13}$ M (U) 728.01 $- 730.01$ 0.0228 (26) $ec_{51,12}$ L (U) 733.5 $- 738.1$ 0.010 (6) $ec_{24,3}$ K (U) 765.32 (4) 0.065 (8) $ec_{14,2}$ K (U) 765.32 (4) 0.0164 (23) $ec_{9,1}$ K (U) 782.7 $- 787.3$ 0.069 (24) $ec_{10,2}$ L (U) 783.46 (5) 0.0122 (15)	ec _{56,15} K	(U)	671.0 - 675.6	0.010(0) 0.0197(21)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CC54,16 L	(U)	680.8 (1)	0.0137(21) 0.0325(38)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CC10.2 K	(U)	688.9 (1)	0.0925(34)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{10,2}$ K	(U)	690.60 (1)	0.031(01) 0.0112(14)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{1,1}$ K	(U)	709.9 (2)	0.0223(24)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ecso 13 I	(U)	711.80 - 716.39	0.095(11)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	есээ з к	(U)	716.3 (1)	0.0178(21)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ec ₅₄ 14 L	(U)	716.5 - 721.1	0.0154(17)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ec50 13 M	(U)	728.01 - 730.01	0.0228 (26)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ec ₅₁ 19 L	(U)	733.5 - 738.1	0.010 (6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{24 3 К}	(U)	760.8 (1)	0.0269(25)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{15.2 К}	(U)	765.32 (4)	0.065(8)	
$ec_{9,1 \ K}$ (U) 768.06 (4) $0.101 \ (12)$ $ec_{10,2 \ L}$ (U) 782.7-787.3 $0.069 \ (24)$ $ec_{25,3 \ K}$ (U) 783.46 (5) $0.0122 \ (15)$	ec _{14.2} K	(U)	765.32 (4)	0.0164(23)	
$ec_{10,2 L}$ (U)782.7-787.30.069 (24) $ec_{25,3 K}$ (U)783.46(5)0.0122 (15)	ec _{9,1 K}	(U)	768.06 (4)	0.101(12)	
$ec_{25,3 \text{ K}}$ (U) 783.46 (5) 0.0122 (15)	ec _{10,2} L	(U)	782.7 - 787.3	0.069(24)	
	$ec_{25,3}$ K	(U)	783.46 (5)	0.0122 (15)	

		$rac{\mathrm{Energy}}{\mathrm{keV}}$	Electrons per 100 disint.	${ m Energy}\ { m keV}$
			I	
$ec_{10,2}$ M	(U)	799 - 801	0.064(23)	
$ec_{12,1 \text{ K}}$	(U)	809.8 (1)	0.076~(9)	
$ec_{9,0 K}$	(U)	811.5 (1)	0.070~(12)	
ес _{13,1 К}	(U)	830.79 (3)	0.045~(5)	
ес _{18,2 К}	(U)	832.5 (2)	$0.0150\ (19)$	
ес _{28,3} к	(U)	850.6 (1)	0.011~(6)	
$ec_{15,2}$ L	(U)	859.16 - 863.75	0.0172~(22)	
$ec_{9,1 L}$	(U)	861.90 - 866.49	0.0268 (31)	
$ec_{15,1\ \rm K}$	(U)	865.1 (1)	0.01533 (23)	
$ec_{12,1\ L}$	(U)	903.6 - 908.2	0.0194~(22)	
$ec_{9,0}$ L	(U)	905.3 - 909.9	0.0179(30)	
$ec_{21,1}$ K	(U)	968.2 (1)	0.0130(15)	
$ec_{37,2}$ K	(U)	1238.3 (1)	0.0164(17)	
$ec_{40,2}$ K	(U)	1279.3 (1)	0.0271 (28)	
$\beta_{0,77}^{-}$	max:	51 (4)	0.42(5)	avg: 13.0 (11)
$\beta_{0,76}^{-}$	max:	79 (4)	0.21~(3)	avg: $20.4(11)$
$\beta_{0.75}^{-}$	max:	94 (4)	0.064~(11)	avg: $24.2(11)$
$\beta_{0.74}^{-}$	max:	126 (4)	0.40(7)	avg: 33.1 (11)
$\beta_{0.73}^{-}$	max:	129 (4)	0.140(24)	avg: 33.8 (11)
$\beta_{0,72}^{-}$	max:	158 (4)	0.055~(8)	avg: $41.9(12)$
$\beta_{0,71}^{-}$	max:	161 (4)	0.90 (15)	avg: $42.9(12)$
$\beta_{0.70}^{-}$	max:	175 (4)	0.112(16)	avg: $46.7(12)$
$\beta_{0,69}$	max:	195 (4)	0.122(16)	avg: $52.2(12)$
$\beta_{0,68}^{-}$	max:	214 (4)	0.59~(8)	avg: $57.8(12)$
$\beta_{0,67}^{-}$	max:	226 (4)	0.044~(12)	avg: $61.3(12)$
$\beta_{0,66}^{-}$	max:	236 (4)	0.44(19)	avg: $64.3(12)$
$\beta_{0,65}^-$	max:	254 (4)	0.35~(5)	avg: $69.7(12)$
$\beta_{0,64}^-$	max:	267 (4)	0.22~(4)	avg: $73.5(12)$
$\beta_{0,63}^-$	max:	279 (4)	0.21~(3)	avg: $76.9(12)$
$\beta_{0,62}^-$	max:	313 (4)	0.25~(3)	avg: $87.3(13)$
$\beta_{0,61}^-$	max:	332 (4)	0.029~(7)	avg: $93.0(13)$
$\beta_{0,60}^-$	max:	351 (4)	0.17~(3)	avg: $98.9(13)$
$\beta^{0,59}$	max:	383 (4)	1.43(15)	avg: $108.9(13)$
$\beta_{0,58}^-$	max:	402 (4)	0.41(8)	avg: 114.8 (13)
$\beta_{0,57}^-$	max:	411 (4)	0.061~(11)	avg: 117.6 (13)
$\beta_{0,56}^-$	max:	412 (4)	8(3)	avg: $118.1 (13)$
$\beta_{0,55}^-$	max:	424 (4)	0.129(17)	avg: $121.8 (13)$
$\beta_{0,54}^{-}$	max:	433 (4)	2.8(4)	avg: $124.7(13)$
$\beta_{0,53}^-$	max:	457 (4)	0.78~(19)	avg: $132.3 (14)$
$\beta_{0,52}^-$	max:	458 (4)	1.16(14)	avg: $132.5 (14)$
$\beta_{0,50}^-$	max:	472 (4)	8.4(9)	avg: 137.2 (13)
$\beta_{0,51}^{-}$	max:	472 (4)	36~(5)	avg: $137.1 (13)$
$\beta_{0,49}^-$	max:	502 (4)	6.9(8)	avg: $146.8(14)$
$\beta_{0,48}^-$	max:	542 (4)	0.95~(13)	avg: $160.1 (14)$
$\beta_{0,47}^-$	max:	545 (4)	0.18~(4)	avg: 164.6 (13)
$\beta_{0,46}^-$	max:	576 (4)	0.035~(20)	avg: $171.4(14)$
$\beta_{0,45}^-$	max:	606 (4)	< 0.7	avg: 181.7 (14)

		Ene ke	rgy V	Electrons per 100 disint.]	Energy keV
$\beta_{0,44}^{-}$	max:	613	(4)	0.05~(3)	avg:	184.1(14)
$\beta_{0,43}^{-}$	max:	642	(4)	19.6(18)	avg:	194.0(14)
$\beta_{0,42}^{-}$	max:	647	(4)	0.078~(20)	avg:	195.6(14)
$\beta_{0,41}^{-}$	max:	651	(4)	0.10(9)	avg:	197.1 (14)
$\beta_{0,40}^{-}$	max:	658	(4)	< 0.9	avg:	199.3(14)
$\beta_{0,39}^{-}$	max:	662	(4)	0.21~(4)	avg:	200.6(14)
$\beta_{0.38}^{-}$	max:	693	(4)	0.25~(4)	avg:	211.3(14)
$\beta_{0,37}^{-}$	max:	699	(4)	$<\!\!2.7$	avg:	213.5(14)
$\beta_{0,36}^{-}$	max:	709	(4)	0.12(3)	avg:	216.9(14)
$\beta_{0,34}^{-}$	max:	747	(4)	0.11 (3)	avg:	230.3(14)
$\beta_{0,31}^{-}$	max:	883	(4)	0.109(18)	avg:	278.7(15)
$\beta_{0,26}^{-}$	max:	980	(4)	0.30(12)	avg:	314.2(15)
$\beta_{0,25}^{-}$	max:	1000	(4)	<1.5	avg:	312.6(14)
$\beta_{0,22}^{-}$	max:	1067	(4)	1.9(10)	avg:	$346.5\ (15)$
$\beta_{0,18}^{-}$	max:	1104	(4)	0.69~(20)	avg:	360.2~(15)
$\beta_{0,16}^{-}$	max:	1126	(4)	<8	avg:	368.3(15)
$\beta_{0,15}^{-}$	max:	1171	(4)	1.5 (13)	avg:	385.4(16)
$\beta_{0,14}^{-}$	max:	1171.2	(40)	<5	avg:	385.4(16)
$\beta_{0,13}^{-}$	max:	1206	(4)	<3.1	avg:	398.5~(16)
$\beta_{0,12}^{-}$	max:	1227	(4)	$<\!\!2.5$	avg:	406.4(16)
$\beta_{0,11}^{-}$	max:	1232	(4)	< 0.4	avg:	408.7(16)
$\beta_{0,10}^{-}$	max:	1247	(4)	< 0.8	avg:	414.4(16)
$\beta_{0,7}$	max:	1346	(4)	< 0.8	avg:	452.1(16)
$\beta_{0,2}^{-}$	max:	2052	(4)	<5	avg:	732.2(17)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	11.6185 - 20.7141		77(10)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(U) (U)	$94.666 \\98.44$		$\begin{array}{c} 10.5 \ (6) \\ 16.8 \ (9) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	$110.421 \\ 111.298 \\ 111.964$	} } }	6.1 (4)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(U) (U) (U)	$114.407 \\ 115.012 \\ 115.377$	} } }	2.0 (1)	$\mathrm{K}\beta_2'$

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{14,13}(\mathrm{U})$	34.30(4)	8.4(9)	(E2)	2270 (40)	0.0037(4)
$\gamma_{1,0}(U)$	43.49(2)	86 (23)	E2	713(11)	0.12(3)
$\gamma_{16,14}(U)$	45.45(5)	6.8(44)	M1+E2	250(140)	0.027(9)
$\gamma_{15,12}(U)$	54.96(10)	~ 1.23	[M1+E2]	130 (110)	~0.0094
$\gamma_{14,12}(U)$	54.96(10)	~ 0.0094	[E1]	0.603(9)	~ 0.0094
$\gamma_{45,39}(U)$	55.45(5)	0.043(14)	(E1)	0.589(9)	0.027(9)
$\gamma_{22,16}(U)$	58.20(6)	0.47(16)	(E2)	174(3)	0.0027(9)
$\gamma_{56,51}(U)$	59.19(5)	2.9(25)	[M1+E2]	90 (70)	0.032(11)
$\gamma_{13,9}(U)$	62.70(1)	2.3(7)	E1	0.426(6)	1.6(5)
$\gamma_{25,22}(U)$	67.25(10)	2.1(8)	M1+E2	57(11)	0.036(11)
$\gamma_{25,20}(U)$	69.46(5)	0.7(6)	[E2,M1]	40 (30)	0.018(8)
$\gamma_{16,13}(U)$	79.84(2)	2.4(9)	E2	38.4(6)	0.062(22)
$\gamma_{14,9}(U)$	97.17(10)	0.27(10)	[E1]	0.1343(20)	0.24(9)
$\gamma_{2,1}(U)$	99.86(2)	46 (9)	E2	13.42(19)	3.2(6)
$\gamma_{16,12}(U)$	100.89(2)	0.140(27)	[E1]	0.1218(17)	0.125(24)
$\gamma_{22,14}(U)$	103.77(2)	2.93(49)	(E2)	11.22(16)	0.24(4)
$\gamma_{16,11}(U)$	106.68(5)	0.17~(5)	[M1]	3.83~(6)	$0.036\ (11)$
$\gamma_{25,16}(U)$	125.46(1)	4.7(7)	E2	4.89(7)	0.79(12)
$\gamma_{43,33}(U)$	131.30(1)	23~(2)	${ m E1}$	0.265~(4)	18.2(16)
$\gamma_{51,45}(U)$	134.61(2)	1.20(24)	M1	9.50(14)	0.114(23)
$\gamma_{21,13}(U)$	137.23~(5)	0.033~(11)	[E1]	0.239~(4)	0.027~(9)
$\gamma_{13,7}(U)$	140.15(2)	3.2(10)	M1+E2	5.3(18)	0.51~(7)
$\gamma_{49,43}(\mathrm{U})$	140.91(3)	0.38~(6)	[E1]	0.224~(4)	0.31~(5)
$\gamma_{33,30}(U)$	143.78(2)	2.02(32)	(M1+E2)	5.31	0.32~(5)
$\gamma_{30,22}(U)$	149.88(3)	0.24(7)	[E2]	2.31(4)	0.073~(22)
$\gamma_{3,2}(U)$	152.71(2)	18.8(22)	E2	2.14(3)	6.0(7)
$\gamma_{33,28}(U)$	159.48(2)	0.77~(12)	[E1]	0.1676(24)	0.66~(10)
$\gamma_{22,11}(U)$	164.94~(5)	0.23(14)	[E2,M1]	3.5(19)	0.052~(22)
$\gamma_{64,54}(U)$	$165.61 \ (5)$	0.084~(25)	[E1]	0.1533~(22)	0.073~(22)
$\gamma_{51,43}(U)$	170.85(2)	2.97(41)	M1	4.83(7)	0.51(7)
$\gamma_{14,7}(U)$	174.55(3)	0.66(31)	[M1+E2]	2.9(17)	0.17~(3)
$\gamma_{51,41}(U)$	179.80(8)	0.23~(8)	[M1]	4.19(6)	0.045~(16)
$\gamma_{51,40}(U)$	186.15(2)	8.5~(9)	M1	3.79~(6)	1.78(19)
$\gamma_{56,45}(U)$	193.73~(3)	1.6(7)	[M1+E2]	2.1 (13)	0.50(8)
$\gamma_{23,12}(U)$	196.80(5)	0.22(12)	E0+E2+M1	2.0(13)	0.073~(22)
$\gamma_{21,9}(U)$	199.95~(5)	0.22(12)	(E0 + E2 + M1)	2.0(13)	0.073~(22)
$\gamma_{4,3}(U)$	200.97~(3)	1.56(23)	E2	0.734(11)	0.90~(13)
$\gamma_{13,5}(U)$	203.12(3)	3.0(6)	M1+E2	1.4(4)	1.24(15)
$\gamma_{16,7}(U)$	220.00(8)	0.49(8)	(M1)	2.37(4)	$0.146\ (25)$
$\gamma_{66,53}(\mathrm{U})$	221.15(10)	0.056~(24)	[E1]	0.0780(11)	0.052~(22)
$\gamma_{37,29}(U)$	221.83(10)	0.110(33)	[E2]	0.513~(8)	0.073~(22)
$\gamma_{33,25}(U)$	226.50(3)	11.3(20)	M1+E2	1.3(3)	4.9(6)
$\gamma_{51,37}(U)$	227.25(3)	18.4(19)	M1	2.17(3)	5.8(6)
$\gamma_{25,11}(U)$	232.21 (3)	0.40(16)	[E2,M1]	1.2(8)	0.18(3)
$\gamma_{66,51}(\mathrm{U})$	235.11(3)	0.122~(25)	[E1]	0.0678(10)	0.114(23)
$\gamma_{17,7}(U)$	235.9(30)	0.005~(3)			0.005~(3)
$\gamma_{58,43}(U)$	240.2(1)	0.11~(6)	[M1,E2]	1.1(8)	0.052~(22)

4.2 Gamma Transitions and Emissions

CNDC /Huang Xiaolong, Wang Baosong

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\gamma_{(21,0)}(0) = 12111(1) = 0.000001(10) = 0.000001(10)$
$\gamma_{40,18}(U) = 446.6(1) = 0.153(20) $ [M1] = 0.338(5) = 0.114(15)
$\gamma_{27,5}(U) = 450.93(4) = 0.0050(24) = M1+F2 = 0.241(4) = 0.0040(19)$
$\gamma_{42,19}(U) = 452.4 (3) = 0.027 (9) = 0.027 (9) = 0.027 (9)$
$\gamma_{33,11}(U) = 458.68(5) = 1.30(15) = M1+E2 = 0.14(5) = 1.14(12)$
$\gamma_{45,22}(U) = 461.5(1) = 0.045(14) = [M1] = 0.309(5) = 0.034(11)$
$\gamma_{39,16}(U) = 464.2 (1) = 0.040 (14) [M1] = 0.304 (5) = 0.031 (11)$
$\gamma_{40,16}(U)$ 468.0 (1) 0.223 (30) [E1] 0.01539 (22) 0.22 (3)
$\gamma_{37.15}(U) = 472.3 (1) = 0.46 (5) [M1] = 0.290 (4) = 0.36 (4)$
$\gamma_{41,16}(U)$ 474.2 (2) 0.037 (11) [E1] 0.01499 (21) 0.036 (11)

	$\frac{\rm Energy}{\rm keV}$	${ m P}_{\gamma+{ m ce}} \ imes 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{42,16}(U)$	478.6(1)	0.127(15)	[E1]	0.01472(21)	0.125(15)
$\gamma_{71,43}(U)$	481.0 (1)	0.36(6)	[M1,E2]	0.16(12)	0.31(4)
$\gamma_{45,18}(U)$	498.0(1)	0.078(15)	[M1]	0.252(4)	0.062(12)
$\gamma_{66,35}(U)$	502.0(1)	0.03(10)	[E2,M1]	0.15(10)	0.027(90)
$\gamma_{37,13}(U)$	506.75(5)	1.32(14)	[E1]	0.01314(19)	1.30(14)
$\gamma_{40,15}(U)$	513.4(1)	~ 0.468	[M1]	0.232(4)	~ 0.38
$\gamma_{40,14}(U)$	513.5(1)	~ 0.77	[E1]	0.01280(18)	~ 0.76
$\gamma_{45,16}(U)$	519.6(1)	0.41(5)	[E1]	0.01251(18)	0.40(5)
$\gamma_{49,24}(U)$	521.4(1)	0.76(9)	[E1]	0.01242(18)	0.75(9)
$\gamma_{37,12}(U)$	527.9(1)	0.49(6)	(M1)	0.215(3)	0.40(5)
$\gamma_{43,15}(U)$	529.1(3)	0.102(46)	[E2,M1]	0.13(9)	0.09(4)
$\gamma_{76,44}(U)$	534.1(1)	0.084(13)	[E1]	0.01185(17)	0.083(13)
$\gamma_{71,37}(U)$	537.2(1)	0.093(16)	[M1,E2]	0.12(9)	0.083(13)
$\gamma_{39,13}(U)$	543.8(1)	0.140(25)	[E2]	0.0389(6)	0.135(24)
$\gamma_{47.19}(U)$	553.7(1)	0.045(16)	[E1]	0.01105(16)	0.045(16)
$\gamma_{44.14}(U)$	558.0(2)	0.097(24)	[E2]	0.0367(6)	0.094(23)
$\gamma_{36.9}(U)$	559.2(2)	0.074(22)	[E1]	0.01084(16)	0.073(22)
$\gamma_{76,43}(U)$	562.8(3)	0.040(13)	[M1,E2]	0.11(8)	0.036(11)
$\gamma_{45.15}(U)$	565.2(1)	1.23(13)	(M1)	0.179(3)	1.04(11)
$\gamma_{40.12}(U)$	568.9(2)	4.2(7)	M1	0.1759(25)	3.6(6)
$\gamma_{37.9}(U)$	569.5(1)	10.9(14)	M1	0.1754(25)	9.3(12)
$\gamma_{41,12}(U)$	575.5(1)	0.03(1)	[E2,M1]	0.10(7)	0.027(9)
$\gamma_{43,12}(U)$	584.1(1)	0.19(31)	[E2]	0.0331(5)	0.18(30)
$\gamma_{64.32}(U)$	586.3(1)	0.075(13)	[E2]	0.0328(5)	0.073(13)
$\gamma_{40.10}(U)$	590.3(10)	0.040(12)	[E2,M1]	0.10(7)	0.036(11)
$\gamma_{50,22}(U)$	595.4(2)	0.097(24)	[E2]	0.0317(5)	0.094(23)
$\gamma_{59,26}(U)$	596.9(1)	0.231(35)	[M1]	0.1547(22)	0.20(3)
$\gamma_{49,18}(U)$	602.6(1)	0.55(6)	[E1]	0.00939(14)	0.54(6)
$\gamma_{43,10}(U)$	604.6(3)	0.057(24)	[E2,M1]	0.09(6)	0.052(22)
$\gamma_{53,21}(U)$	612.0(1)	0.43(6)	(M1)	0.1447(21)	0.38(5)
$\gamma_{41,9}(U)$	617.0(2)	0.054(23)	[E2]	0.0294(5)	0.052(22)
$\gamma_{44,11}(U)$	619.0(2)	0.039(12)	[M1+E2]	0.08~(6)	0.036(11)
$\gamma_{49,16}(U)$	624.2(1)	0.39(6)	(M1+E2)	0.1015(15)	0.35(5)
$\gamma_{20,4}(U)$	628.1(1)	0.24(5)	[E1]	0.00868 (13)	0.24(5)
$\gamma_{48,15}(U)$	629.4(1)	0.40(7)	(M1)	0.1342~(19)	0.35~(6)
$\gamma_{51,18}(U)$	632.6~(2)	0.039(12)	[E2,M1]	0.08~(6)	0.036~(11)
$\gamma_{54,22}(U)$	634.3(2)	0.153~(27)	[M1]	$0.1315\ (19)$	0.135~(24)
$\gamma_{-1,4}(U)$	643.2(2)				0.027~(9)
$\gamma_{37,7}(U)$	646.5(1)	$0.115\ (15)$	[E1]	0.00822 (12)	0.114(15)
$\gamma_{50,16}(U)$	653.7~(1)	0.53~(9)	M1	$0.1213\ (17)$	0.47~(8)
$\gamma_{56,22}(U)$	655.2(2)	0.136(24)	[E1]	0.00802~(12)	0.135~(24)
$\gamma_{46,11}(U)$	657.4(1)	0.40(5)			0.40(5)
$\gamma_{-1,5}(U)$	659.8(1)				0.27~(4)
$\gamma_{48,13}(\mathrm{U})$	663.9(1)	0.54(9)	[E1]	0.00782(11)	0.54(9)
$\gamma_{11,3}(U)$	666.5(1)	1.19(13)	[E1]	0.00777(11)	1.18(13)
$\gamma_{35,5}(U)$	669.7(1)	< 0.0006			< 0.0006
$\gamma_{49,15}(\mathrm{U})$	669.7(1)	1.01 (10)	[E1]	0.00770(11)	1.0(1)
$\gamma_{24,4}(U)$	675.1(1)	0.103~(14)	[E2]	0.0242~(4)	0.101~(14)

 $\gamma_{-1,9}(U)$

 $\gamma_{59,11}(U)$

 $\gamma_{8,0}(U)$

 $\gamma_{57,9}(U)$

 $\gamma_{59,10}(U)$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{59,22}(U)$	683.9(2)	0.161(40)	[E1]	0.00740(11)	0.16 (4)
$\gamma_{40,8}(U)$	685.1(2)	0.15(4)			0.15(4)
$\gamma_{54,16}(U)$	692.6(1)	1.38(14)	(M1)	0.1040(15)	1.25(13)
$\gamma_{51,15}(U)$	699.03(5)	3.6(4)			3.6(4)
$\gamma_{7,2}(U)$	705.9(1)	2.31(23)	[E1]	0.00698(10)	2.29(23)
$\gamma_{8,2}(U)$	708.3(2)	0.024(9)	[E2]	0.0219(3)	0.023(9)
$\gamma_{-1,6}(U)$	711.5(1)				0.156(25)
$\gamma_{52,14}(U)$	713.7(1)	0.147(25)	[E1]	0.00684(10)	0.146(25)
$\gamma_{62,23}(U)$	716.5(2)	0.033(10)	[M1,E2]	0.06(4)	0.031(9)
$\gamma_{15,3}(U)$	727.8(2)	0.116(15)	[E2]	0.0207(3)	0.114(15)
$\gamma_{49,11}(U)$	730.9(2)	0.67(11)	[M1,E2]	0.06(4)	0.63(10)
$\gamma_{50,13}(U)$	733.39(5)	7.6(9)	M1	0.0893(13)	7.0(8)
$\gamma_{54,14}(U)$	738.0(1)	1.26(14)	(M1)	0.0878(13)	1.16(13)
$\gamma_{5,1}(U)$	742.813(5)	2.09(21)	E1	0.00636(9)	2.08(21)
$\gamma_{49,10}(U)$	745.9(1)	0.32(5)	[E1]	0.00631(9)	0.32(5)
$\gamma_{52,13}(U)$	748.1(3)	0.105(23)	[E1]	0.00628 (9)	0.104(23)
$\gamma_{51,12}(U)$	755.0(1)	1.29(15)	(E2,M1)	0.05(4)	1.23(13)
$\gamma_{56,15}(U)$	758.9(1)	0.262(33)	[M1,E2]	0.05(4)	0.25(3)
$\gamma_{50,11}(U)$	761.0(2)	0.074(22)	[E2]	0.0189(3)	0.073(22)
$\gamma_{28,4}(U)$	764.8(2)	0.21(5)	[M1,E2]	0.05(3)	0.20(5)
$\gamma_{6,1}(U)$	766.4(2)	0.26(5)	(E2)	0.0187(3)	0.26(5)
$\gamma_{58,15}(U)$	769.1(1)	0.196~(22)	[M1,E2]	0.05~(3)	0.187(20)
$\gamma_{54,13}(U)$	772.4(2)	0.074(22)	[E2]	0.0184(3)	0.073(22)
$\gamma_{-1,7}(U)$	778.6(2)				0.046~(10)
$\gamma_{30,4}(U)$	780.4(2)	0.91 (9)	[E1]	0.00581 (9)	0.90(9)
$\gamma_{9,2}(U)$	783.4(1)	0.305(41)	[E2]	0.0179(3)	0.30(4)
$\gamma_{5,0}(U)$	786.272(22)	1.22(13)	(E1)	0.00573~(8)	1.21 (13)
$\gamma_{54,12}(U)$	792.8(3)	0.045~(11)	[E1]	0.00565(8)	0.045~(11)
$\gamma_{18,3}(U)$	794.9(2)	0.69(11)	[E2]	$0.01735\ (25)$	0.68(11)
$\gamma_{51,9}(U)$	796.1(1)	2.64(31)	[E2]	0.01730(25)	2.6(3)
$\gamma_{55,12}(U)$	802.3~(2)	0.033~(10)	[M1]	0.0703~(10)	0.031~(9)
$\gamma_{10,2}(U)$	804.1(1)	0.85(30)	E0+E2	0.37	0.62(22)
$\gamma_{7,1}(U)$	805.80(5)	2.51 (30)	[E1]	0.00549 (8)	2.5(3)
$\gamma_{8,1}(U)$	808.4(3)	0.19~(6)	E0+E2	4.2	0.036(11)
$\gamma_{53,9}(U)$	811.5(1)	0.130(16)	[M1, E2]	0.04(3)	$0.125\ (15)$
$\gamma_{56,12}(\mathrm{U})$	814.2(1)	0.315~(41)	[E2]	0.01654(24)	0.31~(4)
$\gamma_{11,2}(U)$	819.2(1)	1.91 (20)	[E1]	0.00533 (8)	1.9(2)
$\gamma_{-1,8}(U)$	824.2(2)				1.25~(15)
$\gamma_{12,2}(U)$	825.1(2)	1.93(20)	[E2]	$0.01611\ (23)$	1.9(2)
$\gamma_{20,3}(U)$	829.3(2)	0.36(11)	[E1]	0.00521 (8)	0.36(11)
$\gamma_{22,3}(U)$	831.5(1)	4.2(5)	[E1]	0.00518 (8)	4.2(5)
$\gamma_{75,28}(\mathrm{U})$	839.5(1)	0.031~(8)			0.031~(8)
$\gamma_{49.7}(U)$	844.1(1)	0.44(5)	[E2]	0.01540(22)	0.43(5)

0.052(12)

0.027(8)

0.073(22)

0.036(8)

0.073(22)

846.1(2)

848.9(2)

851.8 (1)

857.7(2)

863.2(2)

0.027(8)

0.074(22)

0.037(8)

0.076(23)

[E1]

[E2]

[E2]

[E2,M1]

0.00500(7)

0.01513(22)

0.01493(21)

0.036(22)

	Energy keV	${ m P}_{\gamma+{ m ce}} \ imes \ 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{77,29}(U)$	869.7(1)	0.20(3)			0.20(3)
$\gamma_{50,7}(U)$	874.0(3)	0.037~(8)	[E2,M1]	0.035~(21)	0.036~(8)
$\gamma_{24,3}(U)$	876.0(1)	2.59(23)	(E2)	0.01432~(20)	2.55(23)
$\gamma_{15,2}(U)$	880.52~(4)	6.3(8)	[E2]	0.01418(20)	6.2(8)
$\gamma_{14,2}(U)$	880.52~(4)	4.3(6)	[E1]	0.00468~(7)	4.3(6)
$\gamma_{9,1}(U)$	883.24~(4)	9.8(11)	E2	0.01409(20)	9.7(11)
$\gamma_{66,16}(U)$	890.1~(4)	0.027~(8)			0.027~(8)
$\gamma_{25,3}(U)$	898.67~(5)	3.31 (40)	[E1]	0.00451~(7)	3.3(4)
$\gamma_{10,1}(U)$	904.2(1)	0.345~(41)	[E2]	$0.01346\ (19)$	0.34(4)
$\gamma_{65,15}(U)$	916.5(2)	0.024(7)			0.024~(7)
$\gamma_{26,3}(U)$	918.4(1)	0.101 (14)	[E2]	0.01306~(19)	0.100(14)
$\gamma_{-1,10}(U)$	920.5(2)				0.029(8)
$\gamma_{12,1}(U)$	925.0(1)	8.0 (9)	(E2)	0.01288(18)	7.9(9)
$\gamma_{16,2}(U)$	926.0(2)	1.8(13)	[E1]	0.00428(6)	1.8(13)
$\gamma_{9,0}(\mathrm{U})$	926.7(1)	7.4(12)	(E2)	0.01284(18)	7.3(12)
$\gamma_{66,15}(\mathrm{U})$	935.8(2)	0.067(10)		0.01044 (10)	0.067(10)
$\gamma_{17,2}(\mathrm{U})$	942.0(3)	0.047(9)	[E2]	0.01244(18)	0.046(9)
$\gamma_{13,1}(\mathrm{U})$	946.00(3)	13.6(15)	(E1)	0.00412(6)	13.5(15)
$\gamma_{18,2}(0)$	947.7(2)	1.65(21)	[E2]	0.01230(18)	1.63(21)
$\gamma_{19,2}(0)$	952.7(1)	0.083(13)		0.01100.(17)	0.083(13)
$\gamma_{59,8}(U)$	960.0(1)	0.074(13)	[E2] [M1 F0]	0.01199(17)	0.073(13)
$\gamma_{28,3}(0)$	965.8(1)	0.49(6)	[M1,E2]	0.027(16)	0.48(0)
$\gamma_{73,18}(U)$	975.1(1)	0.027(8)			0.027(8)
$\gamma_{29,3}(U)$	978.2(3)	0.090(23)	[171]	0.00287 (6)	0.090(23)
$\gamma_{14,1}(0)$	980.3(1)	~ 2.71	[E1] [E9]	0.00387 (0) 0.01152 (17)	~ 2.7
$\gamma_{15,1}(U)$	980.3(1)	~ 1.79 0.73 (22)	[E2] [F1]	0.01152(17) 0.00387(6)	~ 1.77 0.73 (22)
$\gamma_{30,3}(U)$	981.0(3) 084.2(1)	1.64(21)	[E1]	0.00387(0)	1.63(22)
$\gamma_{22,2}(U)$	984.2(1) 080.5(1)	1.04(21) 0.104(14)		0.00385(0)	1.03(21) 0.104(14)
$\gamma_{63,9(0)}$	989.0(1)	0.104(14)			0.104(14) 0.083(22)
$\gamma = 1, \Pi(0)$	992.0(2)	0.062.(22)			0.063(22) 0.062(22)
$\gamma_{60,7}(0)$	994.0(3)	0.002(22) 0.046(12)			0.002(22) 0.046(12)
$\gamma_{73,16}(U)$	1009.9(3)	0.040(12) 0.067(12)			0.040(12) 0.067(12)
$\gamma_{76,10}(U)$	1009.5(0) 1019.5(4)	0.007(12) 0.027(8)			0.007(12) 0.027(8)
$\gamma_{10,19}(0)$	1010.0(1) 1021.8(2)	0.021(0) 0.156(41)	[M1]	0.0370(6)	0.021(0) 0.15(4)
$\gamma_{23,2}(0)$ $\gamma_{-1,12}(U)$	1023.6(2)	0.100 (11)		0.0010 (0)	0.062(22)
$\gamma_{-1,12}(0)$ $\gamma_{-1,12}(0)$	1025.3(2)				0.052(22)
$\gamma = 1,13(\circ)$ $\gamma = 4.2(U)$	1028.7(1)	0.58(6)	[E2]	0.01051(15)	0.57(6)
$\gamma_{24,2}(0)$ $\gamma_{75,16}(U)$	1020.1(1) 1032.8(2)	0.018(5)		0.01001 (10)	0.018(5)
$\gamma_{-1,14}(U)$	1035.9(2)	0.010 (0)			0.026(10)
$\gamma = 1, 1 \neq (0)$ $\gamma_{69, 11}(U)$	1037.9(2)	0.018(7)			0.018(7)
$\gamma_{17.1}(U)$	1041.1(2)	0.033(11)	[E2,M1]	0.023(13)	0.032(11)
$\gamma_{32,3}(U)$	1044.4(2)	0.031 (3)	L / J		0.031 (3)
$\gamma_{70.12}(U)$	1051.4(2)	0.062(12)			0.062(12)
$\gamma_{70.11}(U)$	1057.8(3)	0.0177 (16)			0.0177(16)
$\gamma_{71.12}(U)$	1065.1 (1)	0.027(8)			0.027(8)
$\gamma_{69.9}(U)$	1073.6(2)	0.104(14)			0.104(14)
$\gamma_{21,1}(U)$	1083.2(1)	0.53(6)	(M1)	0.0317(5)	0.51(6)

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}}$ × 100	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{17,0}(U)$	1085.3(3)	0.027~(8)	[E2]	0.00950(14)	0.027~(8)
$\gamma_{71,9}(U)$	1106.9(2)	0.083(13)			0.083(13)
$\gamma_{66,7}(U)$	1110.6(1)	0.062~(12)			0.062~(12)
$\gamma_{23,1}(U)$	1121.7(1)	0.257~(41)	M1	0.0289(4)	0.25~(4)
$\gamma_{33,3}(U)$	1125.2(1)	0.36~(8)	[E1]	0.00305~(5)	0.36~(8)
$\gamma_{21,0}(U)$	1126.8(1)	0.303(40)	[E2]	0.00885~(13)	0.30(4)
$\gamma_{34,3}(U)$	1151.4(3)	0.032~(10)	[E1]	0.00294~(5)	0.032~(10)
$\gamma_{76,11}(\mathrm{U})$	1153.5(3)	0.046~(9)			0.046~(9)
$\gamma_{26,1}(U)$	1171.3(1)	0.091~(13)	[E2]	0.00824~(12)	0.090~(13)
$\gamma_{66,5}(U)$	1173.1(1)	0.046~(9)			0.046~(9)
$\gamma_{71,8}(U)$	1182.1(2)	~ 0.0094			~ 0.0094
$\gamma_{27,1}(U)$	1193.77(2)	0.021~(6)	${ m E1}$	0.00277~(4)	0.021~(6)
$\gamma_{77,9}(\mathrm{U})$	1217.3(1)	0.22~(3)			0.22~(3)
$\gamma_{-1,15}(U)$	1220.4(2)				0.062~(12)
$\gamma_{27,0}(U)$	1237.3(3)	< 0.0094	E1	0.00262(4)	< 0.0094
$\gamma_{40,3}(U)$	1241.2(1)	0.232(30)	(E2)	0.00740(11)	0.23(3)
$\gamma_{41,3}(\mathrm{U})$	1247.8(2)	0.022(6)	[E2]	0.00733(11)	0.022(6)
$\gamma_{42,3}(\mathrm{U})$	1252.6(2)	0.018 (8)			0.018 (8)
$\gamma_{43,3}(\mathrm{U})$	1256.5(1)	0.060(8)	[M1,E2]	0.014(8)	0.059(8)
$\gamma_{33,2}(\mathrm{U})$	1277.7(2)	0.047(9)	[M2]	0.0473(7)	0.045(9)
$\gamma_{45,3}(\mathrm{U})$	1292.8(1)	0.48(6)	M1	0.0199(3)	0.47(6)
$\gamma_{-1,16}(0)$	1296.4(2)				0.029(7)
$\gamma_{-1,17}(0)$	1301.2(2)				0.018(5)
$\gamma_{-1,18}(U)$	1327.0(2)	0.019 (5)	[17,1]	0.00929 (4)	0.018(5)
$\gamma_{36,2}(0)$	1342.9(2) 1252.0(1)	0.012(5)	[E1] M1	0.00232(4)	0.012(5)
$\gamma_{37,2}(U)$	1332.9(1) 1254.6(2)	1.16(12)		0.01700(23) 0.00220(4)	1.10(12)
$\gamma_{47,3}(U)$	1354.0(2) 1350.0(1)	0.14(4) 0.156(25)		0.00229(4)	0.14(4) 0.156(25)
$\gamma_{38,2}(0)$	1339.0(1) 1380.6(2)	0.130(23) 0.073(22)	[F1]	0 00222 (4)	0.130(23) 0.073(22)
$\gamma_{39,2}(U)$	1309.0(2) 1303.0(1)	2 11 (21)	[151] M1	0.00222 (4) 0.01634 (23)	2.08(21)
$\gamma_{40,2}(0)$	1393.9(1) 1397.5(2)	0.083(22)	[E1]	0.01034(23) 0.00220(3)	0.083(21)
(49,3(0))	1397.0(2) 1400.3(1)	0.003(22) 0.182(30)	$[\mathbf{E}_{1}]$	0.00220(5)	0.003(22) 0.18(3)
$\gamma_{41,2}(0)$	1400.3(1) 1409.1(2)	0.102(30) 0.045(10)		0.011 (0)	0.10(0)
$\gamma_{43,2}(0)$ $\gamma_{25,1}(U)$	14144(2)	< 0.018 (10)			< 0.018 (10)
$\gamma_{51,2}(U)$	1426.9(1)	0.17(3)			0.17(3)
$\gamma_{36,1}(U)$	1442.8(2)	0.031(7)	[E1]	0.00212(3)	0.031(7)
$\gamma_{45,2}(U)$	1445.4(1)	0.32(5)	[<u> </u>] [M1]	0.01488(21)	0.32(5)
$\gamma_{37,1}(U)$	1452.7(1)	0.82(9)	[M1]	0.01468(21)	0.81(9)
$\gamma_{38,1}(U)$	1458.9(1)	0.094(23)			0.094(23)
$\gamma_{46,2}(U)$	1475.8(2)	0.008(4)			0.008(4)
$\gamma_{56,3}(U)$	1485.4(2)	0.030(7)	[M1]	0.01387(20)	0.030(7)
$\gamma_{57,3}(U)$	1488.0(2)	0.014(6)		× /	0.014(6)
$\gamma_{40.1}(U)$	1493.6(1)	0.105(14)	[E2]	0.00531(8)	0.104(14)
$\gamma_{58,3}(U)$	1496.0(2)	0.036(9)		~ /	0.036(9)
$\gamma_{41,1}(U)$	1500.0(2)	0.0111 (40)	[E2]	0.00528 (8)	0.011(4)
$\gamma_{-1,19}(U)$	1507.3(2)	· · ·		~ /	0.020(5)
$\gamma_{48,2}(U)$	1510.1(2)	< 0.0094			< 0.0094
$\gamma_{59,3}(\mathrm{U})$	1515.6(2)	$0.073\ (13)$			0.073~(13)

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{-1,20}(U)$	1520.7(2)				0.0094(9)
$\gamma_{-1,21}(U)$	1538.8(2)				0.014(4)
$\gamma_{49,2}(U)$	1550.1(1)	0.073~(13)	[E1]	0.00196~(3)	0.073~(13)
$\gamma_{61,3}(U)$	1567.0(2)	0.0114(23)			$0.0114\ (23)$
$\gamma_{51,2}(U)$	1579.9(1)	0.073~(22)			0.073~(22)
$\gamma_{62,3}(U)$	1585.9(1)	0.146~(17)			0.146~(17)
$\gamma_{52,2}(U)$	1594.0(1)	0.312~(40)	M1,E2	0.008~(4)	0.31~(4)
$\gamma_{54,2}(U)$	1618.3(2)	0.009(4)			0.009~(4)
$\gamma_{55,2}(U)$	1627.3(1)	0.076~(11)			0.076~(11)
$\gamma_{56,2}(U)$	1638.1(1)	0.210(21)	(M1)	0.01083~(16)	0.208(21)
$\gamma_{57,2}(U)$	1640.5(3)	0.010(4)			0.010(4)
$\gamma_{65,3}(U)$	1644.9(2)	0.010(4)			0.010(4)
$\gamma_{58,2}(U)$	1650.2(2)	< 0.006			< 0.006
$\gamma_{-1.22}(U)$	1655.7(1)				0.026(4)
$\gamma_{-1,23}(U)$	1664.8(3)				0.018(7)
$\gamma_{59,2}(U)$	1668.4(1)	0.78(9)	(M1)	0.01035(15)	0.77(9)
$\gamma_{67,2}(U)$	1672.8(1)	0.034(11)			0.034(11)
$\gamma_{50,1}(U)$	1679.5(1)	0.077(18)			0.077(18)
$\gamma_{68,2}(U)$	1685.7(1)	0.31(4)			0.31(4)
$\gamma_{52,1}(U)$	1693.8(2)	0.7(1)			0.7(1)
$\gamma_{52,1}(0)$ $\gamma_{52,1}(U)$	1695.0(3)	0.27(7)			0.27(7)
$\gamma_{e0,2}(U)$	17005(2)	0.104(14)			0.104(14)
$\gamma_{61,2}(U)$	1719.7(2)	0.018(6)			0.018(6)
$\gamma_{70,2}(U)$	17232(2)	0.016(0)			0.016(0)
$\gamma_{10,3}(0)$ $\gamma_{\text{EE},1}(U)$	1727.8(2)	0.020(1)			0.020(1)
$\gamma_{55,1}(0)$ $\gamma_{c5,2}(U)$	1727.0(2) 1737.7(2)	0.020(0) 0.075(11)			0.020(0)
$\gamma_{02,2}(0)$ $\gamma_{70,2}(U)$	1741 1 (2)	0.049(11)			0.019(11) 0.049(8)
$\gamma_{12,3}(0)$	1741.1(2) 17/32(2)	0.045 (0)			0.043(8)
$\gamma = 1,24(0)$	1749.2(2) 1750.0(1)	0.064.(10)			0.055(0)
758,1(0)	1750.0(1) 1757.5(1)	0.004 (10)			0.004(10) 0.024(6)
$\gamma = 1,25(0)$	1768.0(3)	0.020.(5)			0.024(0) 0.020(5)
$\gamma_{59,1}(0)$	1700.0(3) 1770.8(2)	0.020(0)			0.020(5)
$\gamma_{73,3}(0)$	1770.0(2) 1772.0(2)	0.008(17) 0.068(17)			0.008(17) 0.068(17)
$\gamma_{63,2}(U)$	1773.0(2) 1783.7(2)	0.008(17) 0.025(7)			0.008(17) 0.025(7)
$\gamma_{64,2}(U)$	1703.1(2) 1707.1(1)	0.023(7)			0.023(7)
$\gamma_{65,2}(U)$	1797.1(1) 1905.9(2)	0.24(3)			0.24(3)
$\gamma_{75,3}(U)$	1000.0 (3) 1015.2 (2)	0.0052(22)			0.0052(22)
$\gamma_{66,2}(0)$	1810.3(3)	0.009(4)			0.009(4)
$\gamma_{76,3}(0)$	1819.8(3)	0.0042(11)			0.0042(11)
$\gamma_{67,2}(0)$	1825.1(3)	0.009(4)			0.009(4)
$\gamma_{-1,26}(0)$	1830.8(3)	0.0040 (11)			0.0042(11)
$\gamma_{68,2}(U)$	1838.0(2)	0.0042(11)			0.0042(11)
$\gamma_{-1,27}(U)$	1849.8(2)	0.025 (0)			0.028(7)
$\gamma_{63,1}(U)$	1872.8(2)	0.035(9)			0.035(9)
$\gamma_{64,1}(U)$	1884.1(3)	0.016(5)			0.016(5)
$\gamma_{71,2}(U)$	1890.1(2)	0.146(17)			0.146(17)
$\gamma_{72,2}(U)$	1893.4(3)	~0.0062			~0.0062
$\gamma_{65,1}(U)$	1896.7(2)	0.104(23)			0.104(23)
$\gamma_{66,1}(U)$	1915.5~(3)	0.020~(5)			0.020~(5)

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{74,2}(U)$	1925.4(2)	0.30(5)			0.30(5)
$\gamma_{-1,28}(U)$	1927.9(4)				0.054~(12)
$\gamma_{-1,29}(U)$	1935.2~(4)				~ 0.0094
$\gamma_{68,1}(\mathrm{U})$	1937.7(3)	0.042(11)			0.042(11)
$\gamma_{75,2}(U)$	1958.0(4)	0.010(3)			0.010(3)
$\gamma_{76,2}(U)$	1971.2(4)	~ 0.0027			~ 0.0027
$\gamma_{70,1}(U)$	1977.4(4)	0.017(5)			0.017(5)
$\gamma_{71,1}(\mathrm{U})$	1989.6(4)	0.007(4)			0.007(4)
$\gamma_{76,1}(U)$	2072.2(4)	0.0042 (22)			0.0042 (22)

5 References

M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, S.C.Lind, S.Meyer, E.Rutherford, E.Schweidler, Rev. Mod. Phys. 3 (1931) 427 (Half-life) W.L.ZIJP, S.TOM, G.J.SIZOO, Physica 20 (1954) 727 (Half-life) S.BJORNHOLM, O.B.NIELSEN, Nucl. Phys. 30 (1962) 488 (Gamma-ray energies and intensities) A.H.WAPSTRA, Nucl. Phys. A97 (1967) 641 (Gamma-ray energies and intensities) A.H.WAPSTRA, Physica 37 (1967) 261 (Multipolarity, X-ray intensities) S.BJORNHOLM, J.BORGGREEN, D.DAVIES, N.J.S.HANSEN, J.PEDERSEN, H.L.NIELSEN, Nucl. Phys. A118 (1968) 261(Gamma-ray energies and intensities, Multipolarity) J.GODART, A.GIZON, J.BOUTET, R.HENCK, Compt. Rend. Acad. Sci. (Paris) Ser. B 267 (1968) 300 (Gamma-ray energies and intensities) T.E.SAMPSON, Nucl. Instrum. Methods 98 (1972) 37 (Gamma-ray energies) G.ARDISSON, C.ARDISSON, Radiochem. Radioanal. Lett. 21 (1975) 357 (Gamma-ray energies and intensities) C.ARDISSON, J.DALMASSO, G.ARDISSON, Phys. Rev. C33 (1986) 2132 (Gamma-ray energies and intensities) H.L.SCOTT, K.W.MARLOW, Nucl. Instrum. Methods Phys. Res. A286 (1990) 549 (Gamma-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) Y.NIR-EL, Radiochim. Acta 88 (2000) 83 (Gamma-ray energies and intensities) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1(Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) F.S.AL-SALEH, AL-J.H.AL-MUKREN, M.A.FAROUK, Nucl. Instrum. Methods Phys. Res. A568 (2006) 734 (Gamma-ray energies, and emission probabilities) E.BROWNE, J.K.TULI, Nucl. Data Sheets 108 (2007) 681 (Decay scheme and levels)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	1.159	(11)	\min
Q_{β^-}	:	2269	(4)	keV
Q_{IT}	:	73.92	(2)	keV
β^-	:	99.85	(1)	%
IT	:	0.15	(1)	%

2 β^- Transitions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.30}^{-}$	299(4)	0.00389(22)		6.8
$\beta_{0.29}^{-}$	332(4)	0.0108 (3)		6.6
$\beta_{0.28}^{-}$	358(4)	0.0452 (8)		6
$\beta_{0.27}^{-}$	394(4)	0.0258 (3)		6.4
$\beta_{0.26}^{}$	406(4)	0.00311 (19)		7.4
$\beta_{0,25}^{-}$	460(4)	0.0146 (7)		6.9
$\beta_{0,24}^{-}$	473(4)	0.0021 (3)		7.7
$\beta_{0,23}^{-}$	488(4)	$0.0357\ (18)$		6.6
$\beta_{0,22}^{-}$	575(4)	0.0024 (3)		8
$\beta_{0,21}^{-}$	602~(4)	0.0061 (3)		7.6
$\beta_{0,20}^{-}$	667~(4)	0.00127~(23)		8.5
$\beta_{0,19}^{-}$	677~(4)	0.0249 (5)		7.2
$\beta_{0,18}^{-}$	698~(4)	$0.00231\ (19)$		8.4
$\beta_{0,17}^{-}$	715~(4)	0.0320 (6)		7.2
$\beta_{0,16}^{-}$	768(4)	0.0131 (6)		7.7
$\beta_{0,14}^{-}$	834(4)	0.0092(11)		7.9
$\beta_{0,13}^{-}$	1032~(4)	$0.0121\ (11)$		8.2
$\beta_{0,12}^{-}$	1095~(4)	0.0046 (3)		8.7
$\beta_{0,9}^{-}$	1224(4)	1.006(13)		6.5
$\beta_{0,4}^{-}$	1459(4)	0.945(12)		6.8
$\beta_{0,3}^{-}$	1483(4)	0.049 (3)		8
$\beta_{0,0}^{-}$	2269(4)	97.599(24)	Allowed	5.5

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(U)	5.9 - 21.6	0.856(19)	
e _{AK}	(U) KLL KLX KXY	71.776 - 80.954 88.153 - 98.429 104.51 - 115.59	0.0203 (3) } } }	
$e_{\rm AL}$	(Pa)	5.9 - 20.9	0.048(4)	
$ec_{1,0\ L}$	(U)	21.73 - 26.32	1.030(19)	

Pa -	234	m
------	-----	---

		Ener ke	rgy V	Electrons per 100 disint.]	Energy keV
ес _{1,0 М}	(U)	37.94 -	39.94	0.285(5)		
$ec_{1,0 N}$	(U)	42.05 -	43.11	0.0770(14)		
$ec_{1,0 L}$	(Pa)	52.82 -	57.19	0.103(8)		
$ec_{1,0\ M}$	(Pa)	68.56 -	70.48	0.025~(2)		
$\beta_{0.30}^{-}$	max:	299	(4)	0.00389(22)	avg:	83.0(13)
$\beta_{0,29}^{-}$	max:	332	(4)	0.0108(3)	avg:	93.0~(13)
$\beta_{0,28}^{-}$	max:	358	(4)	0.0452 (8)	avg:	101.0(13)
$\beta_{0,27}^{-}$	max:	394	(4)	0.0258~(3)	avg:	$112.3\ (13)$
$\beta_{0,26}^{-}$	max:	406	(4)	0.00311 (19)	avg:	116.0(13)
$\beta_{0,25}^{-}$	max:	460	(4)	0.0146~(7)	avg:	$133.3\ (13)$
$\beta_{0,24}^{-}$	max:	473	(4)	0.0021~(3)	avg:	137.4(14)
$\beta_{0,23}^{-}$	max:	488	(4)	0.0357~(18)	avg:	142.3(14)
$\beta_{0,22}^{-}$	max:	575	(4)	0.0024 (3)	avg:	171.2(14)
$\beta_{0,21}^{-}$	max:	602	(4)	0.0061~(3)	avg:	180.1(14)
$\beta_{0,20}^{-}$	max:	667	(4)	0.00127~(23)	avg:	202.5(14)
$\beta_{0,19}^{-}$	max:	677	(4)	0.0249(5)	avg:	205.8(14)
$\beta_{0,18}^{-}$	max:	698	(4)	0.00231 (19)	avg:	213.3(14)
$\beta_{0,17}^{-}$	max:	715	(4)	0.0320~(6)	avg:	219.2(14)
$\beta_{0.16}^{-}$	max:	768	(4)	0.0131~(6)	avg:	237.6(15)
$\beta_{0,14}^{-}$	max:	834	(4)	0.0092~(11)	avg:	261.1(15)
$\beta_{0,13}^{-1}$	max:	1032	(4)	$0.0121\ (11)$	avg:	$333.1\ (15)$
$\beta_{0,12}^{-1}$	max:	1095	(4)	0.0046(3)	avg:	356.7(15)
$\beta_{0,9}^{-}$	max:	1224	(4)	1.006(13)	avg:	405.6(16)
$\beta_{0,4}^{-}$	max:	1459	(4)	0.945(12)	avg:	496.0(16)
$\beta_{0,3}^{-}$	max:	1483	(4)	0.049(3)	avg:	505.3(16)
$\beta_{0,0}^{\underline{-}}$	max:	2269	(4)	97.599(24)	avg:	820.5(17)

4 Photon Emissions

4.1 X-Ray Emissions

		$egin{array}{c} { m Energy} \\ { m keV} \end{array}$		Photons per 100 disint.	
XL	(U)	11.6185 - 20.7141		0.856(19)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(U) (U)	$94.666 \\98.44$		$\begin{array}{c} 0.1973 \ (25) \\ 0.316 \ (4) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	$110.421 \\ 111.298 \\ 111.964$	} } }	0.115(2)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(U) (U) (U)	$114.407 \\ 115.012 \\ 115.377$	} } }	0.0382(5)	$\mathrm{K}\beta_{2}^{\prime}$
XL	(Pa)	11.3676 - 20.1126		0.046~(4)	

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(U)$	43.49(2)	1.414(26)	E2	713(11)	0.00198(2)
$\gamma_{8.7}(U)$	62.70(1)	0.0019(6)	E1	0.426(6)	0.0013(4)
$\gamma_{1,0}(\text{Pa})$	73.92(2)	0.15(1)	(M1 + E2)	10.6(4)	0.0129(9)
$\gamma_{2,1}(U)$	99.86(2)	0.0082(7)	E2	13.42(19)	0.00057(5)
$\gamma_{18,14}(U)$	135.32(8)	0.0000052(6)	[E1]	0.247(4)	0.0000042(5)
$\gamma_{11.8}(U)$	137.23(5)	0.000059(21)	[E1]	0.239(4)	0.000048(17)
$\gamma_{8.5}(U)$	140.1(10)	< 0.008	M1+E2	5.3(18)	< 0.00127
$\gamma_{20,14}(U)$	166.5(1)	0.00000273(6)	[E1]	0.1514(22)	0.00000237(5)
$\gamma_{12,8}(U)$	185.0(4)	0.00172(15)			0.00172(15)
$\gamma_{9.6}(U)$	193.4(8)	0.00133(28)	[E2]	0.847(18)	0.00072(15)
$\gamma_{14,13}(U)$	197.91(15)	0.000081(39)	[M1,E2]	2.0(12)	0.000027(7)
$\gamma_{11,7}(U)$	199.9(10)	0.0017(8)	(E0 + E2 + M1)	1.9(12)	0.00058(12)
$\gamma_{8,3}(U)$	203.3(8)	0.0029(5)	M1+E2	1.4(4)	0.00119(9)
$\gamma_{23,18}(U)$	209.9(4)	0.00132 (15)			0.00132 (15)
$\gamma_{10,5}(U)$	235.9(3)	0.000096 (43)	[E1]	$0.0673\ (10)$	0.00009~(4)
$\gamma_{-1,1}(U)$	243.5(8)				0.00050 (9)
$\gamma_{13,8}(U)$	247.7(8)	0.0019 (8)	[M1,E2]	1.0(7)	0.00097~(22)
$\gamma_{9,3}(U)$	258.227 (3)	0.0778~(8)	(E1)	0.0548(8)	0.0738~(8)
$\gamma_{11,6}(U)$	275.5(8)	0.00056~(22)	[M1, E2]	0.8~(6)	0.00031~(6)
$\gamma_{10,3}(U)$	299(1)	0.00067~(14)	[E1]	0.0395~(7)	0.00064~(13)
$\gamma_{13,7}(U)$	311(1)	0.00054~(11)	[E1]	0.0363~(6)	0.00052~(11)
$\gamma_{11,4}(U)$	316.7(1)	0.00022~(6)	[E2]	0.1597~(23)	0.00019 (5)
$\gamma_{24,15}(U)$	338.1(8)	0.00113 (23)			0.00113 (23)
$\gamma_{11,3}(U)$	340.2(1)	0.000074~(22)	[E1]	0.0298~(5)	0.000072 (21)
$\gamma_{28,17}(U)$	$357.5\ (10)$	0.00080 (17)			0.00080 (17)
$\gamma_{24,14}(U)$	362.8(10)	0.00069(15)			0.00069(15)
$\gamma_{13,5}(U)$	387.6(8)	0.000512 (44)	[E2]	0.0899(14)	0.00047(4)
$\gamma_{12,3}(U)$	387.6(8)	0.00097(15)		<i>.</i>	0.00097(15)
$\gamma_{13,4}(U)$	427.4(2)	0.000020(5)	[E1]	0.0185(3)	0.000020(5)
$\gamma_{14,8}(U)$	445.91 (10)	0.000037(9)	[M1,E2]	0.20(14)	0.000031(7)
$\gamma_{13,3}(U)$	450.98 (10)	0.00385(16)	M1+E2	0.241(4)	0.00310(13)
$\gamma_{28,15}(U)$	453.58(10)	0.00282(16)	[M1]	0.324(5)	0.00213(12)
$\gamma_{22,13}(U)$	456.7(10)	0.00095(20)	[M1]	0.318(5)	0.00072(15)
$\gamma_{17,10}(\mathrm{U})$	468.43(10)	0.00206(12)	[3, 64]		0.00206(12)
$\gamma_{28,14}(U)$	475.74 (10)	0.00305(17)		0.285(4)	0.00237(13)
$\gamma_{18,10}(0)$	485.44(7)	0.0000217(28)	[M1,E2]	0.16(11)	0.0000187(17)
$\gamma_{19,10}(0)$	507.5(10)	0.00158(15)			0.00158(15)
$\gamma_{17,9}(0)$	509.2(8)	0.0022(3)	(1 (1)	0.000 (4)	0.0022(3)
$\gamma_{20,10}(0)$	516.00(0)	0.000015(2)		0.228(4)	0.0000122(16)
$\gamma_{18,9}(U)$	520.02(10)	0.0000110(12)		0.217(3)	0.000009(1)
$\gamma_{23,13}(\cup)$	545.98 (10)	0.00349(15)	(11)	0 196 (9)	0.00349(15)
$\gamma_{20,9}(\cup)$	337.24(0)	0.0000098 (13)	(111)	0.160(3)	0.0000083 (11) 0.00079 (17)
$\gamma_{-1,2}(\cup)$	579 (1)	0.00109.(90)	[]]	0 172 (9)	0.00072(17)
$\gamma_{25,13}(U)$	$\frac{\partial (2 (1)}{581 10 (10)}$	0.00102 (20)	[1VII] [正1]	0.173(3)	$0.00081 (17) \\ 0.00080 (0)$
$\gamma_{18,8}(U)$	694 G (10)	0.000001 (9) 0.000117 (19)	[Ľ⊥] [F1]	0.01000(14) 0.00877(19)	0.000000 (9)
$\gamma_{14,4}(0)$	647.7(8)	0.000117 (12)		0.00077 (13)	$0.000110 (12) \\ 0.00158 (15)$
$\gamma_{-1,3}(\cup)$	041.1 (8)				0.00198(19)

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{14,3}(U)$	649(1)	0.000064 (9)	[M1,E2]	0.08(5)	0.000059(8)
$\gamma_{16,6}(U)$	649(1)	0.0010(3)			0.0010(3)
$\gamma_{23,11}(U)$	655.3(10)	0.00139(15)			$0.00139\ (15)$
$\gamma_{15,3}(U)$	670.8(10)	0.0004(1)	[M1,E2]	0.07(5)	0.00037 (9)
$\gamma_{28,13}(U)$	673.9(10)	0.00071(14)	[M1]	0.1118(17)	0.00064(13)
$\gamma_{25,11}(U)$	683.4(10)	0.00058(12)	[E1]	0.00741(11)	0.00058(12)
$\gamma_{16,4}(U)$	691.0(3)	0.00898 (19)			0.00898 (19)
$\gamma_{23,10}(U)$	695.5(10)	0.00164~(14)			0.00164(14)
$\gamma_{29,13}(U)$	699.02(10)	0.0058~(3)			0.0058~(3)
$\gamma_{17,6}(U)$	702.0(1)	0.00721 (16)			0.00721 (16)
$\gamma_{5,2}(U)$	705.94(12)	0.0052~(6)	[E1]	0.00698(10)	0.0052~(6)
$\gamma_{6,2}(U)$	708.2(10)	< 0.00072	[E2]	0.0219(4)	< 0.0007
$\gamma_{18,6}(U)$	719.01(7)	0.0000271 (24)	[M1+E2]	0.06~(4)	0.0000256 (20)
$\gamma_{30,13}(U)$	732.5(10)	0.00130(15)			$0.00130\ (15)$
$\gamma_{19,6}(U)$	740.10(8)	0.0118~(3)			0.0118~(3)
$\gamma_{3,1}(U)$	742.813(5)	0.0946~(30)	${ m E1}$	0.00636 (9)	0.094(3)
$\gamma_{20,6}(U)$	750.12(6)	0.0000184~(22)	(M1)	0.0841~(12)	0.000017~(2)
$\gamma_{-1,4}(U)$	760.3(10)				$0.00158\ (15)$
$\gamma_{18,4}(U)$	760.53(15)	0.0000046 (10)	[M1]	0.0811(12)	0.0000043 (9)
$\gamma_{4,1}(U)$	766.361(20)	0.3290(41)	(E2)	0.0187~(3)	0.323~(4)
$\gamma_{19,4}(U)$	781.75(10)	0.00782~(18)			0.00782~(18)
$\gamma_{7,2}(U)$	783.4(1)	0.000040 (7)	[E2]	0.0179(3)	0.000039 (7)
$\gamma_{3,0}(U)$	786.272 (22)	0.0539~(7)	E1+M2	0.00573~(8)	0.0536~(7)
$\gamma_{20,4}(U)$	791.94(5)	0.0000106~(14)	[M1]	0.0728(11)	0.0000099 (13)
$\gamma_{5,1}(U)$	805.75(10)	0.0062 (8)	[E1]	0.00549(8)	0.0062 (8)
$\gamma_{6,1}(U)$	808.2(1)	0.00281 (17)			0.00281 (17)
$\gamma_{21,5}(U)$	818.2(5)	0.0010 (3)			0.0010~(3)
$\gamma_{28,10}(U)$	825.5(2)	0.0014(4)			0.0014(4)
$\gamma_{22,5}(U)$	844.1 (8)	0.00109(23)			0.00109(23)
$\gamma_{6,0}(U)$	851.6 (1)	0.00707(15)	[E2]	0.01514(22)	0.00696(15)
$\gamma_{28,9}(U)$	866.8 (10)	0.00116(16)			0.00116(16)
$\gamma_{21,3}(U)$	880.52(4)	0.00392(5)			0.00392(5)
$\gamma_{7,1}(U)$	883.24 (3)	0.00386~(5)	$\mathrm{E2}$	0.01409(20)	0.00381(5)
$\gamma_{-1,5}(U)$	887.29 (100)				0.00708(14)
$\gamma_{28,8}(U)$	921.72(10)	0.01275(20)		0.01004 (10)	0.01275(20)
$\gamma_{7,0}(U)$	926.61(10)	0.00127(13)	(E2)	0.01284(18)	0.00125(13)
$\gamma_{26,7}(U)$	936.3 (10)	0.00102(17)		0.010(1)(1)	0.00102(17)
$\gamma_{10,2}(U)$	941.96(10)	0.00253(9)	[E2]	0.01244(18)	0.00250(9)
$\gamma_{8,1}(U)$	945.961(16)	0.01064(14)	(E1)	0.00412(6)	0.01060(14)
$\gamma_{25,5}(\mathrm{U})$	960 (1)	0.0009(3)			0.0009(3)
$\gamma_{23,3}(U)$	996.1 (20)	0.0059(17)	F 2	0.01107 (10)	0.0059(17)
$\gamma_{9,1}(U)$	1001.026(18)	0.856(8)	E2	0.01107 (16)	0.847(8)
$\gamma_{10,1}(U)$	1041.7(1)	0.00122(8)	[E2,M1]	0.023(13)	0.00119(8)
$\gamma_{28,6}(U)$	1059.4(8)	0.00111(22)			0.00111(22)
$\gamma_{28,5}(\mathrm{U})$	1061.86(10)	0.00224(9)	/3 /4 \	0.0010 (7)	0.00224(9)
$\gamma_{11,1}(U)$	1081.9(10)	0.00094(20)	(M1)	0.0318(5)	0.00091(19)
$\gamma_{10,0}(U)$	1084.25(10)	0.00081(40)	[E2]	0.00952(14)	0.0008(4)
$\gamma_{30,5}(\mathrm{U})$	1120.6(8)	0.00173 (15)			0.00173 (15)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{28,3}(U)$	1124.93(10)	0.00347(9)			0.00347(9)
$\gamma_{11,0}(U)$	1124.93(10)	0.00039 (9)	[E2]	0.00888 (13)	0.00039 (9)
$\gamma_{12,0}(U)$	1174.2(10)	0.00192~(19)			0.00192~(19)
$\gamma_{13,1}(U)$	1193.77(3)	$0.01363\ (18)$	${ m E1}$	0.00277~(4)	$0.01359\ (18)$
$\gamma_{-1,6}(U)$	1220.37(10)				0.00091 (9)
$\gamma_{13,0}(U)$	1237.28(10)	0.00529 (11)	$\mathrm{E1}$	0.00262~(4)	0.00528 (11)
$\gamma_{-1,7}(U)$	1353.0(15)	<i>.</i>			0.0015(5)
$\gamma_{14,1}(U)$	1392.6(9)	0.0029(11)	E1	0.00221(4)	0.0029(11)
$\gamma_{15,1}(U)$	1413.89(10)	0.00229(8)	[E1]	0.00217(3)	0.00229(8)
$\gamma_{14,0}(U)$	1434.16(10)	0.00975(16)	$\mathrm{E1}$	0.00213(3)	0.00973(16)
$\gamma_{16,1}(U)$	1458.5(15)	0.0019(5)			0.0019(5)
$\gamma_{16,0}(\mathrm{U})$	1501 (2)	0.0013			0.0013
$\gamma_{17,1}(U)$	1510.22(10)	0.01308(19)			0.01308(19)
$\gamma_{18,1}(U)$	1527.28(10)	0.00237(8)	M1+E2	0.009(4)	0.00235(8)
$\gamma_{19,1}(U)$	1550.1(10)	0.00137(15)			0.00137(15)
$\gamma_{17,0}(U)$	1553.77(10)	0.00826(14)	2.64	0.01000 (10)	0.00826(14)
$\gamma_{20,1}(U)$	1558.4(10)	0.00074(9)	M1	0.01228(18)	0.00073(9)
$\gamma_{18,0}(U)$	1570.67 (10)	0.00111(8)	M1	0.01204(17)	0.00110(8)
$\gamma_{19,0}(U)$	1593.5(6)	0.00235(12)		0.01140(17)	0.00235(12)
$\gamma_{20,0}(0)$	1601.8(15)	0.00048(22)	(M1)	0.01146(17)	0.00047(22)
$\gamma_{21,0}(0)$	1007.0(10) 1604.1(10)	0.00118(0)			0.00118(6)
$\gamma_{22,0}(0)$	1094.1 (10) 1720 = (15)	0.00038(2)			0.00038(2)
$\gamma_{-1,8}(U)$	1720.0(10) 1720.0(15)				0.00035(13)
$\gamma_{-1,9}(0)$	1732.2(10) 1727.77(10)	0.0914.(9)			0.0019(3)
$\gamma_{23,1}(U)$	1757.77(10) 1750.81(10)	0.0214(3)			0.0214(3) 0.00146(5)
$\gamma_{-1,10(0)}$	1759.61(10) 1765.44(10)	0.0084 (6)			0.00140(3)
$\gamma_{25,1}(0)$	1705.44(10) 1706.3(0)	0.0034(0)			0.0034(0)
$\gamma_{24,0}(U)$	1790.3(9) 1800.05(10)	0.00031(3) 0.00376(7)			0.00031(3) 0.00376(7)
$\gamma_{25,0}(0)$	1809.00(10) 1810.60(10)	0.00370(7)			0.00370(7)
$\gamma_{26,1}(U)$	1819.09(10) 1831.37(10)	0.00039(3) 0.01759(23)			0.00039(3) 0.01759(23)
$\gamma_{27,1}(0)$	1863.09(10)	0.01109(20)			0.01709(20)
$\gamma_{26,0}(U)$	1867.7(1)	0.00120(0) 0.00932(12)			0.00120(0) 0.00932(12)
$\gamma_{27,0}(U)$	1874 9 (1)	0.00002(12) 0.00819(14)			0.00002(12) 0.00819(14)
$\gamma_{27,0}(0)$ $\gamma_{20,1}(U)$	$1893\ 51\ (11)$	0.00019(14) 0.00218(6)			0.00019(14) 0.00218(6)
$\gamma_{29,1}(0)$ $\gamma_{28,0}(U)$	$1911\ 20\ (11)$	0.00218(0) 0.00628(9)			0.00218(0) 0.00628(9)
$\gamma_{20,0}(0)$ $\gamma_{20,1}(U)$	1926.5(10)	0.00045(4)			0.00045(4)
$\gamma_{20,0}(U)$	1937.01(13)	0.00285(5)			0.00285(5)
$\gamma_{30,0}(0)$ $\gamma_{30,0}(U)$	1970.3(8)	0.00041(4)			0.00041(4)
$\gamma_{-1,11}(U)$	2022.24(12)				0.000186(3)
$\gamma_{-1,12}(U)$	2041.23(13)				0.00011(1)
$\gamma_{-1.13}(U)$	2065.80(13)				0.00007
$\gamma_{-1.14}(U)$	2093.19 (38)				0.00002
$\gamma_{-1.15}(U)$	2102.14 (15)				0.00006
$\gamma_{-1.16}(U)$	2136.69 (14)				0.00007
, _,_0(~)	()				

5 References

N.FEATHER, E.BRETSCHER, Proc. Roy. Soc. (London) 165A (1938) 530 (IT Branching Ratio) H.BRADT, P.SCHERRER, Helv. Phys. Acta 18 (1945) 405 (IT Branching Ratio) F.BARENDREGT, S.TOM, Physica 17 (1951) 817 (Half-life) W.L.ZIJP, S.TOM, G.J.SIZOO, Physica 20 (1954) 727 (Half-life) ONG PING HOK, J.T.VERSCHOOR, P.BORN, Physica 22 (1956) 465 (Half-life) J.H.FORREST, S.J.LYLE, G.R.MARTIN, J.J.MAULDEN, J. Inorg. Nucl. Chem. 15 (1960) 210 (IT Branching Ratio) S.BJORNHOLM, O.B.NIELSEN, Nucl. Phys. 42 (1963) 642 (Gamma-ray energies, intensities and emission proba) A.H.WAPSTRA, Nucl. Phys. A97 (1967) 641 (Gamma-ray energies and intensities) M.SAEKI, K.KIMURA, T.ISHIMORI, Report JAERI-1178, Japan Atomic Energy Research Institute (1969) 25 (Half-life) R.DENIG, N.TRAUTMANN, N.KAFFRELL, G.HERRMANN, Proc. Int. Conf. on Protactinium, Schloss Elmau, Germany (1969)(Half-life) R.GUNNINK, J.F.TINNEY, Report UCRL-51086, Univ. California (1971) (Gamma-ray energies, intensities and emission proba) T.E.SAMPSON, Nucl. Instrum. Methods 98 (1972) 37 (Gamma-ray energies) J.GODART, A.GIZON, Nucl. Phys. A217 (1973) 159 (IT Branching Ratio) G.ARDISSON, C.MARSOL, Nuovo Cim. 28A (1975) 155 (Gamma-ray energies and intensities) Y.Y.Chu, G.Scharff-Goldhaber, Phys. Rev. C17 (1978) 1507 (IT Branching Ratio) M.H.MOMENI, Nucl. Instrum. Methods 193 (1982) 185 (Gamma-ray emission probabilities) C.E.Moss, Radiat. Eff. 94 (1986) 81 (Gamma-ray emission probabilities) H.L.SCOTT, K.W.MARLOW, Nucl. Instrum. Methods Phys. Res. A286 (1990) 549 (Gamma-ray emission probabilities) P.JAGAM, J.J.SIMPSON, J. Radioanal. Nucl. Chem. 166 (1992) 393 (Gamma-ray emission probabilities) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities) K.SIEMON, R.A.ESTERLUND, J.VAN AARLE, M.KNAACK, W.WESTMEIER, P.PATZELT, Appl. Radiat. Isot. 43 (1992) 873(Gamma-ray emission probabilities) G.A.SUTTON, S.T.NAPIER, M.JOHN, A.TAYLOR, Sci. Total Environ. 130/131 (1993) 393 (Gamma-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) I.Adsley, J.S.Backhouse, A.L.Nichols, J.Toole, Appl. Radiat. Isot. 49 (1998) 1337 (Evaluated Gamma-ray emission probabilities) S.ANILKUMAR, N.KRISHNAN, M.C.ABANI, Appl. Radiat. Isot. 51 (1999) 725 (Gamma-ray emission probabilities) A.C.NZURUBA, Nucl. Instrum. Methods Phys. Res. A424 (1999) 425 (Compiled data) Y.NIR-EL, Radiochim. Acta 88 (2000) 83 (Gamma-ray energies and intensities) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC)

G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129
(Q)
H.YUCEL, H.KARADENIZ, M.A.CETINER, H.DEMIREL, S.TURHAN, J. Radioanal. Nucl. Chem. 258 (2003) 445
(Gamma-ray emission probabilities)
M.J.WOODS, S.M.COLLINS, Appl. Radiat. Isot. 60 (2004) 257
(Evaluated Half-life)
V.B.BRUDANIN, K.YA.GROMOV, S.I.VASILIEV, A.A.KLIMENKO, A.A.SMOLNIKOV, V.I.FOMINYKH, V.G.CHUMIN,

Part. and Nucl., Lett. 122 (2004) 84

 $(\mbox{Gamma-ray energies and intensities})$

F.S.AL-SALEH, AL-J.H.AL-MUKREN, M.A.FAROUK, Nucl. Instrum. Methods Phys. Res. A568 (2006) 734 (Gamma-ray energies, and emission probabilities)

E.BROWNE, J.K.TULI, Nucl. Data Sheets 108 (2007) 681

(Decay scheme and levels)
$T_{1/2}$:	70.6	(11)	У
$Q^{'}_{lpha}$:	5413.63	(9)	keV
α	:	100		%
^{24}Ne	:	5	(3)	$\times 10^{-10}~\%$
SF	:	2.8	(6)	$\times 10^{-12}~\%$

2 α Emissions

	Energy keV	Probability × 100
$\begin{array}{c} \alpha_{0,8} \\ \alpha_{0,7} \\ \alpha_{0,6} \\ \alpha_{0,5} \\ \alpha_{0,4} \\ \alpha_{0,3} \\ \alpha_{0,2} \end{array}$	$\begin{array}{c} 4460.86 \ (9) \\ 4502.77 \ (9) \\ 4810.01 \ (9) \\ 4931.00 \ (9) \\ 4948.59 \ (9) \\ 4997.90 \ (9) \\ 5136 \ 64 \ (9) \end{array}$	$\begin{array}{c} 0.0000033 \ (9) \\ 0.0000214 \ (16) \\ 0.000054 \ (4) \\ 0.000051 \ (6) \\ 0.00622 \ (9) \\ 0.325 \ (6) \end{array}$
$lpha_{0,2}$ $lpha_{0,1}$ $lpha_{0,0}$	5160.04(9) 5263.48(9) 5320.24(9)	$\begin{array}{c} 30.6 \\ 69.1 \\ 6\end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Th)	5.8 - 20.3	11.62(22)
e _{AK}	(Th) KLL KLX KXY	68.406 - 76.745 83.857 - 93.345 99.29 - 109.64	0.00057 (8) } }
$ec_{2,1} K$ $ec_{2,1} L$ $ec_{2,1} M$ $ec_{2,1} N$ $ec_{1,0} L$ $ec_{1,0} M$ $ec_{1,0} N$	(Th) (Th) (Th) (Th) (Th) (Th) (Th)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.01811 \ (33) \\ 0.1742 \ (33) \\ 0.0478 \ (8) \\ 0.01283 \ (24) \\ 22.4 \ (6) \\ 6.14 \ (16) \\ 1.646 \ (41) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Th)	11.1177 - 19.5043		11.00(24)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\93.351$		$0.00524 (11) \\ 0.00847 (16)$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Th) (Th) (Th)	$104.819 \\ 105.604 \\ 106.239$	} } }	0.00301 (7)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	$\begin{array}{c} {\rm (Th)} \\ {\rm (Th)} \\ {\rm (Th)} \end{array}$	$\begin{array}{c} 108.509 \\ 108.955 \\ 109.442 \end{array}$	} } }	0.001016 (29)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(\mathrm{Th})$	57.752(13)	30.8(8)	E2	153.2(22)	0.200(4)
$\gamma_{2,1}(\mathrm{Th})$	129.065(3)	0.325~(5)	E2	3.74(6)	0.0686~(7)
$\gamma_{6,4}(\mathrm{Th})$	140.999(20)	0.0000038 (16)	${ m E1}$	0.217~(3)	0.0000031 (13)
$\gamma_{4,2}(\mathrm{Th})$	$191.351\ (11)$	0.000055 (5)	E2	0.776(11)	0.000031 (3)
$\gamma_{5,2}(Th)$	209.252~(6)	0.0000119 (33)	${ m E1}$	0.0848(12)	0.000011 (3)
$\gamma_{3,1}(\mathrm{Th})$	270.245(7)	0.00332~(7)	${ m E1}$	0.0470(7)	0.00317~(7)
$\gamma_{3,0}(\mathrm{Th})$	328.004(7)	0.00292~(7)	${ m E1}$	0.0305~(5)	0.00283~(7)
$\gamma_{6,2}(\mathrm{Th})$	332.371~(6)	0.0000505(31)	${ m E1}$	0.0297~(5)	0.000049(3)
$\gamma_{5,1}(\mathrm{Th})$	338.320(5)	0.0000381 (19)	${ m E1}$	0.0285(4)	0.0000370(18)
$\gamma_{8,5}(\mathrm{Th})$	478.41(5)	0.0000014~(6)	${ m E1}$	0.01379(20)	0.0000014~(6)
$\gamma_{7,3}(\mathrm{Th})$	503.819(23)	0.0000147 (9)	${ m E1}$	0.01243(18)	0.0000145 (9)
$\gamma_{8,3}(\mathrm{Th})$	546.454(21)	0.0000010 (6)	${ m E1}$	$0.01058\ (15)$	0.0000010 (6)
$\gamma_{7,1}(\mathrm{Th})$	774.05(9)	0.0000048 (8)	E2	0.01649(23)	0.0000047(8)
$\gamma_{8,1}(\mathrm{Th})$	816.62(700)	0.00000083(31)	M1+E2	0.0359(5)	0.0000008 (3)
$\gamma_{7,0}(\mathrm{Th})$	831.823 (10)	0.000002 (1)	$\mathrm{E0}$. ,	. ,

5 References

J.W.GOFMAN, G.T.SEABORG, Report National Nuclear Energy Series 14B (1949) 1427
(Half life)
R.A.JAMES, A.E.FLORIN, H.H.HOPKINS JR., A.GHIORSO, Report National Nuclear Energy Series 14B (1949) 1604
(Half life)
P.A.SELLERS, C.M.STEVENS, M.H.STUDIER, Phys. Rev. 94 (1954) 952
(Half life)
G.SCHARFF-GOLDHABER, E.MATEOSIAN, G.HARBOTTLE, M.MCKEOWN, Phys. Rev. 99 (1955) 180
(Alpha-particle emissions)
F.ASARO, I.PERLMAN, Phys. Rev. 99 (1955) 37
(Alpha-particle emissions)

C.M.LEDERER, Thesis, Report UCRL-11028, Univ. California (1963) (Alpha-gamma coincidence measurements) J.M.CHILTON, R.A.GILBERT, R.E.LEUZE, W.S.LYON, J. Inorg. Nucl. Chem. 26 (1964) 395 (Half life) G.BERTOLINI, F.CAPPELLANI, G.RESTELLI, H.L.SCHERFF, Nucl. Phys. 68 (1965) 170 (Alpha-particle emissions) I.AHMAD, Thesis, Report UCRL-16888, Univ. California (1966) (Gamma-ray emission probabilities) S.A.BARANOV, L.G.ALIEV, V.M.KULAKOV, V.M.SHATINSII, Sov. J. Nucl. Phys. 4 (1967) 673 (Alpha-particle emissions) M.HERMENT, C.VIEU, Compt. Rend. Acad. Sci. (Paris) Ser. B 273 (1971) 1058 (Gamma-ray emission energies) H.W.TAYLOR, Int. J. Appl. Radiat. Isotop. 24 (1973) 594 (Gamma-ray emission energies) W.KURCEWICZ, N.KAFFRELL, N.TRAUTMANN, A.PLOCHOCKI, J, ZYLICZ, M.MATUL, K.STRYCZNIEWICZ, Nucl. Phys. A289 (1977) 1 (Gamma-ray emission energies and probabilities) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, J.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251 (Gamma-ray emission energies) R.G.HELMER, Nucl. Instrum. Methods 164 (1979) 355 (Gamma-ray emission energies) S.K.AGGARWAL, S.B.MANOHAR, S.N.ACHARYA, S.PRAKASH, H.C.JAIN, Phys. Rev. C20 (1979) 1533 (Half life) A.L.NICHOLS, M.F.JAMES, Report AEA 1407, Winfrith (1981) (Previous evaluation) A.S.MAHAJAN, M.S.BIDARKUNDI, Ind. J. Pure Appl. Phys. 20 (1982) 701 (Conversion electron measurements) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) S.W.BARWICK, P.B.PRICE, J.D.STEVENSON, Phys. Rev. C62 (1985) 1984 (Cluster decay) M.F.BANHAM, R.MCCHROHON, Report AERE-11353 (1986) (Gamma-ray emission probabilities) J.DALMASSO, H.MARIA, G.ARDISSON, Phys. Rev. c36 (1987) 2510 (Gamma-ray emission energies) R.BONETTI, E.FIORETTO, C.MIGLIORINO, A.PASINETTI, F.BARRANCO, E.VIGEZZI, R.A.BROGIA., Phys. Lett. B241 (1990) 179 (Cluster decay and spontaneous fission) H.BALTZER, K.FRIETAG, C.GUNTHER, P.HERZOG, J.MANNS, U.MULLER, R.PAULSEN, P.SEVENICH, T.WEBER, B.Z.WILL, Z. Phys. a352 (1995) 47 (Gamma-ray emission energies) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (X-ray and electron emissions) A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 723 (Adopted levels and gamma transitions) R.BONETTI, A.GUGLIELMETTI, Phys. Rev. C62 (2000) 047304 (Spontaneous fission and cluster decay) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 596 (Electron and X-ray emissions) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray reference energies) A.H.WAPSTRA, G.AUDI, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKOYA, C.W.NESTOR, Report ANU-P/1684, Canberra (2004) (The BrIcc code for internal conversion coefficients)

$T_{1/2}$:	159.1	(2)	$\times 10^3$ y
$Q^{'}_{lpha}$:	4908.5	(12)	keV
α	:	100		%
^{24}Ne	:	7.2	(7)	$\times 10^{-11}~\%$
SF	:	$<\!\!6$		$\times 10^{-11} \%$

2 α Emissions

	Energy	Probability
	keV	\times 100
$\alpha_{0,52}$	4087.3 (12)	0.0000144 (21)
$\alpha_{0,43}$	4309(2)	0.0009
$\alpha_{0,38}$	4404 (2)	0.0003
$\alpha_{0,37}$	4411(2)	0.0004
$lpha_{0,35}$	4457(2)	0.0028
$\alpha_{0,34}$	4465(2)	0.003
$\alpha_{0,32}$	4483(2)	0.0014
$\alpha_{0,31}$	4503(2)	0.001
$\alpha_{0,30}$	4507(2)	0.012
$\alpha_{0,29}$	4513(2)	0.018
$\alpha_{0,26}$	4538(2)	0.004
$\alpha_{0,24}$	4565(2)	0.0023
$\alpha_{0,21}$	4590(2)	0.007
$\alpha_{0,19}$	4611(2)	0.006
$\alpha_{0,18}$	4615(2)	0.004
$\alpha_{0,17}$	4634(2)	0.01
$\alpha_{0,16}$	4641(2)	0.003
$\alpha_{0,15}$	4656(2)	0.005
$\alpha_{0,13}$	4664(2)	0.042
$\alpha_{0,11}$	4681(2)	0.01
$\alpha_{0,10}$	4687(2)	0.0028
$lpha_{0,9}$	4701(2)	0.06
$lpha_{0,8}$	4729(2)	1.61
$lpha_{0,7}$	4751(2)	0.01
$lpha_{0,6}$	4754(2)	0.163
$lpha_{0,5}$	4758(2)	0.016
$lpha_{0,4}$	4783.5(12)	13.2(2)
$lpha_{0,3}$	4796(2)	0.28
$\alpha_{0,0}$	4824.2(12)	84.3~(6)

3 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
e_{AL}	(Th)	5.8 - 20.3	0.01066 (20)
e _{AK}	(Th) KLL KLX KXY	68.406 - 76.745 83.857 - 93.345 99.29 - 109.64	0.00076 (10) } } }
$ec_{4,3}$ M $ec_{3,1}$ L $ec_{3,0}$ L $ec_{6,4}$ L $ec_{6,4}$ L $ec_{4,3}$ N $ec_{13,9}$ L $ec_{8,6}$ M $ec_{4,1}$ L $ec_{4,0}$ L $ec_{6,3}$ L $ec_{3,1}$ M $ec_{3,0}$ M $ec_{3,0}$ N $ec_{9,6}$ L $ec_{8,4}$ L $ec_{4,1}$ M $ec_{4,0}$ M $ec_{6,3}$ M $ec_{6,3}$ N $ec_{6,3}$ N	KXY (Th) (Th) (Th) (Th) (Th) (Th) (Th) (Th)	99.29 - 109.64 4.839 - 9.000 8.062 - 9.912 8.713 - 12.900 8.718 - 12.900 8.919 - 13.100 11.910 - 12.909 17.352 - 21.500 20.129 - 21.979 21.955 - 26.100 21.963 - 26.100 22.161 - 26.300 24.003 - 25.853 24.008 - 25.858 24.209 - 26.059 27.860 - 28.855 33.14 - 37.30 34.229 - 38.400 37.245 - 39.095 37.253 - 39.103 37.451 - 39.301 41.300 - 42.298	$\left. \begin{array}{c} 0.339 \ (20) \\ 0.64 \ (32) \\ 1.31 \ (17) \\ 0.29 \ (5) \\ 0.083 \ (15) \\ 0.17 \ (9) \\ 0.0123 \ (20) \\ 0.0821 \ (48) \\ 0.090 \ (25) \\ 19 \ (17) \\ 0.457 \ (25) \\ 0.332 \ (43) \\ 0.069 \ (13) \\ 0.0200 \ (35) \\ 0.0184 \ (34) \\ 0.0612 \ (33) \\ 1.3 \ (12) \\ 0.025 \ (7) \\ 5 \ (5) \\ 0.110 \ (6) \\ 0.0293 \ (16) \\ 0 \ 036 \ (27) \end{array} \right.$
ес _{13,8 L} ес _{8,3 L} ес _{9,6 M} ес _{8,4 M}	$({ m Th}) \\ ({ m Th}) \\ ({ m Th}) \\ ({ m Th}) \\ ({ m Th}) \end{cases}$	45.646 - 49.800 47.474 - 51.600 48.43 - 50.28 49.519 - 51.369	$\begin{array}{c} 0.036 \ (27) \\ 0.0164 \ (12) \\ 0.0147 \ (8) \\ 0.37 \ (30) \end{array}$
$ec_{6,1}$ L $ec_{6,0}$ L $ec_{8,4}$ N $ec_{13,8}$ M $ec_{6,1}$ M $ec_{8,0}$ L	(Th) (Th) (Th) (Th) (Th) (Th)	51.346 - 55.500 51.354 - 55.500 53.370 - 54.366 60.936 - 62.786 66.636 - 68.486 76.664 - 80.800 01.054 - 02.804	$\begin{array}{c} 0.071 \ (6) \\ 0.0109 \ (11) \\ 0.10 \ (8) \\ 0.010 \ (7) \\ 0.0196 \ (15) \\ 0.192 \ (10) \\ 0.0526 \ (27) \end{array}$
$ec_{8,0 M}$ $ec_{8,0 N}$	(Th) (Th)	91.994 - 93.804 95.810 - 96.801	0.0526(27) 0.0141(7)

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Th)	11.1177 - 19.5043		0.00936(21)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\ 93.351$		$\begin{array}{c} 0.00700 \ (18) \\ 0.01133 \ (28) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	$\begin{array}{c} {\rm (Th)} \\ {\rm (Th)} \\ {\rm (Th)} \end{array}$	$104.819 \\ 105.604 \\ 106.239$	} } }	0.00403 (12)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	$108.509 \\ 108.955 \\ 109.442$	} } }	0.00136(5)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Th)$ $\gamma_{4,3}(Th)$	0.0076 13.244	2.1 0.86 (25)	(M1)	358(5)	2.1 0.0024 (7)
$\gamma_{21,18}(Th)$	25.02(5)	0.00056(22)	(E1)	4.57(7)	0.00010(4)
$\gamma_{8,6}({ m Th}) \ \gamma_{15,12}({ m Th})$	25.3106(8) 25.3106(8)	0.452(26) 0.0009	(M1)	$213 (3) \\ 213 (3)$	$0.00211 (12) \\ 0.000004$
$\gamma_{15,11}(Th)$	27.119	0.0123	(E2)	6130(90)	0.000002
$\gamma_{9,8}(1\mathrm{h}) \ \gamma_{3,1}(\mathrm{Th})$	20.200 29.1851 (4)	1.76(24)	(1/11)	$133.4 (22) \\ 225 (12)$	0.000036(9) 0.0078(10)
$\gamma_{3,0}(Th)$ $\gamma_{6,4}(Th)$	29.19 29 3911 (4)	$\begin{array}{c} 0.38\ (7)\ 0.110\ (19) \end{array}$	M1 (M1)	139.8(20) 137(2)	0.0027(5) 0.00080(14)
$\gamma_{0,4}(10)$ $\gamma_{17,13}(Th)$	32.453	0.00165(31)	(M1) (M1)	101(2) 102.3(15)	0.000016(3)
$\gamma_{27,23}({ m Th}) \ \gamma_{30,26}({ m Th})$	$32.52\ (2)\ 32.73\ (5)$	0.0018(6) 0.00316(39)	(M1) $(E1)$	$101.7 (15) \\ 2.26 (4)$	$0.000018(6) \\ 0.00097(12)$
$\gamma_{13,9}(\text{Th})$	37.80(3)	0.0166(26)	(M1)	65.2(10)	0.00025(4)
$\gamma_{4,1}(1\mathrm{n}) $ $\gamma_{4,0}(\mathrm{Th})$	42.431 42.4349 (2)	$\begin{array}{c} 0.123 \ (34) \\ 9.4 \ (29) \end{array}$	(E2) M1+E2	400 (400)	0.0018(3) 0.072(4)
$\gamma_{6,3}(\mathrm{Th})$ $\gamma_{22,18}(\mathrm{Th})$	42.6333(2) 43.69(3)	0.618(33) 0.0018(6)	(M1) (M1)	45.8(7) 42.6(6)	0.0132(7) 0.000042(14)
$\gamma_{32,28}(Th)$ $\gamma_{32,28}(Th)$	44.80 (2)	0.00113 (36)	(M1)	39.5(6)	0.000028 (9)
$\gamma_{22,17}(Th) \\ \gamma_{26,21}(Th)$	$45.855 \\51.0 (3)$	$\begin{array}{c} 0.00034 \ (6) \\ 0.0045 \ (42) \end{array}$	(M1) (M1+E2)	$36.9\ (6)\ 150\ (130)$	$0.0000091 (16) \\ 0.00003 (1)$
$\gamma_{19,14}(Th)$	52.60(3)	0.0026(8)	(M1)	24.7(4)	0.00010(3)
$\gamma_{9,6}(\mathrm{Th}) \ \gamma_{8,4}(\mathrm{Th})$	53.0106(11) 54.7039(11)	$\begin{array}{c} 0.0843 (44) \\ 0.91 (8) \end{array}$	(M1) M1+E2	23.3(4) 110(90)	0.00347(18) 0.0168(8)
$\gamma_{21,15}(Th)$	63.79(6) 65.62(5)	0.00044 (17) 0.000068 (14)	(M1) $(E1)$	14.02(20) 0.358(5)	0.000029(11) 0.00005(1)
$\gamma_{13,8}(Th)$	66.1183(6)	0.032(10)	(M1+E2)	50(40)	0.00106(6)

U - 2	233
-------	-----

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}}$ × 100	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{\circ,2}(Th)$	67.9460(5)	0.0228(16)	E2	70.2(10)	0.000320(23)
$\gamma_{3,3}(11)$ $\gamma_{10,12}(Th)$	68.81(3)	0.00122 (28)	(M1)	11.23(16)	0.000100(23)
$\gamma_{17,12}(11)$ $\gamma_{17,0}(Th)$	70.2813(13)	0.0074(5)	(M1+E2)	11.20(10) 11.74(17)	0.00058(4)
$\gamma_{6,1}(Th)$	71.812(8)	0.099(8)	(1.11+1.1) E2	53.8(8)	0.00181(14)
$\gamma_{6,0}(Th)$	71.8159(20)	0.0156(16)	(M1 + E2)	12.49(18)	0.00116(12)
$\gamma_{21,14}(Th)$	72.825	0.0206(15)	(E2)	50.4(7)	0.00040(3)
$\gamma_{11.6}(Th)$	74.542(5)	0.00187(10)	(E1)	0.255(4)	0.00149(8)
$\gamma_{12.6}(Th)$	76.350(4)	0.000372(37)	(E1)	0.240(4)	0.00030(3)
$\gamma_{15.8}(Th)$	76.350(4)	0.000025	(E1)	0.240(4)	0.00002
$\gamma_{39,33}(Th)$	77.12(3)	0.000530(49)	(E1)	0.233(4)	0.00043(4)
$\gamma_{22.13}(Th)$	78.21(5)	0.00068(11)	(M1+E2)	14.45(21)	0.000044(7)
$\gamma_{9.4}(Th)$	83.0125 (20)	0.00256(35)	M1+E2	12.20(17)	0.000197(22)
$\gamma_{30,20}(Th)$	85.4221 (9)	0.000141(47)	(E1)	0.1779(25)	0.00012(4)
$\gamma_{31,22}(Th)$	86.3(3)	0.000362(29)	(M1+E2)	8.52(17)	0.000038(3)
$\gamma_{35.27}(Th)$	86.3(3)	0.0023(7)	(E2)	22.5(5)	0.000099(23)
$\gamma_{18,9}(\mathrm{Th})$	87.25(4)	0.00197(49)	(E2)	21.4(3)	0.000088(22)
$\gamma_{21,12}(Th)$	89.39(7)	0.00162(19)	(M1)	5.24(8)	0.00026(3)
$\gamma_{20,11}(Th)$	89.9568(24)	0.00146(15)	(M1)	5.36(9)	0.000229(23)
$\gamma_{21,11}(\mathrm{Th})$	90.99(1)	0.00185(24)	(M1)	4.98(7)	0.00031(4)
$\gamma_{13,6}(\mathrm{Th})$	91.433	0.00074(13)	(E2)	17.14(24)	0.000041 (7)
$\gamma_{32,23}(\mathrm{Th})$	92.23(12)	0.00019 (7)	(M1)	4.79(7)	0.000033~(12)
$\gamma_{16,8}(\mathrm{Th})$	92.85(3)	0.00026 (3)			0.00026 (3)
$\gamma_{9,3}(Th)$	96.22(3)	$0.0246\ (13)$	$\mathrm{E}(2)$	13.49(19)	0.00170 (9)
$\gamma_{8,0}(\mathrm{Th})$	97.1346(3)	0.282(14)	E2	12.91(18)	0.0203~(10)
$\gamma_{24,14}(\mathrm{Th})$	97.37(4)	0.0023~(7)	(E1)	0.1259(18)	0.0020~(6)
$\gamma_{17,8}(\mathrm{Th})$	98.565	0.00053 (9)	(M1+E2)	4.50(7)	0.000097(16)
$\gamma_{29,19}(\mathrm{Th})$	99.95(15)	0.000021(7)	(E1)	0.1176(18)	0.000019(6)
$\gamma_{15,6}(\mathrm{Th})$	101.70(5)	0.000077(17)	(E1)	0.1123(16)	0.000069(15)
$\gamma_{30,19}(\mathrm{Th})$	103.73(10)	0.000070(21)	(E1)	0.1066(16)	0.000063(19)
$\gamma_{21,9}(Th)$	111.93(1)	0.000549(41)	(E1)	0.372(6)	0.00040(3)
$\gamma_{26,15}(Th)$	114.2(2)	0.00250(31)	(M1)	12.68(19)	0.000183(23)
$\gamma_{39,30}(\mathrm{Th})$	116.3(2)	0.000162(31)	(E1)	0.342(5)	0.000121(23)
$\gamma_{22,9}(\mathrm{Th})$	116.3(2)	0.000032(6)	(E2)	5.84(10)	0.0000047(9)
$\gamma_{11,3}(Th)$	117.162(2)	0.00383(19)	EI (D1)	0.336(5)	0.00287(14)
$\gamma_{12,3}(Th)$	118.968(5)	0.00481(24)	(E1)	0.325(5)	0.00363(18)
$\gamma_{13,4}(Th)$	120.819(2)	0.0168(9)	E2	4.95(7)	0.00282(15)
$\gamma_{17,6}$ (Th)	123.886(7)	0.00392(27)	(E2)	4.45(7)	0.00072(5)
$\gamma_{38,28}(Th)$	125.04(23)	0.000108(32)	(M1)	9.83(15)	0.000010(3)
$\gamma_{9,0}(Th)$	125.43(4)	0.00027(5)	E2 (E1)	4.22(6)	0.000051(10)
$\gamma_{28,15}(Th)$	129.514	0.00007590	(E1)	0.266(4)	0.00000
$\gamma_{15,4}(Th)$	191.22 (8) 199.1	0.0000219(28) 0.0000154(21)	(ビ1) (E2)	0.231(4)	0.0000174 (22)
$\gamma_{31,17}(1n)$	132.1 125 2200 (5)	0.0000134(31)	(E2) E1	3.39(0)	0.0000035(7)
$\gamma_{14,3}(1n)$	130 3 (3) 130 3 (3)	0.00244 (12) 0.000170 (10)	E1 (M1)	0.239(4) 7 94(11)	0.00197(10)
$\gamma_{38,27}(1n)$	190 9 (9)	0.000170 (19)	(IVII) (E1)	1.24 (11) 0.222 (4)	0.0000200 (23)
$\gamma_{35,20}(Th)$	139.3 (3) 120 722 (2)	0.00014070	(E1) (M1)	0.223 (4) 7 17 (10)	0.000012
$\gamma_{26,12}(1n)$	109.722 (0) 141.05 (10)	0.00074 (10)	(1VII) (F1)	(.17 (10) 0.912 (9)	0.000090 (18)
$\gamma_{27,11}(1n)$	141.90 (10)	$0.0000109(10) \\ 0.0000109(10)$	(ĽТ) (F1)	0.213 (3)	0.0000090 (13)
/33,19(1n)	142.09 (1)	0.000041(0)	(E1)	0.211(3)	0.000034(3)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
$\gamma_{22,8}(\mathrm{Th})$	144.42(2)	0.0010(1)	$\mathrm{E2}$	2.34(4)	0.00030 (3)
$\gamma_{19,6}(\mathrm{Th})$	145.35(2)	0.00208 (8)	(E1)	0.202(3)	0.00173(7)
$\gamma_{11,1}(Th)$	$146.3462\ (6)$	0.00779 (36)	(E1)	0.198(3)	0.0065~(3)
$\gamma_{25,9}(\mathrm{Th})$	146.9(5)	$0.000116\ (10)$			$0.000116\ (10)$
$\gamma_{12,0}(\mathrm{Th})$	148.20(2)	0.000474(24)	(E1)	0.193(3)	0.000397~(20)
$\gamma_{29,14}(\mathrm{Th})$	152.62(10)	0.0000130 (35)	(E1)	0.179(3)	0.000011 (3)
$\gamma_{17,4}(\mathrm{Th})$	153.17~(4)	0.000105~(9)	(E2)	1.84(3)	0.000037~(3)
$\gamma_{28,12}(\mathrm{Th})$	154.90(3)	0.000168 (9)	(E1)	0.1732~(25)	0.000143~(8)
$\gamma_{30,14}(\mathrm{Th})$	156.19(5)	0.0000421 (35)	(E1)	0.1698(24)	0.000036 (3)
$\gamma_{26,9}(\mathrm{Th})$	162.45~(4)	0.000062~(6)	(E1)	$0.1546\ (22)$	0.000054~(5)
$\gamma_{31,13}(\mathrm{Th})$	164.5	0.000622 (12)	(E2)	1.385(22)	0.000261~(5)
$\gamma_{14,1}(\mathrm{Th})$	164.5240(5)	0.00690(34)	(E1)	0.1500(21)	0.0060(3)
$\gamma_{21,6}(\mathrm{Th})$	165.61(3)	0.000467(26)	(E1)	0.1476(21)	0.000407(23)
$\gamma_{43,33}(\mathrm{Th})$	167.10(7)	0.0000165(14)	<i>.</i>		0.0000165(14)
$\gamma_{29,12}(\mathrm{Th})$	169.002(5)	0.000047(7)	(E1)	0.1407(20)	0.000041(6)
$\gamma_{29,11}(Th)$	170.809(24)	0.000114(7)	(E1)	0.1371(20)	0.000100(6)
$\gamma_{30,12}(Th)$	172.39(10)	0.0000259(25)	(E1)	0.1342(19)	0.0000228(22)
$\gamma_{30,11}(\mathrm{Th})$	174.192(2)	0.000192(10)	(E1)	0.1309(19)	0.000170(9)
$\gamma_{28,9}(\mathrm{Th})$	177.91 (16)	0.000030(6)	(M1)	3.62(6)	0.0000066(13)
$\gamma_{37,22}(Th)$	184.1(3)	0.000042(9)	(E2)	0.897(14)	0.000022(5)
$\gamma_{33,15}(\mathrm{Th})$	185.76(9)	0.0000087(23)	(E1)	0.1124(16)	0.0000078(21)
$\gamma_{19,3}(\mathrm{Th})$	187.9670(3)	0.00207(10)	(E1)	0.1093(16)	0.00187(9)
$\gamma_{37,21}(\mathrm{Th})$	188.65(6)	0.0000277(44)	(E1)	0.1083(16)	0.000025(4)
$\gamma_{34,15}(\mathrm{Th})$	192.26(4)	0.0000397(44)	(E1)	0.1036(15)	0.000036(4)
$\gamma_{28,8}(\mathrm{Th})$	205.75(6)	0.000078(8)	(M1)	2.40(4)	0.0000228(24)
$\gamma_{21,3}(Th)$	208.179(7)	0.00249(12)	(E1)	0.0859(12)	0.00229(11)
$\gamma_{36,15}(\mathrm{Th})$	209.08(8)	0.000019(3)	(D1)	0.0000 (10)	0.000019(3)
$\gamma_{38,19}(Th)$	210.90(8)	0.0000148(26)	(E1)	0.0833(12)	0.0000137(24)
$\gamma_{18,0}(Th)$	212.30(3)	0.000410(22)	(M1)	2.20(3)	0.000130(7)
$\gamma_{26,6}(Th)$	210.07 (1)	0.000009(32)	(E1)	0.0787(11)	0.00062(3)
$\gamma_{19,1}(1n)$	217.101(4)	0.00504(17)	$(\mathbf{E}\mathbf{I})$	0.0778(11)	0.00528(10)
$\gamma_{34,12}(Th)$	217.8(2)	0.000003 0.000127 (6)	(E1)	0.07750(11)	0.000003
$\gamma_{34,11}(1n)$	219.43(2) 222.27(2)	0.000127(0) 0.0000346(43)	$(\mathbf{E}\mathbf{I})$	0.0759(11) 0.443(7)	0.000110(0)
$\gamma_{30,8}(1n)$	223.37(3) 224.33(10)	0.0000340(43) 0.0000130(43)	$(\mathbf{E}\mathbf{Z})$ $(\mathbf{F}1)$	0.443(7) 0.0721(11)	0.000024(3)
$\gamma_{39,18}(11)$	224.55(19) 226.2(2)	0.00000139(43) 0.00020(7)	$(\mathbf{M1})$	1.84(3)	0.0000013(4) 0.000070(23)
$\gamma_{23,3}(11)$	220.2(2) 230.17(2)	0.00020(7)	$(M1\pm F2)$	1.04(3) 1 1 (7)	0.000070(23)
$\gamma_{37,17}(11)$	230.11(2) 240.373(3)	0.00013(5)	(M1+B2) M1+E2	1.1(7) 1.09(6)	0.000071(0)
$\gamma_{34,9}(11)$	240.375(3) 245(350(1))	0.00000(3)	M1+B2 M1+E2	1.05(0) 1.05(4)	0.000413(22) 0.00357(18)
$\gamma_{29,6}(Th)$	243.330(1) 248.724(1)	0.00732(40) 0.00338(17)	(M1)	1.05(4) 1.415(20)	0.00337(18) 0.00140(7)
$\gamma_{30,6}(Th)$	240.724(1) 255.91(2)	0.000000(11)	(M1)	1.410(20) 1.307(19)	0.00140(7) 0.000393(25)
$\gamma_{23,0}(11)$ $\gamma_{27,2}(Th)$	259.31(2) 259.31(2)	0.000051(0) 0.000350(18)	(M1)	1.307 (13) 1.260 (18)	0.0000355(20)
$\gamma_{20,3}(Th)$	260.51(2) 260.53(2)	0.000229(13)	(M1)	1.244(18)	0.000102(6)
$\gamma_{24,1}(Th)$	261,957 (4)	0.000495(27)	M1+E2	0.78(4)	0.000278(14)
$\gamma_{24,1}(\mathbf{Th})$ $\gamma_{24,0}(\mathbf{Th})$	268.675(2)	0.000448(25)	M1+E2	0.82(5)	0.000246(12)
$\gamma_{34,0(14)}$ $\gamma_{30,14}$ (Th)	272.39(2)	0.0000872(49)	(E2)	0.228(4)	0.000210(12) 0.000071(4)
$\gamma_{28,14}(1)$ $\gamma_{28,2}(Th)$	273.74(5)	0.0000323(35)	(M1)	1.085(16)	0.0000155(17)
$\gamma_{29,4}(Th)$	274.735(1)	0.000680(41)	M1+E2	0.62(5)	0.000420(22)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{30,4}(\mathrm{Th})$	278.108(2)	0.00177(10)	M1+E2	0.57(4)	0.00113(6)
$\gamma_{33,7}(\mathrm{Th})$	284.29(11)	0.0000093(17)	(E1)	0.0419(6)	0.0000089(16)
$\gamma_{29,3}(\mathrm{Th})$	288.0290 (9)	0.00146 (37)	(M1+E2)	0.6(4)	0.00091(5)
$\gamma_{27,1}(\mathrm{Th})$	288.50(3)	0.000227 (27)	(M1)	0.938(14)	0.000117(14)
$\gamma_{43,20}(\mathrm{Th})$	291.355(9)	0.00062~(25)			0.00062~(25)
$\gamma_{30,3}(\mathrm{Th})$	291.355~(9)	0.00755~(43)	M1+E2	0.63~(3)	0.00463~(25)
$\gamma_{40,15}(\mathrm{Th})$	291.93(4)	$0.000102\ (15)$			$0.000102\ (15)$
$\gamma_{34,6}(\mathrm{Th})$	293.996 (9)	$0.000231\ (13)$	M1	0.890(13)	0.000122 (7)
$\gamma_{28,0}(\mathrm{Th})$	302.989(4)	0.000142~(7)	(M1)	0.820(12)	0.000078 (4)
$\gamma_{45,24}(\mathrm{Th})$	$307.45\ (19)$	0.0000075~(29)	(M1,E2)	0.5(4)	0.0000050 (14)
$\gamma_{43,19}(\mathrm{Th})$	309.49(3)	0.000083~(5)			0.000083~(5)
$\gamma_{36,6}(\mathrm{Th})$	310.71(5)	0.000038 (3)			0.000038 (3)
$\gamma_{39,9}(\mathrm{Th})$	311.76(3)	0.0000651 (41)	(E1)	0.0341~(5)	0.000063(4)
$\gamma_{45,23}(\mathrm{Th})$	313.45(18)	0.0000056(11)	(= = ·)		0.0000056(11)
$\gamma_{41,13}(\mathrm{Th})$	315.39(13)	0.0000173(26)	(M1)	0.734(11)	0.0000100(15)
$\gamma_{29,0}(\mathrm{Th})$	317.169(2)	0.0097(6)	M1+E2	0.371(22)	0.0071(4)
$\gamma_{33,4}(\mathrm{Th})$	317.169(2)	0.00047(19)	(M1)	0.723(11)	0.00027(11)
$\gamma_{30,0}(\mathrm{Th})$	320.547(1)	0.00371(20)	M1+E2	0.334(25)	0.00278(14)
$\gamma_{34,4}(\mathrm{Th})$	323.381(14)	0.00099(5)	M1+E2	0.280(17)	0.00077(4)
$\gamma_{37,8}(\mathrm{Th})$	328.758(19)	0.000112(25)	(M1+E2)	0.4(3)	0.000080(4)
$\gamma_{34,3}(Th)$	336.63(1)	0.000731(44)	M1+E2	0.26(4)	0.00058(3)
$\gamma_{39,8}(\mathrm{Th})$	340.19(8)	0.000026(16)	(EI)	0.0284(4)	0.000025(16)
$\gamma_{37,6}(\text{Th})$	354.04(2)	0.000079(14)	(M1+E2)	0.32(22)	0.000060(4)
$\gamma_{33,0}(\text{Th})$	359.38(4)	0.0000074(23)	(M1)	0.513(8)	0.0000049(15)
$\gamma_{47,22}(Th)$	364.01(12)	0.0000064(16)	(1,11)	0.480.(7)	0.000064(16)
$\gamma_{34,0}(\text{Th})$	305.820(3)	0.00115(0)	(M1)	0.489(7)	0.00077(4)
$\gamma_{44,14}(Th)$	3(1.34(9)) 274(71(90))	0.0000021(10)	(M1)	0.409(7)	0.000014(7)
$\gamma_{35,0}(1n)$	3(4.11(20)) 201 25 (0)	0.0000055(29)	(M1)	0.438(7) 0.427(7)	0.0000038(20)
$\gamma_{41,8}(1n)$	301.33(0) 383.43(3)	0.0000000 (19) 0.000122 (18)	$(\mathbf{M1})$	0.437(1)	0.0000059(15)
$\gamma_{37,4}(10)$	387.86(12)	0.000123(18) 0.000012(3)	(M1+E2)	0.20(18)	0.000090(3)
$\gamma_{42,9}(11)$	303.60(12)	0.0000012(3) 0.0000130(12)			0.000012(3)
$\gamma_{40,6}(11)$	396.62(3)	0.0000130(12) 0.0000047(11)	$(\mathbf{F9})$	0.0762(11)	0.0000130(12) 0.0000044(10)
737,3(11)	402.92(3)	0.0000047 (11) 0.0000079 (14)	(\mathbf{L}^{2})	0.0102(11)	0.000044 (10) 0.000079 (14)
$\gamma_{49,20(111)}$ $\gamma_{45,14}(Th)$	404.39(5)	0.000012(14) 0.0000133(41)	(E1)	0.0195(3)	0.000012(14) 0.000013(4)
$\gamma_{40,14}(11)$ $\gamma_{41,c}(Th)$	40658(5)	0.00000100(41)	(M1)	0.367(6)	0.000015(4)
$\gamma_{41,0}(Th)$ $\gamma_{42,0}(Th)$	$416\ 31\ (3)$	0.000012(1)	()	0.001 (0)	0.000012(1)
$\gamma_{42,8(11)}$ $\gamma_{40,4}(Th)$	423 09 (14)	0.000012(1) 0.0000052(14)			0.000012(1)
$\gamma_{40,4}(11)$ $\gamma_{40,10}(Th)$	$425\ 46\ (10)$	0.00000002 (14)			0.0000002(14)
γ_{40} s(Th)	436.23(2)	0.0000035(9)			0.0000035(9)
$\gamma_{49,3}(\pm 1)$ $\gamma_{49,6}(Th)$	441.53(17)	0.00000073(22)			0.00000073(22)
$\gamma_{41,3}(Th)$	449.520 (2)	0.0000082(10)	(M1)	0.280(4)	0.0000064(8)
$\gamma_{43.6}(Th)$	455.48 (25)	0.00000117(21)	× /	(- /	0.00000117(21)
$\gamma_{47,12}(Th)$	456.87 (16)	0.00000044 (21)			0.00000044(21)
$\gamma_{46.9}(Th)$	459.81 (1)	0.0000076 (11)			0.0000076(11)
$\gamma_{40.0}(Th)$	465.37 (12)	0.0000047(23)			0.00000047(23)
$\gamma_{42.4}(\mathrm{Th})$	471.06 (1)	0.0000185 (18)			0.0000185(18)
$\gamma_{48,11}(\mathrm{Th})$	474.41 (8)	0.00000077 (11)			0.00000077(11)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{41,0}({ m Th}) \ \gamma_{43,4}({ m Th})$	$\begin{array}{c} 478.64 \ (1) \\ 484.34 \ (3) \end{array}$	$\begin{array}{c} 0.00001829 \ (16) \\ 0.0000028 \ (12) \end{array}$	(M1) [M1]	$0.236 (4) \\ 0.228 (4)$	$\begin{array}{c} 0.00001480 \ (12) \\ 0.0000023 \ (10) \end{array}$
$\gamma_{51,14}(\mathrm{Th})$	500.40(9)	0.00000070 (23)			0.00000070 (23)
$\gamma_{42,0}(\mathrm{Th})$	513.20(5)	$0.0000165\ (21)$			$0.0000165\ (21)$
$\gamma_{52,20}(\mathrm{Th})$	514.81(11)	$0.0000112\ (18)$			$0.0000112\ (18)$
$\gamma_{48,8}(\mathrm{Th})$	523.68~(6)	0.0000094(24)			0.0000094(24)
$\gamma_{50,9}(\mathrm{Th})$	531.54(8)	0.00000070 (23)			0.00000070 (23)
$\gamma_{47,6}(\mathrm{Th})$	533.53~(5)	$0.00000128\ (25)$	M1+E2	0.098(14)	0.00000117 (23)
$\gamma_{44,1}(\mathrm{Th})$	536.44(12)	0.0000048~(23)	(E1)	$0.01098\ (16)$	0.0000047~(23)
$\gamma_{49,8}(\mathrm{Th})$	540.52~(6)	0.00000164~(23)			0.00000164~(23)
$\gamma_{46,4}(\mathrm{Th})$	542.41(13)	0.00000047~(23)			0.00000047~(23)
$\gamma_{50,8}(\mathrm{Th})$	559.87(18)	0.0000023			0.0000023
$\gamma_{47,4}(\mathrm{Th})$	562.61~(6)	0.0000015 (8)	M1+E2	0.075~(8)	0.0000014 (7)
$\gamma_{45,0}(\mathrm{Th})$	569.19(2)	0.0000041 (16)	M1+E2	0.063~(4)	$0.0000039\ (15)$
$\gamma_{47,3}(\mathrm{Th})$	576.00(7)	0.00000096~(43)	M1+E2	0.064(8)	0.0000009(4)
$\gamma_{48,4}(\mathrm{Th})$	578.42(2)	0.0000034(11)			0.0000034~(11)
$\gamma_{46,0}(\mathrm{Th})$	584.94(16)	0.0000023			0.0000023
$\gamma_{48,3}(\mathrm{Th})$	591.64(7)	0.00000070 (23)			0.00000070 (23)
$\gamma_{47,0}(\mathrm{Th})$	605.16(1)	$0.0000051 \ (10)$	M1+E2	0.072~(7)	0.0000048 (9)
$\gamma_{49,3}(\mathrm{Th})$	608.15(5)	0.00000047~(23)			0.00000047~(23)
$\gamma_{50,4}(\mathrm{Th})$	614.45(7)	0.00000070 (23)			0.00000070 (23)
$\gamma_{48,0}(\mathrm{Th})$	620.81(3)	0.0000015~(6)			0.0000015~(6)
$\gamma_{50,3}(\mathrm{Th})$	627.70(8)	0.00000047~(23)			0.00000047~(23)
$\gamma_{49,0}(\mathrm{Th})$	$637.25\ (10)$	0.0000023			0.0000023
$\gamma_{52,8}(\mathrm{Th})$	652.79(19)	0.0000023			0.0000023
$\gamma_{50,0}(\mathrm{Th})$	656.89(5)	0.000004(1)			0.000004(1)
$\gamma_{51,0}(\mathrm{Th})$	665.03(10)	0.0000023	M1+E2	0.06(4)	0.0000023
$\gamma_{52,4}(\mathrm{Th})$	707.41 (2)	0.0000020 (9)		. /	0.0000020 (9)
$\gamma_{52,3}(Th)$	720.62 (11)	0.00000047 (23)			0.00000047 (23)
$\gamma_{52,0}(\mathrm{Th})$	749.8 (9)	0.00000047 (23)			0.00000047 (23)

5 References

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. 72 (1947) 253(229Th Half-life.) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, A.GHIORSO, G.T.SEABORG, Phys. Rev. 72 (1947) 252 (229Th Half-life.) E.K.Hyde, National Nuclear Energy Series 14B (1949) 1431 (233U Half-life.) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435 (229Th Half-life.) E.SEGRE, Phys. Rev. 86 (1952) 21 (233U Fission Half-life.) Y.P.DOKUCHAEV, I.S.OSIPOV, J. Nucl. Energy A11 (1959) 194 (233U Half-life.) D.S.POPPLEWELL, J. Nucl. Energy A/B 14 (1961) 50 $\,$ (233U Half-life.) I.AHMAD, Thesis, Report UCRL-16888, Univ. California (1966) (229Th Gamma ray and X-ray.)

B.M.ALEKSANDROV, A.S.KRIVOKHATSKII, L.Z.MALKIN, K.A.PETRZHAK, At. Energy 20 (1966) 315 (233U Fission Half-life.) S.A.BARANOV, M.K.GADZHIEV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 5 (1967) 365 (233U alpha decay energy and intensity.) H.R.IHLE, E.LANGENSCHEIDT, A.P.MURRENHOFF, Report JUL-491-PC (1967) (233U Half-life.) R.L.G.KEITH, J. Nucl. Energy 22 (1968) 471 (233U Half-life.) F.L.OETTING, Proc. Symp. on Thermodynamics of Nuclear Materials with Emphasis on Solution Systems, STI/ PUB/162, IAEA, Vienna (1968) 55 (233U Half-life.) H.TON, S.ROODBERGEN, J.BRASZ, J.BLOK, Nucl. Phys. A155 (1970) 245 (229Th Gamma ray energies, halflives of the states.) A.H.JAFFEY, K.F.FLYNN, W.C.BENTLEY, J.O.KARTTUNEN, Phys. Rev. C9 (1974) 1991 (233U Half-life.) L.A.KROGER, C.W.REICH, Nucl. Phys. A259 (1976) 29 (229Th Gamma ray energy, X-ray energy.) R.VANINBROUKX, P.DE BIEVRE, Y.LE DUIGOU, A.SPERNOL, W.VAN DER EIJK, V.VERDINGH, Phys. Rev. C13 (1976) 315(233U Half-life.) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Electron Binding Energies.) A.M.GEIDELMAN, YU.S.EGOROV, A.A.LIPOVSKII, A.V.LOVTSYUS, L.D.PREOBRAZHENSKAYA, M.V.RYZHINSKII, A.V.STEPANOV, YU.V.KHOLNOV, Bull. Acad. Sci. USSR, Phys. Ser. 43 (1979) 25 (233U Half-life.) A.CESANA, G.SANDRELLI, V.SANGIUST, M.TERRANI, Energ. Nucl. (Milan) 26 (1979) 526 (229Th Gamma ray and X-ray.) C.K.AGGARWAL, S.N.ACHARYA, H.C.JAIN, Radiochem. Radioanal. Lett. 42 (1980) 45 (233U Half-life.) H.R.VON GUNTEN, A.GRUTTER, H.W.REIST, M.BAGGENSTOS, Phys. Rev. C23 (1981) 1110 (233U Fission Half-life.) K.M.GLOVER, Int. J. Appl. Radiat. Isotop. 35 (1984) 239 (233U alpha energies and intensities.) I.AHMAD, Nucl. Instrum. Meth. 223 (1984) 319 (233U alpha energies and intensities.) C.W.REICH, R.G.HELMER, J.D.BAKER, R.J.GEHRKE, Int. J. Appl. Radiat. Isotop. 35 (1984) 185 (229Th Gamma ray energies.) D.V.ALEKSANDROV, YU.A.GLUKHOV, E.YU.NIKOLSKY, B.G.NOVATSKY, A.A.OGLOBLIN, D.N.STEPANOV, IZV. Akad. Nauk SSSR, Ser. Fiz. 49 (1985) 2111 (233U Cluster decay Half-life.) A.YA.BALYSH, A.A.GUROV, A.V.DEMEKHIN, A.G.ZELENKOV, I.V.KONDRATENKO, B.G.NOVATSKY, G.A.PIK-PICHAK, V.A.PCHELIN, YU.F.RODIONOV, L.V.CHISTYAKOV, V.M.SHUBKO, Zh. Eksp. Teor. Fiz 91 (1986) 37 (233U Cluster decay Half-life.) S.J.GOLDSTEIN, M.T.MURRELL, R.W.WILLIAMS, Phys. Rev. C40 (1989) 2793 (229Th Half-life.) Y.A.AKOVALI, Nucl. Data Sheets 58 (1989) 555 (229Th gamma-ray energies, spins and parities of levels.) N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483 (233U Total and spontaneous fission Half-life.) C.W.REICH, R.G.HELMER, Phys. Rev. Lett. 64 (1990) 271 (229Th Level energy of 1st excited state.) P.B.PRICE, K.J.MOODY, E.K.HULET, R.BONETTI, C.MIGLIORINO, Phys. Rev. C43 (1991) 1781 (233U Cluster decay Half-life.) O.EL SAMAD, C.ARDISSON, M.HUSSONNOIS, G.ARDISSON, J. Radioanal. Nucl. Chem. 164 (1992) 271 (229Th Gamma ray energies.) R.G.HELMER, C.W.REICH, Phys. Rev. C49 (1994) 1845 (229Th Gamma ray energies.) A.KOUA AKA, G.ARDISSON, V.BARCI, O.EL SAMAD, D.TRUBERT, I.AHMAD, Nucl. Instrum. Meth. Phys. Res. A369 (1996) 477 (229Th Gamma ray energies.)

R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996) (Electron Binding energies.) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Meth. Phys. Res. A369 (1996) 527 (Atomic Data.) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) 1 (K-Auger electrons.) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) 1 (K- X-rays.) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger Electron emission probabilities.) V.BARCI, G.ARDISSON, G.BARCI-FUNEL, B.WEISS, O.EL SAMAD, R.K.SHELINE, Phys. Rev. C68 (2003) 034329 (229Th Gamma ray energies.) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (Mass, Q-value.) B.SINGH, J.K.TULI, Nucl. Data Sheets 105 (2005) 109 (233U Half-life compilation.) B.R.BECK, J.A.BECKER, P.BEIERSDORFER, G.V.BROWN, K.J.MOODY, J.B.WILHELMY, F.S.PORTER, C.A.KIL-BOURNE, R.L.KELLEY, Phys. Rev. Lett. 98 (2007) 142501 (229Th Gamma-ray energies. Precission measurement of energy of the 1st Excited state.) E.BROWN, J.K.TULI, Nucl. Data Sheets 109 (2008) 2657 (229Th level energies, gamma energies, level spin and parities.) S.Pommé, T.Altzitzoglou, R.Van Ammel, G.Sibbens, R.Eykens, S.Richter, J.Camps, K.Kossert, H. JANSSEN, E.GARCIA-TORANO, T.DURAN, F.JAUBERT, Metrologia 46 (2009) 439

(233U half-life.)

C.J.CAMPBELL, A.G.RADNAEV, A.KUZMICH, Phys. Rev. Lett. 106 (2011) 223001

(Laser excitation of 1st excited state in 229Th and quadrupole moment measurement.)

$T_{1/2}$:	2.455	(6)	$\times 10^5$ y
$Q^{'}_{lpha}$:	4857.7	(7)	keV
α	:	100		%
SF	:	1.6	(2)	$ imes 10^{-9}$ %

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,5} \ lpha_{0,4} \ lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 4108.6 \ (7) \\ 4150.6 \ (7) \\ 4275.2 \ (7) \\ 4603.5 \ (7) \\ 4722.4 \ (7) \\ 4774.6 \ (7) \end{array}$	$\begin{array}{c} 0.000007\\ 0.000026\\ 0.00004\ (1)\\ 0.210\ (2)\\ 28.42\ (2)\\ 71.37\ (2) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Th)	5.8 - 20.3	10.8~(4)
e _{AK}	(Th) KLL KLX KXY	68.406 - 76.745 83.857 - 93.345 99.29 - 109.64	0.00029 (5) } } }
$ec_{1,0}$ L $ec_{1,0}$ M $ec_{1,0}$ N $ec_{2,1}$ L $ec_{2,1}$ M	(Th) (Th) (Th) (Th) (Th)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 20.9 \ (12) \\ 5.70 \ (32) \\ 1.53 \ (9) \\ 0.132 \ (12) \\ 0.0363 \ (34) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Th)	11.118 - 19.504		10.2~(4)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\93.351$		$\begin{array}{c} 0.00269 \ (25) \\ 0.0044 \ (4) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Th) (Th) (Th)	$104.819 \\ 105.604 \\ 106.239$	} } }	0.00155(15)	$\mathrm{K}\beta_1'$

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	$108.509 \\108.955 \\109.442$	} } }	0.00052(5)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Th)$	53.20(2)	28.7(13)	E2+M3	228(7)	0.1253(40)
$\gamma_{2,1}(\mathrm{Th})$	120.90(4)	0.228 (48)	E2	4.92(15)	0.0386(32)
$\gamma_{3,1}(\mathrm{Th})$	454.96(5)	0.000025~(6)	${ m E1}$	0.01526 (46)	0.000025~(6)
$\gamma_{5,2}(\mathrm{Th})$	503.5(1)	0.00000095	[E2]	0.0418(13)	0.00000095
$\gamma_{3,0}(\mathrm{Th})$	508.16(5)	0.0000152 (39)	E1	0.01221(37)	0.0000150 (39)
$\gamma_{4,1}(\mathrm{Th})$	581.7(1)	0.000012(5)	E2	0.0300(9)	0.000012(5)
$\gamma_{5,1}(\mathrm{Th})$	624.4(1)	0.00005	E0 + E2 + M1	5.1(20)	0.00000082
$\gamma_{4,0}(\mathrm{Th})$	634.9(1)	0.000014(7)	$\mathrm{E0}$		
$\gamma_{5,0}(\mathrm{Th})$	677.6(1)	0.000001	[E2]	0.0216~(6)	0.000001

5 References

A.O.NIER, Phys. Rev. 55 (1393) 150 (U-234 half-life) M.CURIE, S.COTELLE, Compt. Rend. Acad. Sci. (Paris) 190 (1930) 1289 (Th-230 half-life) O.CHAMBERLAIN, D.WILLIAMS, P.YUSTER, Phys. Rev. 70 (1946) 580 (U-234 half-life) E.K.HYDE, Report National Nuclear Energy Series 14B (1949) 1435 (Th-230 half-life) C.A.KIENBERGER, Phys. Rev. 76 (1949) 1561 (U-234 half-life) A.S.GOLDIN, G.B.KNIGHT, P.A.MACKLIN, R.L.MACKLIN, Phys. Rev. 76 (1949) 336 (U-234 half-life) E.BALDINGER, P.HUBER, Helv. Phys. Acta 22 (1949) 365 (U-234 half-life) E.H.FLEMING JR., A.GHIORSO, B.B.CUNNINGHAM, Phys. Rev. 88 (1952) 642 (U-234 half-life) C.A.KIENBERGER, Phys. Rev. 87 (1952) 520 (U-234 half-life) A.GHIORSO, G.H.HIGGINS, A.E.LARSH, G.T.SEABORG, S.G.THOMPSON, Phys. Rev. 87 (1952) 163 (SF half-life) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Bull. Rus. Acad. Sci. Phys. 24 (1960) 1045 (Alpha emission) R.W.ATTREE, M.J.CABELL, R.L.CUSHING, J.J.PIERONI, Can. J. Phys. 40 (1961) 194 (Th-230 half-life) G.E.KOCHAROV, G.A.KOROLEV, Bull. Rus. Acad. Sci. Phys. 25 (1961) 227 (Alpha emission) S.BJORNHOLM, M.LEDERER, F.ASARO, I.PERLMAN, Phys. Rev. 130 (1963) 2000 (Alpha emission) W.R.NEAL, H.W.KRANER, Phys. Rev. 137 (1965) B1164 (53- and 174-kev levels half-life)

U - 234

P.H.WHITE, G.J.WALL, F.R.PONTET, J. Nucl. Energy A/B 19 (1965) 33 (U-234 half-life) I.AHMAD, Report UCRL-16888, Univ. California (1966) (Gamma-ray energy and intensity) G.C.HANNA, C.H.WESTCOTT, H.D.LEMMEL, B.R.LEONARD JR., J.S.STORY, P.M.ATTREE, At. Energy Rev. 7,4 (1969) 3 (U-234 half-life) J.W.MEADOWS, Report ANL-7610, Argonne National Laboratory (1970) 44 (U-234 half-life) P.DE BIEVRE, K.F.LAUER, Y.LE DUIGOU, H.MORET, G.MUSCHENBORN, J.SPAEPEN, A.SPERNOL, R.VANINBROUKX, V.VERDINGH, Chem. Nucl. Data, Canterbury (1971) 221 (U-234 half-life) M.LOUNSBURY, R.W.DURHAM, Chem. Nucl. Data, Canterbury (1971) 215 (U-234 half-life) M.SCHMORAK, C.E.BEMIS JR., M.J.ZENDER, N.B.GOVE, P.F.DITTNER, Nucl. Phys. A178 (1972) 410 (Gamma-ray energy) H.W.TAYLOR, Int. J. Appl. Radiat. Isotop. 24 (1973) 593 (Gamma-ray energy) R.L.HEATH, Report ANCR-1000-2 (1974) 14 (Gamma-ray instensity and energy) C.E.BEMIS JR., L.TUBBS, Report ORNL-5297, Oak Ridge National Laboratory (1977) 93 (X-ray emission) A.M.GEIDELMAN, YU.S.EGOROV, A.V.LOVTSYUS, V.I.ORLOV, L.D.PREOBRAZHENSKAYA, M.V.RYZHINSKY, A.V. STEPANOV, A.A.LIPOVSKY, YU.V.KHOLNOV, B.N.BELYAEV, M.K.ADBULLAKHATOV, G.A.AKOPOV, V.S.BELYKH, E.A.GROMOVA ET AL., Bull. Rus. Acad. Sci. Phys. 44,5 (1980) 23 (U-234 half-life) J.W.MEADOWS, R.J.ARMANI, E.L.CALLIS, A.M.ESSLING, Phys. Rev. C22 (1980) 750 (Th-230 half-life) H.R.VON GUNTEN, A.GRÜTTER, H.W.REIST, M.BAGGENSTOS, Phys. Rev. C23 (1981) 1110 (SF half-life) N.E.HOLDEN, BNL-NCS-51320 (1981) (U-234 half-life) Y.A.AKOVALI, Nucl. Data Sheets 40 (1983) 523 (Spin, parity, Energy level) W.P.POENITZ, J.W.MEADOWS, Report ANL-NDM/84, Argonne National Laboratory (1983) 33 (U-234 half-life) M.DIVADEENAM, J.R.STEHN, Ann. Nucl. Energy 11 (1984) 375 (U-234 half-life) R.VANINBROUKX, G.BORTELS, B.DENECKE, Int. J. Appl. Radiat. Isotop. 35 (1984) 1081 (X-ray, alpha and gamma emission) W.P.POENITZ, J.W.MEADOWS, in Nuclear Standard Reference Data, TECDOC-335, IAEA, Vienna (1985) 485 (U-234 half-life) E.J.AXTON, in Nuclear Standard Reference Data, TECDOC-335, IAEA, Vienna (1985) 214 (U-234 half-life) A.LORENZ, A.L.NICHOLS, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) 63 (U-234 half-life, gamma et alpha intensity) G.BORTELS, P.COLLAERS, Appl. Radiat. Isot. 38 (1987) 831 (Alpha emission) S.WANG, P.B.BRICE, S.W.BARWICK, K.J.MOODY, E.K.HULET, Phys. Rev. C36 (1987) 2717 (SF half-life) N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483 (U-234 half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha energy) Y.A.AKOVALI, Nucl. Data Sheets 69 (1993) 155 (Spin, parity, Energy level) Y.A.Akovali, Nucl. Data Sheets 71 (1994) 181 (Spin, parity, Energy level)

ANNEX I: RECOMMENDED DECAY DATA

P.N.JOHNSTON, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A361 (1995) 229
(X-ray emission)
E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527
(Atomic Data)
I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1
(Alpha)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129
(Q)

$T_{1/2}$:	704	(1)	$\times 10^6$ y
$Q^{'}_{lpha}$:	4678.3	(7)	keV
α	:	100		%
SF	:	7	(2)	$ imes 10^{-9}$ %
Ne/Mg	:	~ 1		$\times 10^{-13}~\%$

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,22}$	3976~(5)	≈0.0011
$\alpha_{0,21}$	4013.2(8)	0.0396~(10)
$\alpha_{0,20}$	4077.5(7)	0.016~(12)
$\alpha_{0,19}$	4152(5)	0.294(13)
$\alpha_{0,18}$	4214.7(19)	5.95(12)
$\alpha_{0,17}$	4219.5(7)	0.01732~(12)
$\alpha_{0,16}$	4227.6(7)	0.122~(6)
$\alpha_{0,15}$	4248(5)	0.069(10)
$\alpha_{0,14}$	4266~(5)	0.22~(3)
$\alpha_{0,13}$	4279.3(7)	0.0329~(5)
$\alpha_{0,12}$	4286.9(7)	0.065~(13)
$\alpha_{0,11}$	4302.1(7)	$0.00959\ (13)$
$\alpha_{0,10}$	4322~(4)	3.33~(6)
$lpha_{0,9}$	4327.9(7)	0.405~(13)
$lpha_{0,8}$	4361.9(7)	0.206~(21)
$lpha_{0,7}$	4366.1(20)	18.80(13)
$lpha_{0,6}$	4381.1(7)	0.106(16)
$lpha_{0,5}$	4397.8(13)	57.19(20)
$lpha_{0,4}$	4414.9(5)	3.01 (16)
$lpha_{0,3}$	4437.9(40)	$0.236\ (25)$
$\alpha_{0,2}$	4502.4(7)	1.28(5)
$\alpha_{0,1}$	4556.0(4)	3.79~(6)
$lpha_{0,0}$	4596.4(13)	4.74(6)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Th)	5.8 - 20.3	24(3)
e _{AK}	(Th) KLL KLX KXY	68.406 - 76.745 83.857 - 93.345 99.29 - 109.64	0.381 (9) } } }
ес _{7,5 L} ес _{10,7 L}	(Th) (Th)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 8.3 \ (29) \\ 1.09 \ (42) \end{array}$

CNDC /Huang Xiaolong, Wang Baosong

		Energy keV	Electrons per 100 disint.
$ec_{1,0 L}$	(Th)	21.484 - 25.700	18.2(32)
$ec_{7,5 M}$	(Th)	26.407 - 28.257	2.2(8)
$ec_{7,5 N}$	(Th)	30.260 - 31.254	0.60(23)
$ec_{7,4}$ L	(Th)	30.709 - 34.900	6.8(14)
$ec_{9,6}$ L	(Th)	33.602 - 37.800	0.1771 (34)
$ec_{10,7 M}$	(Th)	35.9 - 37.8	0.26(10)
$ec_{1,0 M}$	(Th)	36.774 - 38.624	4.9(9)
$ec_{10,7 N}$	(Th)	39.8 - 40.8	0.070(27)
$ec_{1,0 N}$	(Th)	40.630 - 41.621	1.32(23)
$ec_{19,18 L}$	(Th)	43.87 - 48.00	0.1850(27)
$ec_{7,4}$ M	(Th)	45.999 - 47.849	1.87(39)
ес _{9,6 М}	(Th)	48.892 - 50.742	0.0484 (8)
$ec_{7,4}$ N	(Th)	49.850 - 50.846	0.5 (1)
$ec_{9,6 N}$	(Th)	52.740 - 53.739	$0.01296\ (22)$
$ec_{19,18}$ M	(Th)	59.16 - 61.01	0.0445~(7)
$ec_{19,18 N}$	(Th)	63.01 - 64.01	0.01188 (18)
$ec_{2,0 L}$	(Th)	75.66 - 79.80	0.90(11)
$ec_{4,0 K}$	(Th)	76.072 (4)	5.06(8)
$ec_{2,0 M}$	(Th)	90.95 - 92.80	0.248(30)
$ec_{2,0 N}$	(Th)	94.8 - 95.8	0.067(8)
$ec_{4,0 L}$	(Th)	165.25 - 169.40	1.020 (18)
$ec_{4,0 M}$	(Th)	180.54 - 182.39	0.2468(37)
$ec_{4,0 N}$	(Th)	184.390 - 185.387	0.0651 (10)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Th)	11.1177 - 19.5043		22~(3)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\93.351$		$3.56 (9) \\ 5.76 (14)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Th) (Th) (Th)	$104.819 \\ 105.604 \\ 106.239$	} } }	2.06(5)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	$108.509 \\ 108.955 \\ 109.442$	} } }	0.685(18)	$\mathrm{K}\beta_2'$

	Energy keV	${ m P}_{\gamma+{ m ce}} \ imes 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{7,5}(\mathrm{Th})$	31.60(5)	11.4(40)	M1+E2	667	0.017~(6)
$\gamma_{10.7}(\mathrm{Th})$	41.4 (3)	1.5(6)	[M1]	49.9(13)	0.029(11)
$\gamma_{1.0}(\mathrm{Th})$	42.01 (6)	24.7(43)	M1+E2	440 (30)	0.056(9)
$\gamma_{7.4}(Th)$	51.21(4)	9.4(19)	[E2]	274(4)	0.034(7)
$\gamma_{9.6}(\mathrm{Th})$	54.1(1)	0.24	[E2]	210(4)	0.00115
$\gamma_{2,1}(Th)$	54.25(5)	2.1	[M1+E2]	71(3)	0.0285
$\gamma_{19.18}(\mathrm{Th})$	64.45(5)	0.26	[M1]	13.6(2)	0.018
$\gamma_{10.5}(\mathrm{Th})$	72.7(2)	1.86	M1+E2	15(3)	0.116
$\gamma_{7,3}(\mathrm{Th})$	74.94(3)	0.064(8)	[E1]	0.252(4)	0.051~(6)
$\gamma_{2,0}(Th)$	96.09(2)	1.33(16)	[E2]	13.58(19)	0.091(11)
$\gamma_{14.7}(Th)$	97(4)	0.22(7)	[E2]	13 (3)	0.016(4)
$\gamma_{5.2}(Th)$	109.19(7)	1.81 (14)	[E1]	0.0932(14)	1.66(13)
$\gamma_{10.3}(Th)$	115.45(5)	0.040(13)	[E1]	0.348(5)	0.03(1)
$\gamma_{3,1}(Th)$	120.35(5)	0.31	[M1]	10.95(16)	0.026
$\gamma_{16.8}(Th)$	136.55(5)	0.103	[M1]	7.66(11)	0.012
$\gamma_{7.2}(\text{Th})$	140.76(2)	0.244(12)	[E1]	0.218(3)	0.20(1)
$\gamma_{20.18}(Th)$	142.40(5)	0.018	[E2]	2.48(4)	0.0051
$\gamma_{4,1}(Th)$	143.767(3)	13.20(8)	$\mathbf{E1}$	0.207(3)	10.94(6)
$\gamma_{18.7}(Th)$	150.936(15)	0.61(20)	[M1]	5.76(8)	0.09(3)
$\gamma_{5,1}(Th)$	163.356(3)	5.855(36)	(E1)	0.1526(22)	5.08(3)
$\gamma_{16.5}(Th)$	173(1)	0.007(6)	[E1]	0.133(3)	0.006(5)
$\gamma_{18.5}(Th)$	182.62(5)	1.70(22)	[M1]	3.36(5)	0.39(5)
$\gamma_{4.0}(Th)$	185.720(4)	63.41(35)	$\mathbf{E1}$	0.1124(16)	57.0(3)
$\gamma_{7,1}(Th)$	194.940 (6)	0.693(11)	[E1]	0.1002(14)	0.63(1)
$\gamma_{8,1}(Th)$	198.894 (14)	0.131(7)	M1	2.64(4)	0.036(2)
$\gamma_{184}(Th)$	202.12(1)	3.81(8)	[M1]	2.53(4)	1.08(2)
$\gamma_{50}(Th)$	205.316(4)	5.465(33)	(E1)	0.0887(13)	5.02(3)
$\gamma_{19.7}(Th)$	215.28(4)	0.090(9)	[M1]	2.12(3)	0.029(3)
γ_{60} (Th)	221.386 (14)	0.349(15)	M1	1.96(3)	0.118(5)
$\gamma_{13,2}(Th)$	228.76(5)	0.021	M1	1.79(3)	0.0074
$\gamma_{9,1}(Th)$	233.50(2)	0.102(11)	M1	1.687(24)	0.038(4)
$\gamma_{80}(Th)$	240.88(4)	0.181(19)	M1(+E2)	1.45(22)	0.074(4)
$\gamma_{19.5}(Th)$	246.83(2)	0.134(7)	[M1]	1.445(21)	0.055(3)
$\gamma_{15,2}(Th)$	255.365(10)	0.017	M1	1.315(19)	0.0074
$\gamma_{19.4}(Th)$	266.47(4)	0.0097(7)	[E2]	0.245(4)	0.0078(6)
$\gamma_{12,1}(Th)$	275.35(15)	0.094(11)	M1+E2	0.84(6)	0.051(6)
$\gamma_{9.0}(Th)$	275.49 (6)	0.065	M1(+E2)	1.02(12)	0.032
$\gamma_{16,2}(Th)$	281.42(5)	0.013	M1	1.005(14)	0.0063
$\gamma_{13,1}(Th)$	282.94(5)	0.013	[M1]	0.990(14)	0.0063
$\gamma_{17,2}(Th)$	289.56(4)	0.0142	[M1]	0.929(13)	0.0074
$\gamma_{18,2}(Th)$	291.65(3)	0.042(6)	[E1]	0.0396 (6)	0.040(6)
$\gamma_{11.0}(Th)$	301.7(1)	0.01	M1	0.829(12)	0.0053
$\gamma_{15,1}(Th)$	310.69 (6)	0.011	(E2)	0.1517(22)	0.0094
$\gamma_{12.0}(Th)$	317.10 (8)	0.0019	M1	0.723(11)	0.0011
$\gamma_{17,1}(Th)$	343.5(2)	0.0032		- (-)	0.0032
γ_{181} (Th)	345.92(3)	0.041(6)	[E1]	0.0272(4)	0.040(6)
$\gamma_{15,0}(\mathrm{Th})$	350(5)	0.009	Mĺ	0.552(24)	0.006

4.2 Gamma Transitions and Emissions

CNDC /Huang Xiaolong, Wang Baosong

	Energy keV	$\mathrm{P}_{\gamma+\mathrm{ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$ \begin{array}{c} \gamma_{19,2}({\rm Th}) \\ \gamma_{18,0}({\rm Th}) \\ \gamma_{21,5}({\rm Th}) \\ \gamma_{19,1}({\rm Th}) \\ \gamma_{22,4}({\rm Th}) \end{array} $	$\begin{array}{c} 356.03 \ (5) \\ 387.84 \ (3) \\ 390.27 \ (20) \\ 410.29 \ (4) \\ 448.40 \ (6) \end{array}$	$\begin{array}{c} 0.0054 \\ 0.041 \ (6) \\ 0.040 \ (1) \\ 0.0033 \\ 0.0011 \end{array}$	[E1] [E1] [E1]	$\begin{array}{c} 0.0255 \ (4) \\ 0.0213 \ (3) \\ 0.0189 \ (3) \end{array}$	$\begin{array}{c} 0.0053 \\ 0.040 \ (6) \\ 0.040 \ (1) \\ 0.0032 \\ 0.0011 \end{array}$

5 References

A.O.NIER, Phys. Rev. 55 (1939) 150 (Half-life) G.B.KNIGHT, Report ORNL K-663, Oak Ridge National Laboratory (1950) (Half-life) G.J.SAYAG, Compt. Rend. Acad. Sci. (Paris) 232 (1951) 2091 (Half-life) E.H.FLEMING JR., A.GHIORSO, B.B.CUNNINGHAM, Phys. Rev. 88 (1952) 642 (Half-life) E.SEGRÈ, Phys. Rev. 86 (1952) 21 (Half-life) F.L.CLARK, H.J.SPENCER-PALMER, R.N.WOODWARD, J. S.African Chem. Inst. 10 (1957) 62 (Half-life) E.WURGER, K.P.MEYER, P.HUBER, Helv. Phys. Acta 30 (1957) 157 (Half-life) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Izv. Akad. Nauk SSSR, Ser. Fiz. 24 (1960) 1035 (Alpha energies and intensities) R.C.PILGER, F.S.STEPHENS, F.ASARO, I.PERLMAN, Priv. Comm. (1962), cited in unpublished (1962) (Alpha energies and intensities) A.J.DERUYTTER, I.G.SCHRODER, J.A.MOORE, Nucl. Sci. Eng. 21 (1965) 325 (Half-life) P.H.WHITE, G.J.WALL, F.R.PONTET, J. Nucl. Energy A/B19 (1965) 33 (Half-life) B.M.ALEKSANDROV, A.S.KRIVOKHATSKII, L.Z.MALKIN, K.A.PETRZHAK, At. Energ. 20 (1966) 315 (Half-life) R.GAETA, M.A.VIGON, Nucl. Phys. 76 (1966) 353 ([Alpha energies and intensities, gamma-ray energie) J.E.CLINE, Report IN-1448 (1971) (Gamma-ray energies and intensities) A.H.JAFFEY, K.F.FLYNN, L.E.GLENDENIN, W.C.BENTLEY, A.M.ESSLING, Phys. Rev. C4 (1971) 1889 (Half-life) L.A.KROGER, C.W.REICH, J.E.CLINE, Report ANCR-1016 (1971) 75 (Gamma-ray energies and intensities) A.J.DERUYTTER, G.WEGENER-PENNING, Phys. Rev. C10 (1974) 383 (Half-life) A.GRUTTER, H.R.VON GUNTEN, V.HERRNBERGER, B.HAHN, U.MOSER, H.W.REIST, G.SLETTEN, Physics and Chemistry of Fission 1973, Proc. Symp. on the Physics and Chemistry of Fission, Vol I, STI/PUB/347, IAEA, Vienna (1974) 305 (Half-life) W.TEOH, R.D.CONNOR, R.H.BETTS, Nucl. Phys. A228 (1974) 432 (Gamma-ray energies and intensities) E.VANO, R.GAETA, L.GONZALEZ, C.F.LIANG, Nucl. Phys. A251 (1975) 225 (Gamma-ray energies and intensities) S.A.BARANOV, V.M.SHATINSKII, A.G.ZELENKOV, V.A.PCHELIN, Sov. J. Nucl. Phys. 26 (1977) 486 (Gamma-ray energies and intensities) H.R.VON GUNTEN, A.GRUTTER, H.W.REIST, M.BAGGENSTOS, Phys. Rev. C23 (1981) 1110 (Half-life)

U - 235

R.VANINBROUKX, B.DENECKE, Nucl. Instrum. Methods 193 (1982) 191 (Gamma-ray energies and emission probabilities) C.BAKTASH, E.DER MATEOSIAN, O.C.KISTNER, A.W.SUNYAR, D.HORN, C.J.LISTER, Bull. Am. Phys. Soc. 28 (1983) 41(Gamma-ray emission probabilities) D.G.Olson, Nucl. Instrum. Methods 206 (1983) 313 (Gamma-ray emission probabilities) R.G.HELMER, C.W.REICH, Int. J. Appl. Radiat. Isotop. 35 (1984) 783 (Gamma-ray energies and emission probabilities) A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Evaluated gamma-ray energies and emission intensities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Evaluated alpha intensities) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities) C.C.BUENO, M.D.S.SANTOS, Appl. Radiat. Isot. 44 (1993) 567 (Half-life) H.RUELLAN, M.C.LÉPY, M.ETCHEVERRY, J.PLAGNARD, J.MOREL, Nucl. Instrum. Methods Phys. Res. A369 (1996) 651(Gamma-ray and X-ray intensities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) H.CHATANI, Nucl. Instrum. Methods A425 (1999) 277 (Gamma-ray emission intensities) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525 (Evaluated Half-life) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Calculated ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 98 (2003) 665 (Decay scheme and levels) F.DAYRAS, N.CHAUVIN, Nucl. Instrum. Methods Phys. Res. A530 (2004) 391 (Alpha energies and intensities) R.SCHÖN, G.WINKLER, W.KUTSCHERA, Appl. Radiat. Isot. 60 (2004) 263 (Evaluated Half-life) E.GARCIA-TORAÑO, M.T.CRESPO, M.ROTETA, G.SIBBENS, S.POMMÉ, A.M.SANCHEZ, M.P.R.MONTERO, S. WOODS, A.PEARCE, Nucl. Instrum. Methods Phys. Res. A550 (2005) 581 (Alpha energies and intensities) F.S.AL-SALEH, AL-J.H.AL-MUKREN, M.A.FAROUK, Nucl. Instrum. Methods Phys. Res. A568 (2006) 734 (Gamma-ray emission probabilities) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	23.43	(6)	$\times 10^6$ y
$Q^{'}_{lpha}$:	4573.1	(9)	keV
α	:	100		%
SF	:	~ 9		$ imes 10^{-8}$ %

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 4168 \\ 4332 \ (8) \\ 4445 \ (5) \\ 4494 \ (3) \end{array}$	$\begin{array}{c} 0.00014 \ (5) \\ 0.149 \ (22) \\ 26.1 \ (40) \\ 73.8 \ (40) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Th)	5.8 - 20.3	10.1 (12)
e_{AK}	(Th) KLL KLX KXY	68.406 - 76.745 83.857 - 93.345 99.29 - 109.64	0.000139 (30) } } }
$\begin{array}{c} ec_{1,0} \ L \\ ec_{1,0} \ M \\ ec_{1,0} \ N \\ ec_{2,1} \ L \\ ec_{2,1} \ M \end{array}$	(Th) (Th) (Th) (Th) (Th)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 19.2 \ (29) \\ 5.3 \ (8) \\ 1.41 \ (21) \\ 0.092 \ (15) \\ 0.0253 \ (41) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Th)	11.118 - 19.599		9.4 (10)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\93.351$		$\begin{array}{c} 0.00128 \ (22) \\ 0.0021 \ (4) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Th) (Th) (Th)	$104.819 \\ 105.604 \\ 106.239$	} } }	0.00074 (13)	$\mathrm{K}\beta_1'$

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	$108.509 \\108.955 \\109.442$	} } }	0.00025(5)	${ m K}eta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \gamma_{1,0}(\mathrm{Th}) \\ \gamma_{2,1}(\mathrm{Th}) \\ \gamma_{3,2}(\mathrm{Th}) \end{array}$	$\begin{array}{c} 49.46 \ (10) \\ 112.79 \ (10) \\ 171.15 \ (20) \end{array}$	$\begin{array}{c} 26.3 \ (40) \\ 0.150 \ (24) \\ 0.000142 \ (48) \end{array}$	E2 E2 E2	$\begin{array}{c} 324 \ (10) \\ 6.67 \ (20) \\ 1.186 \ (36) \end{array}$	$\begin{array}{c} 0.081 \ (12) \\ 0.0195 \ (31) \\ 0.000065 \ (22) \end{array}$

5 References

A.H.JAFFEY, A.HIRSCH - CITED IN E.K.HYDE,, The Nuclear Properties of the Heavy Elements, Vol. III, Prentice-Hall Inc., Englewood Cliffs, N.J. (1949) 75 (Half-life)

A.H.JAFFEY, H.DIAMOND, A.HIRSCH, J.MECH, Phys. Rev. 84 (1951) 785 (Alpha emission energies, Half-life) E.H.FLEMING JR., A.GHIORSO, B.B.CUNNINGHAM, Phys. Rev. 88 (1952) 642

(Half-life)

A.P.KOMAR, G.A.KOROLEV, G.E.KOCHAROV, Zh. Eksp. Teor. Fiz. 38 (1960) 1436

(Alpha emission energies, Alpha emission probabilities)

H.Conde, M.Holmberg, J. Nucl. Energy 25 (1971) 331 $\,$

(Half-life)

K.F.FLYNN, A.H.JAFFEY, W.C.BENTLEY, A.M.ESSLING, J. Inorg. Nucl. Chem. 34 (1972) 1121 (Half-life)

M.SCHMORAK, C.E.BEMIS JR., M.J.ZENDER, N.B.GOVE, P.F.DITTNER, Nucl. Phys. A178 (1972) 410 (Gamma-ray energies)

H.R.VON GUNTEN, A.GRUETTER, H.W.REIST, M.BAGGENSTOS, Phys. Rev. C23 (1981) 1110 (Half-life)

S.N.BELENKY, M.D.SKOROKHVATOV, A.V.ETENKO, Sov. At. Energy 55 (1983) 528 (Half-life, Spontaneous fission probability)

S.F.Mughabghab, Neutron Cross Sections, Part B, Z = 61-100, Academic Press (1984) (Production modes)

E.BROWNE, R.B.FIRESTONE, Table of Radioactive Isotopes, John Wiley and Sons Inc., N.Y. (1986) (X-rays energies and emission probabilities)

M.J.WOODS, A.S.MUNSTER, NPL Report RS (EXT) 95 (1988)

(LWM method for averaging numbers)

N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483

(Total and spontaneous fission half-lives)

J.L.ITURBE, Appl. Radiat. Isot. 43 (1992) 817

(Alpha emission energies, Alpha emission probabilities)

S.P.TRETYAKOVA, V.L.MIKHEEV, V.A.PONOMARENKO, A.N.GOLOVCHENKO, A.A.OGLOBLIN, V.A.SHIGIN, Pisma Zh. Eksp. Teor. Fiz. 59 (1994) 368

(Cluster decay)

E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595

(X-ray emission probabilities, X-ray energies, Auger electron emission probabilities, Auger electron energies) D.MACMAHON, E.BROWNE, LWEIGHT v1.3, A Computer Program to Calculate Averages, unpublished (2000) (Software for evaluation) R.J.Gehrke, J.D.Baker, C.L.Riddle, Appl. Radiat. Isot. 56 (2002) 567

(Gamma-ray emission probabilities, Gamma-ray energies)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

M.-M.BÉ, C.DULIEU, LWEIGHT v4, A Computer Program to Calculate Averages, unpublished (2005) (Software for evaluation)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, C.W.NESTOR Jr., BrIcc Program Package v 2.0 ANU- $\mathrm{P}/1684~(2005)$

(K ICC, L ICC, T ICC, Theoretical ICC)

E.BROWNE, Nucl. Data Sheets 107 (2006) 2579

(Atomic Data, Spin and Parity, T ICC, Multipolarities, Alpha emission energies, Alpha emission probabilities, Gamma-ray energies)

M.-M.BÉ, C.DULIEU, SAISINUC 2000 Manual, CEA/LNE-LNHB (2006) (Evaluation software)

$T_{1/2}$:	6.749	(16)	d
$Q_{\beta^{-}}$:	518.6	(6)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Proba × 1	ability 100	Nature	$\log ft$
$\beta_{0,9}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,6}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,2}^{-} $	$\begin{array}{c} 147.7 \ (6) \\ 186.2 \ (6) \\ 237.2 \ (6) \\ 251.1 \ (6) \\ 459.1 \ (6) \end{array}$	$ \begin{array}{r} 1.3 \\ 2.9 \\ 48.2 \\ 40.9 \\ 7 \end{array} $	(9) (9) (25) (31) (4)	Allowed Super-allowed 1st forbidden 1st forbidden 1st forbidden unique	$7.32 \\ 7.28 \\ 6.39 \\ 6.54 \\ 8.1$

3 Electron Emissions

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Energy keV	Electrons per 100 disint.	Energy keV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e_{AL}	(Np)	5.04 - 13.52	58.5 (21)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e_{AK}	(Np)		1.49(21)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		KLL	73.50 - 83.13	}	
KXY $107.10 - 114.58$ }ec_{2,1 L}(Np) $3.918 - 8.731$ $14.6 (50)$ ec_{6,5 M}(Np) $8.07 - 10.15$ $36.0 (19)$ ec_{1,0 L}(Np) $10.769 - 15.586$ $17.0 (23)$ ec_{6,5 N}(Np) $12.31 - 13.41$ $9.79 (43)$ ec_{9,7 L}(Np) $16.11 - 20.93$ $0.7 (7)$ ec_{3,1 L}(Np) $20.277 - 25.094$ 0.47 ec_{2,1 M}(Np) $20.066 - 22.681$ $3.9 (5)$ ec_{4,2 L}(Np) $20.996 - 25.813$ $3.2 (5)$ ec_{1,0 M}(Np) $27.457 - 29.532$ $4.3 (7)$ ec_{7,6 L}(Np) $28.58 - 33.40$ $0.19 (8)$ ec_{1,0 N}(Np) $31.695 - 32.793$ $1.16 (17)$ ec_{9,7 M}(Np) $32.80 - 34.88$ $0.2 (2)$ ec_{3,1 M}(Np) $36.965 - 39.040$ 0.12 ec_{9,7 N}(Np) $37.04 - 38.14$ $0.05 (5)$ ec_{2,0 L}(Np) $37.684 - 39.759$ $0.84 (14)$ ec_{3,1 N}(Np) $41.203 - 42.301$ 0.032 ec_{4,2 M}(Np) $41.92 - 43.02$ $0.233 (37)$ ec_{4,2 N}(Np) $41.92 - 47.22$ $0.387 (9)$ ec_{7,6 M}(Np) $45.94 (2)$ $0.363 (9)$ ec_{7,6 N}(Np) $45.94 (2)$ $0.363 (9)$		KLX	90.36 - 97.28	}	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		KXY	107.10 - 114.58	}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{2,1 L}$	(Np)	3.918 - 8.731	14.6(50)	
ec1.0 L(Np) $10.769 - 15.586$ $17.0 (23)$ ec6.5 N(Np) $12.31 - 13.41$ $9.79 (43)$ ec9.7 L(Np) $16.11 - 20.93$ $0.7 (7)$ ec3.1 L(Np) $20.277 - 25.094$ 0.47 ec2.1 M(Np) $20.066 - 22.681$ $3.9 (5)$ ec4.2 L(Np) $20.996 - 25.813$ $3.2 (5)$ ec1.0 M(Np) $27.457 - 29.532$ $4.3 (7)$ ec7.6 L(Np) $28.58 - 33.40$ $0.19 (8)$ ec1.0 N(Np) $31.695 - 32.793$ $1.16 (17)$ ec9.7 M(Np) $32.80 - 34.88$ $0.2 (2)$ ec3.1 M(Np) $37.04 - 38.14$ $0.05 (5)$ ec2.0 L(Np) $37.684 - 39.759$ $0.84 (14)$ ec3.1 N(Np) $41.203 - 42.301$ 0.032 ec4.2 N(Np) $41.92 - 43.02$ $0.233 (37)$ ec4.2 N(Np) $41.92 - 47.22$ $0.387 (9)$ ec4.2 N(Np) $45.27 - 47.35$ $0.0479 (21)$ ec5.4 K(Np) $45.94 (2)$ $0.363 (9)$ ec7.6 N(Np) $45.91 - 50.61$ $0.0127 (6)$	$ec_{6,5 M}$	(Np)	8.07 - 10.15	36.0(19)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{1,0 L}$	(Np)	10.769 - 15.586	17.0(23)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{6,5 N}$	(Np)	12.31 - 13.41	9.79(43)	
ec_{3,1 L}(Np) $20.277 - 25.094$ 0.47 ec_{2,1 M}(Np) $20.606 - 22.681$ $3.9 (5)$ ec_{4,2 L}(Np) $20.996 - 25.813$ $3.2 (5)$ ec_{1,0 M}(Np) $27.457 - 29.532$ $4.3 (7)$ ec_{7,6 L}(Np) $28.58 - 33.40$ $0.19 (8)$ ec_{1,0 N}(Np) $31.695 - 32.793$ $1.16 (17)$ ec_{9,7 M}(Np) $32.80 - 34.88$ $0.2 (2)$ ec_{3,1 M}(Np) $36.965 - 39.040$ 0.12 ec_{9,7 N}(Np) $37.04 - 38.14$ $0.05 (5)$ ec_{2,0 L}(Np) $37.114 - 41.931$ $28.6 (22)$ ec_{4,2 M}(Np) $37.684 - 39.759$ $0.84 (14)$ ec_{3,1 N}(Np) $41.203 - 42.301$ 0.032 ec_{4,2 N}(Np) $41.92 - 43.02$ $0.233 (37)$ ec_{7,5 L}(Np) $45.27 - 47.35$ $0.0479 (21)$ ec_{5,4 K}(Np) $45.94 (2)$ $0.363 (9)$ ec_{7,6 N}(Np) $49.51 - 50.61$ $0.0127 (6)$	$ec_{9,7 L}$	(Np)	16.11 - 20.93	0.7~(7)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{3,1 L}$	(Np)	20.277 - 25.094	0.47	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{2,1 M}$	(Np)	20.606 - 22.681	3.9(5)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{4,2 L}$	(Np)	20.996 - 25.813	3.2(5)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{1,0 M}$	(Np)	27.457 - 29.532	4.3(7)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{7,6}$ L	(Np)	28.58 - 33.40	0.19(8)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{1,0 N}$	(Np)	31.695 - 32.793	1.16(17)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{9,7}$ M	(Np)	32.80 - 34.88	0.2(2)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{3,1 M}$	(Np)	36.965 - 39.040	0.12	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{9,7 N}$	(Np)	37.04 - 38.14	0.05~(5)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{2,0 L}$	(Np)	37.114 - 41.931	28.6(22)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{4,2}$ M	(Np)	37.684 - 39.759	0.84(14)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{3,1 N}$	(Np)	41.203 - 42.301	0.032	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{4,2}$ N	(Np)	41.92 - 43.02	0.233~(37)	
$ec_{7,6 M}$ (Np)45.27-47.350.0479 (21) $ec_{5,4 K}$ (Np)45.94(2)0.363 (9) $ec_{7,6 N}$ (Np)49.51-50.610.0127 (6)	$ec_{7,5 L}$	(Np)	42.40 - 47.22	0.387~(9)	
$ec_{5,4 \text{ K}}$ (Np)45.94(2)0.363 (9) $ec_{7,6 \text{ N}}$ (Np)49.51-50.610.0127 (6)	$ec_{7,6}$ M	(Np)	45.27 - 47.35	0.0479(21)	
$e_{7,6 \text{ N}}$ (Np) 49.51 - 50.61 0.0127 (6)	$ec_{5,4 K}$	(Np)	45.94 (2)	0.363~(9)	
	$ec_{7,6 N}$	(Np)	49.51 - 50.61	0.0127~(6)	

		Energy	Electrons	Energy
		keV	per 100 disint.	keV
ecs o L	(Np)	53.4 - 58.2	0.0354(7)	
$ec_{2,0}$ M	(Np)	53.802 - 55.877	7.7(3)	
$ec_{2,0 N}$	(Np)	58.040 - 59.138	0.846(24)	
$ec_{7,5}$ M	(Np)	59.09 - 61.17	0.096(2)	
$ec_{7,5 N}$	(Np)	63.33 - 64.43	0.0255(5)	
$ec_{5,2}$ K	(Np)	89.331 (10)	50.1(13)	
$ec_{5,1 K}$	(Np)	115.73 (4)	0.114(5)	
$ec_{5,4 L}$	(Np)	142.18 - 147.00	2.04(5)	
$ec_{5,0 K}$	(Np)	148.87 (4)	0.53~(3)	
$ec_{5,4 M}$	(Np)	158.87 - 160.95	0.565~(14)	
$ec_{5,4 N}$	(Np)	163.11 - 164.21	0.1546(33)	
$ec_{5,2 L}$	(Np)	185.573 - 190.390	10.1 (3)	
$ec_{5,2}$ M	(Np)	202.261 - 204.336	2.45(7)	
$ec_{5,2 N}$	(Np)	206.499 - 207.597	0.662~(14)	
$ec_{5,1 L}$	(Np)	211.97 - 216.79	0.040(2)	
$ec_{7,0 K}$	(Np)	213.69 (4)	0.0757~(18)	
$ec_{8,1\ \rm K}$	(Np)	216.71 (4)	0.052~(7)	
$ec_{5,1}$ M	(Np)	228.66 - 230.74	0.0105~(5)	
$ec_{5,0 L}$	(Np)	245.11 - 249.93	0.172(9)	
$ec_{8,0 K}$	(Np)	249.92 (4)	0.0206~(9)	
$ec_{9,0 K}$	(Np)	252.259 (23)	0.046~(7)	
$ec_{5,0 M}$	(Np)	261.80 - 263.88	0.045~(3)	
$ec_{5,0 N}$	(Np)	266.055 - 267.153	0.0123~(7)	
$ec_{7,0 L}$	(Np)	309.93 - 314.75	0.0733~(17)	
$ec_{8,1 L}$	(Np)	312.95 - 317.77	0.0108~(3)	
ес _{7,0 М}	(Np)	326.62 - 328.70	0.0197~(5)	
$\beta_{0.9}^{-}$	max:	147.7 (6)	1.3(9)	avg: 39.0 (2)
$\beta_{0.7}^{7}$	max:	186.2 (6)	2.9(9)	avg: 49.8 (2)
$\beta_{0,6}^{}$	max:	237.2 (6)	48.2 (25)	avg: 64.5 (2)
$\beta_{0.5}^{-}$	max:	251.1 (6)	40.9 (31)	avg: 68.6 (2)
$\beta_{0,2}^{-,5}$	max:	459.1 (6)	7 (4)	avg: 137.6 (2)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Np)	11.89 - 22.2		59.0(21)	
$\begin{array}{l} {\rm XK}\alpha_2\\ {\rm XK}\alpha_1 \end{array}$	(Np) (Np)	$97.069 \\ 101.059$		$\begin{array}{c} 14.8 \ (4) \\ 23.5 \ (6) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Np) (Np) (Np)	$113.303 \\ 114.234 \\ 114.912$	} } }	8.57 (27)	$\mathrm{K}\beta_1'$

		Energy keV	Photons per 100 disint.
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Np) (Np) (Np)	$117.476 \\ 117.876 \\ 118.429$	

4.2 Gamma Transitions and Emissions

	${ m Energy}\ { m keV}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathrm{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \gamma_{6,5}(\mathrm{Np}) \\ \gamma_{2,1}(\mathrm{Np}) \\ \gamma_{1,0}(\mathrm{Np}) \\ \gamma_{9,7}(\mathrm{Np}) \\ \gamma_{3,1}(\mathrm{Np}) \\ \gamma_{4,2}(\mathrm{Np}) \\ \gamma_{7,6}(\mathrm{Np}) \\ \gamma_{7,6}(\mathrm{Np}) \\ \gamma_{7,5}(\mathrm{Np}) \\ \gamma_{4,1}(\mathrm{Np}) \\ \gamma_{3,0}(\mathrm{Np}) \\ \gamma_{4,0}(\mathrm{Np}) \\ \gamma_{5,2}(\mathrm{Np}) \\ \gamma_{5,2}(\mathrm{Np}) \\ \gamma_{5,2}(\mathrm{Np}) \\ \gamma_{5,2}(\mathrm{Np}) \\ \gamma_{5,2}(\mathrm{Np}) \\ \gamma_{5,0}(\mathrm{Np}) \\ \gamma_{5,0}(\mathrm{Np}) \\ \gamma_{8,3}(\mathrm{Np}) \\ \gamma_{8,2}(\mathrm{Np}) \\ \gamma_{7,0}(\mathrm{Np}) \end{array}$	$\begin{array}{c} 13.81 \ (2) \\ 26.34463 \ (24) \\ 33.19629 \ (22) \\ 38.54 \ (3) \\ 42.704 \ (5) \\ 43.420 \ (3) \\ 51.01 \ (3) \\ 59.54091 \ (10) \\ 64.83 \ (2) \\ 69.76 \ (3) \\ 75.899 \ (5) \\ 102.959 \ (3) \\ 164.61 \ (2) \\ 208.00 \ (1) \\ 221.80 \ (4) \\ 234.40 \ (4) \\ 267.556 \ (12) \\ 292.77 \ (6) \\ 309.1 \ (3) \\ 332.376 \ (16) \end{array}$	$\begin{array}{c} + 7.66\\ \times 100\\ \\ \hline \\ 48.8 (25)\\ 22 (5)\\ 23 (3)\\ 0.9 (9)\\ 0.65\\ 4.3 (7)\\ 0.596 (25)\\ 73.7 (31)\\ 1.800 (26)\\ 0.0013 (3)\\ 0.05\\ 0.0072 (10)\\ 5.02 (11)\\ 84.8 (19)\\ 0.0072 (10)\\ 5.02 (11)\\ 84.8 (19)\\ 0.0316 (13)\\ 0.189 (8)\\ 1.5 (4)\\ 0.0030 (9)\\ 0.00028\\ 1.374 (19)\\ \end{array}$	$\begin{array}{c} M1 + 0.1\% E2 \\ E1 \\ M1 + 1.66\% E2 \\ M1 + 15\% E2 \\ M1 + 1.66\% E2 \\ M1 + 16.8\% E2 \\ E1 \\ E1 \\ (E1) \\ (E2) \\ E1 \\ E2 \\ M1 + 2.4\% E2 \\ E2 \\ M2 \\ E1 + 19.4\% M2 \\ (E2) \\ (E1) \\ E2 \\ \end{array}$	$\begin{array}{c} 492 \ (16) \\ 8 \ (2) \\ 175 \ (24) \\ 280 \ (210) \\ 75 \ (9) \\ 180 \ (23) \\ 0.753 \ (15) \\ 1.16 \ (7) \\ 0.400 \ (8) \\ 0.330 \ (7) \\ 53.4 \ (11) \\ 0.119 \ (3) \\ 1.70 \ (4) \\ 2.98 \ (7) \\ 0.547 \ (11) \\ 8.24 \ (16) \\ 1.06 \ (6) \\ 0.215 \ (4) \\ 0.0377 \ (8) \\ 0.146 \ (3) \end{array}$	\times 100 0.099 (4) 2.43 (6) 0.130 (5) 0.0033 (20) 0.0085 0.024 (2) 0.340 (14) 34.1 (9) 1.286 (17) 0.00095 (19) 0.00091 0.00091 0.0064 (9) 1.86 (3) 21.3 (3) 0.0204 (8) 0.0205 (8) 0.721 (10) 0.0025 (7) 0.00027 1.199 (16)
$\begin{array}{l} \gamma_{8,1}(\mathrm{Np})\\ \gamma_{9,1}(\mathrm{Np})\\ \gamma_{-1,2}(\mathrm{Np})\\ \gamma_{8,0}(\mathrm{Np})\\ \gamma_{9,0}(\mathrm{Np}) \end{array}$	$\begin{array}{c} 335.38 \ (4) \\ 337.7 \ (2) \\ 340.45 \\ 368.602 \ (20) \\ 370.928 \ (23) \end{array}$	$\begin{array}{c} 0.162 \ (9) \\ 0.0101 \ (6) \\ 0.0016 \ (3) \\ 0.0675 \ (28) \\ 0.167 \ (8) \end{array}$	M1+17.5%E2 (E2) M1(+E2) M1+15.6%E2	$\begin{array}{c} 0.69 \ (8) \\ 0.139 \ (3) \\ 0.622 \ (13) \\ 0.53 \ (7) \end{array}$	$\begin{array}{c} 0.0958 \ (22) \\ 0.0089 \ (5) \\ 0.0016 \ (3) \\ 0.0416 \ (17) \\ 0.109 \ (2) \end{array}$

5 References

L.MELANDER, H.SLATIS, Arkiv Mat. Astron. Fysik 36A (1948) No 15 (Half-life, energies and probabilities of beta-transitions)
F.WAGNER JR., M.S.FREEDMAN, D.W.ENGELKEMEIR, J.R.HUIZENGA, Phys. Rev. 89 (1953) 502 (Half-life, energies and probabilities of beta-transitions)
J.O.RASMUSSEN, F.L.CANAVAN, J.M.HOLLANDER, Phys. Rev. 107 (1957) 141 (Energies and probabilities of beta-transitions)
M.J.CABELL, T.A.EASTWOOD, P.J.CAMPION, J. Nucl. Energy 7 (1958) 81 (Half-life)
P.S.SAMOILOV, Izv. Akad. Nauk SSSR, Ser. Fiz. 23 (1959) 1416 (Gamma-ray transition multipolarities)
F.ASARO, F.S.STEPHENS, J.M.HOLLANDER, I.PERLMAN., Phys. Rev. 117 (1960) 492 (ICC for the anomalously converted gamma-ray transitions)

E.AKATSU, T.KUROYANAGI, T.ISHIMORI, Radiochim. Acta 2 (1963) 1 (Gamma-ray energies) J.L.WOLFSON, J.J.H.PARK, Can. J. Phys. 42 (1964) 1387 (E2/M1 admixtures)T.YAMAZAKI, J.M.HOLLANDER., Nucl. Phys. 84 (1966) 505 (Gamma-ray and X-ray energies and multipolarities, E2 admixtures, relative probability of conversion electrons) C.M.LEDERER, J.K.POGGENBURG, F.ASARO, J.O.RASMUSSEN, I.PERLMAN, Nucl. Phys. 84 (1966) 481 (Conversion electron data) H.-C.PAULI, K.ALDER, Z. Phys. 202 (1967) 255 (Anomalously converted E1 gamma-ray transitions) L.N.KONDRATEV, E.E. TRETYAKOV, Bull. Rus. Acad. Sci. Phys. 30 (1967) 393 (E2/M1 admixtures)R.DAMS, F.ADAMS, Radiochim. Acta 10 (1968) 1 (Gamma-ray energies) J.E.CLINE, Report IN-1448 (1971) (Gamma-ray energies and emission probabilities) V.N.GRIGOREV, A.P.FERESIN, Sov. J. Nucl. Phys. 12 (1971) 361 (Anomalously converted E1 gamma-ray transitions) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (Gamma-ray energies and emission probabilities) A.V.BUSHUEV, O.V.MATVEEV, V.N.OZERKOV, V.V.CHACHIN, Report INDC(CCP)-193, IAEA, Vienna (1982) 30 (Gamma-ray emission probabilities) M.F.BANHAM, Priv. Comm. (1984), cited in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1984) (Gamma-ray emission probabilities) R.G.HELMER, C.W.REICH, Int. J. Appl. Radiat. Isotop. 36 (1985) 117 (Gamma-ray emission probabilities) H.WILLMES, T.ANDO, R.J.GEHRKE, Int. J. Appl. Radiat. Isotop. 36 (1985) 123 (X-ray and gamma-ray emission probabilities) A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Gamma-ray probabilities) P.N.JOHNSTON, Nucl. Instrum. Methods Phys. Res. A369 (1996) 107 (ICC for the anomalously converted gamma-ray transitions) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) R.YANEZ, W.LOVELAND, D.J.MORRISSEY, K.ALEKLETT, J.O.LILJENZIN, E.HAGEBO, D.JERRESTAM, L.WESTER-BERG, Phys. Lett. B376 (1996) 29 (Gamma-ray energies) A.KOVALIK, E.A.YAKUSHEV, V.M.GOROZHANKIN, A.F.NOVGORODOV, M.RYSAVY, J. Phys. (London) G24 (1998) 2247(Gamma transition multipolarities) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray energies) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) M.S.BASUNIA, Nucl. Data Sheets 107 (2006) 3323 (Decay data evaluation, gamma-ray energies and multipolarities, decay scheme) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

$T_{1/2}$:	4.468	(5)	$\times 10^9$ y
$Q^{'}_{lpha}$:	4269.7	(29)	keV
α	:	100		%
SF	:	5.45	(4)	$\times 10^{-5}~\%$

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 4038 \ (5) \\ 4151 \ (5) \\ 4198 \ (3) \end{array}$	$\begin{array}{c} 0.13 \ (3) \\ 22.33 \ (50) \\ 77.54 \ (50) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Th)	5.8 - 20.3	8.43 (25)
e _{AK}	(Th) KLL KLX KXY	68.406 - 76.745 83.857 - 93.345 99.29 - 109.64	0.00012 (4) } } }
$ec_{1,0}$ L	(Th)	29.08 - 33.20	16.3(8)
$ec_{1,0}$ M	(Th)	44.37 - 46.22	4.46(21)
$ec_{1,0 N}$	(Th)	48.22 - 49.22	1.19(6)
$ec_{2,1 L}$	(Th)	93.0 - 97.2	0.080(22)
$ec_{2,1 M}$	(Th)	108.3 - 110.2	0.022(6)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Th)	11.118 - 19.504		7.94 (28)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\ 93.351$		$\begin{array}{c} 0.00109 \ (30) \\ 0.0018 \ (5) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Th) (Th) (Th)	$104.819 \\105.604 \\106.239$	} } }	0.00063(17)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	$108.509 \\108.955 \\109.442$	} } }	0.00021 (6)	$\mathrm{K}\beta_2'$

	Energy keV	$\begin{array}{l} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(\mathrm{Th}) \ \gamma_{2,1}(\mathrm{Th})$	$\begin{array}{c} 49.55 \ (6) \\ 113.5 \ (1) \end{array}$	$\begin{array}{c} 22.5 \ (5) \\ 0.13 \ (3) \end{array}$	E2 [E2]	$\begin{array}{c} 321 \ (10) \\ 6.47 \ (19) \end{array}$	$\begin{array}{c} 0.0697 \ (26) \\ 0.0174 \ (47) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

C.A.KIENBERGER, Phys. Rev. 76 (1949) 1561 (Half-life) W.J.WHITEHOUSE, W.GALBRAITH, Phil. Mag. 41 (1950) 429 (SF half-life) E.SEGRÈ, Phys. Rev. 86 (1952) 21 (SF half-life) A.F.KOVARIK, N.A.ADAMS JR., Phys. Rev. 98 (1955) 46 (Half-life) P.KURODA, R.R.EDWARDS, F.T.ASHIZAWA, J. Chem. Phys. 25 (1956) 603 (SF half-life) R.B.LEACHMAN, H.W.SCHMITT, J. Nucl. Energy 1 (1957) 38 (Half-life) F.L.CLARK, H.J.SPENCER-PALMER, R.N.WOODWARD, J. S.African Chem. Inst. 10 (1957) 62 (Half-life) P.Kuroda, R.R.Edwards, J. Inorg. Nucl. Chem. 3 (1957) 345 (SF half-life) P.L.PARKER, P.K.KURODA, J. Inorg. Nucl. Chem. 5 (1958) 153 (SF half-life) G.E.KOCHAROV, A.P.KOMAR, G.A.KOROLEV, Sov. Phys. - JETP 36 (1959) 48 (Alpha probability) B.D.KUZMINOV, L.S.KUTSAEVA, V.G.NESTEROV, L.I.PROKHOROVA, G.P.SMIRENKIN, Sov. Phys. - JETP 37 (1959) 290(SF half-life) J.STEYN, F.W.E.STRELOW, Proc. Symp. Metrology of Radionuclides, STI/PUB/6, IAEA, Vienna (1960) 155 (Half-life) G.E.KOCHAROV, G.A.KOROLEV, Bull. Rus. Acad. Sci. Phys. 25 (1961) 227 (Alpha probability) R.L.FLEISCHER, P.B.PRICE, Phys. Rev. 133 (1964) B63 (SF half-life) A.SPADAVECCHIA, B.HAHN, Helv. Phys. Acta 40 (1967) 1063 (SF half-life) J.H.ROBERTS, R.GOLD, R.J.ARMANI, Phys. Rev. 174 (1968) 1482 (SF half-life) D.GALLIKER, E.HUGENTOBLER, B.HAHN, Helv. Phys. Acta 43 (1970) 593 (SF half-life) M.P.T.LEME, C.RENNER, M.CATTANI, Nucl. Instrum. Methods 91 (1971) 577 (SF half-life) W.M.THURY, Acta Physica Austriaca 33 (1971) 375 (SF half-life) J.D.KLEEMAN, J.F.LOVERING, Geochimica et Cosmochimica Acta 35 (1971) 637 (SF half-life) A.H.JAFFEY, K.F.FLYNN, L.E.GLENDENIN, W.C.BENTLEY, A.M.ESSLING, Phys. Rev. C4 (1971) 1889 (Half-life) H.A.KHAN, S.A.DURRANI, Radiat. Eff. 17 (1973) 133 (SF half-life) K.N.IVANOV, K.A.PETRZHAK, Sov. J. At. Energy 36 (1974) 514 (SF half-life)

G.A. WAGNER, G.M. REIMER, B.S. CARPENTER, H.FAUL, R.VAN DER LINDEN, R.GIJBELS, Geochimica et Cosmochimica Acta 39 (1975) 1279 (SF half-life) V.EMMA, S.LO NIGRO, Nucl. Instrum. Methods 128 (1975) 355 (SF half-life) K.THIEL, W.HERR, Earth and Planetary Science Lett. 30 (1976) 50 (SF half-life) D.M.C.Rizzo, Ann. Acad. Brasil. Ciênc. 50 (1978) 303 (SF half-life) M.KASE, J.KIKUCHI, T.DOKE, Nucl. Instrum. Methods 154 (1978) 335 (SF half-life) E.R.V.SPAGGIARI, Ann. Acad. Brasil. Ciênc. 52 (1980) 213 (SF half-life) A.G.POPEKO, G.M.TER-AKOPIAN, Nucl. Instrum. Methods 178 (1980) 163 (SF half-life) Z.N.R.BAPTISTA, M.S.M.MANTOVANI, F.B.RIBEIRO, Ann. Acad. Brasil. Ciênc. 53 (1981) 437 (SF half-life) H.G.DE CARVALHO, J.B.MARTINS, E.L.MEDEIROS, O.A.P.TAVARES, Nucl. Instrum. Methods 197 (1982) 417 (SF half-life) Y.A.AKOVALI, Nucl. Data Sheets 40 (1983) 523 (Spin, parity, energy level, multipolarity) S.N.BELENKII, M.D.SKOROKHVATOV, A.V.ETENKO, Sov. J. At. Energy 55 (1983) 528 (SF half-life) R.VARTANIAN, Helv. Phys. Acta 57 (1984) 416 (SF half-life) R.VARTANIAN, Helv. Phys. Acta 57 (1984) 292 (SF half-life) J.-C.ROY, L.BRETON, J.-E.CÔTÉ, J.TURCOTTE, Int. J. Appl. Radiat. Isotop. 35 (1984) 899 (Gamma probability) M.P.IVANOV, G.M.TER-AKOPIAN, B.V.FEFILOV, A.S.VORONIN, Nucl. Instrum. Methods Phys. Res. A234 (1985) 152(SF half-life) B.AL-BATAINA, J.JÄNECKE, Radiochim. Acta 42 (1987) 159 (Half-life) K.KOMURA, M.YAMAMOTO, K.UENO, Nucl. Instrum. Methods Phys. Res. A295 (1990) 461 (Gamma probability) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha energy) Y.A.AKOVALI, Nucl. Data Sheets 71 (1994) 181 (Spin, parity, energy level, multipolarity) B.DUCHEMIN, N.COURSOL, M.M.BÉ, Nucl. Instrum. Methods Phys. Res. A339 (1994) 146 (Alpha and gamma probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic Data) H.RUELLAN, M.C.LÉPY, M.ETCHEVERRY, J.PLAGNARD, J.MOREL, Nucl. Instrum. Methods Phys. Res. A369 $(1996)\ 651$ (Gamma probability) I.Adsley, J.S.Backhouse, A.L.Nichols, J.Toole, Appl. Radiat. Isot. 49 (1998) 1337 (Gamma probability) E.GARCIA-TORAÑO, Appl. Radiat. Isot. 52 (2000) 591 (Alpha probability) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (SF half-life) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Alpha) F.E.CHUKREEV, V.E.MAKARENKO, M.J.MARTIN, Nucl. Data Sheets 97 (2002) 123 (Spin, parity, energy level, multipolarity) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129 (\mathbf{Q})

J.C.HADLER, G.BIGAZZI, S.GUEDES, P.J.IUNES, M.ODDONE, C.A.TELLO, S.R.PAULO, J. Radioanal. Nucl. Chem. 256 (2003) 155
(SF half-life)
R.SCHÖN, G.WINKLER, W.KUTSCHERA, Appl. Radiat. Isot. 60 (2004) 263
(Half-life)
$T_{1/2}$:	23.46	(5)	\min
Q_{β^-}	:	1261.5	(16)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,22}^{-}$	164.5(16)	0.0060 (5)		
$\beta_{0,31}^{-}$	212.3 (16)	0.0059 (4)		
$\beta_{0,30}^{-}$	221.1 (16)	0.0077 (4)		
$\beta_{0.29}^{-}$	247.9 (16)	0.0074 (4)		
$\beta_{0.28}^{-}$	269.3(16)	0.0262 (9)		
$\beta_{0.27}^{$	295.0(16)	0.0008 (2)		
$\beta_{0.26}^{-26}$	297.3(16)	0.211 (3)		
$\beta_{0.25}^{$	302.3(16)	0.0284 (7)	1st forbidden	
$\beta_{0.24}^{0.24}$	398.1(16)	0.0005 (2)		
$\beta_{0.23}^{-}$	412.0 (16)	0.0264 (4)	1st forbidden	
$\beta_{0.22}^{-}$	417.4(16)	0.215 (3)		
$\beta_{0.21}^{$	442.2(16)	0.228 (3)		
$\beta_{0.18}^{-}$	566.3(16)	0.0118(11)		
$\beta_{0,17}^{-}$	599.2(16)	0.261 (6)	1st forbidden	7.35
$\beta_{0.15}^{-}$	697.6(16)	0.0247 (7)		
$\beta_{0,14}^{-}$	731.2(16)	0.0029 (4)		
$\beta_{0,13}^{-}$	743.5(16)	0.063 (2)		
$\beta_{0,12}^{-}$	787.1 (16)	0.0033 (4)		
$\beta_{0,4}^{-}$	1143.9(16)	2.2(4)	1st forbidden	7.4
$\beta_{0,3}^{-}$	1186.5(16)	72.8(19)	1st forbidden	5.91
$\beta_{0,1}$	1230.4(16)	9.4(15)	Allowed	6.83
$\beta_{0,0}$	1261.5(16)	14.4(22)	Allowed	6.7

		${ m Energy}\ { m keV}$	Electrons per 100 disint.	Energy keV
e_{AL}	(Np)	6.04 - 13.12	14.7(7)	
e _{AK}	(Np) KLL KLX KXY	73.501 - 83.134 90.358 - 101.054 107.19 - 118.66	0.0091 (13) } } }	
ec _{1,0} L ec _{4,3} L ec _{3,1} L ec _{1,0} M	$({ m Np}) \\ ({ m Np}) \\ ({ m Np}) \\ ({ m Np}) \\ ({ m Np}) \end{cases}$	8.704 - 13.520 20.7 - 25.5 21.106 - 25.920 25.392 - 27.467	$\begin{array}{c} 14.0 \ (11) \\ 1.48 \ (28) \\ 3.72 \ (25) \\ 3.6 \ (3) \end{array}$	

		${ m Energy}\ { m keV}$	Electrons per 100 disint.	Energy keV
eci o N	(Np)	29 630 - 30 728	0.99(8)	
ес <u>и 2</u> м	(Np)	37.4 - 39.4	0.39(8)	
ec _{2,1} M	(Np)	37.794 - 39.869	0.94(6)	
ес <u>и</u> з м	(Np)	41.6 - 42.7	0.10(13)	
$ec_{3,1}$ N	(Np)	42.032 - 43.130	0.248(16)	
	(Np)	48.78 - 53.60	0.115(21)	
ec3 0 L	(Np)	52.237 - 57.050	10.7(3)	
$ec_{2,0}$ M	(Np)	65.47 - 67.55	0.032(3)	
$ec_{8.3 \text{ K}}$	(Np)	67.48 (4)	0.049(46)	
$ec_{10,8 \text{ K}}$	(Np)	68.61 (8)	0.010 (9)	
ес _{3,0 М}	(Np)	68.925 - 71.000	2.64(8)	
$ec_{3,0 N}$	(Np)	73.163 - 74.261	0.704(21)	
$ec_{8,3 L}$	(Np)	163.72 - 168.54	0.0186(6)	
$\beta_{0.32}^-$	max:	164.5 (16)	0.0060(5)	avg: $43.7(5)$
$\beta_{0.31}^{-}$	max:	212.3 (16)	0.0059~(4)	avg: $57.3(5)$
$\beta_{0.30}^{-}$	max:	221.1 (16)	0.0077(4)	avg: 59.9 (5)
$\beta_{0.29}^{-}$	max:	247.9 (16)	0.0074(4)	avg: 67.6 (5)
$\beta_{0.28}^{-}$	max:	269.3 (16)	0.0262 (9)	avg: $74.0(5)$
$\beta_{0.27}^{-}$	max:	295.0 (16)	0.0008(2)	avg: 81.7 (5)
$\beta_{0.26}^{}$	max:	297.3 (16)	0.211(3)	avg: $82.4(5)$
$\beta_{0.25}^{-}$	max:	302.3 (16)	0.0284(7)	avg: 83.9 (5)
$\beta_{0.24}^{-}$	max:	398.1 (16)	0.0005(2)	avg: 113.4 (5)
$\beta_{0.23}^{-}$	max:	412.0 (16)	0.0264(4)	avg: 117.8 (5)
$\beta_{0.22}^{-}$	max:	417.4 (16)	0.215(3)	avg: $119.6(5)$
$\beta_{0.21}^{-1}$	max:	442.2 (16)	0.228(3)	avg: $127.4(5)$
$\beta_{0.18}^{-1}$	max:	566.3 (16)	0.0118(11)	avg: $168.0(5)$
$\beta_{0.17}^{-}$	max:	599.2 (16)	0.261~(6)	avg: $179.0(5)$
$\beta_{0.15}^{-1}$	max:	697.6 (16)	0.0247(7)	avg: 212.6 (5)
$\beta_{0.14}^{-1}$	max:	731.2 (16)	0.0029(4)	avg: $224.3(5)$
$\beta_{0.13}^{-1}$	max:	743.5 (16)	0.063(2)	avg: 228.6 (5)
$\beta_{0.12}^{-1}$	max:	787.1 (16)	0.0033(4)	avg: 244.0 (5)
$\beta_{0.4}^{-}$	max:	1143.9 (16)	2.2(4)	avg: 374.0 (5)
$\beta_{0.3}^{}$	max:	1186.5 (16)	72.8 (19)	avg: 390.4 (5)
$\beta_{0.1}^{\frac{3}{2}}$	max:	1230.4 (16)	9.4(15)	avg: 406.8 (5)
$\beta_{0,0}^{\underline{5,1}}$	max:	1261.5 (16)	14.4 (22)	avg: 418.6 (5)

4.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.	
XL	(Np)	11.871 - 21.491	16.1(5)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Np) (Np)	$97.069 \\ 101.059$	$\begin{array}{c} 0.091 \ (3) \\ 0.144 \ (5) \end{array}$	$K\alpha$

		Energy keV		Photons per 100 disint.	
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Np) (Np) (Np)	113.303 114.234 114.912	} } }	0.052(2)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Np) (Np) (Np)	$117.463 \\ 117.876 \\ 118.429$	} } }	0.018 (1)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Np)$	31.1310 (12)	19.0 (14)	M1+E2	263(13)	0.072(4)
$\gamma_{4,3}(Np)$	43.06 (2)	2.0(4)	M1+E2	154 (18)	0.013(2)
$\gamma_{3,1}(Np)$	43.533(1)	9.3(6)	E1	1.14 (3)	4.35 (28)
$\gamma_{-1.1}(Np)$	46.6	0.009(4)		()	0.009(4)
$\gamma_{6,4}(Np)$	55.37(5)	0.0076(25)	M1+E2	90(30)	0.0000836(20)
$\gamma_{2,0}(Np)$	71.210(2)	0.141(4)	E2	71.9(14)	0.00193(4)
$\gamma_{3,0}(\mathrm{Np})$	74.664(1)	65.8(17)	$\mathrm{E1}$	0.276(6)	51.6(13)
$\gamma_{4,1}(Np)$	86.72(7)	0.065(6)	E1	0.186(4)	0.055(5)
$\gamma_{15,11}(Np)$	111.0(2)	0.0202(5)			0.0202(5)
$\gamma_{4,0}(\mathrm{Np})$	117.727(20)	0.123(10)	E1	0.0841~(17)	0.113~(9)
$\gamma_{-1,2}(Np)$	134.71(13)	0.0019(3)			0.0019(3)
$\gamma_{-1,3}(Np)$	142.5(1)	0.0045~(6)			0.0045~(6)
$\gamma_{7,2}(Np)$	170.15(5)	0.031(1)			0.031~(1)
$\gamma_{-1,4}(Np)$	174.07~(6)	0.0097~(3)			0.0097~(3)
$\gamma_{8,3}(\mathrm{Np})$	186.15(4)	0.10(5)	[M1+E2]	2.6(16)	0.0288~(7)
$\gamma_{10,8}(\mathrm{Np})$	187.28(8)	0.020 (9)	[M1+E2]	2.6(16)	0.0056~(3)
$\gamma_{9,7}(\mathrm{Np})$	197.28(12)	0.0024(3)			0.0024(3)
$\gamma_{24,17}(\rm Np)$	201.18(6)	0.0005~(2)			0.0005~(2)
$\gamma_{-1,5}(\mathrm{Np})$	220.52(4)	0.0282~(7)			0.0282~(7)
$\gamma_{-1,6}(\mathrm{Np})$	236.28(14)	0.00092 (18)			0.00092 (18)
$\gamma_{21,16}(Np)$	239.86(5)	0.00087~(23)			0.00087~(23)
$\gamma_{21,15}(\rm Np)$	255.37(5)	0.0011(2)			0.0011~(2)
$\gamma_{30,19}(\rm Np)$	258.44(6)	0.00073 (18)			0.00073 (18)
$\gamma_{8,0}(\mathrm{Np})$	260.80(2)	0.00310(21)	[E1]	0.0549(11)	0.0031~(2)
$\gamma_{-1,7}(Np)$	262.89(19)	0.0008 (3)			0.0008 (3)
$\gamma_{-1,8}(Np)$	265.44(17)	0.0009(3)			0.0009(3)
$\gamma_{28,18}(\rm Np)$	296.93(13)	0.0024 (8)	[M1+E2]	0.7~(5)	0.0014(2)
$\gamma_{26,17}(\rm Np)$	301.95(3)	0.0018~(7)	[M1+E2]	0.6~(5)	0.0011 (3)
$\gamma_{32,20}(\rm Np)$	312.05(3)	0.0006			0.0006
$\gamma_{22,13}(\rm Np)$	326.21(7)	0.0044(2)			0.0044~(2)
$\gamma_{-1,9}(Np)$	330.14(14)	0.00069(13)			0.00069(13)
$\gamma_{-1,10}(\rm Np)$	332.06(14)	0.0012(2)			0.0012(2)
$\gamma_{30,18}(\rm Np)$	345.13(8)	0.0039(2)			0.0039(2)
$\gamma_{-1,11}(\rm Np)$	348.23(18)	0.0007(3)			0.0007 (3)
$\gamma_{-1,12}(Np)$	$351.33\ (15)$	0.0007(2)			0.0007~(2)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
$\gamma_{-1,13}(Np)$	361.83(8)	0.0044(3)			0.0044(3)
$\gamma_{10,3}(Np)$	373.51(4)	0.034(10)	[M1+E2]	0.35(22)	0.025~(6)
$\gamma_{11,3}(Np)$	378.06~(6)	0.0101~(4)			0.0101~(4)
$\gamma_{11,2}(Np)$	$381.27\ (16)$	0.0006(2)			0.0006~(2)
$\gamma_{-1,14}(Np)$	$393.01\ (18)$	0.0006(2)			0.0006~(2)
$\gamma_{25,15}(Np)$	395.19(11)	0.0021~(2)			0.0021~(2)
$\gamma_{12,3}(\mathrm{Np})$	$399.13\ (13)$	0.0016 (3)			0.0016~(3)
$\gamma_{-1,15}(Np)$	400.55(15)	0.0009(2)			0.0009~(2)
$\gamma_{-1,16}(\rm Np)$	404.84(18)	0.0009(3)			0.0009(3)
$\gamma_{32,17}(\rm Np)$	434.71(4)	0.00122(20)	(E1)	0.0184(4)	0.0012(2)
$\gamma_{-1,17}(Np)$	445.81(12)	0.0011(2)			0.0011(2)
$\gamma_{10,0}(\mathrm{Np})$	448.18 (2)	0.00920(31)	[E1]	0.0173(4)	0.0090(3)
$\gamma_{-1,18}(Np)$	452.17 (12)	0.0016(2)			0.0016(2)
$\gamma_{14,3}(\mathrm{Np})$	455.63(6)	0.0008(3)			0.0008(3)
$\gamma_{12,0}(\mathrm{Np})$	474.36(6)	0.0017(2)			0.0017(2)
$\gamma_{-1,19}(Np)$	478.13 (19)	0.00055(23)			0.00055(23)
$\gamma_{-1,20}(Np)$	479.55(14)	0.0010(2)	[17]4]	0.0147(4)	0.0010(2)
$\gamma_{13,1}(Np)$	486.87(3)	0.0627(14)	[E1]	0.0147(4)	0.0618(14)
$\gamma_{-1,21}(Np)$	490.33(13)	0.0007(1)			0.0007(1)
$\gamma_{15,2}(Np)$	492.70(7)	0.0050(2)			0.0050(2)
$\gamma_{14,1}(Np)$	499.1(1) 502.12(17)	0.0021(2)			0.0021(2)
$\gamma_{-1,22}(\text{Np})$	502.12(17) 504.76(8)	0.0000(2) 0.00545(31)	[F9]	0.0488 (10)	0.0000(2) 0.0052(3)
$\gamma_{16,3}(Np)$	504.70(8) 506.80(14)	0.00545(31)		0.0400 (10)	0.0052(3)
$\gamma = 1,23(Mp)$	518.00(14)	0.0010(2)	[F1]	0.01300.(10)	0.0010(2) 0.0045(3)
$\gamma_{13,0}(Np)$	518.00(2) 522(12)(10)	0.00450(30) 0.00274(33)	[M1+E2]	0.01300(13) 0.14(10)	0.0043(3) 0.0024(2)
$\gamma_{18,0}(Np)$	522.12(10) 532.86(10)	0.00214(33)		0.14 (10)	0.0024(2) 0.0023(2)
$\gamma_{15,1}(\mathbf{rp})$ $\gamma_{-1,24}(\mathbf{Np})$	592.00(10) 541 32(10)	0.0029(2) 0.0029(3)			0.0029(2) 0.0029(3)
$\gamma_{17,4}(Np)$	544.48(9)	0.0020(0)	[M1+E2]	0.13(9)	0.0026(3)
$\gamma_{16,1}(Np)$	547.99(12)	0.00202(30)	[[+]] [E1]	0.01170(24)	0.0020(3)
$\gamma_{-1.25}(Np)$	558.46(17)	0.0006(2)	[]	0.01110 (11)	0.0006(2)
$\gamma = 1,23(-1)$ $\gamma_{29,11}(Np)$	560.63 (7)	0.0058(3)			0.0058(3)
$\gamma_{15.0}(Np)$	563.89(4)	0.0004(2)			0.0004(2)
$\gamma_{-1.26}(Np)$	567.88 (18)	0.0004(1)			0.0004(1)
$\gamma_{-1,27}(Np)$	575.27 (5)	0.0131(4)			0.0131(4)
$\gamma_{-1,28}(Np)$	577.15(14)	0.0014(3)			0.0014(3)
$\gamma_{-1,29}(Np)$	585.49(14)	0.0012(2)			0.0012(2)
$\gamma_{17,3}(Np)$	587.62(2)	$0.0214\ (15)$	[M1+E2]	0.11(7)	0.0193~(5)
$\gamma_{23,8}(Np)$	588.70(8)	0.0055~(3)			0.0055~(3)
$\gamma_{-1,30}(\mathrm{Np})$	591.82(19)	0.0009(4)			0.0009(4)
$\gamma_{-1,31}(Np)$	599.13(15)	0.0007~(2)			0.0007~(2)
$\gamma_{-1,32}(\rm Np)$	602.79(8)	0.0048(3)			0.0048 (3)
$\gamma_{-1,33}(\rm Np)$	604.85~(6)	0.00096(27)			0.00096 (27)
$\gamma_{23,7}(Np)$	607.96(15)	0.0013 (3)			0.0013 (3)
$\gamma_{-1,34}(\rm Np)$	614.53(17)	0.0006(2)			0.0006(2)
$\gamma_{-1,35}(\rm Np)$	618.03(16)	0.0007(2)	r		0.0007(2)
$\gamma_{18,2}(Np)$	624.11(7)	0.00626(30)	[E1]	0.0091(2)	0.0062(3)
$\gamma_{-1,36}(\rm Np)$	629.00(11)	0.0027~(3)			0.0027 (3)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{17.1}(Np)$	631.10(3)	0.0676(20)	[E1]	0.00892(17)	0.067(2)
$\gamma_{32.11}(Np)$	644.253(30)	0.0019(4)			0.0019(4)
$\gamma_{21.6}(Np)$	646.26(10)	0.0029(3)			0.0029(3)
$\gamma_{-1,37}(Np)$	649.79(19)	0.0009(4)			0.0009(4)
$\gamma_{17,0}(Np)$	662.28(2)	0.171(5)	[E1]	0.00815(16)	0.170(5)
$\gamma_{18,1}(Np)$	664.17(9)	0.00544(40)	[E1]	0.00811(16)	0.0054(4)
$\gamma_{-1,38}(Np)$	668.76(18)	0.00055(18)			0.00055(18)
$\gamma_{-1,39}(Np)$	670.88(20)	0.0006 (3)			0.0006 (3)
$\gamma_{-1,40}(Np)$	691.01~(6)	0.0074(3)			0.0074(3)
$\gamma_{-1,41}(Np)$	692.61 (13)	0.0016 (3)			0.0016 (3)
$\gamma_{18,0}(\mathrm{Np})$	695.23(2)	0.00363(30)	[E1]	$0.00745\ (15)$	0.0036 (3)
$\gamma_{-1,42}(Np)$	701.21(10)	0.0024(2)			0.0024~(2)
$\gamma_{26,8}(Np)$	703.63(10)	0.00235~(20)	[E2]	0.0234(5)	0.0023~(2)
$\gamma_{19,3}(\mathrm{Np})$	707.38(9)	0.0022~(2)			0.0022(2)
$\gamma_{20,3}(\mathrm{Np})$	$710.35\ (15)$	0.003			0.003
$\gamma_{-1,43}(Np)$	714.22(9)	0.0030(3)			0.0030(3)
$\gamma_{26,7}(Np)$	722.85~(4)	0.0276~(7)	[E2]	0.0222~(4)	0.0270(7)
$\gamma_{23,5}(Np)$	727.52(10)	0.0026 (3)			0.0026 (3)
$\gamma_{-1,44}(Np)$	730.95(6)	0.0090(3)			0.0090(3)
$\gamma_{-1,45}(Np)$	746.06(11)	0.0043(5)			0.0043(5)
$\gamma_{21,2}(Np)$	748.09(3)	0.0890(4)			0.0890(4)
$\gamma_{29,8}(Np)$	752.84 (8)	0.0013(3)			0.0013(3)
$\gamma_{-1,46}(Np)$	764.04(11)	0.0026(3)			0.0026(3)
$\gamma_{-1,47}(Np)$	768.15(11)	0.0020(2)			0.0020(2)
$\gamma_{-1,48}(Np)$	769.52(17)	0.0004(1)			0.0004(1)
$\gamma_{22,2}(Np)$	772.94(9)	0.0029(2)			0.0029(2)
$\gamma_{23,3}(Np)$	774.77(4)	0.015(4)			0.015(4)
$\gamma_{30,8}(Np)$	779.57(14)	0.0006(1)			0.0006(1)
$\gamma_{21,1}(Np)$	788.19(7)	0.0049(2)			0.0049(2)
$\gamma_{26,6}(Np)$	(91.13(3)) 705(12(15))	0.0075(2)			0.0075(2)
$\gamma_{-1,49}(Np)$	(93.13(13))	0.0008(2)			0.0008(2)
$\gamma_{22,1}(Np)$	812.89(3)	0.0080(3) 0.120(2)			0.0083(3) 0.120(2)
$\gamma_{21,0}(Np)$	819.20(3) 820.50(17)	0.129(3)			0.129(3) 0.00046(13)
$\gamma = 1,50$ (Np)	829.39(11) 831.80(0)	0.00040(13)			0.00040(13) 0.0021(2)
$\gamma = 1,51$ (Np)	841.45(4)	0.0021(2) 0.0025(4)			0.0021(2) 0.0025(4)
$\gamma_{25,4}(Np)$	844.10(3)	0.0029(4) 0.139(3)			0.0029(4) 0.139(3)
$\gamma_{22,0}(Np)$	846.39(4)	0.133(0)	[M1+E2]	0.04(3)	0.103(0)
$\gamma_{20,4}(\mathbf{Np})$	$849\ 44\ (9)$	0.0024(10) 0.0020(2)		0.04 (0)	0.0012(0) 0.0020(2)
$\gamma_{23,0}(10p)$	862.56(18)	0.0020(2) 0.0004(1)			0.0020(2) 0.0004(1)
$\gamma = 1,32$ (Np) $\gamma = 0.6$ (Np)	867.11 (11)	0.00076(8)			0.00076(8)
$\gamma_{28,5}(Np)$	869.57(9)	0.0016(1)			0.0016(1)
$\gamma_{28,4}(Np)$	874.43 (3)	0.00343(22)	[M1+E2]	0.038(23)	0.0033(2)
$\gamma_{25,3}(Np)$	884.45 (5)	0.0086(2)	[, -]		0.0086(2)
$\gamma_{25,2}(Np)$	887.97 (3)	0.0023(2)			0.0023(2)
$\gamma_{26,3}(Np)$	889.49 (4)	0.0217(7)	[M1+E2]	0.036(22)	0.0209(5)
$\gamma_{27.2}(Np)$	895.15 (15)	0.0008(2)	L .]	- ()	0.0008(2)
$\gamma_{-1,53}(Np)$	913.68(9)	0.0019(1)			0.0019(1)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} P_{\gamma} \\ \times 100 \end{array}$
$\begin{array}{c} \gamma_{28,3}(\mathrm{Np}) \\ \gamma_{28,2}(\mathrm{Np}) \\ \gamma_{30,4}(\mathrm{Np}) \\ \gamma_{25,1}(\mathrm{Np}) \\ \gamma_{25,1}(\mathrm{Np}) \\ \gamma_{26,1}(\mathrm{Np}) \\ \gamma_{29,3}(\mathrm{Np}) \\ \gamma_{-1,54}(\mathrm{Np}) \\ \gamma_{25,0}(\mathrm{Np}) \\ \gamma_{28,1}(\mathrm{Np}) \\ \gamma_{26,0}(\mathrm{Np}) \\ \gamma_{-1,55}(\mathrm{Np}) \\ \gamma_{-1,55}(\mathrm{Np}) \\ \gamma_{-1,56}(\mathrm{Np}) \\ \gamma_{-1,57}(\mathrm{Np}) \\ \gamma_{-1,58}(\mathrm{Np}) \\ \gamma_{-1,59}(\mathrm{Np}) \\ \gamma_{30,0}(\mathrm{Np}) \\ \gamma_{32,1}(\mathrm{Np}) \end{array}$	917.40 (8) 920.95 (8) 922.83 (13) 928.05 (3) 931.51 (5) 933.09 (3) 938.98 (8) 948.88 (19) 959.18 (3) 960.99 (5) 964.23 (2) 970.07 (14) 974.58 (4) 988.51 (14) 992.16 (2) 1002.40 (13) 1005.27 (13) 1009.38 (18) 1040.37 (4) 1065.76 (12)	\times 100 0.00279 (12) 0.00261 (10) 0.0006 (1) 0.0051 (2) 0.00547 (33) 0.0263 (6) 0.00031 (8) 0.00024 (10) 0.0078 (3) 0.01054 (30) 0.0009 (20) 0.0009 (20) 0.0009 (20) 0.0009 (2) 0.00040 (8) 0.00044 (9) 0.00044 (9) 0.00044 (9) 0.00049 (9) 0.0006 (1) 0.0003 (1) 0.0011 (1) 0.00060 (8)	$\begin{bmatrix} M1 + E2 \\ [E1] \end{bmatrix}$ $\begin{bmatrix} M1 + E2 \\ [E1] \end{bmatrix}$ $\begin{bmatrix} E1 \\ [E2] \\ [E1] \end{bmatrix}$ $\begin{bmatrix} E1 \end{bmatrix}$	$\begin{array}{c} 0.034 \ (22) \\ 0.00450 \ (9) \end{array}$ $\begin{array}{c} 0.032 \ (19) \\ 0.00439 \ (9) \end{array}$ $\begin{array}{c} 0.00417 \ (9) \\ 0.00415 \ (8) \end{array}$ $\begin{array}{c} 0.0123 \ (5) \end{array}$ $\begin{array}{c} 0.00395 \ (8) \end{array}$	\times 100 0.0027 (1) 0.0026 (1) 0.0006 (1) 0.0051 (2) 0.0053 (3) 0.0262 (6) 0.00031 (8) 0.00024 (10) 0.00078 (3) 0.0105 (3) 0.0905 (20) 0.0009 (2) 0.00040 (8) 0.00044 (9) 0.00044 (9) 0.00049 (9) 0.0006 (1) 0.0003 (1) 0.00011 (1) 0.00059 (8)
$\gamma_{32,0}(\mathrm{Np})$ $\gamma_{-1,60}(\mathrm{Np})$	$\begin{array}{c} 1096.99 \\ 1101.99 \\ (16) \end{array}$	$\begin{array}{c} 0.00164 \ (10) \\ 0.00031 \ (1) \end{array}$	[M1+E2]	0.022 (13)	0.0016(1) 0.00031(1)

5 References

A.C.G.MITCHELL, L.SLOTIN, J.MARSHALL, V.A.NEDZEL, L.J.BROWN, J.R.PRUETT, Report CP-597 (1943) (Half-life) N.FEATHER, R.S.KRISHNAN, Proc. Cambridge Phil. Soc. 43 (1947) 267 (Half-life) J.M.HOLLANDER, Priv. Comm. (1960), cited in F.Asaro et al., Phys. Rev. 117 (1960) 492 (1960) (Gamma transition multipolarities) K.J.BLINOWSKA, P.G.HANSEN, H.L.NIELSEN, O.SCHULT, K.WIEN, Nucl. Phys. 55 (1964) 331 (Gamma transition multipolarities, energies and absolute emission probabilities) L.N.YUROVA, A.V.BUSHUEV, V.G BORTSOV, Sov. J. At. Energy 18 (1965) 75 (Gamma-ray absolute emission probabilities) D.R.MACKENZIE, R.D.CONNOR, Nucl. Phys. A108 (1968) 81 (Gamma-ray absolute emission probabilities) J.B.HUNT, J.C.ROBERTSON, T.B.RYVES, J. Nucl. Energy 23 (1969) 705 (Half-life) J.E.CLINE, D.A.TRIPP, Priv. Comm. (1969) (Gamma-ray energies and absolute emission probabilities) D.ENGELKEMEIR, Phys. Rev. 181 (1969) 1675 (Gamma transition multipolarities) A.ARTNA-COHEN, Nucl. Data Sheets B6 (1971) 577 (Gamma-ray energies) J.C.PATE, K.R.BAKER, R.W.FINK, D.A.MCCLURE, N.S.KENDRICK JR., Z. Phys. A272 (1975) 169 (Gamma-ray energies) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251 (Gamma-ray energies) I.AHMAD, Nucl. Instrum. Methods 193 (1982) 9 (Gamma-ray energies)

S.P.HOLLOWAY, J.B.OLOMO, T.D.MCMAHON, B.W.HOOTON, Priv. Comm. (1984), cited in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1984) (Gamma-ray absolute emission probabilities) A.ABZOUZI, M.S.ANTONY, V.B.NDOCKO, J. Radioanal. Nucl. Chem. 135 (1989) 1 (Half-life) D.SARDARI, T.D.MCMAHON, S.P.HOLLOWAY, Nucl. Instrum. Methods Phys. Res. A369 (1996) 486 (Gamma-ray absolute emission probabilities) R.HELMER, V.CHISTÉ, J. Nucl. Sci. Technol. (Tokyo) suppl.2 (2002) 481 (SAISINUC software) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 98 (2003) 665 (Decay data evaluations, multipolarities, scheme) E.L.WONG, H.C.GRIFFIN, Nucl. Instrum. Methods Phys. Res. A558 (2006) 441 (Gamma-ray emission probabilities and energies) H.C.GRIFFIN, Proc. 4th Int. Conf. on the Fission and Properties of Neutron-Rich Nuclei, Sanibel Island, Florida (2008) 264 (X-ray and low energy gamma-ray absolute emission probabilities) D.J.DEVRIES, H.C.GRIFFIN, Appl. Radiat. Isot. 66 (2008) 1999 (Uncertainty of X-ray and absolute emission probability) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	1.55	(8)	$\times 10^5$ y
Q_{EC}	:	930	(50)	keV
$Q_{\beta^{-}}$:	480	(50)	keV
Q_{lpha}	:	5010	(50)	keV
EC	:	87.8	(6)	%
β^{-}	:	12.0	(6)	%
α	:	0.2	(6)	%

2 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$	P_K	P_L	P_{M+}
$ \begin{array}{c} \epsilon_{0,6} \\ \epsilon_{0,3} \\ \epsilon_{0,2} \end{array} $	$\begin{array}{c} 82 \ (50) \\ 620 \ (50) \\ 781 \ (50) \end{array}$	~ 0.096 87.8 (43) <4.4	allowed 1st forbidden 1st forbidden unique	$14.6 \\ 14.1 \\ > 15.9$	$\begin{array}{c} 0.726 \ (8) \\ 0.74 \end{array}$	$\begin{array}{c} 0.6 \\ 0.201 \ (5) \\ 0.19 \end{array}$	$\begin{array}{c} 0.4 \\ 0.073 \ (2) \\ 0.07 \end{array}$

3 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta^{-}_{0,3} \\ \beta^{-}_{0,2}$	$\begin{array}{c} 174 \ (50) \\ 333 \ (50) \end{array}$	$\begin{array}{ccc} 11.8 & (12) \\ < 1.6 \end{array}$	1st forbidden 1st forbidden unique	14.5 > 16

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(U)	6.07 - 21.68	128.8(19)	
e _{AK}	(U) KLL KLX KXY	71.78 - 80.95 88.15 - 98.43 104.51 - 115.59	2.1 (3) } } }	
e_{AL}	(Pu)	6.19 - 23.10	10.7(3)	
e_{AK}	(Pu) KLL KLX KXY	75.26 - 85.36 92.61 - 103.73 109.93 - 121.78	0.021 (4) } } }	
$ec_{1,0} L$ $ec_{1,0} M$ $ec_{2,1} L$ $ec_{2,1} M$ $ec_{3,2} K$	(Pu) (Pu) (Pu) (Pu) (Pu)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 8.7 \ (5) \\ 2.42 \ (14) \\ 8.1 \ (6) \\ 2.28 \ (18) \\ 0.73 \ (8) \end{array}$	

		Energy keV	Electrons per 100 disint.	Energy keV
$ec_{3,2 L} \\ ec_{3,2 M}$	(Pu) (Pu)	$135.25 - 140.29 \\ 152.42 - 154.57$	$5.4 (6) \\ 1.50 (16)$	
$\begin{array}{c} ec_{1,0} \ L \\ ec_{1,0} \ M \\ ec_{2,1} \ L \\ ec_{2,1} \ M \\ ec_{3,2} \ K \\ ec_{3,2} \ L \end{array}$	(U) (U) (U) (U) (U) (U)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 63.9 \ (19) \\ 17.7 \ (5) \\ 58.6 \ (16) \\ 16.25 \ (47) \\ 6.6 \ (3) \\ 36.0 \ (18) \\ 10.0 \ (5) \end{array}$	
$\beta_{0,3}^{-}$ $\beta_{0,2}^{-}$	(U) max: max:	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{c} 10.0 (5) \\ 11.8 (12) \\ 1.6 \end{array} $	avg: 46 (15) avg: 92 (16)

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	11.619 - 20.714		117.5(30)	
$ ext{XK} lpha_2 \\ ext{XK} lpha_1 ext{}$	(U) (U)	$94.666 \\98.44$		$\begin{array}{c} 20.2 \ (3) \\ 32.4 \ (5) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	$110.421 \\111.298 \\111.964$	} } }	11.69(25)	$\mathrm{K}\beta_1'$
$\begin{array}{l} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(U) (U) (U)	$114.407 \\115.012 \\115.377$	} } }	4.00 (11)	$\mathrm{K}\beta_2'$
XL	(Pu)	12.1246 - 21.984		12.1 (4)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	$\begin{array}{c} (\mathrm{Pu}) \\ (\mathrm{Pu}) \end{array}$	$\begin{array}{c} 99.525 \\ 103.734 \end{array}$		$\begin{array}{c} 0.212 \ (23) \\ 0.33 \ (4) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	116.244 117.228 117.918	} } }	0.123 (14)	$\mathrm{K}\beta_1'$
$egin{array}{c} XKeta_2 \ XKeta_4 \ XKO_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$120.54 \\ 120.969 \\ 121.543$	} } }	0.043(5)	$\mathrm{K}\beta_2'$

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Pu)$	44.63 (10)	11.9(7)	E2	741(15)	0.0161(9)
$\gamma_{1,0}(U)$	45.244 (2)	87.8 (6)	$\mathrm{E2}$	589(12)	0.149(3)
$\gamma_{5,4}(U)$	56.6(5)	~ 0.08	(E2)	199(10)	~ 0.0004
$\gamma_{2,1}(Pu)$	102.82(2)	12.0(6)	E2	13.87(28)	0.81~(6)
$\gamma_{6,5}(U)$	104.1(10)	$\sim \! 0.096$	$\mathrm{E2}$	11.1~(6)	~ 0.008
$\gamma_{2,1}(U)$	104.234~(6)	87.8~(6)	$\mathrm{E2}$	10.99(22)	7.32(13)
$\gamma_{3,2}(Pu)$	158.35(3)	11.8(12)	$\mathrm{E2}$	2.14(4)	3.8(4)
$\gamma_{3,2}(U)$	160.307(3)	87.8(43)	$\mathrm{E2}$	1.76(4)	31.8(15)
$\gamma_{4,2}(U)$	538.1(1)	$\sim \! 0.0008$	E3	0.143(3)	$\sim \! 0.0007$
$\gamma_{5,2}(U)$	594.5(3)	~ 0.008			~ 0.008
$\gamma_{4,1}(U)$	642.34(5)	$\sim \! 0.068$	E1 + (M2 + E3)	0.15(2)	$\sim \! 0.059$
$\gamma_{4,0}(U)$	687.60(5)	~ 0.021	E1 + (M2 + E3)	0.31(2)	~ 0.016

5.2 Gamma Transitions and Emissions

6 References

C.M.LEDERER, J.M.JAKLEVIC, S.G.PRUSSIN, Nucl. Phys. A135 (1969) 36 (Relative intensities of gamma-rays) O.DRAGOUN, Z.PLAJNER, F.SCHMUTZLER, Nucl. Data Tables A9 (1971) 119 (ICC aM / aL and aNO / aM) R.GUNNINK, R.J.MORROW, Report UCRL-51087, Univ. California (1971) (Emission probabilities of gamma-rays in the decay of 240Pu) B.S.DZHELEPOV, L.N.ZYRYANOVA, YU.P.SUSLOV, Beta-processes, Nauka, Leningrad (1972) (Fractional probabilities in L-electron capture) Y.A.ELLIS, M.R.SCHMORAK, Nucl. Data Sheets B8 (1972) 348 (Systematics of nuclear level properties) D.W.ENGELKEMEIR, J.E.GINDLER, J.INORG., Nucl. Chem. 34 (1972) 1799 (Half-life) T.DRAGNEV, K.SCHARF, Int. J. Appl. Radiat. Isotop. 26 (1975) 125 (Gamma-ray emission probabilities in decay of 240Pu) H.OTTMAR, P.MATUSSEK, I.PIPER., Proc. 2nd Int. Symp. on Neutron Capture Gamma Ray Spectroscopy and Related Topics, Petten, Netherlands (1975) 658 (Emission probabilities of gamma-rays in decay of 240Pu) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (Emission probabilities of gamma-rays in decay of 240Pu) W.L.Posthumus, K.E.G.Löbner, J.L.Maarleveld, H.P.Geerke, J.Konijn, Z. Phys. A281 (1977) 277 (ICC measurements) M.R.SCHMORAK, Nucl. Data Sheets 31 (1980) 283 (Systematics of nuclear level properties) M.LINDNER, R.J.DUPZYK, R.W.HOFF, R.J.NAGLE, J. Inorg. Nucl. Chem. 43 (1981) 3071 (Half-life, partial half-lives) I.AHMAD, J.HINES, J.E.GINDLER, Phys. Rev. C27 (1983) 2239 (Gamma-ray relative intensities and energies, KX-ray energies) M.R.SCHMORAK, Nucl. Data Sheets 63 (1991) 139 (Analysis of isomer levels in Np-236) R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996) (Beta minus-transition probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, J.K.TULI, Nucl. Data Sheets 107 (2006) 2579, 2649 (Decay scheme, level energies, gamma-ray multipolarities)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	22.5	(4)	h
Q_{EC}	:	993	(13)	keV
Q_{β^-}	:	537	(8)	keV
EC	:	53	(1)	%
β^{-}	:	47	(1)	%

2 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$	P_K	P_L	P_{M+}
$ \begin{array}{c} \epsilon_{0,4} \\ \epsilon_{0,1} \\ \epsilon_{0,0} \end{array} $	$\begin{array}{c} 306 \ (13) \\ 948 \ (13) \\ 993 \ (13) \end{array}$	$\begin{array}{c} 1.64 \ (9) \\ 8.3 \ (30) \\ 43.1 \ (32) \end{array}$	1st forbidden allowed allowed	7.3 7.8 7.1	$\begin{array}{c} 0.621 \ (10) \\ 0.751 \ (1) \\ 0.753 \ (1) \end{array}$	$\begin{array}{c} 0.274 \ (7) \\ 0.184 \ (1) \\ 0.182 \ (1) \end{array}$	$\begin{array}{c} 0.105 \ (3) \\ 0.0652 \ (1) \\ 0.0646 \ (1) \end{array}$

3 β^- Transitions

		Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$		Nature	$\log ft$
$\beta_{0,2}^{-}$ $\beta_{0,0}^{-}$	1	$\begin{array}{c} 492 \ (8) \\ 537 \ (8) \end{array}$	$\frac{11}{36}$	(4) (4)	Allowed Allowed	$7.2 \\ 6.8$

		Energy keV	Electrons per 100 disint.	Energy keV
e _{AL}	(U)	6.4 - 21.6	21.7(15)	
e _{AK}	(U) KLL KLX KXY	71.776 - 80.954 88.153 - 98.429 104.51 - 115.59	1.03 (17) } } }	
e_{AL}	(Pu)	6.19 - 22.99	3.8(14)	
$\mathrm{ec}_{1,0}$ L $\mathrm{ec}_{1,0}$ M	(Pu) (Pu)	21.53 - 26.57 38.70 - 40.86	$8 (3) \\ 2.2 (8)$	
$\begin{array}{c} ec_{1,0 \ L} \\ ec_{1,0 \ M} \\ ec_{4,1 \ K} \\ ec_{4,1 \ L} \\ ec_{4,0 \ K} \\ ec_{4,0 \ L} \end{array}$	(U) (U) (U) (U) (U) (U)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 6.9 \ (22) \\ 1.9 \ (6) \\ 0.121 \ (13) \\ 0.034 \ (4) \\ 0.064 \ (6) \\ 0.0199 \ (23) \end{array}$	
$egin{array}{c} eta_{0,1}^- \ eta_{0,0}^- \end{array} \ eta_{0,0}^- \end{array}$	max: max:	$\begin{array}{ccc} 492 & (8) \\ 537 & (8) \end{array}$	$\begin{array}{c} 11 \ (4) \\ 36 \ (4) \end{array}$	avg: 143 (3) avg: 158 (3)

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	11.618 - 20.714		21.3(18)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(U) (U)	$94.666 \\98.44$		9.9 (10) 15.8 (15)	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{''} \end{array}$	(U) (U) (U)	$110.421 \\111.298 \\111.964$	} } }	5.7 (6)	$\mathrm{K}\beta_1'$
$egin{array}{c} XKeta_2\ XKeta_4\ XKO_{2,3}\ XL \end{array}$	(U) (U) (U) (Pu)	$\begin{array}{r} 114.407 \\ 115.012 \\ 115.377 \\ 12.124 - 21.984 \end{array}$	} } }	1.95(15) 4.2(16)	${ m K}eta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{l} \gamma_{1,0}(\mathrm{Pu}) \\ \gamma_{1,0}(\mathrm{U}) \\ \gamma_{2,1}(\mathrm{U}) \\ \gamma_{4,2}(\mathrm{U}) \\ \gamma_{4,1}(\mathrm{U}) \\ \gamma_{4,0}(\mathrm{U}) \end{array}$	$\begin{array}{c} 44.63 \ (10) \\ 45.242 \ (3) \\ 104.234 \ (6) \\ 538.11 \ (10) \\ 642.35 \ (9) \\ 687.60 \ (5) \end{array}$	$\begin{array}{c} 11.2 \ (37) \\ 9.6 \ (30) \\ 0.0143 \ (17) \\ 0.0143 \ (17) \\ 1.24 \ (8) \\ 0.383 \ (28) \end{array}$	E2 E2 E2 E3 E1+(M2+E3) E1	$\begin{array}{c} 743 \ (15) \\ 589 \ (12) \\ 11.0 \ (2) \\ 0.143 \ (3) \\ 0.15 \ (2) \\ 0.31 \ (2) \end{array}$	$\begin{array}{c} 0.015 \ (5) \\ 0.016 \ (5) \\ 0.00119 \ (14) \\ 0.0125 \ (15) \\ 1.08 \ (6) \\ 0.292 \ (21) \end{array}$

6 References

R.A.JAMES, A.E.FLORIN, H.H.HOPKINS JR., A.GHIORSO, Report National Nuclear Energy Series 14B (1949) 1604 (Half-life) P.R.GRAY, Phys. Rev. 101 (1956) 1306

(Relative probability of K-electron capture in the decay of 236m-Np)

J.E.GINDLER, R.K.SJOBLOM, J. Inorg. Nucl. Chem. 12 (1959) 8

(Probabilities of beta transitions)

J.A.BEARDEN, Rev. Mod. Phys. 39 (1967) 78 $\,$

(X-ray energies)

C.M.LEDERER, J.M.JAKLEVIC, S.G.PRUSSIN, Nucl. Phys. A135 (1969) 36

(Relative intensities of gamma-rays)

R.GUNNINK, R.J.MORROW, Report UCRL-51087, Univ. California (1971)

(Emission probabilities of gamma-rays in the decay of 240Pu)

O.DRAGOUN, Z.PLAJNER, F.SCHMUTZLER, Nucl. Data Tables A9 (1971) 119

(AM / aL and a NO / aM) $\,$

 $B.S.Dzhelepov,\ L.N.Zyryanova,\ Yu.P.Suslov,\ Beta-processes,\ Nauka,\ Leningrad\ (1972)$

(Fractional probabilities in L-electron capture)

T.DRAGNEV, K.SCHARF, Int. J. Appl. Radiat. Isotop. 26 (1975) 125

(Gamma-ray emission probabilities in the decay of 240Pu)

H.OTTMAR, P.MATUSSEK, I.PIPER, Proc. 2nd Int. Symp. on Neutron Capture Gamma Ray Spectroscopy and Related Topics, Petten, Netherlands (1975) 658 (Emission probabilities of gamma-rays in the decay of 240Pu) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (Emission probabilities of gamma-rays in the decay of 240Pu) W.L.Posthunus, K.E.G.Löbner, I.Piper E.A., Z. Phys. A181 (1977) 717 (ICC measurements) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 313 (Auger electron energies) E.A.GROMOVA, S.S.KOVALENKO, YU.A.NEMILOV, YU.A.SELITSKY, A.V.STEPANOV, A.M.FRIDKIN, V.B.FUNSH-TEIN, V.A.YAKOVLEV, G.V.VALSKY, G.A.PETROV, Sov. At. Energy 56 (1984) 230 (Half-life) F.LAGOUTINE, N.COURSOL, J.LEGRAND, ISBN-2-7272-0078-1 (LMRI, 1982-1987). (1987) (Energy of Auger electrons) M.R.SCHMORAK, Nucl. Data Sheets 63 (1991) 139 (Decay scheme, gamma-ray multipolarities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996) (Decay scheme, LX-ray energies, multipolarities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) M.-M.BÉ, V.CHISTÉ, C.DULIEU, E.BROWNE, V.CHECHEV, N.KUZMENKO, R.HELMER, A.NICHOLS, E.SCHÖNFELD, R.DERSCH, in Table of Radionuclides (Vol.2 - A = 151 to 242), Monographie BIPM-5, Bureau International des Poids et Mesures, Sevres (2004)

(Recommended Data by the Decay Data Evaluation Project working group)

$T_{1/2}$:	2.144	(7)	$\times 10^6$ y
$Q^{'}_{lpha}$:	4958.3	(12)	keV
α	:	100		%
SF	:	$<\!\!2.14$		$\times 10^{-9}$ %

2 α Emissions

	Energy keV	Probability × 100
$\alpha_{0,20}$	4515.1 (19)	0.038(4)
$\alpha_{-1,1}$	4550.5 (22)	0.011(3)
$\alpha_{0.18}$	4573 (3)	0.048(23)
$\alpha_{0.17}$	4578.6(14)	0.393(23)
$\alpha_{0,16}$	4599.1 (18)	0.373(9)
$\alpha_{0,15}$	4619.7(21)	0.032(8)
$\alpha_{0,10}$	4640 (1)	6.43(3)
$\alpha_{0,14}$	4665.0(9)	3.46(3)
$\alpha_{0,13}$	4676.4	0.38(2)
$\Omega_{0,12}$	4698.2(8)	0.535(10)
$\alpha_{0,11}$	4708.3(20)	0.000 (10)
C(0,10	4712.3(20)	1.174(13)
α _{0,9}	4712.3(20)	0.010
α _{0,8}	4741.5(20) 4766.5(8)	0.013
$\alpha_{0,7}$	4700.3(8)	9.0(3)
$\alpha_{0,6}$	4771.4(0)	23.0(3)
$lpha_{0,4}$	4788.0(9)	47.04(0)
$lpha_{0,3}$	4803.5(10)	2.02(2)
$\alpha_{0,2}$	4816.8 (10)	2.430 (17)
$lpha_{0,1}$	4866.4(14)	0.51~(3)
$lpha_{0,0}$	4872.7(14)	2.41(3)

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pa)	5.90 - 21.01	47.1 (20)
e _{AK}	(Pa) KLL KLX KXY	70.08 - 78.82 85.99 - 95.86 101.87 - 112.59	0.167 (24) } } }
$\begin{array}{c} ec_{13,5 \ \rm K} \\ ec_{4,2 \ \rm L} \\ ec_{14,12 \ \rm L} \\ ec_{4,2 \ \rm M} \\ ec_{6,2 \ \rm L} \\ ec_{14,5 \ \rm K} \end{array}$	(Pa) (Pa) (Pa) (Pa) (Pa) (Pa)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1.59 \ (9) \\ 32.7 \ (15) \\ 0.37 \ (11) \\ 8.4 \ (4) \\ 0.075 \ (3) \\ 2.26 \ (22) \end{array}$

		Energy keV	Electrons per 100 disint.
$ec_{14,12}$ M	(Pa)	30.96 - 32.88	0.090(27)
$ec_{2,0 L}$	(Pa)	35.999 - 40.371	48.9(29)
$ec_{14,4 \text{ K}}$	(Pa)	38.82 (2)	0.80(12)
$ec_{6,2}$ M	(Pa)	41.17 - 43.09	0.0186(11)
$ec_{17,14}$ L	(Pa)	41.48 - 45.86	0.3(2)
$ec_{3,1}$ L	(Pa)	42.8 - 47.2	0.80(4)
$ec_{3,0}$ L	(Pa)	49.38 - 53.76	0.3(2)
$ec_{2,0 M}$	(Pa)	51.743 - 53.662	13.4(8)
$ec_{17,14}$ M	(Pa)	57.23 - 59.15	0.08~(6)
$ec_{3,1}$ M	(Pa)	58.5 - 60.5	0.220(9)
$ec_{3,0}$ M	(Pa)	65.13 - 67.05	0.08~(6)
$ec_{4,0}$ L	(Pa)	65.372 - 69.744	13.9(6)
$ec_{5,1}$ L	(Pa)	66.88 - 71.26	0.0183~(6)
$ec_{5,0}$ L	(Pa)	73.54 - 77.91	0.070(7)
$ec_{4,0 M}$	(Pa)	81.116 - 83.035	2.7(7)
$ec_{5,0 M}$	(Pa)	89.28 - 91.20	0.0170(18)
$ec_{13,5 L}$	(Pa)	96.597 - 100.969	0.369(22)
$ec_{13,5}$ M	(Pa)	112.341 - 114.260	0.091~(7)
$ec_{14,5 L}$	(Pa)	122.144 - 126.516	0.49(5)
$ec_{14,4}$ L	(Pa)	130.309 - 134.681	0.257(10)
$ec_{14,5 M}$	(Pa)	137.888 - 139.807	0.121(12)
$ec_{14,4}$ M	(Pa)	146.053 - 147.972	0.0654 (34)

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Pa)	11.368 - 20.113		59.7(32)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pa) (Pa)	$92.288 \\ 95.869$		$\begin{array}{c} 1.813 \ (20) \\ 2.906 \ (20) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pa) (Pa) (Pa)	107.595 108.422 109.072	} } }	1.06 (10)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Pa) (Pa) (Pa)	$111.405 \\ 111.87 \\ 112.38$	} } }	0.380 (9)	$\mathrm{K}\beta_2'$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{7.6}(Pa)$	5.18				0.220(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{5,4}(Pa)$	8.22(5)	≈ 9			$\approx 0.12 (5)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{3,4}(10)$	21.5				0.352(13)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{-1,1}(\mathbf{Pa})$	27.7				0.84(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{4,2}(Pa)$	29.374(20)	58.2(26)	E1	3.07(6)	14.3(6)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{4,2}(10)$ $\gamma_{14,12}(Pa)$	36.32(2)	0.50(14)	M1+1 20%E2	99(20)	0.005(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{14,12}(\mathbf{Pa})$	4653(6)	0.209(8)	[E1]	0.914(18)	0.109(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{0,2}(\mathbf{Pa})$	$57\ 104\ (20)$	674(40)	E2	176(4)	0.381(21)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{2,0}(10)$ $\gamma_{17,14}(Pa)$	62.59(10)	0.4(3)	[M1+50%E2]	60(50)	0.001(21)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{17,14}(10)$ $\gamma_{2,1}(Pa)$	63.9(1)	1 10 (5)	(E2)	102.3(20)	0.000(2) 0.0107(4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{3,1}(\mathbf{Pa})$	70.49(10)	0.42(28)	[M1+50%E2]	38(26)	0.0107(4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{3,0}(10)$	7454(10)	0.12(20) 0.13(3)	[M1]	9.84(20)	0.012(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{10,3}(\mathbf{r}\mathbf{a})$	$86\ 477\ (10)$	29.8(10)	E1	1 43 (8)	12.26(12)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{4,0}(\mathbf{Pa})$	87.99(3)	0.167(4)	[E1]	0.169(0)	0.143(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{5,1}(\mathbf{Pa})$	94.64(5)	0.101(4) 0.75(8)	E1	0.109(4) 0.140(3)	0.146(0) 0.66(7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{0,0}(Pa)$	$106\ 15\ (25)$	0.523(31)	[E2]	9.28(19)	0.00(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{9,2}(\mathbf{Pa})$	108.7	0.32(4)	M1 + 4.62% E2	35(6)	0.0000(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{13,6}(1a)$	115 40 (35)	0.02(4)	[M1+E2]	10(4)	0.071(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{12,4}(Pa)$	117702(20)	2.0025(14)	$M1 \pm 8.26\% E2$	122(6)	0.0020(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{13,5}(1a)$	111.102(20) 131(101(25))	0.106(6)	E1	0.262(5)	0.111 (4) 0.084 (5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{12,3}(1a)$	131.101(20) 134(285(20))	0.100(0) 0.62(9)	$[M1\pm E2]$	8.0(11)	0.064(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{14,6}(1a)$	134.200(20) 130.0(1)	0.02(3)	$[\mathbf{E}1]$	0.225(5)	0.005(0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{18,9}(1a)$	$143\ 249\ (20)$	33(3)	M1 + 7.76% E2	6.220(0) 6.94(14)	0.0040(4) 0.42(4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{14,5}(1a)$	143.245(20) 151.414(20)	1.38(14)	M1 + 32.89% E2	49(6)	0.42(4) 0.234(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{14,4}(1a)$	153.37(10)	0.021(6)	[E2]	1.96(4)	0.294(2) 0.007(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{20,13}(Pa)$	155,239 (20)	0.021(0) 0.103(9)	$\mathbf{E}^{\mathbf{L}}$	0.176(4)	0.001(2) 0.088(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{13,2}(1a)$ $\gamma_{10,1}(Pa)$	162.41(8)	0.109(0)	[E1]	0.170(4) 0.158(3)	0.000(0) 0.033(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{10,1}(Pa)$	$169\ 156\ (20)$	0.0362(12) 0.0768(4)	[E1]	0.100(0) 0.143(3)	0.000(1) 0.0672(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{10,0}(Pa)$	17059(6)	0.0100(22)	[M1+13.79%E2]	40(5)	0.0012(0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{10,7}(\mathbf{Pa})$	176.00(0) 176.12(6)	0.100(22) 0.070(16)	[M1+13.79%E2]	3.7(5)	0.020(1) 0.015(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{16,6}(Pa)$	180.81(10)	0.0180(11)	[E1]	0.1223(25)	0.016(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{14,2}(12)$	186.86(35)	0.0100(11) 0.003(3)	[E1]	0.1220(23) 0.1131(23)	0.010(1) 0.003(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{20,11}(Pa)$	191.46(5)	0.074(9)	[M1+1379%E2]	29(4)	0.019(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{164}(Pa)$	193.26(5)	0.011(0) 0.167(18)	[M1+13.79%E2]	2.8(4)	0.010(1) 0.044(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{10,4}(Pa)$	194.67(20)	0.101 (10)		2.0 (1)	0.033(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{10,7}(Pa)$	194.07(20) 194.95(3)	0.192(22)	$\mathbf{E1}$	0.1024(21)	0.000(1) 0.174(20)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{12,1}(\mathbf{Pa})$	196.86(5)	0.102(22) 0.078(6)	[M1+13.79%E2]	2.7(3)	0.0210(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{17,6}(Pa)$	199.95(6)	0.010(0)	[M1]	2.1(6) 2.85(6)	0.0210(1) 0.0053(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{18,6}(Pa)$	201.62(5)	0.020(0)	E1	0.0946(19)	0.0000(0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{12,0}(Pa)$	201.02(0) 202.9(2)	0.0429(10) 0.0052(21)	[E1]	0.0940(19) 0.0932(19)	0.0002(0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{16,9}(1,a)$ $\gamma_{16,2}(P_2)$	202.0(2) 209.19(5)	0.0002(21) 0.0163(16)	[E1]	0.0868(17)	0.0040(15) 0.0150(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{12,3}(1,a)$ $\gamma_{12,0}(P_2)$	212 29 (5)	0.184(11)	E1	0.0839(17)	0.0100(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{17,0}(1a)$ $\gamma_{17,4}(P_{2})$	212.20(0) 214.01(5)	0.104(11) 0.115(13)	[M1+13.70%E2]	2.1(3)	0.037(2)
$\gamma_{10,2}(13)$ $222.6(2)$ $0.002(2)$ $\gamma_{17,3}(Pa)$ $229.94(5)$ $0.015(3)$ [E1] $0.0697(14)$ $0.014(3)$ $\gamma_{14,0}(Pa)$ $237.86(2)$ $0.0610(6)$ [E1] $0.0645(13)$ $0.0573(6)$	$\gamma_{16,9}(P_{2})$	222.6(2)	0.110 (10)		2.1 (0)	0.001(2)
$\gamma_{14,0}(Pa) = 237.86(2) = 0.0610(6) = [E1] = 0.0645(13) = 0.0573(6)$	$\gamma_{17,2}(P_2)$	222.0(2) 229.94(5)	0.015(3)	$[\mathbf{E}1]$	0.0697(14)	0.002(2) 0.014(3)
(14,0(14)) $201.00(2)$ $0.0010(0)$ $[11]$ $0.0040(10)$ $0.0010(0)$	$\gamma_{14,0}(P_{2})$	237.86(2)	0.010(0)	[±=±] [E1]	0.0645(13)	0.014(0) 0.0573(6)
$\gamma_{19,2}(Pa) = 248.95 (10) = 0.012 (3) [M1+13.79\% E2] = 1.37 (16) = 0.005 (1)$	$\gamma_{14,0}(1,\alpha)$ $\gamma_{10,2}(Pa)$	248.95(10)	0.012(3)	[M1+13.79%E2]	1.37(16)	0.005(1)

4.2 Gamma Transitions and Emissions

KRI /V.P. Chechev, N.K. Kuzmenko

	Energy keV	${ m P}_{\gamma+{ m ce}} \ imes \ 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{20,7}(Pa)$ $\gamma_{20,6}(Pa)$ $\gamma_{20,4}(Pa)$ $\gamma_{-1,4}(Pa)$	$\begin{array}{c} 257.09 \ (20) \\ 262.44 \ (20) \\ 279.65 \ (20) \\ 288.3 \end{array}$	$\begin{array}{c} 0.048 \ (24) \\ 0.01120 \ (49) \\ 0.01320 \ (49) \end{array}$	[M1] [M1] [E2]	$\begin{array}{c} 1.41 \ (3) \\ 1.33 \ (3) \\ 0.222 \ (5) \end{array}$	$\begin{array}{c} 0.02 \ (1) \\ 0.0048 \ (2) \\ 0.0108 \ (4) \\ 0.0162 \ (5) \end{array}$

5 References

L.MAGNUSSON, T.LACHAPELLE, Report National Nuclear Energy Series 14B (1949) 39 (Half-life) F.P.BRAUER, R.W.STROMATT, J.D.LUDWICK, F.P.ROBERTS, W.L.LYON, J. Inorg. Nucl. Chem. 12, (1960) 234 (Half-life) F.Asaro, F.S.Stephens, J.M.Hollander, I.Perlman, Phys. Rev. 117 (1960) 492 (Gamma-ray energies and emission probabilities, ICC for the 86.5 keV gamma-ray) V.A.DRUIN, V.P.PERELYGIN, G.I.KHLEBNIKOV, Sov. Phys. - JETP 13 (1961) 913 (Spontaneous fission half-life) S.A.BARANOV, V.M.KULAKOV, P.S.SAMOILOV, A.G.ZELENKOV, Y.F.RODIONOV, Sov. Phys. - JETP 14 (1962) 1232(Alpha-transition probabilities) E.BROWNE, F.ASARO, Priv. Comm. (1969), see also Report UCRL-17989, Univ. California (1968) (Alpha transition energies and probabilities, gamma-ray emission probabilities, ICC for the 86.5 keV gamma-ray) E.BROWNE, F.ASARO, Report UCRL-17989, Univ. California (1968) 1 (Alpha-transition energies and probabilities, gamma-ray emission probabilities) W.HOEKSTRA, Thesis, Technische Hogeschool, Delft (1969) (Gamma-ray energies) J.E.CLINE, Report IN-1448 (1971) (Gamma-ray energies) R.L.HEATH, Report ANCR-1000-2 (1974) (Gamma-ray energies) M.Skalsey, R.D.Connor, Can. J. Phys. 54 (1976) 1409 (Gamma-ray energies and emission probabilities) L.GONZALEZ, R.GAETA, E.VANO, J.M.LOS ARCOS, Nucl. Phys. A324 (1979) 126 (Gamma-ray energies and probabilities) M.F.BANHAM, A.J.FUDGE, J. Radioanal. Chem. 64 (1981) 167 (Gamma-ray probabilities) R.VANINBROUKX, G.BORTELS, B.DENECKE, Int. J. Appl. Radiat. Isotop. 35 (1984) 905 (X- and gamma- ray emission probabilities) M.F.BANHAM, Priv. Comm. (1984), cited in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1984) (Gamma-ray probabilities) A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Gamma-ray probabilities) D.B.ION, R.ION-MIHAI, M.IVASCU, Rev. Roum. Phys. 33 (1988) 1075 (Spontaneous fission half-life) S.A.WOODS, P.CHRISTMAS, P.CROSS, S.M.JUDGE, W.GELLETLY, Nucl. Instrum. Methods Phys. Res. A264 (1988) 333; Addendum Nucl. Instrum. Methods Phys. Res. A272 (1988) 924 (Gamma-ray energies and emission probabilities, ICC for the 86.5 keV gamma-ray) I.M.LOWLES, T.D.MCMAHON, M.F.BANHAM, A.J.FUDGE, R.A.P.WILTSHIRE, Nucl. Instrum. Methods Phys. Res. A286 (1990) 556 (Gamma-ray energies and probabilities) G.Bortels, D.Mouchel, R.Eykens, E.Garcia-Toraño, M.L.Acena, R.A.P.Wiltshire, M.King, A.J.Fudge, P.BURGER, Nucl. Instrum. Methods Phys. Res. A295 (1990) 199 (Alpha-transition probabilities) I.M.LOWLES, T.D.MCMAHON, R.A.P.WILTSHIRE, D.CROSSLEY, A.J.FUDGE, Nucl. Instrum. Methods Phys. Res. A312 (1992) 339 (Half-life)

A.F.GRASHIN, A.D.EFIMENKO, Bull. Rus. Acad. Sci. Phys. 56 (1992) 66 (Spontaneous fission half-life) U.SCHÖTZIG, E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 883 (X- and gamma- ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (2000) 527 (EMISSION computer code) G.SIBBENS, B.DENECKE, Appl. Radiat. Isot. 52 (2000) 467 (Alpha-transition probabilities, gamma-ray energies) S.A.WOODS, D.H.WOODS, P.DE LAVISON, S.M.JEROME, J.L.MAKEPEACE, M.J.WOODS, L.J.HUSBAND, S.LINEHAM, Appl. Radiat. Isot. 52 (2000) 475 (Gamma-ray emission probabilities) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR, P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 91 (2002) 1 (Theoretical internal conversion coefficients) A.Luca, S.Sepman, K.Iakovlev, G.Shchukin, M.Etcheverry, J.Morel, Appl. Radiat. Isot. 56 (2002) 173 (KX - ray and gamma-ray emission probabilities) M.J.WOODS, D.H.WOODS, S.A.WOODS, L.J.HUSBAND, S.M.JEROME E.A., Appl. Radiat. Isot. 56 (2002) 415 (Alpha-transition energies and probabilities and X-ray, gamma-ray emission probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) G.SHCHUKIN, K.IAKOVLEV, J.MOREL, Appl. Radiat. Isot. 60 (2004) 239 (X-ray and gamma- ray emission probabilities) B.SINGH, K.TULI, Nucl. Data Sheets 105 (2005) 109 (Decay scheme, gamma-ray multipolarities, admixture coefficients) V.P.CHECHEV, N.K.KUZMENKO, Appl. Radiat. Isot. 64 (2006) 1403 (Gamma-ray emission probabilities in the 233Pa decay) D.J.DEVRIES, H.C.GRIFFIN, Appl. Radiat. Isot. 66 (2008) 1999 (Gamma-ray, KX-ray and LX-ray emission probabilities, and uncertainties of gamma-ray, KX-ray and LX-ray absolute emission probabilities) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	2.102	(5)	d
Q_{β^-}	:	1291.5	(4)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\frac{\text{Proba}}{\times 1}$	bility 00	Nature	$\log ft$
$\beta_{0.15}^{-}$	89.0(4)	0.51	(6)	1st forbidden	6.57
$\beta_{0.13}^{-13}$	221.6(4)	11.50	(7)	Allowed	6.44
$\beta_{0.12}^{-10}$	263.0(4)	44.75	(19)	Allowed	6.09
$\beta_{0.11}^{-1}$	306.0(4)	0.49	(1)	1st forbidden	8.25
$\beta_{0.10}^{-1}$	308.4(4)	0.27	(3)	Allowed	8.51
$\beta_{0.9}^{-}$	323.3(6)	0.082	(6)	1st forbidden	9.11
$\beta_{0.8}^{-,\circ}$	328.7(4)	1.25	(1)	1st forbidden	7.95
$\beta_{0.5}^{5}$	630.1(4)	0.036	(3)	1st forbidden	10.44
$\beta_{0.4}^{\underline{\circ},\underline{\circ}}$	686.4(4)	0.103	(3)	1st forbidden	10.08
$\beta_{0,1}^{\underline{0,1}}$	1247.4(4)	41.0	(25)	Allowed	8.38

		${ m Energy}\ { m keV}$	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e_{AL}	(Pu)	6.19 - 22.99	29.7 (14)	
e_{AK}	(Pu)		0.021 (8)	
	KLL	75.26 - 85.36	}	
	KLX	92.607 - 103.729	}	
	KXY	109.93 - 121.78	}	
$ec_{1,0 L}$	(Pu)	20.97 - 26.01	58.6(17)	
$ec_{1,0 M}$	(Pu)	38.14 - 40.30	16.4(5)	
$ec_{2,1 L}$	(Pu)	78.78 - 83.82	2.65(10)	
$ec_{14,9}$ L	(Pu)	91.3 - 96.3	0.036~(6)	
$ec_{2,1}$ M	(Pu)	95.95 - 98.10	0.74(3)	
$ec_{15,14}$ L	(Pu)	97.01 - 102.05	0.28~(6)	
$ec_{14,9}$ M	(Pu)	108.5 - 110.6	0.0100~(19)	
$ec_{15,14\ M}$	(Pu)	114.18 - 116.34	0.070~(7)	
$ec_{13,2 \text{ K}}$	(Pu)	802.20 (2)	0.0258 (11)	
$ec_{10,1 \text{ K}}$	(Pu)	817.1 (1)	0.114(16)	
$ec_{12,1 \ K}$	(Pu)	862.66 (2)	0.242~(8)	
$ec_{13,1 \text{ K}}$	(Pu)	904.08 (2)	0.080~(4)	
$ec_{12,0}$ K	(Pu)	906.75 (2)	0.160(3)	
$ec_{10,1 L}$	(Pu)	915.84 - 920.88	0.022(3)	
$ec_{12,1\ L}$	(Pu)	961.35 - 966.39	0.055(3)	
$ec_{12,1 M}$	(Pu)	978.52 - 980.68	0.015(3)	
$ec_{13,1}$ L	(Pu)	1002.77 - 1007.81	0.0184~(9)	

		Ene ke	rgy V	Electrons per 100 disint.	E	Energy keV
ес _{12,0 L} ес _{12,0 M}	(Pu) (Pu)	1005.44 - 1022.61 -	$1010.48 \\ 1024.76$	$\begin{array}{c} 0.0405 \ (10) \\ 0.0101 \ (2) \end{array}$		
$\beta_{0.15}^{-}$	max:	89.0	(4)	0.51(6)	avg:	23.0(2)
$\beta_{0.13}^{-,10}$	max:	221.6	(4)	11.50(7)	avg:	59.9(2)
$\beta_{0,12}^{-1}$	max:	263.0	(4)	44.75(19)	avg:	72.0(2)
$\beta_{0,11}^{-1}$	max:	306.0	(4)	0.49(1)	avg:	84.9(2)
$\beta_{0,10}^{-}$	max:	308.4	(4)	0.27~(3)	avg:	85.6(2)
$\beta_{0,9}^{-}$	max:	323.3	(6)	0.082~(6)	avg:	90.1(2)
$\beta_{0.8}^{-}$	max:	328.7	(4)	1.25(1)	avg:	91.8(2)
$\beta_{0.5}^{-}$	max:	630.1	(4)	0.036~(3)	avg:	189.2(2)
$\beta_{0.4}^{-}$	max:	686.4	(4)	0.103~(3)	avg:	208.4(2)
$\beta_{0,1}^{-}$	max:	1247.4	(4)	41.0(25)	avg:	412.2(2)

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pu)	12.125 - 21.984		32.4(14)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pu) (Pu)	$99.525 \\ 103.734$		$\begin{array}{c} 0.210 \ (8) \\ 0.332 \ (12) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	$116.244 \\117.228 \\117.918$	} } }	0.122(5)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$\begin{array}{c} 120.54 \\ 120.969 \\ 121.543 \end{array}$	} } }	0.042(2)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(\mathrm{Pu})$	44.07(2)	80.7(23)	$\mathrm{E2}$	788(16)	0.1024(21)
$\gamma_{2,1}(\mathrm{Pu})$	101.88(2)	3.90(14)	E2	14.5(3)	0.252(8)
$\gamma_{-1,1}(\mathrm{Pu})$	103.74(2)	0.312(3)			0.312(3)
$\gamma_{14,9}(Pu)$	114.4(4)	0.055(10)	[E2]	8.47(17)	0.0058(10)
$\gamma_{-1,2}(\mathrm{Pu})$	116.27(8)	0.04			0.04
$\gamma_{-1,3}(\mathrm{Pu})$	117.27(8)	0.074			0.074
$\gamma_{15,14}(\mathrm{Pu})$	120.11(5)	0.48(6)	M1(+E2)	3.8(6)	0.101(5)
$\gamma_{-1,4}(\mathrm{Pu})$	120.5	0.02	. ,		0.02
$\gamma_{-1,5}(\mathrm{Pu})$	121.70(8)	0.010(1)			0.010(1)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
	iie v	X 100			× 100
$\gamma_{15,13}(\mathrm{Pu})$	132.5(1)	0.0018(10)	[E1]	0.267(5)	0.0014(8)
$\gamma_{3,2}(Pu)$	157.42(5)	0.003	[E2]	2.19(4)	0.001
$\gamma_{15,12}(\mathrm{Pu})$	174.08(5)	0.0261 (9)	[E1]	0.142(3)	0.0229~(8)
$\gamma_{-1,6}(\mathrm{Pu})$	220.87(11)	0.037~(9)	(M2)	11.4(20)	0.0030(5)
$\gamma_{8,5}(\mathrm{Pu})$	301.37(7)	0.0128(12)	E2	0.208(4)	0.0106(10)
$\gamma_{14,6}(\mathrm{Pu})$	319.29(11)	0.013(3)	M1+E2	0.59(25)	0.0083(10)
$\gamma_{10,5}(\mathrm{Pu})$	321.75(20)	0.0013			0.0013~(8)
$\gamma_{11,5}(\mathrm{Pu})$	324.02(9)	0.0184(14)	M1+E2	0.26(7)	0.0146~(8)
$\gamma_{7,4}(\mathrm{Pu})$	336.36(15)	0.00020 (13)	[E1]	0.0324(7)	0.0002(1)
$\gamma_{8,4}(\mathrm{Pu})$	357.64(7)	0.0612(17)	M1+E2	0.214(16)	0.0504(13)
$\gamma_{10,4}(\mathrm{Pu})$	378.05(13)	0.003			0.0030(5)
$\gamma_{11,4}(\mathrm{Pu})$	380.31(10)	0.0180(8)	[M1]	0.623(9)	0.0111(5)
$\gamma_{14,5}(\mathrm{Pu})$	421.1(1)	0.0309(15)	[M1]	0.472(7)	0.021(1)
$\gamma_{6,3}(\mathrm{Pu})$	459.8(2)	0.0023			0.0023~(15)
$\gamma_{5,2}(Pu)$	515.51(7)	0.0386(11)	E1+M2	0.022(4)	0.0378(11)
$\gamma_{4,1}(\mathrm{Pu})$	561.14(5)	0.1072(15)	${ m E1}$	0.0115(2)	0.106(2)
$\gamma_{4,0}(\mathrm{Pu})$	605.16(5)	0.078(2)	${ m E1}$	0.0100(2)	0.077~(2)
$\gamma_{5,1}(\mathrm{Pu})$	617.39(5)	0.0604(7)	E1+M2	0.0120(14)	0.0593
$\gamma_{6,2}(Pu)$	617.4	0.008(0)			0.008
$\gamma_{10,2}(\mathrm{Pu})$	836.96(7)	0.0210(8)	[E2]	0.0174(4)	0.0206~(8)
$\gamma_{12,2}(Pu)$	882.63(3)	0.816(9)	(E2)	0.0157~(3)	0.803~(9)
$\gamma_{-1,7}(\mathrm{Pu})$	885	0.040(5)			0.040(5)
$\gamma_{7,1}(\mathrm{Pu})$	897.34(10)	0.0074(10)	(E2)	0.0152(3)	0.0073(10)
$\gamma_{8,1}(\mathrm{Pu})$	918.70(4)	0.531~(6)	$\mathrm{E1}$	0.0047(1)	0.529~(6)
$\gamma_{13,2}(\mathrm{Pu})$	923.99(2)	2.64(2)	(M1+E2)	0.014(1)	2.604(20)
$\gamma_{9,1}(\mathrm{Pu})$	924	0.065			0.065
$\gamma_{14,2}(\mathrm{Pu})$	936.60(5)	0.369(5)	[E1+M2]	0.0112(22)	0.365~(5)
$\gamma_{10,1}(\mathrm{Pu})$	938.94(10)	0.18(2)	E0+E2	4.4(4)	0.0327~(25)
$\gamma_{11,1}(\mathrm{Pu})$	941.40(4)	0.504	[E1+M2]		0.504~(6)
$\gamma_{8,0}(\mathrm{Pu})$	962.76(2)	0.648(8)	$\mathrm{E1}$	0.00433~(9)	0.645(8)
$\gamma_{9,0}(\mathrm{Pu})$	968.9(4)	0.017~(6)	[M2]	0.116(3)	0.015~(8)
$\gamma_{10,0}(\mathrm{Pu})$	983.0(3)	0.07~(2)	[E2]	0.0128(3)	0.068~(20)
$\gamma_{12,1}(\mathrm{Pu})$	984.45(2)	25.50(13)	M1+E2	0.0125~(5)	25.18(13)
$\gamma_{13,1}(\mathrm{Pu})$	1025.87(2)	8.86(7)	M1+E2	0.0120(5)	8.76(6)
$\gamma_{12,0}(\mathrm{Pu})$	1028.54(2)	18.46(13)	E2	0.0117(2)	18.25(13)

5 References

M.S.FREEDMAN, A.H.JAFFEY, F.WAGNER JR., Phys. Rev. 79 (1950) 410 (Half-life)
D.C.DUNLAVEY, G.T.SEABORG, Phys. Rev. 87 (1952) 165 (Conversion electron measurements, gamma-ray multipolarities)
S.A.BARANOV, K.N.SHLYAGIN, At. Energ. 1 (1956) 52 (Conversion electron measurements, gamma-ray multipolarities)
W.G.SMITH, J.M.HOLLANDER, Phys. Rev. 101 (1956) 746 (Conversion electron measurements, gamma-ray multipolarities)
R.G.ALBRIDGE, J.C.HUBBS, R.MARRUS, Phys. Rev. 111 (1958) 1137 (Half-life)
F.ASARO, I.PERLMAN, Report UCRL-9566, Univ. California (1960) 50 (Conversion electron measurements, gamma-ray multipolarities)

R.G.Albridge, J.M.Hollander, Nucl. Phys. 21 (1960) 438 (Conversion electron measurements, gamma-ray multipolarities) G.G.AKALAEV, N.A.VARTANOV, P.S.SAMOILOV, Report NP-14688 (1965) (Conversion electron measurements, gamma-ray multipolarities) S.M.QAIM, Nucl. Phys. 84 (1966) 411 (Half-life) B.BENGTSON, J.JENSEN, M.MOSZYNSKI, H.L.NIELSEN, Nucl. Phys. A159 (1970) 249 (924-keV gamma-ray energy and relative emission probability) W.J.B.WINTER, A.H.WAPSTRA, P.F.A.GOUDSMIT, J.KONIJN, Nucl. Phys. A197 (1972) 417 (Relative gamma-ray intensities) C.M.LEDERER, Priv. Comm. (1970), cited in C.M.Lederer et al., Table of Isotopes, 7th Ed., John Wiley and Sons Inc., N.Y. (1978) (Gamma-ray energy) C.M.LEDERER, Phys. Rev. C24 (1981) 1175 (Relative gamma-ray intensities) Y.CHANG, B.ZHU, C.YAN, G.SHI, J.CHIN, Chin. J. Nucl. Phys. 12 (1990) 65 (Relative gamma-ray intensities, absolute 984-keV gamma-ray emission probability) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-rays relative emission probabilities) F.E.CHUKREEV, V.E.MAKARENKO, M.J.MARTIN, Nucl. Data Sheets 97 (2002) 129 (Nuclear data evaluation for A=238) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) K.RENGAN, D.DEVRIES, H.GRIFFIN, Nucl. Instrum. Methods Phys. Res. A565 (2006) 612 (Gamma-ray energies, relative gamma-ray intensities, absolute 984-keV gamma-ray emission probability)

$T_{1/2}$:	2.356	(3)	d
Q_{β^-}	:	722.5	(10)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.13}^{-}$	166.3(5)	0.0026	1st forbidden	9.7
$\beta_{0.12}^{-10}$	210.7(5)	1.56(16)	Allowed	7.3
$\beta_{0.11}^{\frac{3}{-1}}$	217.3(5)	0.0074	1st forbidden	9.7
$\beta_{0.10}^{-1}$	230.3(5)	0.02	1st forbidden	9.3
$\beta_{0.9}^{-}$	252.7(5)	0.0027	1st forbidden unique	9.9
$\beta_{0.8}^{}$	330.9(5)	38.8(9)	1st forbidden	6.3
$\beta_{0.7}^{-2}$	335.1(5)		2nd forbidden	
$\beta_{0.6}^{\circ,\circ}$	392.4(5)	9.4(14)	Allowed	7.4
$\beta_{0.5}^{}$	437.0(5)	43.0 (22)	Allowed	6.9
$\beta_{0.4}^{\bullet,\bullet}$	558.7(5)		2nd forbidden	
$\beta_{0,3}^{\underline{0,1}}$	646.8(5)		Allowed	
$\beta_{0,2}^{\bullet,\bullet}$	665.2(5)	0.4(72)	Allowed	
$\beta_{0,1}^{\bullet,-}$	714.6(5)	6.5(10)	Allowed	8.4
$\beta_{0,0}^{-}$	722.5 (5)	. ,	2nd forbidden unique	

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Pu)	6.19 - 22.99	47.9 (26)	
e _{AK}	(Pu) KLL KLX KXY	75.26 - 85.36 92.61 - 103.73 109.93 - 121.78	1.36 (19) } }	
ес _{1,0 М} ес _{12,7 К} есе 5 Г	(Pu) (Pu) (Pu)	1.928 - 4.086 2.6 21.559 - 26.606	$51 (6) \\ 0.1 \\ 8.3 (10)$	
$ec_{2,1}$ L $ec_{2,0}$ L	(Pu) (Pu) (Pu)	26.311 - 31.358 34.169 - 39.216 38.36 - 43.40	$\begin{array}{c} 13.3 \ (3) \\ 20.8 \ (32) \\ 0 \ 457 \ (11) \end{array}$	
$ec_{6,5 M}$ $ec_{2,1 M}$	(Pu) (Pu) (Pu)	38.730 - 40.888 $43.482 - 45.640$ 44.60 (6)	$\begin{array}{c} 2.12 \ (26) \\ 3.6 \ (9) \\ 0.08 \ (3) \end{array}$	
$ec_{3,1}$ L $ec_{2,0}$ M $ec_{8,6}$ M	(Pu) (Pu) (Pu)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 7.1 \ (21) \\ 5.8 \ (9) \\ 0.114 \ (3) \end{array}$	
$ec_{12,6 K}$	(Pu)	59.91 (3)	0.323(10)	

construction (Pu) 61.91 -64.07 2.0 (6) ce4.3 L (Pu) 64.96 -70.00 0.054 (30) ce7.5 L (Pu) 78.86 -83.90 0.084 (21) ce4.3 M (Pu) 83.02 -88.07 4.9 (8) ce4.2 L (Pu) 83.37 -88.41 0.42 (7) ce5.3 K (Pu) 96.03 -98.18 0.023 (6) ce7.5 M (Pu) 90.54 -102.69 0.117 (19) ce4.2 M (Pu) 100.54 -102.69 0.117 (19) ce4.2 M (Pu) 100.54 -102.69 0.117 (19) ce1.2 K (Pu) 106.392 (1) 21.4 (8) $eec_{2.3}$ (Pu) 163.692 (2) 0.566 (2) ce5.4 K (Pu) 143.29 -148.33 0.016 (7) $eec_{5.4}$ (Pu) 155.808 (1) 16.1 (7) ce5.4 L (Pu) 155.808 (1) 16.1 (7) $eec_{5.4}$ (Pu) 155.808 (2) 0.066 (2) ce1.6 M (Pu) 1			$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	Electrons per 100 disint.	E	lnergy keV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{3,1 М}	(Pu)	61.91 - 64.07	2.0(6)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{4,3 L}$	(Pu)	64.96 - 70.00	0.054(30)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{7,5 L}$	(Pu)	78.86 - 83.90	0.084~(21)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ЭС4,3 М	(Pu)	82.13 - 84.28	0.014~(9)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{8,5}$ L	(Pu)	83.02 - 88.07	4.9(8)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{4,2}$ L	(Pu)	83.37 - 88.41	0.42(7)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	әс _{5,3 К}	(Pu)	87.962 (2)	7.76(18)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{7,5}$ M	(Pu)	96.03 - 98.18	0.023~(6)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{8,5 M}$	(Pu)	100.19 - 102.35	1.30(21)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{4,2}$ M	(Pu)	100.54 - 102.69	0.117~(19)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{12,7 L}	(Pu)	101.3 - 106.3	0.024		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ес _{12,5} к	(Pu)	104.59 (2)	0.52~(3)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ес _{8,4 К}	(Pu)	106	0.030~(6)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{5,2}$ K	(Pu)	106.392 (1)	21.4(8)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ес _{6,3 К}	(Pu)	132.61 (3)	0.161~(6)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{6,4 L}$	(Pu)	143.29 - 148.33	0.016(7)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{6,2 K}$	(Pu)	151.05 (3)	0.092(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{5,1}$ K	(Pu)	155.808 (1)	16.1(7)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{12,6}$ L	(Pu)	158.59 - 163.63	0.066(2)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{5,0}$ K	(Pu)	163.669 (2)	0.066(2)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{12.6 M}$	(Pu)	175.76 - 177.92	0.0161(5)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{5,3}$ L	(Pu)	186.65 - 191.70	1.71(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{8,3 \text{ K}}$	(Pu)	194.089 (3)	0.0469(10)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{12,5 L}$	(Pu)	203.28 - 208.32	0.105(7)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{5,3}$ M	(Pu)	203.82 - 205.98	0.42(9)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{5,2}$ L	(Pu)	205.08 - 210.13	4.48(16)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{8,2}$ K	(Pu)	212.519 (3)	0.0532(11)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{12,5 M}$	(Pu)	220.45 - 222.60	0.0255(18)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{5,2 M}$	(Pu)	222.25 - 224.41	1.10(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{6,3 L}$	(Pu)	231.3 - 236.3	0.0324(11)		
ec5,1 L(Pu) $254.50 - 259.54$ $3.28 (9)$ ec5,0 L(Pu) $262.36 - 267.40$ $0.093 (3)$ ec5,1 M(Pu) $271.67 - 273.82$ $0.801 (18)$ ec5,0 M(Pu) $279.53 - 281.68$ $0.0256 (6)$ $\beta_{0,13}^{-11}$ max: $166.3 (5)$ 0.0026 avg: $44.2 (2)$ $\beta_{0,12}^{-11}$ max: $210.7 (5)$ $1.56 (16)$ avg: $\beta_{0,11}^{-11}$ max: $217.3 (5)$ 0.0074 avg: $58.7 (2)$ $\beta_{0,10}^{-10}$ max: $230.3 (5)$ 0.0027 avg: $62.5 (2)$ $\beta_{0,6}^{-10}$ max: $330.9 (5)$ $38.8 (9)$ avg: $98.3 (2)$ $\beta_{0,6}^{-17}$ max: $335.1 (5)$ $9.4 (14)$ avg: $111.5 (2)$ $\beta_{0,6}^{-16}$ max: $558.7 (5)$ $avg:$ $avg:$ $avg:$ $\beta_{0,6}^{-16}$ max: $558.7 (5)$ $avg:$ $avg:$ $\beta_{0,7}^{-17}$ max: $558.7 (5)$ $avg:$ $avg:$ $\beta_{0,7}^{-16}$ max: $558.7 (5)$ $avg:$ $avg:$ $\beta_{0,7}^{-16}$ max: $558.7 (5)$ $avg:$ $avg:$ $\beta_{0,3}^{-16}$ max: $665.2 (5)$ $0.4 (72)$ $avg:$	$ec_{6,2 L}$	(Pu)	249.74 - 254.78	0.0186(8)		
ec_{5,0 L}(Pu) $262.36 - 267.40$ $0.093 (3)$ ec_{5,1 M}(Pu) $271.67 - 273.82$ $0.801 (18)$ ec_{5,0 M}(Pu) $279.53 - 281.68$ $0.0256 (6)$ $\beta_{0,13}^{-1}$ max: $166.3 (5)$ 0.0026 avg: $44.2 (2)$ $\beta_{0,12}^{-1}$ max: $210.7 (5)$ $1.56 (16)$ avg: $56.8 (2)$ $\beta_{0,11}^{-1}$ max: $217.3 (5)$ 0.0074 avg: $58.7 (2)$ $\beta_{0,10}^{-1}$ max: $230.3 (5)$ 0.002 avg: $62.5 (2)$ $\beta_{0,6}^{-1}$ max: $330.9 (5)$ $38.8 (9)$ avg: $98.3 (2)$ $\beta_{0,6}^{-7}$ max: $335.1 (5)$ $9.4 (14)$ avg: $111.5 (2)$ $\beta_{0,6}^{-5}$ max: $558.7 (5)$ $43.0 (22)$ avg: $125.6 (2)$ $\beta_{0,3}^{-1}$ max: $558.7 (5)$ $avg:$ $avg:$ $\beta_{0,3}^{-1}$ max: $646.8 (5)$ $avg:$ $avg:$	$ec_{5,1}$ L	(Pu)	254.50 - 259.54	3.28(9)		
ec_{5,1 M}(Pu)271.67 - 273.820.801 (18)ec_{5,0 M}(Pu)279.53 - 281.680.0256 (6) $\beta_{0,13}^{-}$ max:166.3 (5)0.0026avg:44.2 (2) $\beta_{0,12}^{-}$ max:210.7 (5)1.56 (16)avg:56.8 (2) $\beta_{0,11}^{-}$ max:217.3 (5)0.0074avg:58.7 (2) $\beta_{0,10}^{-}$ max:230.3 (5)0.002avg:62.5 (2) $\beta_{0,9}^{-}$ max:252.7 (5)0.0027avg:74.7 (2) $\beta_{0,6}^{-}$ max:330.9 (5)38.8 (9)avg:98.3 (2) $\beta_{0,6}^{-}$ max:332.1 (5)avg:avg: $\beta_{0,6}^{-}$ max:355.7 (5)9.4 (14)avg:111.5 (2) $\beta_{0,6}^{-}$ max:558.7 (5)avg:avg: $\beta_{0,3}^{-}$ max:646.8 (5)avg:avg: $\beta_{0,3}^{-}$ max:646.8 (5)avg:avg:	$ec_{5,0}$ L	(Pu)	262.36 - 267.40	0.093(3)		
$ec_{5,0 M}$ (Pu)279.53 - 281.680.0256 (6) $\beta_{0,13}^{-13}$ max:166.3(5)0.0026avg:44.2 (2) $\beta_{0,12}^{-11}$ max:210.7(5)1.56 (16)avg:56.8 (2) $\beta_{0,11}^{-11}$ max:217.3(5)0.0074avg:58.7 (2) $\beta_{0,10}^{-10}$ max:230.3(5)0.0027avg:62.5 (2) $\beta_{0,9}^{-10}$ max:252.7(5)0.0027avg:74.7 (2) $\beta_{0,8}^{-1}$ max:330.9(5)38.8 (9)avg:98.3 (2) $\beta_{0,7}^{-1}$ max:335.1(5)avg:98.3 (2) $\beta_{0,6}^{-10}$ max:392.4(5)9.4 (14)avg:111.5 (2) $\beta_{0,6}^{-10}$ max:558.7(5)avg:125.6 (2) $\beta_{0,4}^{-1}$ max:558.7(5)avg:32.6 (2) $\beta_{0,3}^{-1}$ max:646.8(5)avg: $\beta_{0,3}^{-1}$ max:645.2(5)9.4 (72)avg:	$ec_{5,1}$ M	(Pu)	271.67 - 273.82	0.801~(18)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{5,0 M}$	(Pu)	279.53 - 281.68	0.0256~(6)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,13}^{-}$	max:	166.3 (5)	0.0026	avg:	44.2 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,12}^{-}$	max:	210.7 (5)	1.56(16)	avg:	56.8(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,11}^{-1}$	max:	217.3 (5)	0.0074	avg:	58.7(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.10}^{-1}$	max:	230.3 (5)	0.02	avg:	62.5(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.9}^{-}$	max:	252.7 (5)	0.0027	avg:	74.7(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.8}^{-,\circ}$	max:	330.9 (5)	38.8(9)	avg:	98.3(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,7}^{\underline{0,7}}$	max:	335.1 (5)	~ /	avg:	× /
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.6}^{-}$	max:	392.4 (5)	9.4(14)	avg:	111.5(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.5}^{-}$	max:	437.0 (5)	43.0 (22)	avg:	125.6 (2)
$\beta_{0,3}^{-} \qquad \max: 646.8 \qquad (5) \qquad \qquad \text{avg:} \\ \beta_{-}^{-} \qquad \max: 665.2 \qquad (5) \qquad \qquad 0.4 (72) \qquad \text{avg:} \\ \beta_{-}^{-} \qquad \max: 665.2 \qquad (5) \qquad \qquad 0.4 (72) \qquad \text{avg:} \\ \beta_{-}^{-} \qquad \max: 665.2 \qquad (5) \qquad \qquad 0.4 (72) \qquad \text{avg:} \\ \beta_{-}^{-} \qquad \max: 665.2 \qquad (5) \qquad \qquad 0.4 (72) \qquad \text{avg:} \\ \beta_{-}^{-} \qquad \max: 665.2 \qquad (5) \qquad \qquad 0.4 (72) \qquad \text{avg:} \\ \beta_{-}^{-} \qquad \max: 665.2 \qquad (5) \qquad \qquad 0.4 (72) \qquad \text{avg:} \\ \beta_{-}^{-} \qquad \max: 665.2 \qquad (5) \qquad \qquad 0.4 (72) \qquad \text{avg:} \\ \beta_{-}^{-} \qquad \max: 665.2 \qquad (5) \qquad \qquad 0.4 (72) \qquad \text{avg:} \\ \beta_{-}^{-} \qquad \max: 665.2 \qquad (5) \qquad \qquad 0.4 (72) \qquad \text{avg:} \\ \beta_{-}^{-} \qquad \max: 665.2 \qquad (5) \qquad \qquad 0.4 (72) \qquad \text{avg:} \\ \beta_{-}^{-} \qquad \max: 665.2 \qquad (5) \qquad \qquad 0.4 (72) $	$\beta_{0,4}^{-1}$	max:	558.7 (5)	()	avo:	(-)
β^{-} max: 665.9 (5) 0.4 (79) area	$\beta_{0,4}^{-}$	max	646.8 (5)		avo.	
$U_{0,0} = U_{0,1} U_$	$\beta_{-}^{\sim 0,3}$	max.	665.2 (5)	0.4.(72)	ave.	

		Energy keV		Electrons Energy per 100 disint. keV		Energy keV
$\beta_{0,1}^{-} \\ \beta_{0,0}^{-}$	max: max:	714.6 722.5	(5) (5)	6.5(10)	avg: avg:	218.3 (2)

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pu)	12.125 - 21.984		51.3(24)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pu) (Pu)	$99.525 \\ 103.734$		$\begin{array}{c} 13.5 \ (4) \\ 21.4 \ (6) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	$116.244 \\117.228 \\117.918$	} } }	7.84 (25)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$120.54 \\ 120.969 \\ 121.543$	} } }	2.72 (10)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(Pu)$	7.861(2)	70(8)	M1 + 0.3% E2	5716 (400)	0.0122(12)
$\gamma_{3,2}(\mathrm{Pu})$	18.430(4)	5.5(30)	[M1+E2]		0.02
$\gamma_{6,5}(\mathrm{Pu})$	44.663(5)	11.3(14)	M1 + 4% E2	86(8)	0.13(1)
$\gamma_{2,1}(\mathrm{Pu})$	49.415(3)	18(5)	M1+20%E2	126(8)	0.145(35)
$\gamma_{2,0}(\mathrm{Pu})$	57.273(4)	27(7)	$\mathrm{E2}$	222(5)	0.12(3)
$\gamma_{7,6}(\mathrm{Pu})$	57.3	≈ 0.012	M1(+E2)		≈ 0.012
$\gamma_{8,6}(\mathrm{Pu})$	61.460(2)	1.900(32)	E1	0.473(10)	1.29(2)
$\gamma_{3,1}(\mathrm{Pu})$	67.841 (7)	9.9(30)	E2	98.3(20)	0.10(3)
$\gamma_{4,3}(\mathrm{Pu})$	88.06 (3)	0.078(44)	M1 + 20% E2	12 (6)	0.006(2)
$\gamma_{7,5}(\mathrm{Pu})$	101.96(2)	0.12(3)	$\mathrm{E2}$	14.4(3)	0.008(2)
$\gamma_{8,5}(\mathrm{Pu})$	106.125(2)	32.6(9)	E1(+M2)	0.26(3)	25.9(3)
$\gamma_{4,2}(\mathrm{Pu})$	106.50(3)	0.63(10)	E2	11.8(3)	0.049(8)
$\gamma_{12,7}(Pu)$	124.4	0.15	$\mathrm{E2}$	13.6(3)	0.01
$\gamma_{6,4}(\mathrm{Pu})$	166.39(6)	0.12(5)	M1(+20%E2)	6.23(13)	0.016(7)
$\gamma_{12,6}(Pu)$	181.70(3)	0.497(14)	M1	4.78 (10)	0.086(2)
$\gamma_{5,3}(\mathrm{Pu})$	209.753(2)	13.47(24)	M1 + 2% E2	2.94(6)	3.42(3)
$\gamma_{12,5}(Pu)$	226.38(2)	0.91(5)	M1 + 12% E2	2.58(8)	0.255(14)
$\gamma_{8.4}(Pu)$	227.83	0.54(11)	M1 + 1.7% E2	0.0762(15)	0.5(1)
$\gamma_{5,2}(\mathrm{Pu})$	228.183(1)	38.6(12)	M1 + 7.3% E2	2.41 (8)	11.32 (22)
$\gamma_{6,3}(Pu)$	254.40(3)	0.314(10)	$\mathrm{M1{+}2.5\%E2}$	1.85(4)	0.110(3)

KRI /V.P. Chechev, N.K. Kuzmenko

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \gamma_{6,2}(\mathrm{Pu}) \\ \gamma_{5,1}(\mathrm{Pu}) \\ \gamma_{5,0}(\mathrm{Pu}) \\ \gamma_{7,3}(\mathrm{Pu}) \\ \gamma_{8,3}(\mathrm{Pu}) \\ \gamma_{6,1}(\mathrm{Pu}) \\ \gamma_{8,2}(\mathrm{Pu}) \end{array}$	$\begin{array}{c} 272.84 \ (3) \\ 277.599 \ (1) \\ 285.460 \ (2) \\ 311.70 \ (2) \\ 315.880 \ (3) \\ 322.3 \ (2) \\ 334.310 \ (3) \end{array}$	$\begin{array}{c} 0.194 \ (8) \\ 34.8 \ (9) \\ 0.973 \ (13) \\ 0.002 \ (2) \\ 1.649 \ (10) \\ 0.006 \\ 2.107 \ (21) \end{array}$	$\begin{array}{c} \mathrm{M1+2.6\%E2}\\ \mathrm{M1+5\%E2}\\ \mathrm{E2}\\ (\mathrm{M1+E2})\\ \mathrm{E1(+0.006\%M2)}\\ (\mathrm{E2})\\ \mathrm{E1(+0.004\%M2)} \end{array}$	$\begin{array}{c} 1.52 \ (3) \\ 1.42 \ (6) \\ 0.248 \ (5) \end{array}$ $\begin{array}{c} 0.0372 \ (8) \\ 0.170 \ (4) \\ 0.0329 \ (7) \end{array}$	$\begin{array}{c} 0.077 \ (3) \\ 14.4 \ (1) \\ 0.78 \ (1) \\ 0.002 \ (2) \\ 1.59 \ (1) \\ 0.0052 \\ 2.04 \ (2) \end{array}$
$\begin{array}{l} \gamma_{13,4}(\mathrm{Pu}) \\ \gamma_{13,4}(\mathrm{Pu}) \\ \gamma_{11,3}(\mathrm{Pu}) \\ \gamma_{10,2}(\mathrm{Pu}) \\ \gamma_{11,2}(\mathrm{Pu}) \\ \gamma_{12,2}(\mathrm{Pu}) \\ \gamma_{9,1}(\mathrm{Pu}) \\ \gamma_{9,0}(\mathrm{Pu}) \\ \gamma_{10,1}(\mathrm{Pu}) \\ \gamma_{10,0}(\mathrm{Pu}) \\ \gamma_{11,1}(\mathrm{Pu}) \\ \gamma_{13,2}(\mathrm{Pu}) \\ \gamma_{12,1}(\mathrm{Pu}) \end{array}$	$\begin{array}{c} 392.4 \ (5) \\ 429.5 \ (5) \\ 434.7 \ (5) \\ 447.6 \ (5) \\ 454.2 \ (5) \\ 461.9 \ (5) \\ 469.8 \ (5) \\ 484.3 \ (5) \\ 492.3 \ (5) \\ 497.8 \ (5) \\ 498.7 \\ 504.2 \ (5) \end{array}$	$\begin{array}{c} 0.0016\\ 0.0039\\ 0.013\\ 0.00026\\ 0.00082\\ 0.0016\\ 0.0011\\ 0.001\\ 0.006\\ 0.0032\\ 0.001\\ 0.00078\\ \end{array}$	(E1) (E1) (E1) (E1) (E1) (E1) (E1) (E1)		$\begin{array}{c} 0.0016\\ 0.0039\\ 0.013\\ 0.00026\\ 0.00082\\ 0.0016\\ 0.0011\\ 0.001\\ 0.006\\ 0.0032\\ 0.001\\ 0.00078\\ \end{array}$

5 References

M.S.FREEDMAN, F.WAGNER JR., D.W.ENGELKEMEIR, Phys. Rev. 88 (1952) 1155 (Beta-transition probabilities) L.WISH, Nucleonics 14 (1956) 105 (Half-life) S.A.BARANOV, K.N.SHLYAGIN, At. Energ. 1 (1956) 52 (Beta-transition probabilities) D.COHEN, J.C.SULLIVAN, A.J.ZIELEN, J. Inorg. Nucl. Chem. 11 (1959) 159 (Half-life) R.D.CONNOR, I.L.FAIRWEATHER, Proc. Phys. Soc. (London) 74 (1959) 161 (Beta–transition probabilities, half-life) G.T.EWAN, J.S.GEIGER, R.L.GRAHAM, D.R.MCKENZIE, Phys. Rev. 116 (1959) 950 (Gamma-ray energies) B.P.K.MAIER, Z. Phys. 184 (1965) 143 (Gamma-ray energies) M.QAIM, Nucl. Phys. 84 (1966) 411 (Half-life) C.B.BIGHAM, Can. J. Phys. 47 (1969) 1317 (Half-life) F.T.PORTER, Phys. Rev. C5 (1972) 1738 (Gamma-ray energies) K.S.KRANE, C.E.OLSEN, W.A.STEYERT, Phys. Rev. C5 (1972) 1671 (Gamma transition multipolarities) I.AHMAD, M.WAHLGREN, Nucl. Instrum. Methods 99 (1972) 333 (Gamma-ray absolute emission probabilities) R.L.HEATH, Report ANCR-1000-2 (1974) (Gamma-ray energies and absolute emission probabilities) L.N.YUROVA, A.V.BUSHUEV, V.I.PETROV, At. Energ. 436 (1974) 51 (Gamma-ray absolute emission probabilities) D.I.STAROZHUKOV, YU.S.POPOV, P.A.PRIVALOVA, At. Energ. 42 (1977) 319 (Gamma-ray absolute emission probabilities)

V.K.MOZHAEV, V.A.DULIN, Y.A.KAZANSKII, At. Energ. 47 (1979) 55 (Gamma-ray absolute emission probabilities) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251 (Gamma-ray energies) I.AHMAD, Nucl. Instrum. Methods 193 (1982) 9 (Gamma-ray energies and absolute emission probabilities) R.VANINBROUKX, G.BORTELS, B.DENECKE, Int. J. Appl. Radiat. Isotop. 35 (1984) 1081 (Gamma-ray emission probabilities absolute) Y.CHANG, Z.CHENG, C.YAN, G.SHI, D.QIAO, Radiat. Eff. 94 (1986) 97 (Gamma-ray absolute emission probabilities) A.Abzouzi, M.S.Antony, V.B.Ndocko Ndongue, D.Oster, J. Radioanal. Nucl. Chem. 145 (1990) 361 (Half-life) E.SIMECKOVA, P.CIZEK, M.FINGER, J.JOHN, P.MALINSKY, V.N.PAVLOV, Hyperfine Interactions 59 (1990) 185 (Gamma transition multipolarities) Y.SHIOKAWA, M.YAGI, J. Radioanal. Nucl. Chem. 149 (1991) 51 (Gamma transition multipolarities, ICC) YU.S.POPOV, D.KH.SRUROV, I.B.MAKAROV, E.A.ERIN, G.A.TIMOFEEV, Radiokhimiya 33 (1991) 3; Sov. J. Radiochemistry 33 (1991) 1 (Gamma-ray absolute emission probabilities) M.A.HAMMED, I.M.LOWLES, T.D.MCMAHON, Nucl. Instrum. Methods Phys. Res. A312 (1992) 308 (Gamma-ray absolute emission probabilities) R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996) (LX-energies, gamma-ray relative intensities, gamma-ray multipolarities) S.A.WOODS, D.H.WOODS, M.J.WOODS, S.M.JEROME, M.BURKE, N.E.BOWLES, S.E.M.LUCAS, C.PATON WALSH, Nucl. Instrum. Methods Phys. Res. A369 (1996) 472 (Gamma-ray absolute emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 98 (2003) 665 (Gamma-ray and level energies, gamma-ray multipolarities, decay scheme)

$T_{1/2}$:	87.74	(3)	У
$Q^{'}_{lpha}$:	5593.20	(19)	keV
α	:	100		%
SF	:	1.85	(5)	$\times 10^{-7}~\%$

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\begin{array}{c} \alpha_{0,14} \\ \alpha_{0,13} \\ \alpha_{0,12} \\ \alpha_{0,11} \\ \alpha_{0,10} \\ \alpha_{0,9} \\ \alpha_{0,8} \\ \alpha_{0,7} \\ \alpha_{0,6} \end{array}$	$\begin{array}{c} & 4432.1 \ (2) \\ & 4472.1 \ (2) \\ & 4492.5 \ (2) \\ & 4526.3 \ (2) \\ & 4567.4 \ (2) \\ & 4587.9 \ (2) \\ & 4661.7 \ (2) \\ & 4664.1 \ (2) \\ & 4702.8 \ (2) \end{array}$	$\begin{array}{c} \sim 0.0000012 \\ 0.00000117 (7) \\ \sim 0.0000002 \\ 0.000000150 (16) \\ 0.000000130 (5) \\ 0.00000081 \\ 0.00000075 (22) \\ 0.0001 \end{array}$
$lpha_{0,5} \ lpha_{0,4} \ lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 4726.0 \ (2) \\ 5010.4 \ (2) \\ 5208.0 \ (2) \\ 5358.1 \ (2) \\ 5456.3 \ (2) \\ 5499.03 \ (20) \end{array}$	$\begin{array}{c} 0.00000821 \ (16) \\ 0.00000680 \ (23) \\ 0.00292 \ (4) \\ 0.104 \ (3) \\ 28.85 \ (6) \\ 71.04 \ (6) \end{array}$

		Energy keV	Electrons per 100 disint.
e_{AL}	(U)	5.9 - 21.6	10.6(4)
e _{AK}	(U) KLL KLX KXY	71.78 - 80.95 88.15 - 98.43 104.51 - 115.59	0.0000110 (15) } } }
$ec_{1,0}$ L $ec_{1,0}$ M $ec_{1,0}$ N $ec_{2,1}$ L $ec_{2,1}$ M	(U) (U) (U) (U) (U)	21.74 - 26.33 37.95 - 39.95 42.057 - 43.119 78.095 - 82.685 94.305 - 96.300	$\begin{array}{c} 20.6 \ (6) \\ 5.7 \ (12) \\ 1.544 \ (39) \\ 0.0718 \ (17) \\ 0.01992 \ (49) \end{array}$

4.1 X-Ray Emissions

		Energy keV I		Photons per 100 disint.		
XL	(U)	11.619 - 20.714		10.63(8)		
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(U) (U)	$94.666 \\98.44$		$0.000106 (3) \\ 0.000169 (5)$	$K\alpha$	
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	$110.421 \\111.298 \\111.964$	} } }	0.0000609(22)	$\mathrm{K}\beta_1'$	
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(U) (U) (U)	$114.407 \\ 115.012 \\ 115.377$	} } }	0.0000208 (6)	$\mathrm{K}\beta_2'$	

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{8,6}(U)$	41.82 (11)	0.0000026 (14)	[E2]	863 (18)	0.000000030 (16)
$\gamma_{1,0}(U)$	43.498(1)	28.3(8)	$\mathrm{E2}$	713 (15)	0.0397(8)
$\gamma_{11,9}(U)$	62.70(1)	0.00000016(4)	$\mathrm{E1}$	0.426(9)	0.00000011(3)
$\gamma_{2,1}(U)$	99.852(3)	0.1060(23)	E2	13.42(27)	0.00735 (8)
$\gamma_{11,7}(U)$	140.15(2)	0.00000021 (7)	M1+63%E2	5.1 (15)	0.000000035 (7)
$\gamma_{3,2}(U)$	152.719(2)	0.00292~(4)	E2	2.14(4)	0.000930 (7)
$\gamma_{13,8}(U)$	192.91~(7)	0.0000000012 (4)	[E2]	0.856(17)	0.0000000066 (20)
$\gamma_{4,3}(U)$	200.97(3)	0.00000680~(23)	E2	0.734(15)	0.00000392(13)
$\gamma_{11,5}(U)$	203.12(3)	0.00000021 (5)	$M1{+}66\%E2$	1.5(3)	0.000000085 (15)
$\gamma_{14,8}(U)$	233.6(2)	0.00000041	(E0+E2)		
$\gamma_{13,6}(U)$	234.6(2)	0.0000001	$\mathrm{E0}$		
$\gamma_{14,7}(U)$	235.9(3)	0.00000010 (5)	[E1]	0.0673(14)	0.00000009 (5)
$\gamma_{13,5}(U)$	258.227 (3)	0.00000074(12)	(E1)	0.0548(11)	0.00000070(11)
$\gamma_{14,5}(U)$	299.1(2)	0.00000046 (3)	[E1]	0.0395(8)	0.00000044(3)
$\gamma_{7,2}(U)$	705.9(1)	0.000000050 (13)	[E1]	0.00698(14)	0.00000050 (13)
$\gamma_{8,2}(U)$	708.3(2)	0.0000050 (3)	[E2]	0.0219(5)	0.0000049(3)
$\gamma_{12,3}(U)$	727.8(2)	0.000000028 (3)	(E2)	0.0207(4)	0.000000027 (3)
$\gamma_{5,1}(U)$	742.813(5)	0.00000513(13)	E1	0.00636(13)	0.00000510(13)
$\gamma_{6,1}(U)$	766.38(2)	0.0000223(5)	E2	0.0187(4)	0.0000219(5)
$\gamma_{9,2}(U)$	783.4(1)	0.00000022 (3)	[E2]	0.0179(4)	0.00000022 (3)
$\gamma_{5,0}(U)$	786.27(3)	0.00000322(9)	E1	0.00573(12)	0.00000320(9)
$\gamma_{10,2}(U)$	804.4(3)	0.00000017	E0+E2	0.57	0.00000011(5)
$\gamma_{7,1}(U)$	805.80(5)	0.00000056 (15)	[E1]	0.00549(11)	0.00000056 (15)
$\gamma_{8,1}(U)$	808.2(1)	0.0000041	E0 + 17% E2	4.3	0.00000767(25)
$\gamma_{6,0}(U)$	810.0(5)	0.000077	$\mathrm{E0}$		
$\gamma_{8,0}(U)$	851.7(1)	0.00000129(4)	[E2]	0.01513(30)	0.00000127 (4)
$\gamma_{12,2}(U)$	880.5 (1)	≥0.00000015	(E0+E2)	、 /	≥ 0.00000015 (4)

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathrm{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{9,1}(U)$	883.24 (4)	0.00000073 (4)	E2	0.01409(28)	0.00000072 (4)
$\gamma_{10,1}(U)$	904.37(15)	0.00000062(11)	[E2]	0.01346(27)	0.000000061 (11)
$\gamma_{9,0}(U)$	926.72(1)	0.000000565(25)	(E2)	0.01284(26)	0.00000558 (25)
$\gamma_{14,2}(U)$	941.94(10)	0.000000472(23)	[E2]	0.01244(25)	0.00000466 (23)
$\gamma_{11,1}(U)$	946.00(3)	0.000000092(13)	(E1)	0.00412(8)	0.00000092(13)
$\gamma_{12,1}(U)$	980.3(1)	0.000000042	(E2)	0.01152(23)	0.000000042
$\gamma_{13,1}(U)$	1001.03(3)	0.00000099(4)	E2	0.01107(22)	0.00000098 (4)
$\gamma_{14,1}(U)$	1041.7(2)	0.0000002	(E0 + E2)		0.000000197(16)
$\gamma_{14,0}(U)$	1085.4(2)	0.00000078 (9)	(E2)	0.00950 (19)	0.000000077 (9)

5 References

A.H.JAFFEY, A.HIRSCH, Report ANL-4286, Argonne National Laboratory (1949) (Spontaneous fission half-life) A.H.JAFFEY, J.LERNER, Report ANL-4411, Argonne National Laboratory (1950) (Half-life) A.H.JAFFEY, L.B.MAGNUSSON, The Transuranium Elements Paper No. 14.2. National Nuclear Energy Series, Plutonium Project Record, Div. IV. 14B (1951) (Half-life) A.H.JAFFEY, Paper No. 2.2. National Nuclear Energy Series, Plutonium Project Record, Div. IV. (1951) (Half-life) G.T.SEABORG, R.A.JAMES, A.GIORSO, The Transuranium Elements Paper No. 14.2. National Nuclear Energy Series, Plutonium Project Record, Div. IV. 14B.Part II (1951) 978 (Half-life) E.SEGRÈ, Phys. Rev. 86 (1952) 21 (Spontaneous fission half-life) K.W.JONES, R.A.DOUGLAS, M.T.MCELLISTREM, H.T.RICHARDS, Phys. Rev. 94 (1954) 947 (Half-life) F.Asaro, I.Perlman, Phys. Rev. 94 (1954) 381 (Alpha-particle energies and emission probabilities) E.L.CHURCH, A.W.SUNYAR, Phys. Rev. 98 (1955) 1186A (Gamma-ray energies) J.O.NEWTON, B.ROSE, J.MILSTED, Phil. Mag. 1 (1956) 981 (Gamma-ray energies) D.C.HOFFMAN, G.P.FORD, F.O.LAWRENCE, J. Inorg. Nucl. Chem. 5 (1957) 6 (Half-life) L.N.KONDRATEV, G.I.NOVIKOVA, V.B.DEDOV, L.L.GOLDIN, IZV. Akad. Nauk SSSR, Ser. Fiz. 21 (1957) 907. (Alpha-particle energies and emission probabilities) V.A.DRUIN, V.P.PERELYGIN, G.I.KHLEBNIKOV, Sov. Phys. - JETP 13 (1961) 913 (Spontaneous fission half-life) C.F.LEANG, Compt. Rend. 255 (1962) 3155 (Alpha-particle energies and emission probabilities) S.BJORNHOLM, C.M.LEDERER, F.ASARO, I.PERLMAN, Phys. Rev. 130 (1963) 2000 (Alpha transition probabilities) J.W.HALLEY, D.ENGELKEMEIR, Phys. Rev. 134 (1964) A24 (LX-ray emission probabilities) F.LES, Acta. Phys. Polon. 26 (1964) 951 (E0+E2 transition probabilities) J.F.EICHELBERGER, G.R.GROVE, L.V.JONES, Report MLM-1238, Mound Laboratory (1965) (Half-life) K.C.JORDAN, Report MLM-1443, Mound Laboratory (1967) (Half-life)

C.M.LEDERER, Priv. Comm. (1964), cited in C.M.Lederer et al., Table of Isotopes, 6th Ed., John Wiley and Sons Inc., N.Y. (1967) (E0+E2 transition probabilities) J.Byrne, W.Gelletly, M.A.S.Ross, F.Shaikh, Phys. Rev. 170 (1968) 80 (LX-ray emission probabilities) L.SALGUEIRO, ET AL., Compt. Rend. Acad. Sci. (Paris) Ser. B 267 (1968) 1293 (LX-ray emission probabilities) K.L.SWINTH, Nucleonics in Aerospace, Ed. P.Polyshuk, N.Y., Plenum Press (1968) 279 (LX-ray emission probabilities) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Nucl. Phys. 7 (1968) 442 (Alpha-particle energies and emission probabilities) S.R.Amtey, J.H.Hamilton, A.V.Ramayya, Nucl. Phys. A126 (1969) 201 (Conversion electron relative intensities) D.BENSON, Priv. Comm. (1969) (Half-life) C.M.LEDERER, F.ASARO, I.PERLMAN, Report UCRL-18667, Univ. California (1969) 3 (Gamma-ray energies and emission probabilities) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Z.S.GLADKIKH, Yad. Fiz. 12 (1970) 1105 (Alpha-particle energies and emission probabilities) J.E.CLINE, Report IN-1448 (1971) (Gamma-ray energies and emission probabilities) K.L.SWINTH, IEEE Trans. Nucl. Sci. 18 (1971) 125 (LX-ray emission probabilities) J.C.SOARES, J.P.RIBEIRO, A.GONCALVES, F.B.GIL, J.C.FERREIRA, Compt. Rend. Acad. Sci. (Paris) Ser. B 273 (1971) 985 (Alpha-particle energies and emission probabilities) A.I.MAKARENKO, L.A.OSTRETSOV, N.V.FORAFONTOV, Izv. Akad. Nauk SSSR, Ser. Fiz. 35 (1971) 2335 (Gamma-ray energies and emission probabilities) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha-particle energies) R.GUNNINK, R.J.MORROW, Report UCRL-51087, Univ. California (1971) (Gamma-ray energies and emission probabilities) J.D.HASTINGS, W.W.STROHM, J. Inorg. Nucl. Chem. 34 (1972) 25 (Spontaneous fission half-life) M.SCHMORAK, C.E.BEMIS JR., M J.ZENDER, N.B.GOVE, P.F.DITTNER, Nucl. Phys. A178 (1972) 410 (Gamma-ray energies) W.W.Strohm, K.C.Jordan, Nucl. Soc. 18 (1974) 185 (Half-life) R.R.GAY, R.SHER, Bull. Am. Phys. Soc. 20 (1975) 160 (Spontaneous fission half-life) H.UMEZAWA, T.SUZUKI, S.ICHIKAWA, J. Nucl. Sci. Technol. (Tokyo) 13 (1976) 327 (Gamma-ray and emission probabilities) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (Gamma-ray energies and emission probabilities) D.G.VASILIK, R.W.MARTIN, Nucl. Instrum. Methods 135 (1976) 405 (LX-ray emission probabilities) V.G.POLYUKHOV, G.A.TIMOFEEV, P.A.PRIVALOVA, V.Y.GABESKIRIYA, A.P.CHETVERIKOV, At. Energ. 40 (1976) 61(Half-life) C.E.BEMIS JR., L.TUBBS, Report ORNL-5297, Oak Ridge National Laboratory (1977) 93 (LX-ray emission probabilities) H.DIAMOND, W.C.BENTLEY, A.H.JAFFEY, K.F.FLYNN, Phys. Rev. C15 (1977) 1034 (Half-life) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 313 (Auger electron energies) F.RÖSEL, H.M.FRIES, K.ALDER, H.C.PAULI, At. Data Nucl. Data Tables 21 (1978) 92 (Theoretical ICC) R.VANINBROUKX, G GROSSE, W.ZEHNER, Report CBNM/RN/45/79 (1979) (Gamma-ray emission probabilities)
A.CESANA, G.SANDRELLI, V.SANGIUST, M.TERRANI, Energ. Nucl. (Milan) 26 (1979) 526 (Gamma-ray energies and emission probabilities) V.D.SEVASTYANOV, V.P.JARINA, Voprosi Atomnoi Nauki i Tekhniki, seriya Jadernie Konstanti. 5(44) (1981) 21 (Half-life) S.K.Aggarwal, A.V.Jadhav, S.A.Chitambar, K.Raghuraman, S.N.Acharya, A.R.Parab, C.K.Sivarama-KRISHNAN, H.C.JAIN, Radiochem. Radioanal. Lett. 46 (1981) 69 (Half-life) G.BARREAU, H.G.BORNER, T.VON EGIDY, R.W.HOFF, Z. Phys. A308 (1982) 209 (KX-ray energies) I.AHMAD, J.HINES, J.E.GINDLER, Phys. Rev. C27 (1983) 2239 (KX-ray energies) P.DRYAK, YU.S.EGOROV, V.G.NEDOVESOV, I.PLKH, G.E.SHUKIN, Proc. 34th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Alma-Ata (1984) 540 (LX-ray emission probabilities) V.V.OVECHKIN, V.M.CHESALIN, I.A.SHKABURA, IZV. Akad. Nauk SSSR, Ser. Fiz. 48 (1984) 1029 (Gamma-ray energies and emission probabilities) R.G.HELMER, C.W.REICH, Int. J. Appl. Radiat. Isotop. 35 (1984) 1067 (Gamma-ray energies and emission probabilities) G.BORTELS, B.DENECKE, R.VALNINBROUKX, Nucl. Instrum. Methods 223 (1984) 329 (Alpha-particle, gamma-ray and LX-ray energies and emission probabilities) L.M.BAK, P.DRYAK, V.G.NEDOVESOV, S.A.SIDORENKO, G.E.SHUKIN, K.P.YAKOVLEV, Proc. 34th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Alma-Ata (1984) 541 (LX-ray emission probabilities) I.AHMAD, Nucl. Instrum. Methods 223 (1984) 319 (Alpha-particle energies and emission probabilities) P.A.BURNS, P.N.JOHNSTON, J.R.MORONEY, Priv. Comm. (1984) (Alpha-particle energies and emission probabilities) G.BORTELS, P.COLLAERS, Appl. Radiat. Isot. 38 (1987) 831 (Alpha-particle energies and emission probabilities) YU.A.SELITSKY, V.B.FUNSHTEIN, V.A.YAKOVLEV, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Baku (1988) 131 (Spontaneous fission half-life) YU.S.POPOV, I.B.MAKAROV, D.KH.SRUROV, E.A.ERIN, Sov. Radiochem. 32 (1990) 425 (MX-ray emission probability) P.N.JOHNSTON, J.R.MORONEY, P.A.BURNS, Appl. Radiat. Isot. 42 (1991) 245 (Alpha-particle energies) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-particle energies) M.-C.LÉPY, B.DUCHEMIN, J.MOREL, Nucl. Instrum. Methods Phys. Res. A353 (1994) 10 (LX-ray energies and emission probabilities) D.T.BARAN, Appl. Radiat. Isot. 45 (1994) 1177 (Gamma-ray emission probabilities) P.N.JOHNSTON, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A361 (1995) 229 (LX-ray energies and emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.YANG, J.NI, Nucl. Instrum. Methods Phys. Res. A413 (1998) 239 (Alpha-particle energies and emission probabilities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilities) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray energies) Y.NIR-EL, Radiochim. Acta 88 (2000) 83 (Gamma-ray energies) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (LX-ray and Auger electron emission probabilities) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (Spontaneous fission half-life) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q})

E.BROWNE, J.K.TULI, Nucl. Data Sheets 108 (2007) 681 (Level energies and data from 234Pa and 234Np decays) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	24100	(11)	У
$Q^{'}_{lpha}$:	5244.51	(21)	keV
α	:	100		%
SF	:	3.0	(8)	$\times 10^{-10}~\%$

2 α Emissions

	Energy	Probability
	keV	× 100
$\alpha_{0.53}$	4059.1 (3)	0.00000021(5)
$\alpha_{0.52}$	4116.78 (25)	0.000000093 (9)
$\alpha_{0.51}$	4180.6 (3)	0.0000020(3)
$\alpha_{0,50}$	4186.53 (27)	0.000000077 (7)
$\alpha_{0,49}$	4202.4 (3)	0.00000041(4)
$\alpha_{0,48}$	4204.42 (21)	0.00000061 (15)
$\alpha_{0,47}$	4279.70(26)	0.000000199(12)
$\alpha_{0,46}$	4305.79(28)	0.00000098 (13)
$\alpha_{0,45}$	4325.5(10)	~ 0.00000042
$\alpha_{0,44}$	4326.92(21)	0.000000228 (12)
$\alpha_{0,43}$	4349.15(21)	0.0000030 (3)
$\alpha_{0,42}$	4364.42(22)	0.00000084 (14)
$\alpha_{0,41}$	4390.20(21)	0.00000101 (11)
$\alpha_{0,40}$	4392.08(28)	0.000000247 (19)
$\alpha_{0,39}$	4400.0(4)	0.0000103~(12)
$\alpha_{0,38}$	4400.26(21)	0.000027 (3)
$\alpha_{0,37}$	4408.36(22)	$0.000000103\ (17)$
$\alpha_{0,36}$	4419.14(26)	0.0000034 (4)
$\alpha_{0,35}$	4448.46(21)	0.00000213 (9)
$\alpha_{0,34}$	4464.68(21)	0.0000114 (3)
$\alpha_{0,33}$	4467.37(21)	$0.00000707 \ (13)$
$\alpha_{0,32}$	4496.90(21)	< 0.00000034
$\alpha_{0,31}$	4503.24(21)	0.00000631 (11)
$\alpha_{0,30}$	4508.72(21)	0.0000264~(6)
$\alpha_{0,29}$	4529.52(22)	0.00000322 (21)
$\alpha_{0,28}$	4534.08(22)	0.00000284(7)
$\alpha_{0,27}$	4558.75(22)	0.000012(4)
$\alpha_{0,26}$	4632.35(21)	0.00086(3)
$\alpha_{0,25}$	4655.27(27)	0.000033(7)
$\alpha_{0,24}$	4690.29 (21)	0.00056(5)
$\alpha_{0,23}$	4718.39 (21)	0.0000400(11)
$\alpha_{0,22}$	4737.05 (21)	0.00570(5)
$\alpha_{0,21}$	4748.81 (21)	0.00075(11)
$\alpha_{0,20}$	4770.01 (21)	0.00125(3)
$\alpha_{0,19}$	4795.73 (21)	0.000944(17)
$\alpha_{0,18}$	4805.33 (22)	0.000017(4)
$\alpha_{0,17}$	4823.80 (22)	≈ 0.000022
$\alpha_{0,16}$	4829.38 (21)	0.00354(7)
$\alpha_{0,15}$	4866.91 (21)	0.0018(5)
$\alpha_{0,14}$	4870.38(21)	0.0007 (3)

	$\frac{\rm Energy}{\rm keV}$	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,13}$	4911.69 (21)	0.0030(16)
$\alpha_{0,12}$	4935.00 (21)	0.0050(7)
$\alpha_{0,11}$	4962.83(21)	0.007(1)
$\alpha_{0,10}$	4988.13 (21)	0.0034(10)
$\alpha_{0,8}$	5008.70(21)	0.0182(27)
$\alpha_{0.7}$	5029.51(21)	0.013(4)
$\alpha_{0.6}$	5055.34 (21)	0.0375(12)
$\alpha_{0,5}$	5076.28 (21)	0.052(8)
$\alpha_{0.4}$	5105.81(21)	11.87(3)
$\alpha_{0,3}$	5111.21 (21)	< 0.02
$\alpha_{0,2}$	5143.82 (21)	17.14(4)
$\alpha_{0,1}$	5156.59(14)	70.79 (10)
$\alpha_{0,0}$	5156.65(21)	~0.03

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(U)	5.9 - 21.6	4.66 (19)
e_{AK}	(U) KLL KLX KXY	71.78 - 80.95 88.15 - 98.34 104.42 - 115.40	0.00045 (6) } } }
ес _{2.1 М}	(U)	7.427 - 9.425	15.4(6)
$ec_{5,4 L}$	(U)	8.28 - 12.87	0.0259(11)
$ec_{4,2}$ L	(U)	16.903 - 21.493	2.61 (16)
$ec_{3,0}$ L	(U)	24.45 - 29.04	$0.0286\ (16)$
$ec_{4,1 L}$	(U)	29.866 - 34.456	$6.09\ (15)$
$ec_{4,2}$ M	(U)	33.113 - 35.111	0.70~(4)
$ec_{6,3 L}$	(U)	35.07 - 39.66	$0.0276\ (13)$
$ec_{4,1}$ M	(U)	46.076 - 48.074	1.68(4)
$ec_{5,2}$ L	(U)	46.938 - 51.528	0.021~(6)
$ec_{8,4}$ L	(U)	77.02 - 81.61	$0.0139\ (12)$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.	
XL	(U)	11.619 - 20.714	4.66(5)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(U) (U)	$\begin{array}{c} 94.666\\98.44\end{array}$	$\begin{array}{c} 0.00418 \ (4) \\ 0.00661 \ (9) \end{array}$	} Κα }

		Energy keV		Photons per 100 disint.	
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	110.421 111.298 111.964	} } }	0.00239 (3)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(U) (U) (U)	$114.407 \\115.012 \\115.377$	} } }	0.00131 (6)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	${ m P}_{\gamma+{ m ce}} \ imes 100$	Multipolarity	$lpha_{ m T}$	$\mathrm{P}_{\gamma} \times 100$
				10	
$\gamma_{1,0}(U)$	0.0765(4)	100	E3	1×10^{10}	~0.00000001
$\gamma_{2,1}(U)$	12.975(10)	20.7(8)	M1+0.19(2)%E2	607(17)	0.0341(9)
$\gamma_{-1,1}(U)$	14.22(3)	>0.006	()		>0.0055 (4)
$\gamma_{5,4}(\mathrm{U})$	30.04(2)	0.0346(14)	(M1)	157(3)	0.000219 (8)
$\gamma_{4,2}(\mathrm{U})$	38.661(2)	3.56(21)	M1+22.2(16)%E2	$339\ (19)$	0.01047(21)
$\gamma_{-1,2}(U)$	40.41(5)	>0.0002	<i>,</i> ,		>0.000163 (16)
$\gamma_{10,7}(U)$	41.93(5)	0.0097(5)	(M1)	58.6(12)	0.000163(8)
$\gamma_{3,0}(U)$	46.21(5)	0.0389(21)	M1+1.8(5)%E2	52.6(27)	0.000726 (13)
$\gamma_{11,8}(U)$	46.68(3)	0.0044~(13)	M1 + 9(5)% E2	86(24)	0.000050~(6)
$\gamma_{7,5}(U)$	47.60(3)	0.00259 (11)	(M1)	40.4(8)	0.0000625~(25)
$\gamma_{4,1}(\mathrm{U})$	51.624(1)	8.38(18)	$\mathrm{E2}$	310(6)	0.02694~(26)
$\gamma_{12,10}(U)$	54.039(8)	0.00560 (14)	M1	27.8(6)	0.0001943~(28)
$\gamma_{6,3}(\mathrm{U})$	56.828(3)	0.0382~(18)	M1 + 5.0(8)% E2	$32.6\ (15)$	$0.001136\ (15)$
$\gamma_{14,12}(U)$	65.708(30)	0.00095~(29)	M1 + 4(6)% E2	19(6)	0.0000473~(25)
$\gamma_{9,6}(U)$	67.674(12)	0.00283~(12)	M1 + 3.6(11)% E2	16.9(5)	0.000158~(5)
$\gamma_{5,2}(U)$	68.696~(6)	0.029~(8)	E2	78.6(16)	0.00036 (10)
$\gamma_{8,5}(U)$	68.73(2)	0.0036~(17)	(M1+20%E2)	27	0.00013~(6)
$\gamma_{-1,3}(U)$	74.96(10)	>0.00004			>0.000038~(6)
$\gamma_{7,4}(U)$	77.592(14)	0.0068 (38)	M1(+20(32)%E2)	17(10)	0.000380~(6)
$\gamma_{13,9}(U)$	78.43(2)	0.0026 (15)	M1(+20(32)%E2)	16(10)	0.0001533 (28)
$\gamma_{17,13}(U)$	89.39(6)	$\sim \! 0.000015$	[M1]	6.40(13)	~ 0.000002
$\gamma_{10,5}(U)$	89.64(3)	0.00040(22)	(M1+E2)	14(8)	0.000027~(2)
$\gamma_{12,7}(U)$	96.14(3)	0.00064(3)	[E2]	16.0(3)	0.0000379(19)
$\gamma_{15,11}(U)$	97.6(3)	0.0007(5)	M1+20(19)%E2	7.0(19)	0.00009(6)
$\gamma_{8,4}(U)$	98.78(2)	0.0204(17)	E2	14.1(3)	0.00135(11)
$\gamma_{6,0}(U)$	103.06(3)	0.00273(9)	$\mathrm{E2}$	11.58(23)	0.000217(6)
$\gamma_{11,5}(U)$	115.38(5)	0.00362(40)	$\mathrm{E2}$	6.87(14)	0.00046(5)
$\gamma_{7,2}(U)$	116.26(2)	0.0077(15)	M1+24(36)%E2	12.2(26)	0.000581(19)
$\gamma_{10.4}(U)$	119.70(3)	0.00021(9)	(M1+E2)	9(4)	0.000021(3)
$\gamma_{14.10}(U)$	119.76(2)	0.000063(14)	[E2]	5.99(12)	0.000009(2)
$\gamma_{12.6}(U)$	122.35(12)	0.00000125(17)	(E1)	0.312(6)	0.00000095(13)
$\gamma_{37,29}(U)$	123.228 (5)	0.000000021 (5)	(M1)	12.19(24)	0.0000000016 (4)
$\gamma_{21.14}(U)$	123.62(5)	0.000310(13)	[M1]	12.08(24)	0.0000237 (9)
$\gamma_{9,3}(U)$	124.51(3)	0.000413 (13)	E2	5.06(10)	0.0000681 (19)
$\gamma_{10,3}(U)$	125.21 (10)	0.0000730(21)	[E1]	0.296(6)	0.0000563 (16)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	Energy keV	${ m P}_{\gamma+ce} \ imes 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{7.0}(U)$	129.296 (1)	0.00805(6)	E1	0.275(6)	0.00631(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{19,12}(U)$	141.657 (20)	0.000296(11)	[M1]	8.22(16)	0.0000321(10)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{12.5}(U)$	143.35(20)	0.000110(46)	[M1+E2]	5.3(26)	0.0000174 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{15.8}(U)$	144.201 (3)	0.00106(3)	E2	2.72(5)	0.000285(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{13.6}(U)$	146.094(6)	0.000432(12)	E2	2.57(5)	0.000121(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{10,2}(U)$	158.1(3)	0.0000029(3)	[E2]	1.86(4)	0.00000101 (10)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{18,11}(U)$	160.19(5)	0.0000172(36)	[E2]	1.77(4)	0.0000062(13)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{16,10}(\mathrm{U})$	161.450(15)	0.000814(42)	(M1)	5.67(11)	0.000122(6)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{17,9}(U)$	167.81(5)	0.0000074(20)	[E2]	1.47(3)	0.0000030 (8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{10,0}(U)$	171.393~(6)	$0.0001255 \ (34)$	[E1]	0.141(3)	0.000110 (3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{42,28}(U)$	172.560(8)	$\sim \! 0.00000017$	M1	4.70(9)	~ 0.00000003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{12,4}(U)$	173.70(5)	0.0000071 (18)	[E2]	1.28(3)	0.0000031 (8)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{12,3}(U)$	179.220(12)	0.0000739~(22)	[E1]	0.127~(3)	0.0000656 (19)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{-1,4}(U)$	184.55~(5)	0.000010 (3)	[M1]	3.87~(8)	0.0000021~(6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{14,6}(U)$	188.23(10)	$0.0000123\ (12)$	[E1]	0.1140(23)	0.0000110(11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{21,12}(U)$	189.36(1)	0.00027~(11)	[M1+E2]	2.3(14)	0.0000820 (14)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{-1,5}(U)$	$193.13\ (12)$	>0.000009			>0.0000090 (9)
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	$\gamma_{19,10}(\mathrm{U})$	$195.679\ (8)$	$0.000456\ (11)$	M1	3.30(7)	0.000106~(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{-1,6}(U)$	196.87(5)	> 0.000004			>0.0000037~(4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{16,7}(U)$	203.550(5)	0.002224 (49)	M1	2.95~(6)	0.000563~(9)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma_{21,11}(U)$	218.0(5)	>0.000002			>0.0000012 (10)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{12,0}(U)$	225.42(4)	0.0000161 (4)	[E1]	0.0747~(15)	0.0000150 (4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{19,7}(U)$	237.77(10)	0.0000422 (18)	[M1]	1.91(4)	0.0000145~(6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{26,14}(U)$	242.08(3)	0.0000209(14)	[M1]	1.82(4)	0.0000074(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{21,10}(U)$	243.38(3)	0.000053(18)	[M1+E2]	1.1(7)	0.0000254(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{14,3}(\mathrm{U})$	244.92(5)	0.0000054(5)	F - - - 1	0.0618(12)	0.000051(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{24,12}(U)$	248.95(5)	0.0000188(16)	[M1]	1.68(3)	0.000070(6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{22,10}(U)$	255.384(15)	0.000204(6)	[M1]	1.57(3)	0.0000795(20)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{20,7}(U)$	263.95(3)	0.0000629(26)	M1	1.43(3)	0.0000259(10)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{30,20}(\mathrm{U})$	265.7(3)	0.0000017(4)	[E1]	0.0514(10)	0.000016(4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{16,4}(U)$	281.2(2)	0.0000036(12)	[M1+E2]	0.7(5)	0.000021(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{19,5}(\mathrm{U})$	285.3(2)	0.0000032(12)	[M1+E2]	0.7(5)	0.0000019(4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{22,7}(0)$	297.46(3)	0.000100(3)		1.025(21)	0.0000492(13)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{24,10}(0)$	302.87(5)	0.0000097(8)		0.976(20)	0.000049(4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{26,12}(0)$	307.85(5)	0.0000101(8)	[IVL1] [T21]	0.933(19)	0.0000052(4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{21,6}(U)$	311.78(4) 216.41(2)	0.0000200(8)	[E1] M1	0.0301(7)	0.0000257(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{23,7}(U)$	310.41 (3) 210.68 (10)	0.0000248 (10) 0.0000072 (10)	MI	0.803(17)	0.0000135(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{16,2}(U)$	319.08(10)	0.0000075(19)	[M1+D2]	0.30(33) 0.0227(7)	0.0000049(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{19,3}(U)$	320.802(20)	0.0000558 (12) 0.000060 (25)	[£1] M1	0.0337(7)	0.0000540(12) 0.0000520(12)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{24,8}(U)$	323.04(3) 332.845(5)	0.0000900(23)		0.011(10) 0.0313(6)	0.0000550(15)
$\gamma_{26,11}(0)$ 330.113 (12) 0.000192 (3) $M1$ 0.733 (13) 0.0001111 (20) $\gamma_{20,4}(0)$ 341.506 (10) 0.0001106 (24) $M1$ 0.701 (14) 0.0000650 (13) $\gamma_{24,7}(0)$ 345.00 (2) <0.000084 $(M1)$ 0.682 (14) <0.00005 $\gamma_{22,5}(0)$ 345.013 (4) 0.000922 (15) $M1$ 0.682 (14) 0.000548 (8) $\gamma_{-1,7}(0)$ 350.8 (3) >0.000002 >0.0000018 (4) $\gamma_{19,2}(0)$ 354.0 (5) 0.0000085 (33) $[E2]$ 0.1150 (23) 0.0000076 (30) $\gamma_{26,10}(0)$ 361.89 (5) 0.0000187 (11) $[M1]$ 0.598 (12) 0.0000117 (7)	$\gamma_{16,0}(U)$	332.043 (3) 336.113 (19)	0.000503(8)	151 M1	0.0313(0) 0.733(15)	0.000400(0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{26,11}(0)$	330.113(12) 341.506(10)	0.000192(3)	M1 M1	0.733(13) 0.701(14)	0.0001111(20) 0.0000650(13)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{20,4}(U)$	345.00(10)	< 0.0001100 (24)	(M1)	0.701(14) 0.689(14)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{24,7}(\mathbf{U})$	$345\ 013\ (4)$	(0.000004)	M1	0.682(14)	0.000000
$\gamma_{19,2}(U)$ 354.0 (5) $\gamma_{00000085}$ (33)[E2] 0.1150 (23) 0.0000076 (30) $\gamma_{26,10}(U)$ 361.89 (5) 0.0000187 (11)[M1] 0.598 (12) 0.0000117 (7)	$\gamma_{1,7}(U)$	350.8 (3)	>0.000922 (10)	1/11	0.002 (14)	>0.000040(0)
$\gamma_{26.10}(U) = 361.89(5) = 0.0000187(11) = [M1] = 0.598(12) = 0.0000117(7)$	$\gamma_{10.2}(U)$	354.0(5)	0.0000085(33)	$[\mathbf{E}2]$	0.1150(23)	0.0000076(30)
	$\gamma_{26.10}(U)$	361.89(5)	0.0000187(11)	[M1]	0.598(12)	0.0000117(7)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{19,0}(\mathrm{U})$	367.073(25)	0.0000893(21)	[E1]	0.0254(5)	0.0000871 (20)
$\gamma_{21,3}(U)$	368.554(20)	0.0000899(14)	[E1]	0.0252(5)	0.0000877(14)
$\gamma_{22,4}(U)$	375.054(3)	0.002376(37)	M1	0.543(11)	0.001540(21)
$\gamma_{20,2}(U)$	380.191(6)	0.000460(7)	M1	0.523(10)	0.000302(4)
$\gamma_{26,8}(U)$	382.75(5)	0.000387(7)	M1	0.513(10)	0.000256 (4)
$\gamma_{24,5}(U)$	392.53(3)	0.000179(24)	M1	0.479(10)	0.000121 (16)
$\gamma_{20,1}(U)$	393.14(3)	0.000619(25)	M1	0.477(10)	0.000419(17)
$\gamma_{23,3}(U)$	399.53~(6)	0.00000625 (27)	[E1]	0.0213~(4)	0.00000612 (26)
$\gamma_{25,6}(U)$	406.8(2)	0.0000030 (7)	[E1]	0.0204~(4)	0.0000029 (7)
$\gamma_{27,11}(U)$	411.2(3)	0.000010 (4)	[M1]	0.422~(8)	0.0000069 (30)
$\gamma_{42,20}(U)$	412.49(6)	~ 0.00000018	[E1]	0.0199~(4)	~ 0.00000018
$\gamma_{22,2}(U)$	413.713(5)	0.00207~(3)	M1	0.415(8)	0.001464~(21)
$\gamma_{24,4}(U)$	422.598(19)	0.0001669 (30)	M1	0.392~(8)	0.0001199(20)
$\gamma_{22,1}(U)$	426.68(3)	0.0000256~(6)	[E2]	0.0699~(14)	0.0000239~(6)
$\gamma_{24,3}(U)$	428.4(3)	0.00000103(10)	[E1]	0.0184(4)	0.00000101(10)
$\gamma_{26,6}(U)$	430.08(10)	0.00000437 (19)	[E1]	0.0183~(4)	0.00000429 (19)
$\gamma_{23,0}(U)$	445.72(3)	0.00000892~(26)	E1	0.0170(3)	0.00000877 (26)
$\gamma_{-1,8}(U)$	446.82(20)	0.0000009(1)			0.0000085 (13)
$\gamma_{26,5}(U)$	451.481(10)	0.000223~(25)	M1(+50%E2)	0.19(13)	0.000187~(3)
$\gamma_{27,8}(U)$	457.61(5)	0.00000199 (4)	[M1]	0.316~(6)	0.00000151 (3)
$\gamma_{24,2}(U)$	461.25~(5)	0.00000242~(5)	[E2]	0.0575~(12)	0.00000229 (5)
$\gamma_{25,3}(U)$	463.9(3)	0.00000284 (30)	[E1]	0.0157~(3)	0.0000028 (3)
$\gamma_{24,0}(U)$	473.9(5)	0.000000061 (30)	[E1]	0.0150(3)	0.0000006 (3)
$\gamma_{26,4}(U)$	481.66(12)	0.00000485~(11)	[E2]	$0.0517\ (10)$	0.00000461 (10)
$\gamma_{26,3}(U)$	487.06(10)	0.00000269 (19)	[E1]	0.0142(3)	0.00000265 (19)
$\gamma_{31,10}(U)$	493.08(5)	0.0000089 (3)	[E1]	0.0139~(3)	0.0000088 (3)
$\gamma_{-1,9}(U)$	497.0(5)	0.000000044 (25)			0.00000044 (25)
$\gamma_{27,5}(U)$	526.4(4)	0.000000059 (19)	[E2]	0.0419(8)	0.00000057 (19)
$\gamma_{-1,10}(U)$	538.8(2)	0.0000031(2)	(0.00000309(19)
$\gamma_{33,8}(U)$	550.5(2)	0.00000440(25)	(E1)	0.01120(22)	0.00000435(25)
$\gamma_{-1,11}(U)$	557.3(5)	0.0000004(2)	r 1		0.00000038 (19)
$\gamma_{36,10}(U)$	579.4(3)	0.00000091(20)	[E2]	0.0337(7)	0.00000088 (19)
$\gamma_{31,5}(U)$	582.89 (10)	0.00000624(26)	[E1]	0.0100(2)	0.00000618 (26)
$\gamma_{29,4}(U)$	586.3(3)	0.00000155(16)	[E1]	0.0099(2)	0.00000153(16)
$\gamma_{43,12}(\mathrm{U})$	596.0(5)	0.00000040(12)	[E2]	0.0317(6)	0.00000039(12)
$\gamma_{33,6}(U)$	597.99(5)	0.0000179(6)	[E2]	0.0314(6)	0.0000174(6)
$\gamma_{36,8}(\mathrm{U})$	599.6(2)	0.00000204(25)	[E1]	0.00948(19)	0.00000202(25)
$\gamma_{40,10}(\mathrm{U})$	606.9(2)	0.00000136(15)	M1(+E2)	0.12(3)	0.00000121(13)
$\gamma_{-1,12}(U)$	608.9(2)	0.0000012(2)			0.00000117(12)
$\gamma_{31,4}(\mathrm{U})$	612.83(3)	0.0000096(5)	E1	0.00910(18)	0.0000095(5)
$\gamma_{35,6}(\mathrm{U})$	617.1(1)	0.00000154(9)		0.142(3)	0.0000135(8)
$\gamma_{31,3}(U)$	618.28(6)	0.00000212(8)	(E2)	0.0292(6)	0.00000206(8)
$\gamma_{33,5}(U)$	619.21(6)	0.00000122 (8)		0.00892(18)	0.00000121 (8)
$\gamma_{32,3}(U)$	624.78(3)	< 0.00000025	(M1)	0.137(3)	<0.000000022
$\gamma_{29,2}(U)$	624.78(5)	0.00000464 (19)		0.00877(18)	0.00000460 (19)
$\gamma_{28,0}(U)$	633.15(6)	0.00000286(7)	$M1(\pm E2)$	0.122(11)	0.0000255(6)
$\gamma_{29,1}(U)$	637.73(5)	0.00000065(6)		0.00844(17)	0.0000064(6)
$\gamma_{29,0}(U)$	637.80(5)	0.00000197~(20)	E2	0.0273~(5)	0.00000192 (19)

	Energy keV	$\mathrm{P}_{\gamma+\mathrm{ce}} \\ imes 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{38.7}(U)$	639.99(10)	0.00000869(21)	[E2]	0.0271(5)	0.00000846 (20)
$\gamma_{30,2}(U)$	645.94(4)	0.00001502(30)	E1	0.00824(16)	0.0000149(3)
$\gamma_{33,4}(U)$	649.32(6)	0.00000073(5)	[E1]	0.00816(16)	0.00000072(5)
$\gamma_{-1.13}(U)$	650.53(6)	0.00000027(4)	L]		0.00000027 (4)
$\gamma_{34.4}(U)$	652.05(2)	0.00000668(20)	E1	0.00809(16)	0.00000663(20)
$\gamma_{33,3}(\mathrm{U})$	654.88(8)	0.00000233(5)	(E2)	0.0258(5)	0.00000227(5)
$\gamma_{30,1}(U)$	658.86(6)	0.00000967(26)	E1	0.00794(16)	0.00000959 (26)
$\gamma_{31,0}(U)$	664.58(5)	0.000001712(41)	E2	0.0251(5)	0.00000167 (4)
$\gamma_{36,5}(\mathrm{U})$	668.2(5)	0.00000040 (12)	[E1]	$0.00773\ (15)$	0.00000040 (12)
$\gamma_{43,8}(U)$	670.8(5)	≤ 0.00000009 (3)			≤ 0.00000009 (3)
$\gamma_{32,0}(U)$	670.99(4)	≤ 0.00000009 (3)	[M1+E2]	0.06~(4)	≤ 0.00000009 (3)
$\gamma_{35,3}(U)$	674.05(3)	0.00000556~(22)		0.1120(22)	0.00000050 (2)
$\gamma_{40,5}(\mathrm{U})$	674.4(5)	0.000000111 (11)	(M1)	0.1120(22)	0.0000010 (1)
$\gamma_{-1,14}(U)$	685.97(11)	0.00000127~(6)	$\mathrm{E1}$	$0.00736\ (15)$	0.00000126~(6)
$\gamma_{-1,15}(U)$	688.1(3)	0.000000114(11)			0.000000112(11)
$\gamma_{34,2}(U)$	690.81 (8)	0.00000059 (5)	E1	$0.00727\ (15)$	0.00000059 (5)
$\gamma_{-1,16}(U)$	693.2(5)	0.00000033(13)			0.00000032(13)
$\gamma_{46,10}(\mathrm{U})$	693.81(1)	0.00000019(7)	(E2)	0.0229~(5)	0.00000019(7)
$\gamma_{41,5}(U)$	697.8(5)	0.00000076(15)			0.00000074(15)
$\gamma_{-1,17}(U)$	699.6(5)	0.0000008(2)			0.00000080(16)
$\gamma_{33,0}(U)$	701.1(2)	0.00000555(29)	[M1+E2]	0.06(4)	0.00000524(19)
$\gamma_{34,1}(U)$	703.68(5)	0.00000413(13)	$\mathbf{E1}$	0.00702(14)	0.00000410(13)
$\gamma_{-1,18}(U)$	712.96(5)	0.00000052(6)	50	0.0015 (1)	0.00000052(6)
$\gamma_{44,7}(0)$	714.71(14)	0.00000081(8)	E2	0.0215(4)	0.00000079(8)
$\gamma_{39,4}(0)$	718.0(5)	0.0000278(6)	EI	0.00677(14)	0.0000276(6)
$\gamma_{35,0}(U)$	(20.3 (5))	0.00000029(5)			0.00000029(5)
$\gamma_{47,10}(U)$	(20.55 (3))	0.00000020(2) 0.00000126(8)	M1	0.0011 (19)	0.000000020(2) 0.000000125(7)
$\gamma_{41,4}(U)$	727.9(2) 736.5(5)	0.00000130(8) 0.000000131(0)	M1 + 50(8)% F2	0.0911(10)	0.00000123(7)
$\gamma_{46,7}(0)$	730.5(5) 742.7(5)	0.000000031(9) 0.000000038(11)	M1+39(6)/0E2	0.0461(10)	0.000000030(9)
$\gamma = 1, 19(0)$	742.7(5)	0.0000000038(11) 0.000000082(16)	E1	0.00629(13)	0.00000000000000000000000000000000000
$\gamma_{37,2}(0)$	756 23 (6)	0.000000002 (10) 0.00000029 (5)	$[M1\pm E2]$	0.00025(10)	0.000000001 (10) 0.00000028 (5)
$\gamma_{38,2}(0)$	756.4(4)	0.0000029(0)	[NII 122] [E1]	0.05(3)	0.0000028(9)
$\gamma_{39,2}(U)$	762.6(2)	$\sim 0.00000000000000000000000000000000000$		0.00010 (12)	$\sim 0.00000000000000000000000000000000000$
$\gamma_{47,7(0)}$ $\gamma_{45,5}(U)$	763.60(15)	>0.000000042	E0(+M1)	0.9	>0.000000022
$\gamma_{43,3}(0)$ $\gamma_{41,2}(0)$	766.47(3)	0.00000065(11)	E0+M1	4.0(4)	0.0000013(2)
$\gamma_{51,12}(U)$	767.29(4)	0.00000014(3)		- ()	0.00000014(3)
$\gamma_{38,1}(U)$	769.15 (8)	0.0000153(32)	M1+E0	2.0(2)	0.0000051(10)
$\gamma_{39,1}(U)$	769.4(5)	0.0000068(12)	E1	0.00596(12)	0.0000068(12)
$\gamma_{43,4}(U)$	769.54(4)	0.00000008(2)	$\mathrm{E0}$		
$\gamma_{-1,20}(U)$	777.1(3)	0.00000028(7)			0.00000028(7)
$\gamma_{41,1}(U)$	779.43 (3)	0.000000147 (10)	M1	0.0759(15)	0.000000137(9)
$\gamma_{-1,21}(U)$	786.9(2)	0.00000089(9)	E2	0.0177(4)	0.00000087 (9)
$\gamma_{-1,22}(U)$	788.5(3)	0.00000035(7)			0.00000035 (7)
$\gamma_{42,2}(U)$	792.68(6)	0.00000020 (4)	(E1)	0.00565(11)	0.00000020 (4)
$\gamma_{-1,23}(U)$	796.9(3)	0.00000015 (3)			0.00000015 (3)
$\gamma_{-1,24}(U)$	803.2(2)	0.00000064(5)			0.00000064 (5)
$\gamma_{42,1}(U)$	805.65~(6)	0.00000029 (4)	E2	0.0169(3)	0.00000028 (4)

Pu	_	239
Pu	_	239

	Energy	$P_{\gamma+ce}$	Multipolarity	$lpha_{ m T}$	P_{γ}
	keV	× 100			× 100
$\gamma_{43,2}(U)$	808.21 (4)	0.000000130 (6)	M1	0.0690(14)	0.000000122 (6)
$\gamma_{46,4}(U)$	813.7(2)	0.00000048(5)	M1	0.0677(14)	0.00000045(5)
$\gamma_{50,9}(\mathrm{U})$	816.0(2)	0.00000026 (4)	[M1+E2]	0.042(25)	0.00000025 (4)
$\gamma_{43,0}(\mathrm{U})$	821.25~(4)	0.00000050 (11)	E1+M2		0.000000050 (11)
$\gamma_{51,10}(\mathrm{U})$	821.3(2)	~ 0.00000006			~ 0.000000006
$\gamma_{-1,25}(U)$	826.8(3)	0.00000018~(6)			0.00000018~(6)
$\gamma_{-1,26}(U)$	828.9(2)	0.00000014(1)			0.00000134 (8)
$\gamma_{52,12}(U)$	832.2~(2)	0.00000030 (4)			0.00000030 (4)
$\gamma_{-1,27}(U)$	837.3~(2)	0.00000020 (4)			0.00000020 (4)
$\gamma_{47,4}(\mathrm{U})$	840.4(2)	0.00000056 (6)	M1(+E0)	0.14(2)	0.00000049 (5)
$\gamma_{44,1}(\mathrm{U})$	843.78(1)	$0.000000147 \ (9)$	M1(+E0)	0.09(1)	0.00000135 (8)
$\gamma_{47,2}(U)$	879.2(3)	0.00000037~(4)	[M1+E2]	0.035~(20)	0.00000036 (4)
$\gamma_{47,1}(U)$	891.0(3)	0.00000076 (8)	[E2]	0.0139(3)	0.00000075 (8)
$\gamma_{-1,28}(U)$	895.4(3)	0.00000008 (3)			0.000000076~(25)
$\gamma_{-1,29}(U)$	898.1(3)	0.00000018 (4)			0.00000018 (4)
$\gamma_{-1,30}(U)$	905.5~(3)	0.00000008 (3)			0.0000000076 (25)
$\gamma_{-1,31}(U)$	911.7~(3)	0.00000014 (3)			0.00000014 (3)
$\gamma_{49,4}(\mathrm{U})$	918.7(3)	0.00000009 (3)			0.000000088 (30)
$\gamma_{-1,32}(U)$	931.9(3)	0.00000013 (4)			0.00000013 (4)
$\gamma_{50,3}(\mathrm{U})$	940.3(3)	0.00000051 (5)	[E2]	$0.01250\ (25)$	0.00000050 (5)
$\gamma_{48,2}(U)$	955.41(2)	0.000000321 (31)	M1+27(13)%E2	0.036~(4)	0.00000031 (3)
$\gamma_{49,2}(U)$	957.6~(3)	0.00000032 (3)			0.00000032 (3)
$\gamma_{48,1}(U)$	968.37(2)	0.00000029 (5)	M1+27(20)%E2	0.035~(19)	0.00000028
$\gamma_{51,2}(U)$	979.7~(3)	0.00000029 (5)	[M1+E2]	$0.026\ (15)$	0.00000028 (5)
$\gamma_{-1,33}(U)$	982.7~(3)	0.00000011 (3)			$0.0000000107 \ (25)$
$\gamma_{53,7}(U)$	986.90(4)	0.00000021 (5)	$\mathrm{E1}$	0.00383~(8)	0.00000021 (5)
$\gamma_{51,1}(U)$	992.64(3)	0.00000027 (4)			0.00000027 (4)
$\gamma_{52,4}(U)$	1005.7(3)	0.00000018 (3)			0.000000177 (25)
$\gamma_{-1,34}(U)$	1009.4(3)	0.00000014 (3)			0.000000139 (25)
$\gamma_{52,0}(\mathbf{U})$	1057.3(2)	0.00000045(7)			0.00000045(7)

5 References

F.Asaro, I.Perlman, Phys. Rev. 88 (1952) 828 (Alpha-transition energies and probabilities) E.SEGRÈ, Phys. Rev. 86 (1952) 21 (SF half-life) G.I.NOVIKOVA, L.N.KONDRATEV, Y.P.SOBOLEV, L.L.GOLDIN, Zh. Eksp. Teor. Fiz. 32 (1957) 1018 (Alpha-transition energies and probabilities) B.S.DZHELEPOV, R.B.IVANOV, V.G.NEDOVESOV, Zh. Eksp. Teor. Fiz. 14 (1961) 1227 (Alpha-transition energies and probabilities) C.F.LEANG, Compt. Rend. Acad. Sci. (Paris) Ser. B 255 (1962) 3155 (Alpha-transition energies) S.BJORNHOLM, C.M.LEDERER, F.ASARO, I.PERLMAN, Phys. Rev. 130 (1963) 2000 (Alpha-transition energies and probabilities) S.A.BARANOV, V.M.KULAKOV, S.N.BELENKY, Nucl. Phys. 41 (1963) 95 (Alpha-transition energies and probabilities) F.ASARO, S.G.THOMPSON, F.S.STEPHENS JR., I.PERLMAN, Priv. Comm. (1957), cited in E.K.Hyde et al., The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha-transition energies and probabilities)

F.HORSCH, Z. Phys. 183 (1965) 252 (Alpha-transition energies and probabilities) E.F.TRETYAKOV, L.N.KONDRATEV, Izv. Akad. Nauk SSSR, Ser. Fiz. 29 (1965) 242 (Gamma-ray and conversion electron energies and emission probabilities) I.AHMAD, Thesis, Report UCRL-16888, Univ. California (1966) (Alpha-transition and gamma-ray energies and emission probabilities) F.HORSCH, Z. Phys. 194 (1966) 405 (Gamma-ray energies and emission probabilities) J.A.BEARDEN, Rev. Mod. Phys. 39 (1967) 78 (X-ray energies) J.E.CLINE, Nucl. Phys. A106 (1968) 481 (Gamma-ray energies and emission probabilities) K.L.SWINTH, Nucleonics in Aerospace, Ed. P.Polyshuk, N.Y., Plenum Press (1968) 279 (LX-ray emission probabilities) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 7 (1968) 442 (Alpha emission energies) F.L.OETTING, Proc. Int. Conf. on Plutonium and Other Actinides, 4th, Santa Fe, New Mexico, M.A.Musil, Ed., The Metallurgical Soc., New York, Pt.1 (1970) 154 (Half-life) R.GUNNINK, R.J.MORROW, Report UCRL-51087, Univ. California (1971) (Gamma-ray energies and emission probabilities) K.L.SWINTH, IEEE Trans. Nucl. Sci. 18 (1971) 125 (LX-ray emission probabilities) S.A.BARANOV, V.M.SHATINSKY, Sov. J. Nucl. Phys. 22 (1975) 346 (Alpha-transition energies) B.M.Aleksandrov, V.T.Antsiferov, L.S.Bulyanitsa, A.M.Geidelman, Y.S.Egorov, et al., Bull. Rus. Acad. Sci. Phys. 39 (1975) 20 (Half-life) K.M.GLOVER, R.A.P.WILTSHIRE, F.J.G.ROGERS, M.KING, Report UKNDC(75)-P-71 (1975) 55 (Half-life) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (Gamma-ray energies and emission probabilities) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting on Transactinium Nucl. Data, Karlsruhe, Vol.III, IAEA-186, IAEA, Vienna (1976) 249 (Alpha-transition probabilities) A.H.JAFFEY, H.DIAMOND, W.C.BENTLEY, K.F.FLYNN, D.J.ROKOP, A.M.ESSLING, J.WILLIAMS, Phys. Rev. C16 (1978) 354 (Half-life) S.R.GUNN, Int. J. Appl. Radiat. Isotop. 29 (1978) 497 (Half-life) L.L.LUCAS, J.R.NOYCE, B.M.COURSEY, Int. J. Appl. Radiat. Isotop. 29 (1978) 501 (Half-life) S.F.MARSH, R.M.ABERNATHEY, R.J.BECKMAN, R.K.ZEIGLER, J.E.REIN, Int. J. Appl. Radiat. Isotop. 29 (1978) 509(Half-life) A.PRINDLE, J.EVANS, R.DUPZYK, R.NAGLE, R.NEWBURY, Int. J. Appl. Radiat. Isotop. 29 (1978) 517 (Half-life) P.W.SEABAUGH, K.C.JORDAN, Int. J. Appl. Radiat. Isotop. 29 (1978) 489 (Half-life) J.Almeida, T.von Egidy, P.H.M.van Assche, H.G.Borner, W.F.Davidson, K.Schreckenbach, A.I.Namenson, Nucl. Phys. A315 (1979) 71 (Gamma-ray and conversion electron energies) M.DESPRÉS, Report CEA-R-5065, Commissariat a l'Energie Atomique (1980) (Gamma-ray energies and emission probabilities) A.RYTZ, in Proc. Int. Conf. on Atomic Masses and Fundamental Constants, East Lansing, Eds J.A.Nolen Jr., W.Benensen, Plenum Press, N.Y. (1980) 249 (Absolute alpha-particle energy measurement) I.AHMAD, Report INDC(NDS)-126, IAEA, Vienna (1981) 28 (Alpha-transition energies and probabilities)

Pu - 239

F.BROWN, Priv. Comm. (1981), cited in N.E. Holden, Report BNL-NCS-35514 (1984) 1, see also Nucl. Stand. Ref. Data, TECDOC-335, IAEA, Vienna (1981) (Half-life) H.UMEZAWA, Report INDC(NDS)-126, IAEA, Vienna (1981) 38 (Gamma-ray emission probabilities) G.BARREAU, H.G.BORNER, T.VON EGIDY, R.W.HOFF, Z. Phys. A308 (1982) 209 (KX-ray energies) R.G.HELMER, C.W.REICH, R.J.GEHRKE, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 33 (1982) 23 (Gamma-ray energies and emission probabilities) I.Ahmad, J.Hines, J.E.Gindler, Phys. Rev. C27 (1983) 2239 (KX-ray energies) A.M.GEIDELMAN, P.DRYAK, YU.S.EGOROV, ET AL., Proc. II Int. Symp. Meth. of Prod. and Meas. of Standard Sources and Solutions, Chopak, Hungary Vol.II (1984) 381 (U LX-ray energies) M.DIVADEENAM, J.R.STEHN, Ann. Nucl. Energy 11 (1984) 375 (Half-life) Y.IWATA, Y.YOSHIZAWA, T.SUZUKI, S.ICHIKAWA, S.OKAZAKI, Int. J. Appl. Radiat. Isotop. 35 (1984) 1 (Gamma-ray emission probabilities) G.BORTELS, B.DENECKE, R.VANINBROUKX, Nucl. Instrum. Methods Phys. Res. 223 (1984) 329 (U LX-ray energies) I.AHMAD, Nucl. Instrum. Methods Phys. Res. 223 (1984) 319 (Alpha-transition probabilities) A.A.DRUZHININ, V.N.POLYNOV, A.M.KOROCHKIN, E.A.NIKITIN, L.I.LAGUTINA, Sov. At. Energy 59 (1985) 628 (SF Half-life) S.MIRZADEH, Y.Y.CHU, S.KATCOFF, L.K.PEKER, Phys. Rev. C33 (1986) 2159 (235U level energies, 235Pa beta- decay) G.BORTELS, P.COLLAERS, Appl. Radiat. Isot. 38 (1987) 831 (Alpha-transition probabilities) V.P.CHECHEV, N.K.KUZMENKO, V.O.SERGEEV, K.P.ARTAMONOVA, Evaluated Decay Data of Transuranium Radionuclides, Handbook, Publishing House Energoatomizdat, Moscow (1988) (Evaluation of 239Pu decay data) N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483 (Half-life) K.M.GLOVER, A.L.NICHOLS, Report AERE-R-13822 (1990) (Half-life) S.V.ANICHENKOV, YU.S.POPOV, Sov. J. Radiochemistry 32 (1990) 401 (Alpha-transition probabilities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-transition energies and probabilities) C.J.BLAND, J.MOREL, E.ETCHEVERRY, M.C.LÉPY, Nucl. Instrum. Methods Phys. Res. A312 (1992) 323 (LX and gamma-ray emission probabilities) C.J.BLAND, J.TRUFFY, Appl. Radiat. Isot. 43 (1992) 1241 (Alpha-transition probabilities) N.COURSOL, N.CORON, D.MASSE, H.STROKE, J.W.ZHOU, P.DE MARCILLAC, J.LEBLANC, G.ARTZNER, G.DAMBIER, J.BOUCHARD, G.JEGOUDEZ, J.P.LEPELTIER, G.NOLLEZ, C.GOLBACH, J.-L.PICOLO, Nucl. Instrum. Methods Phys. Res. A312 (1992) 24 (Gamma-ray emission probabilities) E.A.FROLOV, Appl. Radiat. Isot. 43 (1992) 211 (Alpha-transition energies) G.BARCI-FUNEL, J.DALMASSO, G.ARDISSON, Appl. Radiat. Isot. 43 (1992) 37 (LX and gamma-ray emission probabilities) E.GARCIA-TORAÑO, M.L.ACENA, G.BORTELS, D.MOUCHEL, Nucl. Instrum. Methods Phys. Res. A334 (1993) 447 (Alpha-transition probabilities) M.R.SCHMORAK, Nucl. Data Sheets 69 (1993) 375 (Decay Scheme) J.MOREL, E.ETCHEVERRY, M.VALLÉE, Nucl. Instrum. Methods Phys. Res. A339 (1994) 232 (X- and gamma-ray energies and emission probabilities) W.RAAB, J.L.PARUS, Nucl. Instrum. Methods Phys. Res. A339 (1994) 116 (Alpha-transition probabilities)

D.T.BARAN, Appl. Radiat. Isot. 45 (1994) 1177 (Alpha-transition probabilities) M.-C.LÉPY, B.DUCHEMIN, J.MOREL, Nucl. Instrum. Methods Phys. Res. A353 (1994) 10 (LX-ray emission probabilities) M.-C.LÉPY, K.DEBERTIN, Nucl. Instrum. Methods Phys. Res. A339 (1994) 218 (LX-ray emission probabilities) P.N.JOHNSTON, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A361 (1995) 229 (U LX-ray energies and emission probabilities) R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996) (Decay scheme, gamma-ray energies and multipolarities) A.M.SANCHEZ, P.R.MONTERO, F.V.TOME, Nucl. Instrum. Methods Phys. Res. A369 (1996) 593 (Alpha-transition probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) L.L.VINTRO, P.I.MITCHELL, O.M.CONDREN, M.MORAN, J.VIVES I BATLLE, J.A.SANCHEZ-CABEZA, Nucl. Instrum. Methods Phys. Res. A369 (1996) 597 (Alpha-transition probabilities) A.V.BUSHUEV, V.N.ZUBAREV, E.V.PETROVA ET AL., At. Energ. 82 (1997) 117 (Gamma-ray emission probabilities) R.O.KOROB, S.L.FIGUEROA, Radiochim. Acta 77 (1997) 161 (Gamma-ray emission probabilities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilities) A.M.SANCHEZ, P.R.MONTERO, Nucl. Instrum. Methods Phys. Res. A420 (1999) 481 (Alpha-transition probabilities) F.DAYRAS, Nucl. Instrum. Methods Phys. Res. A490 (2002) 492 (Alpha-transition probabilities) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR, P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (Ω) E.BROWNE, Nucl. Data Sheets 98 (2003) 665

(Evaluation of 239 Pu decay data, 235U level energies, gamma-ray emission probabilities, alpha-transition probabilities)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	6561	(7)	У
$Q^{'}_{lpha}$:	5255.75	(15)	keV
α	:	100		%
SF	:	5.7	(1)	$\times 10^{-6}~\%$

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,10}$	4217.6 (2)	< 0.0000001
$lpha_{0,9}$	4223.8(4)	< 0.00000013
$\alpha_{0,8}$	4226.1(3)	< 0.0000017
$\alpha_{0,7}$	4264.3(3)	0.00000065 (8)
$lpha_{0,6}$	4436.4(2)	0.00000013~(7)
$lpha_{0,5}$	4492.0(2)	0.0000193~(4)
$\alpha_{0,4}$	4654.5(2)	0.000047~(5)
$\alpha_{0,3}$	4863.5(2)	0.001082 (18)
$\alpha_{0,2}$	5021.1(2)	0.0863~(18)
$\alpha_{0,1}$	5123.6(2)	27.16(19)
$lpha_{0,0}$	$5168.13\ (15)$	72.74(18)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(U)	5.01 - 21.60	10.3(8)
e _{AK}	(U) KLL KLX KXY	71.78 - 80.95 88.15 - 98.43 104.51 - 115.59	0.0000027 (4) } } }
$\begin{array}{c} ec_{1,0} \ L \\ ec_{1,0} \ M \\ ec_{1,0} \ N \\ ec_{2,1} \ L \\ ec_{2,1} \ M \end{array}$	(U) (U) (U) (U) (U)	$\begin{array}{r} 23.486 - 28.076 \\ 39.696 - 41.690 \\ 43.803 - 44.865 \\ 82.475 - 87.067 \\ 98.687 - 100.680 \end{array}$	$\begin{array}{c} 19.8 \ (6) \\ 5.48 \ (15) \\ 1.483 \ (40) \\ 0.0571 \ (10) \\ 0.01585 \ (33) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	11.619 - 20.714		10.34(15)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(U) (U)	$94.666 \\ 98.44$		0.0000260 (6) 0.0000416 (9)	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	$110.421 \\ 111.298 \\ 111.964$	} } }	0.0000150 (4)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(U) (U) (U)	$114.407 \\ 115.012 \\ 115.377$	} } }	0.00000513 (16)	$\mathrm{K}\beta_{2}^{'}$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \gamma_{1,0}(\mathrm{U}) \\ \gamma_{2,1}(\mathrm{U}) \\ \gamma_{3,2}(\mathrm{U}) \\ \gamma_{4,3}(\mathrm{U}) \\ \gamma_{5,2}(\mathrm{U}) \\ \gamma_{5,1}(\mathrm{U}) \\ \gamma_{5,0}(\mathrm{U}) \\ \gamma_{6,1}(\mathrm{U}) \\ \gamma_{9,2}(\mathrm{U}) \\ \gamma_{7,1}(\mathrm{U}) \\ \gamma_{8,1}(\mathrm{U}) \\ \gamma_{9,1}(\mathrm{U}) \end{array}$	$\begin{array}{c} 45.244 \ (2) \\ 104.233 \ (5) \\ 160.308 \ (3) \\ 212.46 \ (5) \\ 538.1 \ (1) \\ 642.34 \ (5) \\ 687.56 \ (10) \\ 698.94 \\ 810.8 \\ 874.0 \ (2) \\ 912.4 \ (3) \\ 915.1 \ (3) \end{array}$	$\begin{array}{c} 27.3 \ (8) \\ 0.0856 \ (14) \\ 0.001116 \ (17) \\ 0.0000464 \ (48) \\ 0.00000168 \ (14) \\ 0.00001449 \ (43) \\ 0.00000466 \ (14) \\ < 0.000000025 \\ < 0.000000043 \\ 0.000000059 \ (6) \\ < 0.00000007 \\ < 0.00000063 \end{array}$	E2E2E2E3E1+(M2+E3)E1(E2)(M1)(M1+E0)	$589 (12) \\10.99 (22) \\1.76 (4) \\0.599 (12) \\0.143 (3) \\0.15 (2) \\0.31 (2) \\0.0144 (3) \\0.050 (1)$	$\begin{array}{c} 0.0462 \ (9) \\ 0.00714 \ (7) \\ 0.0004045 \ (22) \\ 0.000029 \ (3) \\ 0.000000147 \ (12) \\ 0.00000126 \ (3) \\ 0.000000356 \ (9) \\ < 0.000000025 \\ < 0.000000043 \\ 0.000000043 \\ 0.000000058 \ (6) \\ < 0.00000007 \\ < 0.00000063 \end{array}$
$egin{aligned} & \gamma_{7,0}(\mathrm{U}) \ & \gamma_{10,1}(\mathrm{U}) \ & \gamma_{8,0}(\mathrm{U}) \ & \gamma_{9,0}(\mathrm{U}) \ & \gamma_{10,0}(\mathrm{U}) \end{aligned}$	$\begin{array}{c} 918.9 \ (3) \\ 921.2 \ (2) \\ 958.0 \ (2) \\ 960.3 \\ 966.9 \ (2) \end{array}$	$\begin{array}{c} 0.00000006 \\ < 0.00000022 \\ < 0.0000001 \\ < 0.00000005 \\ < 0.0000000502 \end{array}$	(E0) E1 E1	0.00432 (9) 0.00397 (8)	<0.000000022 <0.0000001 <0.00000005 <0.00000005

5 References

E.F.WESTRUM, Phys. Rev. 83 (1951) 1249
(Half-life)
M G.INGHRAM, D.C.HESS, P.R.FIELDS, G.L.PYLE, Phys. Rev. 83 (1951) 1250
(Half-life)
F.ASARO, I.PERLMAN, Phys. Rev. 88 (1952) 828
(Alpha emission energies and probabilities)
E.M.KINDERMAN, Report HW 27660, Hanford Laboratory (1953)
(SF Half-life)

F.R.BARCLAY, W.GALBRAITH, K.M.GLOVER, G.R.HALL, W.J.WHITEHOUSE, Proc. Phys. Soc. (London) 67A (1954) 646(SF Half-life) O.CHAMBERLAIN, G.W.FARWELL, E.SEGRÈ, Phys. Rev. 94 (1954) 156 (SF Half-life) G.FARWELL, J.E.ROBERTS, A.C.WAHL, Phys. Rev. 94 (1954) 363 (Half-life) J.P.BUTLER, T.A.EASTWOOD, T.L.COLLINS, M.E.JONES, F.M.ROURKE, R.P.SCHUMAN, Phys. Rev. 103 (1956) 634(Half-life) L.L.GOLDIN, G.I.NOVIKOVA, E.F.TRETYAKOV, Phys. Rev. 103 (1956) 1004 (Alpha emission energies and probabilities) L.M.KONDRATEV, G.I.NOVIKOVA, Y.P.SOBOLEV, L.L.GOLDIN, Zh. Eksp. Teor. Fiz. 31 (1956) 771; Sov. Phys. -JETP 4 (1956) 645 (Alpha emission energies and probabilities) P.S.SAMOILOV, Sov. J. At. Energy 4 (1958) 102; At. Energ. 4 (1958) 81 (Gamma-ray energies) YA.P.DOKUCHAEV, At. Energ. 6 (1959) 74 (Half-life) E.F.TRETYAKOV, L.N.KONDRATEV, G.I.KHLEBNIKOV, L.L.GOLDIN, Zh. Eksp. Teor. Fiz.36 (1959) 362; Sov. Phys. - JETP 9 (1959) 250 (Gamma-ray energies) V.L.MIKHEEV, N.K.SKOBELEV, V.A.DRUIN, G.N.FLEROV, Zhur. Eksptl. i Teoret. Fiz. 37(1959)859; Sov. Phys. -JETP 10 (1960) 612 (Half-life) D.E.WATT, F.J.BANNISTER, J.B.LAIDLER, F.BROWN, Phys. Rev. 126 (1962) 264 (SF Half-life) C.F.LEANG, Compt. Rend. Acad. Sci. (Paris) Ser. B 255 (1962) 3155 (Alpha emission energies) L.Z.MALKIN, I.D.ALKHAZOV, A.S.KRIVOKHATSKY, K.A.PETRZHAK, Sov. J. At. Energy 15 (1964) 851; At. Energ. 15 (1963) 158 (SF Half-life) F.ASARO, S.G.THOMPSON, F.S.STEPHENS JR., I.PERLMAN, Priv. Comm. (1957), cited in E.K.Hyde et al., The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha emission energies and probabilities) E.K.HYDE, I.PERLMAN, G.T.SEABORG, The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha emission energies and probabilities) J.A.BEARDEN, Rev. Mod. Phys. 39 (1967) 78 (X-ray energies) P.H.WHITE, Priv. Comm. (1967), cited in N.E.Holden, D.C.Hoffman, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (1967) (SF Half-life) P.FIELDHOUSE, D.S.MATHER, E.R.CULLIFORD, J. Nucl. Energy 21 (1967) 749 (SF Half-life) F.L.OETTING, Proc. Symp. on Thermodynamics of Nuclear Materials with Emphasis on Solution Systems, STI/PUB/ 162, IAEA, Vienna (1968) 55 (Half-life) C.M.LEDERER, J.M.JAKLEVIC, S.G.PRUSSIN, Nucl. Phys. A135 (1969) 36 (Alpha emission energies and probabilities) K.L.SWINTH, IEEE Nuclear Science Symp. 4 (1970) 125 (LX-ray emission probabilities) R.GUNNINK, R.J.MORROW, Report UCRL-51087, Univ. California (1971) (Gamma-ray energies and probabilities) M.SCHMORAK, C.E.BEMIS JR., M.J.ZENDER, N.B.GOVE, P.F.DITTNER, Nucl. Phys. A178 (1972) 410 (Gamma-ray energies and probabilities) J.E.CLINE, R.J.GEHRKE, L.D.MCISAAC, Report ANCR-1069 (1972) (Gamma-ray energies) D.J.GORMAN, A.RYTZ, H.V.MICHEL, Compt. Rend. Acad. Sci. (Paris) Ser. B 275 (1972) 291 (Alpha emission energies)

R.L.HEATH, Report ANCR-1000-2 (1974) (Gamma-ray energies) T.DRAGNEV, K.SCHARF, Int. J. Appl. Radiat. Isotop. 26 (1975) 125 (Gamma-ray emission probabilities) H.OTTMAR, P.MATUSSEK, I.PIPER, Proc. 2nd Int. Symp. on Neutron Capture Gamma Ray Spectroscopy and Related Topics, Petten, Netherlands (1975) 658 (Gamma-ray energies and emission probabilities) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (Gamma-ray energies and emission probabilities) H.UMEZAWA, T.SUZUKI, S.ICHIKAWA, J. Nucl. Sci. Technol. (Tokyo) 13 (1976) 327 (Gamma-ray emission probabilities) S.A.BARANOV, V.M.SHATINSKII, Yad. Fiz. 26 (1977) 461; Sov. J. Nucl. Phys. 26 (1977) 244 (Alpha emission energies and probabilities) A.H.JAFFEY, H.DIAMOND, W.C.BENTLEY, D.G.GRACZYK, K.P.FLYNN, Phys. Rev. C18 (1978) 969 (Half-life) C.BUDTZ-JORGENSEN, H.-H.KNITTER, NEANDC(E)-202 Vol.III (1979) 9 (SF Half-life) J.MOREL, Priv. Comm. (1981), cited in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1981) (Gamma-ray emission probabilities) R.G.HELMER, C.W.REICH, Int. J. Appl. Radiat. Isotop. 32 (1981) 829 (Gamma-ray energies and emission probabilities) G.BARREAU, H.G.BORNER, T.VON EGIDY, R.W.HOFF, Z. Phys. A308 (1982) 209 (K X-ray energies) I.AHMAD, J.HINES, J.E.GINDLER, Phys. Rev. C27 (1983) 2239 (K X-ray energies) G.BORTELS, B.DENECKE, R.VANINBROUKX, Nucl. Instrum. Methods 223 (1984) 329 (L X-ray energies) F.J.STEINKRUGER, G.M.MATLACK, R.J.BECKMAN, Int. J. Appl. Radiat. Isotop. 35 (1984) 171 (Half-life) L.L.LUCAS, J.R.NOYCE, Int. J. Appl. Radiat. Isotop. 35 (1984) 173 (Half-life) R.J.BECKMAN, S.F.MARSH, R.M.ABERNATHEY, J.E.REIN, Int. J. Appl. Radiat. Isotop. 35 (1984) 163 (Half-life) A.A.Androsenko, P.A.Androsenko, YU.V.Ivanov, A.E.Konyaev, V.F.Kositsyn, E.M.Tsenter, V.T.Shche-BOLEV, Sov. J. At. Energy 57 (1984) 788; At. Energ. 57 (1984) 357 (SF Half-life) I.AHMAD, Nucl. Instrum. Methods 223 (1984) 319 (Alpha emission probabilities) C.R.RUDY, K.C.JORDAN, R.TSUGAWA, Int. J. Appl. Radiat. Isotop. 35 (1984) 177 (Half-life) A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Gamma-ray emission probabilities) YU.A.SELITSKY, V.B.FUNSHTEIN, V.A.YAKOVLEV, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Baku (1988) 131 (SF Half-life) N.Dytlewski, M.G.Hines, J.W.Boldeman, Nucl. Sci. Eng. 102 (1989) 423 (SF Half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-particle energies) S.V.ANICHENKOV, YU.S.POPOV, Radiokhimiya 32 (1990) 109: Sov. J. Radiochemistry 32 (1991) 401 (Alpha emission probabilities) YU.V.IVANOV, A.E.KONYAEV, V.F.KOSITSYN, E.A.KHOLNOVA, V.T.SHCHEBOLEV, M.F.YUDIN, Sov. J. At. Energy 70 (1991) 491; At. Energ. 70 (1991) 396 (SF Half-life) C.J.BLAND, J.TRUFFY, Appl. Radiat. Isot. 43 (1992) 1241 (Alpha emission probabilities) G.BARCI-FUNEL, J.DALMASSO, G.ARDISSON, Appl. Radiat. Isot. 43 (1992) 37 (X-ray energies)

D.T.BARAN, Appl. Radiat. Isot. 45 (1994) 1177 (Alpha emission probabilities) M.-C.LÉPY, B.DUCHEMIN, J.MOREL, Nucl. Instrum. Methods Phys. Res. A353 (1994) 10 (L X-ray energies and emission probabilities) M.-C.LÉPY, K.DEBERTIN, Nucl. Instrum. Methods Phys. Res. A339 (1994) 218 (L X-ray energies and emission probabilities) A.M.SANCHEZ, F.V.TOME, J.D.BEJARANO, Nucl. Instrum. Methods Phys. Res. A340 (1994) 509 (Alpha emission probabilities) W.RAAB, J.L.PARUS, Nucl. Instrum. Methods Phys. Res. A339 (1994) 116 (Alpha emission probabilities) P.N.JOHNSTON, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A361 (1995) 229 (L X-ray energies and emission probabilities) L.L.VINTRO, P.I.MITCHELL, O.M.CONDREN, M.MORAN, J.VIVES I BATLLE, J.A.SANCHEZ-CABEZA, Nucl. Instrum. Methods Phys. Res. A369 (1996) 597 (Alpha emission probabilities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (K X-ray energies and relative emission probabilities) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 72 (2000) 595 (SF half-life) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (SF half-life) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) M.-M.Bé, V.CHISTÉ, C.DULIEU, E.BROWNE, V.CHECHEV, N.KUZMENKO, R.HELMER, A.NICHOLS, E.SCHÖNFELD, R.DERSCH, in Table of Radionuclides (Vol.2 - A = 151 to 242), Monographie BIPM-5, Bureau International des Poids et Mesures, Sevres (2004) 247 (240Pu Decay Data Evaluation) G.SIBBENS, S.POMMÉ, Appl. Radiat. Isot. 60 (2004) 155 (Alpha emission energies and probabilities) V.P.CHECHEV, Proc. Int. Conf. on Nuclear Data for Science and Technology, 26 Sept.-1 Oct. 2004, Santa Fe, New Mexico; AIP Conf. Proc. 769 (2005) 91 (240Pu Decay Data Evaluation) E.BROWNE, J.K.TULI, Nucl. Data Sheets 107 (2006) 2649 (Decay scheme, 236U level energies, gamma-ray multipolarities, data from 236Pa and 236Np decays) I.AHMAD, F.G.KONDEV, J.P.GREENE, M.A.KELLETT, A.L.NICHOLS, Nucl. Instrum. Methods Phys. Res. A579 (2007) 458 (Half-life) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	14.33	(4)	У
Q_{β^-}	:	20.8	(2)	keV
Q_{lpha}	:	5140.0	(5)	keV
β^{-}	:	99.99756	(2)	%
α	:	0.00244	(2)	%
SF	:	>2.4		$\times 10^{-14}~\%$

2 β^- Transitions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,0}^-$	20.8(2)	99.99756(2)	1st forbidden	5.8

3 α Emissions

	Energy keV	Probability × 100
$\alpha_{0,10}$	4694(3)	≈ 0.0000007
$lpha_{0,9}$	4733(3)	≈ 0.0000007
$\alpha_{0,8}$	4744(5)	≈ 0.0000017
$\alpha_{0,7}$	4785.1(11)	0.0000005(2)
$\alpha_{0,6}$	4798.0(5)	0.000029(3)
$\alpha_{0,5}$	4853.8(5)	0.000295(8)
$\alpha_{0,4}$	4897.3(5)	0.00203(4)
$\alpha_{0,3}$	4973.1(5)	0.000032(3)
$\alpha_{0,2}$	4999.2(5)	0.0000100(12)
$\alpha_{0,1}$	5043.4(5)	0.000025(2)
$lpha_{0,0}$	5054.6(5)	0.0000086(10)

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(U)	5.9 - 21.6	0.00117~(6)	
e _{AK}	(U) KLL KLX KXY	71.776 - 80.954 88.153 - 98.429 104.51 - 115.59	0.000031 (5) } } }	
$\beta^{0,0}$	max:	20.8 (2)	99.99756(2)	avg: 5.8 (1)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	11.619 - 20.714		0.001166 (40)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(U) (U)	94.666 98.44		0.000300(7) 0.000479(10)	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	$110.421 \\ 111.298 \\ 111.964$	} } }	0.000179(5)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(U) (U) (U)	$114.407 \\ 115.012 \\ 115.377$	} } }	0.000059(2)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	$rac{\mathrm{Energy}}{\mathrm{keV}}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{5,4}(U)$	44.18(3)	0.000258(17)	M1+1.7(5)%E2	60.4(29)	0.0000042 (2)
$\gamma_{2,1}(U)$	44.86(10)	0.000111 (25)	[M1+15(4)%E2]	131 (25)	0.00000084(10)
$\gamma_{2,0}(U)$	56.30(12)	0.00051~(4)	(E2)	204(4)	0.0000025 (2)
$\gamma_{6,5}(U)$	56.76(10)	0.0000280 (41)	M1+1.1(13)E2	27(3)	0.0000010 (1)
$\gamma_{3,1}(U)$	71.64(9)	0.000189(14)	(E2)	64.3(13)	0.0000029(2)
$\gamma_{4,3}(U)$	77.01(4)	0.000225~(6)	(M1)	9.86(20)	0.0000207~(4)
$\gamma_{6,4}(U)$	100.94(11)	0.00000099	(E2)	12.8(3)	0.000000072
$\gamma_{4,2}(U)$	103.680(5)	0.000536 (14)	[M1+0.47(1)%E2]	4.20(9)	0.000103~(2)
$\gamma_{7,4}(U)$	114(1)	$0.0000067 \ (13)$	${ m E1}$	0.0883(17)	0.0000062~(12)
$\gamma_{5,3}(U)$	121.22(5)	0.0000097(10)	(M1)	12.8(3)	0.0000070(7)
$\gamma_{4,1}(U)$	148.567(10)	0.001500(27)	[M1+2.8(1)%E2]	7.05(14)	0.0001863(8)
$\gamma_{4,0}(U)$	159.96(2)	0.0000179 (4)	(E2)	1.78(3)	0.00000645 (9)

6 References

M.S.FREEDMAN, F.WAGNER JR., D.W.ENGELKEMEIR, Phys. Rev. 88 (1952) 1155
(Beta-transition energy, gamma-ray energies)
F.ASARO, Thesis, Report UCRL-2180, Univ. California (1953)
(Alpha-transition energies)
K.N.SHLIAGIN, Izv. Akad. Nauk SSSR, Ser. Fiz. 20 (1956) 891
(Beta-transition energy)
H.L.SMITH, J. Inorg. Nucl. Chem. 17 (1961) 178
(Beta-transition probability)
B.S.DZHELEPOV, R.B.IVANOV, V.G.NEDOVESOV, Zh. Eksp. Teor. Fiz. 46 (1964) 1517
(Alpha-transition energies)
S.A.BARANOV, M.K.GADZHIEV, V.M.KULAKOV, V.M.MATINSKII, Yad. Fiz. 1 (1965) 557
(Alpha-transition energies)
I.A.BARANOV, V.V.BERDIKOV, A.S.KRIVOKHATSKII, A.N.SILANTEV, Izv. Akad. Nauk SSSR, Ser. Fiz. 29 (1965) 163

(Alpha-transition energies and probabilities, gamma-ray energies) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Yad. Fiz. 7 (1968) 727 (Alpha-transition energies) F.L.OETTING, Phys. Rev. 168 (1968) 1398 (Average beta-transition energy) I.Ahmad, A.M.Friedman, J.P.Unik, Nucl. Phys. A119 (1968) 27 (Alpha- and gamma transition energies, alpha/beta-branching) R.GUNNINK, R.J.MORROW, Report UCRL-51087, Univ. California (1971) (Gamma-ray energies) J.E.CLINE, R.J.GEHRKE, L.D.MCISAAC, Report ANCR-1069 (1972) (Gamma-ray energies and emission probabilities) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting on Transactinium Nucl. Data, Karlsruhe, Vol.III, IAEA-186, IAEA, Vienna (1976) 249 (Alpha-transition energies and probabilities) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (Gamma-ray energies and emission probabilities, alpha/beta-branching) H.UMEZAWA, T.SUZUKI, S.ICHIKAWA, J. Nucl. Sci. Technol. (Tokyo) 13 (1976) 327 (Gamma-ray energies and emission probabilities) R.VANINBROUKX, J.BROOTHAERTS, P.DE BIEVRE, B.DENECKE, M.GALLET, NEANDC(E)-192 Vol.III (1977) 55 (Alpha/beta-branching) J.K.DICKENS, J.S.EMERY, R.M.FREESTONE, T.A.LOVE, J.W.MCCONNELL, K.J.NORTHCUTT, R.W.PEELLE, Report ORNL/NUREG/TM-223, Oak Ridge National Laboratory (1978) (Gamma-ray emission probabilities) Y.A.ELLIS, Nucl. Data Sheets 23 (1978) 123 (Decay scheme) A.CESANA, G.SANDRELLI, V.SANGIUST, M.TERRANI, Energ. Nucl. (Milan) 26 (1979) 526 (Gamma-ray energies) S.F.MARSH, R.M.ABERNATHEY, R.J.BECKMAN, J.E.REIN, Int. J. Appl. Radiat. Isotop. 31 (1980) 629 (Half-life) P.DE BIEVRE, M.GALLET, R.WERZ, NEANDC(E)-242 Vol.III (1983) 53 (Half-life) K.M.GLOVER, Int. J. Appl. Radiat. Isotop. 35 (1984) 239 (Alpha-transition energies) S.K.AGGARWAL, A.R.PARAB, S.A.CHITAMBAR, H.C.JAIN, Phys. Rev. C31 (1985) 1885 (Half-life) A.A.DRUZHININ, V.N.POLYNOV, A.M.KOROCHKIN, E.A.NIKITIN, L.I.LAGUTINA, At. Energ. 59 (1985) 68 (Half-Lives of the Spontaneous Fission of 241Pu) R.G.HELMER, C.W.REICH, Int. J. Appl. Radiat. Isotop. 36 (1985) 117 (Gamma-ray energies and probabilities) H.WILLMES, T.ANDO, R.J.GEHRKE, Int. J. Appl. Radiat. Isotop. 36 (1985) 123 (Gamma-ray energies and emission probabilities) G.A.TIMOFEEV, V.V.KALYGIN, P.A.PRIVALOVA, At. Energ. 60 (1986) 343 (Half-life) V.P.CHECHEV, N.K.KUZMENKO, V.O.SERGEEV, K.P.ARTAMONOVA, Evaluated Decay Data of Transuranium Radionuclides, Handbook, Publishing House Energoatomizdat, Moscow (1988) (Evaluation of 241Pu decay data) J.L.PARKER, R.N.LIKES, A.GOLDMAN, Appl. Radiat. Isot. 40 (1989) 793 (Half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-transition energies) T.DRAGNEV, Appl. Radiat. Isot. 44 (1993) 613 (Gamma-ray energies) D.T.BARAN, Appl. Radiat. Isot. 45 (1994) 1177 (Gamma-ray emission probabilities) Y.A.Akovali, Nucl. Data Sheets 74 (1995) 461 (Decay scheme, multipolarities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data)

R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996) (Decay scheme, gamma-ray energies, multipolarities and level energies) P.DE BIEVRE, A.VERBRUGGEN, Proc. Int. Conf. on Nuclear Data for Science and Technology, 19-24 May 1997, Trieste, Italy (1997) 839 (Half-life) Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1 (r0 of 237U)O.DRAGOUN, A.SPALEK, M.RYSAVY, A.KOVALIK, E.A.YAKUSHEV, V.BRABEC, A.F.NOVGORODOV, N.DRAGOUNOVA, J.RIZEK, J. Phys. (London) G25 (1999) 1839 (Beta-transition energy) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilities) E.A.YAKUSHEV, V.M.GOROZHANKIN, O.DRAGOUN, A.KOVALIK, A.F.NOVGORODOV, M.RYSAVY, A.SHPALEK, Proc. 49th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Dubna (1999) 118 (Beta-transition energy) O.DRAGOUN, A.SPALEK, M.RYSAVY, A.KOVALIK, E.YAKUSHEV, V.BRABEC, J.FRANA, D.VENOS, Appl. Radiat. Isot. 52 (2000) 387 (Beta-transition energy) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) N.FOTIADES, G.D.JOHNS, R.O.NELSON, ET AL., Phys. Rev. C69 (2004) 024601 (Placement of 121.2 keV gamma transition) M.J.MARTIN, Nucl. Data Sheets 106 (2005) 89 (Evaluation of beta-transition energy, alpha/beta -branching) M.S.BASUNIA, Nucl. Data Sheets 107 (2006) 2323 (decay scheme, multipolarities)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	3.73	(3)	$ imes 10^5$ y
$Q^{'}_{lpha}$:	4984.5	(10)	keV
α	:	100		%
SF	:	5.5	(1)	$\times 10^{-4}~\%$

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,3} lpha_{0,2} lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 4600.1 \ (10) \\ 4756.2 \ (10) \\ 4858.2 \ (10) \\ 4902.3 \ (10) \end{array}$	$\begin{array}{c} 0.00084 \ (6) \\ 0.0304 \ (13) \\ 23.44 \ (17) \\ 76.53 \ (17) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(U)	5.9 - 21.6	8.40 (19)
e _{AK}	(U) KLL KLX KXY	71.78 - 80.95 88.15 - 98.43 104.51 - 115.59	0.00000188 (29) } } }
$ec_{1,0} L ec_{1,0} M ec_{1,0} N ec_{2,1} L$	(U) (U) (U) (U)	23.157 - 27.747 39.367 - 41.360 43.474 - 44.536 81.74 - 86.33	$17.1 (5) \\ 4.72 (14) \\ 1.28 (4) \\ 0.0209 (11)$

4 Photon Emissions

4.1 X-Ray Emissions

		$egin{array}{c} { m Energy} \ { m keV} \end{array}$		Photons per 100 disint.	
XL	(U)	11.62 - 21.73		8.71 (21)	
$XK\alpha_2$	(U)	94.666		0.0000180(13)	$K\alpha$
$XK\alpha_1$	(U)	98.44		0.0000288(21)	}
$XK\beta_3$	(U)	110.421	}		
$XK\beta_1$	(U)	111.298	}	0.0000104(8)	$\mathrm{K}eta_1'$
$ ext{XK}eta_5^{\prime\prime}$	(U)	111.964	}		
$XK\beta_2$	(U)	114.407	}		
$XK\beta_4$	(U)	115.012	}	0.00000355(27)	$\mathrm{K}eta_2'$
$XKO_{2,3}$	(U)	115.377	}		-

	$rac{\mathrm{Energy}}{\mathrm{keV}}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(U)$ $\gamma_{2,1}(U)$ $\gamma_{3,2}(U)$	$\begin{array}{c} 44.915 \ (13) \\ 103.50 \ (4) \\ 158.80 \ (8) \end{array}$	$\begin{array}{c} 23.5 \ (7) \\ 0.0313 \ (16) \\ 0.00084 \ (6) \end{array}$	E2 E2 E2	$\begin{array}{c} 610 \ (12) \\ 11.36 \ (23) \\ 1.83 \ (4) \end{array}$	$\begin{array}{c} 0.0384 \ (8) \\ 0.00253 \ (12) \\ 0.000298 \ (20) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

F.Asaro, Thesis, Report UCRL-2180, Univ. California (1953)

(Alpha-particle energies and emission probabilities)

J.P.BUTLER, M.LOUNSBURY, J.MERRITT, Can. J. Chem. 34 (1956) 253

(Half-life)

J.P.Butler, T.A.Eastwood, T.L.Collins, M.E.Jones, F.M.Rourke, R.P.Schuman, Phys. Rev. 103 (1956) 634

 $({\rm Half\text{-}life},\,{\rm SF}\,\,{\rm half\text{-}life})$

J.P.HUMMEL, Report UCRL-3456, Univ. California (1956)

(Alpha-particle energies and emission probabilities)

L.M.Kondratev, G.I.Novikova, Y.P.Sobolev, L.L.Goldin, Zh. Eksp. Teor. Fiz. 31 (1956) 771; Sov. Phys. - JETP 4 (1956) 645

(Alpha-particle energies and emission probabilities)

J.F.MECH, H.DIAMOND, M.H.STUDIER, P.R.FIELDS, A.HIRSCH, C.M.STEPHENS, R.F.BARNES, D.J.HENDERSON, J.R.HUIZENGA, Phys. Rev. 103 (1956) 340

(Half-life, SF half-life)

M.H.STUDIER, A.HIRCH, Priv. Comm. (1956), cited in J.F.Mech et al., Phys. Rev. 103 (1956) 340 (1956) (SF half-life)

V.A.DRUIN, V.P.PERELYGIN, G.I.KHLEBNIKOV, Sov. Phys. - JETP 13 (1961) 913

(SF half-life)

L.Z.MALKIN, I.D.ALKHAZOV, A.S.KRIVOKHATSKY, K.A.PETRZHAK, Sov. J. At. Energy 15 (1963) 851; At. Energ. 15 (1964) 158

(SF half-life)

J.A.BEARDEN, Rev. Mod. Phys. 39 (1967) 78

(X-ray energies)

S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Nucl. Phys. 7 (1968) 442

(Alpha-particle energies)

C.E.BEMIS JR., J.HALPERIN, R.EBY, J. Inorg. Nucl. Chem. 31 (1969) 599 (Half-life)

R.W.DURHAM, F.MOLSON, Can. J. Phys. 48 (1970) 716

(Half-life)

M.SCHMORAK, C.E.BEMIS JR., M.J.ZENDER, N.B.GOVE, P.F.DITTNER, Nucl. Phys. A178 (1972) 410 (Gamma-ray energies and emission probabilities)

L.S.BULYANITSA, A.M.GEIDELMAN, Y.S.EGOROV, L.M.KRIZHANSKII, A.A.LIPOVSKII, L.D.PREOBRAZHENSKAYA, A.V.LOVTSYUS, Y.V.KHOLNOV, Bull. Rus. Acad. Sci. Phys. 40 (1976) 42 (Half-life)

S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Sov. At. Energy 41 (1976) 987

(Alpha-emission probabilities)

D.W.OSBORNE, H.E.FLOTOW, Phys. Rev. C14 (1976) 1174 (Half-life)

J.W.MEADOWS, Report BNL-NCS-24273, Brookhaven National Laboratory (1978) 10 (Half life, SF half life)

(Half-life, SF half-life)

S.K.Aggarwal, S.N.Acharya, A.R.Parab, H.C.Jain, Phys. Rev. C20 (1979) 1135 (Half-Life)

N.A.KHAN, H.A.KHAN, K.GUL, M.ANWAR, G.HUSSAIN, R.A.AKBAR, A.WAHEED, M.S.SHAIKH, Nucl. Instrum. Methods 173 (1980) 163 (SF half-life)

A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Evaluated decay data)

R.VANINBROUKX, G.BORTELS, B.DENECKE, Int. J. Appl. Radiat. Isotop. 37 (1986) 1167

(Alpha-, gamma-ray emission probabilities)

YU.A.SELITSKY, V.B.FUNSHTEIN, V.A.YAKOVLEV, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Baku (1988) 131

(SF half-life)

YU.S.POPOV, I.B.MAKAROV, D.KH.SRUROV, E.A.ERIN, Radiokhimiya 32 (1990) 2; Sov. J. Radiochemistry 32 (1990) 425

(MX-, LX- ray relative emission probabilities)

A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205

 $({\it Alpha-emission\ energies})$

M.-C.LÉPY, B.DUCHEMIN, J.MOREL, Nucl. Instrum. Methods Phys. Res. A353 (1994) 10

(LX-ray energies and emission probabilities)

E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527

(Atomic data)

E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999)

(KX-ray energies and relative emission probabilities)

E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595

(X-ray and Auger electron emission probabilities, EMISSION code)

N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (SF half-life)

F.E.CHUKREEV, V.E.MAKARENKO, M.J.MARTIN, Nucl. Data Sheets 97 (2002) 129

(Decay Scheme, 238U level energies, gamma-ray multipolarities)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

M.-M.BÉ, V.CHISTÉ, C.DULIEU, E.BROWNE, V.CHECHEV, N.KUZMENKO, R.HELMER, A.NICHOLS, E.SCHÖNFELD, R.DERSCH, in Table of Radionuclides (Vol.2 - A = 151 to 242), Monographie BIPM-5, Bureau International des Poids et Mesures, Sevres (2004)

(242Pu Decay Data Evaluation)

V.P.CHECHEV, Proc. Int. Conf. on Nuclear Data for Science and Technology, 26 Sept.-1 Oct. 2004, Santa Fe, New Mexico; AIP Conf. Proc. 769 (2005)

(242Pu Decay Data Evaluation)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	432.6	(6)	У
Q_{lpha}	:	5637.82	(12)	keV
α	:	100		%
SF	:	3.6	(9)	$\times 10^{-10}~\%$

2 α Emissions

	Energy keV	Probability × 100
$\alpha_{0,36}$	4757.58 (13)	0.00004 (3)
$\alpha_{0,34}$	4800.99 (13)	0.000086
$\alpha_{0,33}$	4834.15(13)	0.0007
$\alpha_{0,32}$	4888.98(15)	
$\alpha_{0,30}$	4956.06(15)	
$\alpha_{0,29}$	4961.63(14)	
$\alpha_{0,28}$	4963.83(13)	
$\alpha_{0,27}$	5007.07(14)	0.0001
$\alpha_{0,25}$	$5055.36\ (13)$	
$\alpha_{0,24}$	5065.97(15)	0.00011
$\alpha_{0,23}$	5092.06(13)	~ 0.0004
$\alpha_{0,22}$	5099.08(13)	~ 0.0004
$\alpha_{0,21}$	5106.72(16)	
$\alpha_{0,20}$	$5117.21\ (13)$	0.0004
$\alpha_{0,19}$	5132.8(2)	
$\alpha_{0,18}$	$5155.12\ (13)$	0.0007
$\alpha_{0,17}$	5179.35(13)	0.0003
$\alpha_{0,16}$	5181.63(13)	0.0009
$\alpha_{0,15}$	5190.17(23)	0.0006
$\alpha_{0,14}$	5217.26(13)	
$\alpha_{0,13}$	5225.08(13)	0.0013
$\alpha_{0,12}$	5232.6(3)	
$\alpha_{0,11}$	5244.13(13)	0.0022~(3)
$lpha_{0,9}$	5280.99(13)	0.0005
$lpha_{0,8}$	5321.87(13)	0.014(3)
$lpha_{0,6}$	$5388.25\ (13)$	1.66(3)
$lpha_{0,5}$	5416.28(13)	~ 0.01
$\alpha_{0,4}$	5442.86(12)	13.23(10)
$lpha_{0,3}$	5469.47(12)	< 0.04
$\alpha_{0,2}$	5485.56(12)	84.45(10)
$\alpha_{0,1}$	5511.46(12)	0.23(1)
$lpha_{0,0}$	5544.11 (12)	0.38(1)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e _{AL}	(Np)	6.04 - 13.52	33.4 (17)
еак	(Np)		0.000114(16)
	KLĹ	73.50 - 83.13	}
	KLX	90.36 - 97.28	}
	KXY	107.10 - 114.58	}
$ec_{2,1 L}$	(Np)	3.92 - 8.73	14(5)
$ec_{1,0 L}$	(Np)	10.769 - 15.590	15.9(21)
$ec_{3,1 L}$	(Np)	20.28 - 25.09	0.31~(7)
$ec_{2,1}$ M	(Np)	20.606 - 22.681	3.7~(5)
$ec_{4,2}$ L	(Np)	20.99 - 25.81	8.8(12)
$ec_{1,0}$ M	(Np)	27.46 - 29.53	4.0(6)
$ec_{1,0 N}$	(Np)	31.70 - 32.79	1.08(16)
$ec_{6,4 L}$	(Np)	33.13 - 37.95	0.87(11)
$ec_{3,1 M}$	(Np)	36.97 - 39.04	0.076~(17)
$ec_{2,0 L}$	(Np)	37.114 - 41.930	30.2(22)
$ec_{4,2}$ M	(Np)	37.68 - 39.76	2.3~(4)
$ec_{3,1 N}$	(Np)	41.2 - 42.3	0.021~(5)
$ec_{4,2}$ N	(Np)	41.92 - 43.02	0.65~(9)
$ec_{6,4 M}$	(Np)	49.82 - 51.90	0.228(30)
$ec_{3,0 L}$	(Np)	53.5 - 58.3	0.0232~(4)
$ec_{2,0 M}$	(Np)	53.802 - 55.877	8.12(25)
$ec_{6,4 N}$	(Np)	54.06 - 55.16	0.062~(8)
$ec_{6,2 L}$	(Np)	76.54 - 81.36	0.225~(5)
$ec_{6,2}$ M	(Np)	93.23 - 95.31	0.0625~(16)
$ec_{6,2 N}$	(Np)	97.47 - 98.57	0.0171~(4)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Np)	11.89 - 22.2		37.66(17)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Np) (Np)	$97.069 \\ 101.059$		$\begin{array}{c} 0.001134 \ (30) \\ 0.00181 \ (5) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	$\begin{array}{c} (\mathrm{Np}) \\ (\mathrm{Np}) \\ (\mathrm{Np}) \end{array}$	$113.303 \\ 114.234 \\ 114.912$	} } }	0.000658(21)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	$\begin{array}{c} (\mathrm{Np}) \\ (\mathrm{Np}) \\ (\mathrm{Np}) \end{array}$	$117.463 \\ 117.876 \\ 118.429$	} } }	0.000226 (8)	$\mathrm{K}\beta_2'$

	Energy	$P_{\gamma+ce}$	Multipolarity	$lpha_{ m T}$	P_{γ}
	keV	× 100			× 100
$\gamma_{2,1}(Np)$	26,3446,(2)	21(5)	E1 anomalous	8(2)	2.31(8)
$\gamma_{2,1}(\mathbf{N}\mathbf{p})$	32.183	0.0174(4)	Lif anomaious	0 (-)	0.0174(4)
$\gamma = 1, 1 (1 \cdot p)$ $\gamma_1 o(Np)$	33.1963(3)	21.3(30)	M1+1.66%E2	175(24)	0.1215(28)
$\gamma_{1,0}(\mathbf{N}\mathbf{p})$ $\gamma_{2,1}(\mathbf{N}\mathbf{p})$	$42\ 704\ (5)$	0.42(9)	$(M1 + \approx 1.7\% E2)$	≈ 75 (7)	0.0210(20) 0.0055(11)
$\gamma_{3,1}(\mathbf{Np})$	43.420(3)	12.1(16)	M1+16.6%E2	180(23)	0.0669(29)
$\gamma_{4,2}(1,p)$ $\gamma_{14,10}(Np)$	51 01 (3)	0.000046(21)	E1	0.753(11)	0.00026(12)
$\gamma_{14,10}(\mathbf{Np})$	55.56(2)	1.19(16)	M1+17.5%E2	65(6)	0.000020(12) 0.0181(18)
$\gamma_{0,4}(\mathbf{P})$	57.85(5)	1110 (10)	111 11.0/012	00 (0)	0.0101(10) 0.0052(15)
$\gamma = 1, 2$ (Np) $\gamma = 0$ (Np)	595409(1)	77.6(25)	E1 anomalous	1.16(7)	35.92(17)
$\gamma_{2,0}(\mathbf{N}\mathbf{p})$	$64\ 83\ (2)$	0.000196(28)	E1	0.400(8)	0.0014(2)
$\gamma_{14,9}(\mathbf{N}\mathbf{p})$	67.50(2)	0.000100(20) 0.013(4)	(M1+17%E2)	29(6)	0.00011(2) 0.00042(10)
$\gamma_{8,6}(\mathbf{Np})$	69.76(3)	0.019(4) 0.0039(5)	(E1)	0.330(7)	0.00042(10) 0.0029(4)
$\gamma_{4,1}(\mathbf{Np})$	75,90,(1)	0.0039(0)	(E1)	53.1(11)	0.0025 (4)
$\gamma_{3,0}(Np)$	96.79(3)	0.002	$(\mathbf{D}\mathbf{Z})$	00.1 (11)	0.0000
$\gamma_{5,1}(Np)$	98.97(2)	0.000047(10) 0.329(10)	E9	15.2(3)	0.000047 (10) 0.0203 (4)
$\gamma_{6,2}(Np)$	102.98(2)	0.025(10) 0.0218(5)	E1	0.1189(24)	0.0205(4) 0.0195(4)
$\gamma_{4,0}(\mathbf{N}\mathbf{p})$	102.30(2) 106.42(5)	0.0210(0)		0.1105 (24)	0.00015
$\gamma = 1,3$ (Np)	100.42(0) 109.70(7)	0.000051	$[\mathbf{E}2]$	9 11 (19)	0.000019
720,13(Np)	100.10(1) 120.36(8)	0.000001		5.44 (15)	0.0000045
$\gamma_{21,13}(\mathbf{N}\mathbf{p})$	120.00(0) 123.05(1)	0.00675(30)	E9	5.75(12)	0.0000049
$\gamma_{8,4}(Np)$	125.00(1) 125.20(2)	0.00073(30)	(E1)	0.70(12)	0.00100(4) 0.0041(2)
$\gamma_{6,1}(\mathbf{N}\mathbf{p})$	129.30(2) 139.44(8)	0.000000(20)	[E2]	0.233(0) 3.37(7)	0.0041(2) 0.000053(11)
$\gamma_{29,22}(Np)$	133.44(0) 146.55(3)	0.000023(5)	$[\mathbf{E}2]$	2.31(1) 2.73(6)	0.00000000000000000000000000000000000
$\gamma_{11,6}(\mathbf{Np})$	140.05(3) 150.04(3)	0.00172(5)	[F1]	2.73(0) 0.107(4)	0.00040(1) 0.00073(5)
$\gamma_{8,3}(\mathbf{N}\mathbf{p})$	150.04(3) 154.27(20)	0.000081(0)	[151] [M1]	7.06(14)	0.000015(5)
726,15(Np)	154.27(20) 150.26(20)	0.000004	[[VII] [F]]	0.171(4)	0.00000000000000000000000000000000000
$\gamma_{29,20}(Np)$	161.54(10)	0.0000010(0)	[151] [M1]	6.20(12)	0.0000014(5)
$\gamma_{24,13}(Np)$	101.54(10) 164.61(2)	0.000011 0.000178(0)		0.20(12) 1.70(4)	0.0000013
$\gamma_{9,4}(\mathbf{N}\mathbf{p})$	104.01(2) 165.81(6)	0.000178(9)	\mathbb{D}^2 [M1 + \mathbb{F}^2]	1.10(4)	0.000000(3)
$\gamma_{13,6}(Np)$	100.01(0) 160.56(2)	0.00011(3)		3.7 (22) 1 51 (2)	0.000023(1) 0.00017(1)
$\gamma_{18,8}(Np)$	109.30(3) 175.07(4)	0.000427(20)	E2	1.01(3) 0.127(2)	0.00017(1)
$\gamma_{11,5}(Np)$	175.07(4)	0.000021(3)		0.137(3)	0.000018(3)
$\gamma_{-1,7}(Np)$	190.4 101.06 (4)	0.0000415(20)	[[[]]]	0.029 (10)	0.0000022(3)
$\gamma_{25,11}(Np)$	191.90(4) 106 76(8)	0.0000415(20)	[E2] [F1]	0.952(19) 0.1045(21)	0.0000213(10)
$\gamma_{29,18}(Np)$	190.70(0) 201.70(14)	0.00000034		0.1043(21)	0.00000049
$\gamma = 1.8$ (Np)	201.70(14) 204.06(6)	0.0000008 0.00000226 (7)	[F 1]	0.0060.(10)	0.0000008
$\gamma_{18,7}(\text{Np})$	204.00(0)	0.00000220(7)	[Ľ⊥] M1 + 9.2007 E9	0.0900(19)	0.00000200(0)
$\gamma_{9,2}(Np)$	206.003 (23)	0.00313(0) 0.00011(5)	M1+2.30/0E2 [M1+E2]	2.98(0) 1.5(10)	0.000780(9)
$\gamma_{13,4}(Np)$	221.40(3)	0.00011(3)	[M1] + E2	1.0(10) 2.22(5)	0.0000434(6)
$\gamma_{26,10}(Np)$	232.01(3)	0.0000100(4)		2.22(3)	0.00000462(9)
$\gamma_{9,1}(Np)$	204.40 (4) 246 72 (10)	0.0000000 (ð) 0.0000702 (99)	1V12 [N/[1]	0.24(11) 1 99(4)	0.000000001 (8) 0.00000244 (7)
7/26,9(1NP)	240.73 (10) 248 52 (2)	0.00000105(22)	[1VII] [Tr1]	1.00 (4)	$0.00000244 (1) \\ 0.00000146 (2)$
$\gamma_{13,3}(Np)$	240.02(3)	0.0000120 (3)	[E1] [E9]	0.0012 (12)	0.0000140(3)
$\gamma_{22,7}(Np)$	201.00(1)	0.0000109(8)	$[\mathbf{E}\mathbf{Z}]$	0.312(0)	0.00000129(0)
$\gamma_{13,2}(Np)$	204.00(3)	0.00018(1)	[1V11 + EZ] E1 + 10 407 M2	0.9(1)	0.0000943 (12)
$\gamma_{9,0}(Np)$	207.04(4)	0.000055(2)	L1+19.470MIZ	1.00 (0)	0.0000208 (0)
$\gamma_{-1,9}(Np)$	270.03 (15) 971 54				0.0000005 (2)
$\gamma_{-1,10}(\mathrm{Np})$	271.54				0.00000144(5)

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{20} \epsilon(Np)$	275.77(8)	0.000011 (4)	[M1+E2]	0.8(6)	0.00000632 (10)
$\gamma_{22,0}(1,p)$ $\gamma_{22,0}(Np)$	278.04(15)	0.0000270(8)	[M1]	1.35(3)	0.00000115(3)
$\gamma_{27,9}(1, p)$ $\gamma_{12,1}(Np)$	291.3(2)	0.00000318(8)	[E1]	0.0430(9)	0.00000305(8)
$\gamma_{15,1}(1,p)$ $\gamma_{16,2}(Np)$	292.77(6)	0.0000173(4)	[E2]	0.215(4)	0.0000142(3)
$\gamma_{20,5}(Np)$	304.21(20)	0.00000966(21)	[E 1]	0.0391(8)	0.00000093(2)
$\gamma_{20,3}(1,p)$ $\gamma_{16,2}(Np)$	309.1(3)	0.00000210(31)	[E1]	0.0377(8)	0.0000020(3)
$\gamma_{225}(Np)$	322.56(3)	0.000257(7)	(M1+26.5%E2)	0.702(12)	0.000151(4)
$\gamma_{22,3}(1, \mathbf{p})$ $\gamma_{-1,11}(\mathbf{Np})$	324.69	0.000018(3)	(111 + 2010 / 0122)	01102 (12)	0.000018(3)
$\gamma_{-1,12}(Np)$	329.69	0.0000011(2)			0.0000011(2)
$\gamma = 1, 12 (\text{Np})$ $\gamma_{14,0} (\text{Np})$	332.35(3)	0.000172(5)	$\mathrm{E2}$	0.147(3)	0.000150(4)
$\gamma_{16,1}(Np)$	335.37(3)	0.00084(4)	M1+17.3%E2	0.69(8)	0.000496(7)
$\gamma_{17,1}(Np)$	337.7(2)	0.00000556(10)	(E2)	0.140(3)	0.00000488(9)
$\gamma_{-1,13}(Np)$	350.71	0.00000139(5)		- (-)	0.00000139(5)
$\gamma_{20.3}(Np)$	358.25(20)	0.00000133(5)	[E1]	0.0275(6)	0.00000129(5)
$\gamma_{16.0}(Np)$	368.62(3)	0.000347(9)	(M1)	0.622(12)	0.000214(5)
$\gamma_{17.0}(Np)$	370.94(3)	0.000080(4)	M1 + 16% E2	0.53(7)	0.0000520(8)
$\gamma_{-1.14}(Np)$	374.83	0.00000313(5)			0.00000313(6)
$\gamma_{22.3}(Np)$	376.65(3)	0.000225(9)	(M1)	0.586(12)	0.000137(3)
$\gamma_{23,3}(Np)$	383.81(3)	0.000037(7)	[M1+E2]	0.33(23)	0.0000281(6)
$\gamma_{-1.15}(Np)$	389.0(3)	0.0000005			0.00000049
$\gamma_{-1,16}(Np)$	390.61(5)	0.00000573(8)			0.00000573(10)
$\gamma_{29.7}(Np)$	400.78 (10)	0.00000018(5)	[M1+E2]	0.29(21)	0.00000014(3)
$\gamma_{30,7}(Np)$	406.35(15)	0.00000175(28)	[M1+E2]	0.28(20)	0.00000137(5)
$\gamma_{-1,17}(Np)$	411.27	0.0000018(4)			0.0000018(4)
$\gamma_{22,1}(Np)$	419.33(4)	0.000036(5)	[M1+E2]	0.26(18)	0.0000284(4)
$\gamma_{23,1}(Np)$	426.47(4)	0.000039(9)	[M1+E2]	0.25(18)	0.000031(6)
$\gamma_{-1,18}(Np)$	429.9(1)	0.00000109(5)			0.00000109(5)
$\gamma_{-1,19}(Np)$	440.63	0.00000056 (3)			0.00000056 (3)
$\gamma_{-1,20}(\rm Np)$	442.81(7)	0.00000331 (7)			0.00000331 (8)
$\gamma_{35,13}(\rm Np)$	446.15~(6)	0.00000011 (2)			0.00000011 (2)
$\gamma_{22,0}(\rm Np)$	452.6(2)	0.00000251 (7)	[E2]	0.0635~(13)	0.00000236 (7)
$\gamma_{26,2}(\mathrm{Np})$	454.66(8)	0.0000129~(2)	[M1]	0.351~(7)	$0.00000953\ (12)$
$\gamma_{23,0}(\rm Np)$	459.68(10)	0.0000043~(5)	[M1+E2]	0.20(14)	0.00000355~(7)
$\gamma_{29,5}(\mathrm{Np})$	462.34(8)	0.0000012	[M1+E2]	0.20(14)	0.000001
$\gamma_{30,5}(\mathrm{Np})$	468.12(15)	0.0000032~(4)	[M1+E2]	0.19(14)	0.00000269~(6)
$\gamma_{-1,21}(\rm Np)$	486.05	0.00000105~(6)			0.00000105~(6)
$\gamma_{28,4}(Np)$	487.13(4)	0.00000080~(6)	[M1]	0.291~(6)	0.00000062~(5)
$\gamma_{-1,22}(Np)$	494.39	0.0000010 (2)			0.00000010 (2)
$\gamma_{-1,23}(\rm Np)$	501.39	0.00000014(2)			0.00000014(2)
$\gamma_{27,1}(Np)$	512.5(3)	0.00000210 (41)	[E1]	0.0133~(3)	0.0000021 (4)
$\gamma_{26,0}(\rm Np)$	514.0(5)	0.0000039(2)	[E1]	0.0132	0.0000038(2)
$\gamma_{30,3}(Np)$	522.06(15)	0.00000113(11)	[M1+E2]	0.14(10)	0.0000099(5)
$\gamma_{-1,24}(Np)$	525.14	0.0000016(3)	r 7		0.0000016(3)
$\gamma_{38,13}(\rm Np)$	529.17(20)	0.00000072(5)	[E2]	0.0437(9)	0.0000069(5)
$\gamma_{-1,25}(\rm Np)$	532.44	0.0000008 (2)			0.0000008(2)
$\gamma_{27,0}(Np)$	546.12(6)	0.0000025(3)	[E1]	0.0117(2)	0.0000025(3)
$\gamma_{-1,26}(Np)$	548.15	0.0000005(2)			0.0000005(2)
$\gamma_{-1,27}(Np)$	555.25	0.00000009(2)			0.00000009(2)

	Energy	$P_{\gamma+ce}$ ~ 100	Multipolarity	$lpha_{ m T}$	P_{γ}
	KC V	~ 100			× 100
$\gamma_{33.6}(Np)$	563.46(2)	0.000000460(21)	[E2]	0.0378(8)	0.00000044(2)
$\gamma_{36.8}(Np)$	573.94 (20)	0.00000142(12)	[M1+E2]	0.11(8)	0.00000128(5)
$\gamma_{-1,28}(Np)$	582.89	0.00000101 (6)			0.00000101(6)
$\gamma_{31.2}(Np)$	586.59(20)	0.00000128(5)	[E2]	0.0346(7)	0.00000124(5)
$\gamma_{28,0}(Np)$	590.09 (4)	0.00000283(6)	[E1]	0.0101(2)	0.00000280(6)
$\gamma_{34.6}(Np)$	597.19(2)	0.0000080(5)	[M1+E2]	0.10(7)	0.00000729(11)
$\gamma_{-1,29}(Np)$	600.26	0.00000022 (3)			0.0000022(3)
$\gamma_{33,4}(Np)$	619.01(2)	0.000065(5)	[M1+E2]	0.09(7)	0.000060(2)
$\gamma_{38,8}(Np)$	627.18(20)	0.00000056(4)	[M1+E2]	0.09(6)	0.00000051(2)
$\gamma_{32,1}(Np)$	632.93(15)	0.00000124(5)			0.00000124(5)
$\gamma_{-1,30}(Np)$	636.9	0.00000021(3)			0.0000021(3)
$\gamma_{36,6}(Np)$	641.32(4)	0.0000076(5)	[M1+E2]	0.08(6)	0.00000704(10)
$\gamma_{34,4}(Np)$	652.73(2)	0.0000410 (25)	[M1+E2]	0.08(6)	0.0000376(9)
$\gamma_{33,2}(Np)$	662.40(2)	0.00045(10)	(E0 + M1 + E2)	0.23(5)	0.000367(6)
$\gamma_{32,0}(Np)$	666.2(2)	0.0000095(7)			0.0000095(7)
$\gamma_{36,5}(Np)$	669.83(2)	0.00000051(7)	[E1]	0.0080(2)	0.0000051(7)
$\gamma_{37,5}(Np)$	675.78(13)	0.00000091(7)	[E2,M1]	0.07(5)	0.0000085(5)
$\gamma_{34,3}(Np)$	679.79(2)	0.00000334(8)	[E1]	0.00776(16)	0.00000331(8)
$\gamma_{33,1}(Np)$	688.72(4)	0.0000325(6)	[E1]	0.00758(16)	0.0000323(6)
$\gamma_{-1,31}(Np)$	693.46	0.00000354(7)			0.00000354(8)
$\gamma_{34,2}(Np)$	696.14(2)	0.0000055 (3)	[M1+E2]	0.07~(5)	0.00000517 (8)
$\gamma_{-1,32}(Np)$	709.42(5)	0.00000641(18)			0.00000641 (19)
$\gamma_{-1,33}(Np)$	712.5	0.0000020 (3)			0.0000020 (3)
$\gamma_{33,0}(Np)$	721.96(2)	0.000197~(5)	[E1]	0.0070(2)	0.000196~(5)
$\gamma_{37,3}(Np)$	729.72(15)	0.00000151~(6)	[M1]	0.099(2)	0.00000137~(5)
$\gamma_{-1,34}(Np)$	731.44	0.00000046~(4)			0.00000046~(4)
$\gamma_{-1,35}(Np)$	736.68	0.00000128(5)			0.00000128~(5)
$\gamma_{35,1}(Np)$	737.34(5)	0.00000794~(8)			0.00000794~(11)
$\gamma_{-1,36}(Np)$	740.51	0.00000019 (3)			0.00000019 (3)
$\gamma_{-1,37}(Np)$	742.9(3)	0.0000035			0.0000035
$\gamma_{-1,38}(Np)$	745.02	0.00000009(2)			0.00000009 (2)
$\gamma_{-1,39}(Np)$	750.39	0.00000006~(2)			0.00000006 (2)
$\gamma_{34,0}(Np)$	755.68(2)	0.00000789(11)	[E1]	0.0064(1)	0.00000784~(11)
$\gamma_{-1,40}(Np)$	759.5(1)	0.00000181~(5)			0.00000181~(5)
$\gamma_{-1,41}(Np)$	763.31	0.0000023(2)			0.0000023~(2)
$\gamma_{36,1}(Np)$	766.62~(4)	0.00000504~(6)	[E1]	0.00623~(12)	0.00000501~(6)
$\gamma_{35,0}(Np)$	770.57(10)	0.00000481(5)			0.00000481 (7)
$\gamma_{37,1}(Np)$	772.57(12)	0.00000303(5)	[M1]	0.0847~(17)	0.00000279 (4)
$\gamma_{-1,42}(Np)$	774.67	0.00000011 (2)			0.00000011 (2)
$\gamma_{-1,43}(Np)$	777.39	0.0000015~(2)			0.0000015(2)
$\gamma_{-1,44}(Np)$	780.53	0.0000031 (2)			0.0000031 (2)
$\gamma_{-1,45}(\rm Np)$	782.2(5)	0.0000015			0.0000015
$\gamma_{39,3}(\rm Np)$	786.00(15)	0.00000062(0)			0.0000062
$\gamma_{-1,46}(\rm Np)$	789.0(3)	0.00000042~(6)			0.0000042~(6)
$\gamma_{-1,47}(\rm Np)$	792.6	0.0000003 (1)			0.0000003 (1)
$\gamma_{-1,48}(Np)$	794.92(20)	0.0000094			0.00000094
$\gamma_{39,2}(Np)$	801.94(20)	0.00000123(7)			0.00000123 (7)
$\gamma_{-1,49}(\rm Np)$	803.19	0.0000016 (3)			0.0000016 (3)

	$\frac{\rm Energy}{\rm keV}$	$\mathbf{P}_{\gamma+\mathrm{ce}}$ $\times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{37.0}(Np)$	805.77 (12)	0.00000033	[M1,E2]	0.05(3)	0.00000031
$\gamma_{-1.50}(\text{Np})$	811.9 (3)	0.0000063 (6)			0.0000063 (6)
$\gamma_{-1.51}(\text{Np})$	819.33	0.00000043(6)			0.00000043 (6)
$\gamma_{-1.52}(Np)$	822.21	0.00000024(6)			0.00000024 (6)
$\gamma_{39.1}(Np)$	828.60 (12)	0.00000021 (4)			0.00000021 (4)
$\gamma_{-1,53}(Np)$	835.21	0.0000003 (1)			0.00000003 (1)
$\gamma_{-1,54}(Np)$	838.88	0.0000004(1)			0.00000004(1)
$\gamma_{-1,55}(Np)$	841.14	0.0000010(3)			0.0000010 (3)
$\gamma_{-1,56}(Np)$	843.7	0.0000097(8)			0.00000097 (8)
$\gamma_{-1,57}(Np)$	846.86	0.0000016 (3)			0.0000016 (3)
$\gamma_{-1,58}(Np)$	847.4(5)	0.0000003			0.0000027 (3)
$\gamma_{-1,59}(Np)$	851.6(10)	0.00000041~(6)			0.00000041~(6)
$\gamma_{-1,60}(Np)$	854.95	0.0000023~(4)			0.0000023~(4)
$\gamma_{-1,61}(Np)$	856.26	0.00000010 (3)			0.0000010 (3)
$\gamma_{40,2}(\mathrm{Np})$	861.34(20)	0.0000008			0.0000008 (3)
$\gamma_{39,0}(\mathrm{Np})$	861.80(12)	0.00000061~(6)			0.00000061~(6)
$\gamma_{-1,62}(\rm Np)$	870.63	0.00000150 (3)			0.00000150 (4)
$\gamma_{-1,63}(\rm Np)$	882	0.0000004(1)			0.00000004 (1)
$\gamma_{-1,64}(\rm Np)$	886.53	0.0000015 (3)			0.0000015 (3)
$\gamma_{40,1}(\mathrm{Np})$	887.68(20)	0.0000033~(6)			0.0000033~(6)
$\gamma_{-1,65}(\rm Np)$	890.38	0.0000032~(5)			0.0000032 (5)
$\gamma_{-1,66}(\rm Np)$	894.47	0.0000003 (1)			0.0000003 (1)
$\gamma_{-1,67}(\rm Np)$	898.17	0.0000006(2)			0.0000006 (2)
$\gamma_{-1,68}(Np)$	902.61	0.00000033 (3)			0.0000033 (3)
$\gamma_{-1,69}(Np)$	909.95	0.0000005(1)			0.00000005 (1)
$\gamma_{-1,70}(Np)$	912.4	0.0000028(3)			0.0000028(3)
$\gamma_{40,0}(\mathrm{Np})$	920.88(20)	0.0000019(3)			0.0000019(3)
$\gamma_{-1,71}(\mathrm{Np})$	928.95	0.0000009(2)			0.0000009(2)
$\gamma_{-1,72}(Np)$	939.2	0.0000005(1)			0.0000005(1)
$\gamma_{41,0}(\mathrm{Np})$	946.06	0.00000010(3)			0.00000010(2)
$\gamma_{-1,73}(Np)$	952.72	0.0000003(1)			0.0000003(1)
$\gamma_{-1,74}(\mathrm{Np})$	955.91	0.0000060(5)			0.0000060(5)
$\gamma_{42,0}(Np)$	962.19	0.0000004(1)			0.0000004(1)
$\gamma_{-1,75}(Np)$	969.09	0.0000003(1)			0.0000003(1)
$\gamma_{-1,76}(Np)$	980.84	0.0000003(1)			0.0000003(1)
$\gamma_{43,0}(Np)$	1014.33	0.0000010(2)			0.0000010(2)

5 References

J.K.BELING, J.O.NEWTON, B.ROSE, Phys. Rev. 86 (1952) 797
(Gamma-ray emission probabilities)
J.F.TURNER, Phil. Mag. 46 (1955) 687
(Gamma-ray emission probabilities)
H.JAFFE, T.O.PASSELL, C.I.BROWNE, I.PERLMAN, Phys. Rev. 97 (1955) 142
(Gamma-ray emission probabilities)
R.B.DAY, Phys. Rev. 97 (1955) 689
(Gamma-ray emission probabilities)
J.M.HOLLANDER, W.G.SMITH, J.O.RASMUSSEN, Phys. Rev. 102 (1956) 1372
(Gamma-ray emission probabilities)
L.L.GOLDIN, G.I.NOVIKOVA, E.F.TRETYAKOV, Conf. Acad. Sci. USSR Moscow (1956) 226

(Energies of alpha-particles, alpha-particle emission probabilities) S.ROSENBLUM, M.VALADARES, J.MILSTED, J. Phys. Radium 18 (1957) 609 (Energies of alpha-particles) L.B.MAGNUSSON, Phys. Rev. 107 (1957) 161 (Gamma-ray energies and emission probabilities) P.S.SAMOILOV, Columbia Tech. Transl. (Izv. Akad. Nauk SSSR, Ser. Fiz. 23 (1959) 1416) 23 (1960) 1401 (Gamma-ray energy, gamma transition probabilities and multipolarities) F.Asaro, F.S.Stephens, J.M.Hollander, I.Perlman, Phys. Rev. 117 (1960) 492 (Anomalous electric dipole gamma-ray transitions) C.F.LEANG, Compt. Rend. Acad. Sci. (Paris) Ser. B 255 (1962) 3155 (Energies of alpha-particles) J.L.WOLFSON, J.H.PARK, Can. J. Phys. (also Erratum Can. J. Phys. 48(1970)2782) 42 (1964) 1387 (Gamma-ray energies and multipolarities) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKY, Nucl. Phys. 56 (1964) 252 (Alpha-particle energies and emission probabilities) W.MICHAELIS, Z. Phys. 186 (1965) 42 (Alpha particle energies and emission probabilities) G.BERTOLINI, F.CAPPELLANI, G.RESTELLI, Nucl. Instrum. Methods 32 (1965) 86 (Gamma-ray emission probabilities) L.D.MCISAAC, Report IDO-17052 (1965) 31 (Gamma-ray emission probabilities) W.YAMAZAKI, J.M.HOLLANDER, Nucl. Phys. 84 (1966) 505 (Internal conversion probabilities) C.M.LEDERER, J.K.POGGENBURG, F.ASARO, J.O.RASMUSSEN, I.PERLMAN, Nucl. Phys. 84 (1966) 481 (Internal conversion coefficients) H.-C.PAULI, K.ALDER, Z. Phys. 202 (1967) 255 (Anomalous electric dipole gamma-ray transitions) C.GUNTHER, D.R.PARSIGNAULT, Nucl. Phys. A104 (1967) 588 (KX-ray emission probabilities) CH.BRIANÇON, M.VALADARES, R.J.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 265 (1967) 1496 (Gamma-ray emission probabilities) F.L.OETTING, S.R.GUNN, J. Inorg. Nucl. Chem. 29 (1967) 2659 (Half-life) L.N.KONDRATEV, E.F.TRETYAKOV, Bull. Rus. Acad. Sci. Phys. 30 (1967) 393 (Internal conversion probabilities) R.E.STONE, E.K.HULET, J. Inorg. Nucl. Chem. 30 (1968) 2003 (Half-life) R.W.JEWELL, W.JOHN, R.MASSEY, B.G.SAUNDERS, Nucl. Instrum. Methods 62 (1968) 68 (Gamma-ray energies) L.C.BROWN, R.C.PROPST, J. Inorg. Nucl. Chem. 30 (1968) 2591 (Half-life) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 7 (1968) 442. (Energies of alpha-particles) R.KAMOUN, R.BALLINI, S.BERGSTROM-ROHLIN, J.-M.KUCHLY, P.SIFFERT, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1241 (Energies of alpha-particles) A.PEGHAIRE, Nucl. Instrum. Methods 75 (1969) 66 (Gamma-ray emission probabilities) G.C.NELSON, B.G.SAUNDERS, Nucl. Instrum. Methods 84 (1970) 90 (Gamma-ray energies) V.N.GRIGOREV, A.P.FERESIN, Sov. J. Nucl. Phys. 12 (1970) 361 (Anomalous electric dipole gamma-ray transitions) J.E.CLINE, Report IN-1448 (1971) (Gamma-ray emission probabilities) R.L.WATSON, T.K.LI, Nucl. Phys. A178 (1971) 201 (LX-ray emission probabilities) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Energies of alpha-particle) E.KARTTUNEN, H.U.FREUND, R.W.FINK, Phys. Rev. A4 (1971) 1695 (MX-ray emission probability)

R.J.GEHRKE, R.A.LOKKEN, Nucl. Instrum. Methods 97 (1971) 219 (XL- and gamma -ray emission probabilities) J.JOVE, R.ROBERT, Radiochem. Radioanal. Lett. 10 (1972) 139 (Half-life) R.L.HEATH, Report ANCR-1000-2 (1974) (Gamma-ray energies and emission probabilities) W.J.GALLAGHER, S.J.CIPOLLA, Nucl. Instrum. Methods 122 (1974) 405 (LX- ray emission probabilities) J.L.CAMPBELL, L.A.MCNELLES, Nucl. Instrum. Methods 117 (1974) 519 (LX- and gamma - ray emission probabilities) W.W.STROHM, K.C.JORDAN, Trans. Am. Nucl. Soc. 18 (1974) 185 (Half-life) V.G.POLYUKHOV, G.A.TIMOFEEV, P.A.PRIVALOVA, P.F.BAKLANOVA, Sov. J. At. Energy 36 (1974) 402 (Half-life) H.RAMTHUN, W.MULLER, Int. J. Appl. Radiat. Isotop. 26 (1975) 589 (Half-life) J.LEGRAND, J.P.PEROLAT, C.BAC, J.GORRY, Int. J. Appl. Radiat. Isotop. 26 (1975) 179 (Gamma-ray emission probabilities) J.Plch, J.Zderadicka, L.Kokta, Czech. J. Phys. 26B (1976) 1344 (Gamma-ray emission probability) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (LX-, KX- and gamma-ray emission probabilities) A.GENOUX-LUBAIN, G.ARDISSON, Radiochem. Radioanal. Lett. 33 (1978) 59 (Gamma-ray energies and emission probabilities) V.V.OVECHKIN, Bull. Rus. Acad. Sci. Phys. 42(1) (1978) 82 (Gamma-ray energies and emission probabilities) A.GENOUX-LUBAIN, G.ARDISSON, Compt. Rend. Acad. Sci. (Paris) Ser. B 287 (1978) 13 (Gamma-ray emission energies and intensities) C.ARDISSON, A.GENOUX-LUBAIN, V.BARCI, G.ARDISSON, Radiochem. Radioanal. Lett. 40 (1979) 207 (Gamma-ray energies) D.D.COHEN, Nucl. Instrum. Methods 178 (1980) 481 (LX-ray emission probabilities) G.BARREAU, H.G.BORNER, T.VON EGIDY, R.W.HOFF, Z. Phys. A308 (1982) 209 (KX-ray energies) K.DEBERTIN, W.PESSARA, Int. J. Appl. Radiat. Isotop. 34 (1983) 515 (Gamma-ray emission probabilities) J.M.R.HUTCHINSON, P.A.MULLEN, Int. J. Appl. Radiat. Isotop. 34 (1983) 543 (Gamma-ray emission probabilities) I.AHMAD, J.HINES, J.E.GINDLER, Phys. Rev. C27 (1983) 2239 (LX-, KX-ray energies and KX-, gamma-ray emission probabilities) I.AHMAD, Nucl. Instrum. Methods 223 (1984) 319 (Alpha-particle emission probabilities) V.V.OVECHKIN, A.E.KHOKHLOV, Izv. Akad. Nauk SSSR, Ser. Fiz. 48 (1984) 1032 (Gamma-ray energies and emission probabilities) G.BORTELS, P.COLLAERS, Appl. Radiat. Isot. 38 (1987) 831 (Alpha-particle emission probabilities) B.DENECKE, Appl. Radiat. Isot. 38 (1987) 823 (Gamma-ray emission probabilities) V.P.CHECHEV, N.K.KUZMENKO, V.O.SERGEEV, K.P.ARTAMONOVA, Evaluated Decay Data of Transuranium Radionuclides, Handbook, Publishing House Energoatomizdat, Moscow (1988) (Gamma-ray energies) D.D.COHEN, Nucl. Instrum. Methods Phys. Res. A267 (1988) 492 (LX-ray emission probabilities) J.H.HUBBELL, Report NIST 89-4144 (1989) (M fluorescence yield) L.J.MARTIN, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A312 (1992) 146 (Gamma-ray emission probabilities) C.J.BLAND, J.MOREL, E.ETCHEVERRY, M.C.LÉPY, Nucl. Instrum. Methods Phys. Res. A312 (1992) 323 (LX-ray emission probabilities)

M.-C.LÉPY, K.DEBERTIN, H.JANSSEN, U.SCHÖTZIG, Report PTB-Ra-31, Braunschweig (1993) (L X-ray emission intensities) I.AHMAD, Priv. Comm. (1993), cited in C.J.Bland, Nucl. Instrum. Methods Phys. Res. A339 (1994) 180 (1993) (Alpha-particle emission probabilities) M.-C.LÉPY, B.DUCHEMIN, J.MOREL, Nucl. Instrum. Methods Phys. Res. A353 (1994) 10 (LX-ray emission probabilities) C.J.BLAND, Nucl. Instrum. Methods Phys. Res. A339 (1994) 180 (Alpha-particle emission probabilities) Y.A.AKOVALI, Nucl. Data Sheets 74 (1995) 461 (Decay scheme) C.C.BUENO, J.A.C.GONÇALVES, M.D.S.SANTOS, Nucl. Instrum. Methods Phys. Res. A371 (1996) 460 (Alpha-particle emission probabilities) A.M.SANCHEZ, P.R.MONTERO, F.V.TOME, Nucl. Instrum. Methods Phys. Res. A369 (1996) 593 (Alpha-particle emission probabilities) P.N.JOHNSTON, Nucl. Instrum. Methods Phys. Res. A369 (1996) 107 (Evaluated gamma-ray emission probabilities and internal conversion coefficients) A.Abdul-Hadi, J. Radioanal. Nucl. Chem. 231 (1998) 147 (Gamma-ray emission energies and intensities) A.KOVALIK, E.A.YAKUSHEV, V.M.GOROZHANKIN, M.NOVGORODOV, M.RYSAVY, J. Phys. (London) G24 (1998) 2247 (Conversion electron emission energies and intensities) Y.JANG, J.NI, Nucl. Instrum. Methods Phys. Res. A413 (1998) 239 (Alpha emission intensities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and emission probabilities) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray energies) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (241Am spontaneous fission half-life) E.SCHÖNFELD, U.SCHÖTZIG, Appl. Radiat. Isot. 54 (2001) 785 (Calculated absolute emission probabilities of LX-rays) M.-M.BÉ, R.HELMER, V.CHISTÉ, J. Nucl. Sci. Technol. (Tokyo) suppl. 2 (2002) 481 (Saisinuc software) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) A.Iwahara, M.A.L.Da Silva, A.E.Carvalho Filho, E.M.de Oliveira Bernardes, J.U.Delgado, Appl. Radiat. Isot. 63 (2005) 107 (Absolute emission probabilities of gamma-rays) M.S.BASUNIA, Nucl. Data Sheets 107 (2006) 2323 (241Am decay scheme, 237Np level energies and gamma-ray transition multipolarities) M.-C.LÉPY, J.PLAGNARD, L.FERREUX, Appl. Radiat. Isot. 66 (2008) 715 (Absolute emission probabilities of LX-rays) V.M.GOROZHANKIN, M.-M.BÉ, Appl. Radiat. Isot. 66 (2008) 722 (ICC for anomalous E1 gamma-ray transitions) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Band-Raman ICC for gamma-ray transitions)
$T_{1/2}$:	16.01	(2)	h
Q_{β^-}	:	664.5	(4)	keV
Q_{EC}	:	751.3	(7)	keV
β^{-}	:	83.1	(3)	%
EC	:	16.9	(3)	%

2 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$	P_K	P_L	P_{M+}
$\epsilon_{0,1} \\ \epsilon_{0,0}$	$\begin{array}{c} 706.8 \ (7) \\ 751.3 \ (7) \end{array}$	$\begin{array}{c} 10.6 \ (5) \\ 6.3 \ (6) \end{array}$	1st forbidden non-unique 1st forbidden non-unique	$7.26 \\ 7.55$	$\begin{array}{c} 0.7261 \ (23) \\ 0.7303 \ (22) \end{array}$	$\begin{array}{c} 0.2016 \ (15) \\ 0.1987 \ (15) \end{array}$	$\begin{array}{c} 0.0532 \ (10) \\ 0.0522 \ (10) \end{array}$

3 β^- Transitions

	Energy keV	Probability × 100	Nature	$\log ft$
$egin{array}{c} eta_{0,1}^- \ eta_{0,0}^- \end{array}$	$\begin{array}{c} 622.4 \ (4) \\ 664.5 \ (4) \end{array}$	$\begin{array}{ccc} 45.8 & (23) \\ 37.3 & (23) \end{array}$	1st forbidden non-unique 1st forbidden non-unique	$6.84 \\ 7.03$

		Energy keV	Electrons per 100 disint.		Energy keV
e_{AL}	(Pu)	6.09 - 13.83	9.9(5)		
e _{AK}	(Pu) KLL KLX KXY	75.263 - 85.357 92.607 - 103.729 109.93 - 121.78	0.36 (4) } }		
e_{AL}	(Cm)	6.19 - 14.46	15.4(10)		
$ec_{1,0 L} \\ ec_{1,0 M+} \\ ec_{1,0 T}$	(Cm) (Cm) (Cm)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 33.1 \ (18) \\ 12.7 \ (7) \\ 45.8 \ (23) \end{array}$		
$ec_{1,0 L} \\ ec_{1,0 M+} \\ ec_{1,0 T}$	(Pu) (Pu) (Pu)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 7.7 \ (4) \\ 2.9 \ (2) \\ 10.6 \ (5) \end{array}$		
$\begin{array}{c} \beta_{0,1}^- \\ \beta_{0,0}^- \end{array}$	max: max:	$\begin{array}{ccc} 622.4 & (4) \\ 664.5 & (4) \end{array}$	$\begin{array}{c} 45.8 \ (23) \\ 37.3 \ (23) \end{array}$	avg: avg:	$\begin{array}{c} 185.92 \ (14) \\ 200.17 \ (14) \end{array}$

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pu)	12.124 - 22.153		10.8(5)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pu) (Pu)	$99.525 \\ 103.734$		$\begin{array}{c} 3.55 \ (17) \\ 5.6 \ (3) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	$116.244 \\117.228 \\117.918$	} } }	2.06 (11)	$\mathrm{K}\beta_1'$
$egin{array}{c} XKeta_2 \ XKeta_4 \ XKO_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$120.54 \\ 120.969 \\ 121.543$	} } }	0.72(4)	$\mathrm{K}\beta_2'$
XL	(Cm)	12.633 - 23.527		18.0 (11)	

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{1,0}(\mathrm{Cm}) \ \gamma_{1,0}(\mathrm{Pu})$	$\begin{array}{c} 42.13 \ (5) \\ 44.54 \ (2) \end{array}$	$\begin{array}{c} 45.8 \ (23) \\ 10.6 \ (5) \end{array}$	E2 E2	$\begin{array}{c} 1155 \ (17) \\ 748 \ (11) \end{array}$	$\begin{array}{c} 0.040 \ (2) \\ 0.014 \ (1) \end{array}$

6 References

T.K.KEENAN, R.A.PENNEMAN, B.B.MCINTEER, J. Chem. Phys. 21 (1953) 1802 (Half-life) S.A.BARANOV, K.N.SHLYAGIN, Conf. Acad. Sci. USSR (1955) 183 (Gamma-ray energies, Beta minus/Electron Capture ratio, Conversion electron probabilities/Beta probabilities ratio, EC and Beta branching fractions) R.W.Hoff, H.Jaffe, T.O.Passell, F.S.Stephens, E.K.Hulet, S.G.Thompson, Phys. Rev. 100 (1955) 1403 (Beta minus/Electron Capture ratio) R.F.BARNES, D.J.HENDERSON, A.L.HARKNESS, H.DIAMOND, J. Inorg. Nucl. Chem. 9 (1959) 105 (EC branching fraction) R.W.HOFF, E.K.HULET.M.C.MICHEL, J. Nucl. Energy 8 (1959) 224 (Beta minus/Electron Capture ratio) F.Asaro, I.Perlman, J.O.Rasmussen, S.G.Thompson, Phys. Rev. 120 (1960) 934 (Beta minus/Electron Capture ratio) R.MARRUS, J.WINOCUR, Phys. Rev. 124 (1961) 1904 (Spin state) B.M.Aleksandrov, M.A.Bak, V.V.Berdikov, R.B.Ivanov, A.S.Krivokhatskii, V.G.Nedovesov, K.A.Petr-ZHAK, YU.G.PETROV, YU.F.ROMANOV, E.A.SHLYAMIN, Sov. At. Energy 27 (1969) 724 (Half-life, Beta minus/Electron Capture ratio, Alpha Decay) R.GASTEIGER, G.HOEHLEIN, W.WEINLAENDER, Radiochim. Acta 11 (1969) 158 (Beta minus/Electron Capture ratio) V.YA.GABESKIRIYA, Sov. At. Energy 32 (1972) 201 (Beta minus/Electron Capture ratio) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies)

TS.VYLOV, V.M.GOROZHANKIN, ZH.ZHELEV, A.I.IVANOV, R.B.IVANOV, V.G.KALINNIKOV, M.YA.KUZNETSOVA, N.A.LEBEDEV, M.A.MIKHAILOVA, A.I.MUMINOV, A.F.NOVGORODOV, YU.V.NORSEEV, SH.OMANOV, B.P.OSI-PENKO, E.K.STEPANOV, ET AL., Spectra of Radiations of Radioactive Nuclides, Ed. K.Ya. Gromov, FAN Publishing, Tashkent, USSR (1980) (X-ray and Gamma-ray Energies and Emission Probabilities) K.WISSHAK, J.WICKENHAUSER, F.KAPPELER, G.REFFO, F.FABBI, Nucl. Sci. Eng. 81 (1982) 396 (Half-life) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (KX-rays, LX-rays, Auger Electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger Electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-rays) Y.A.AKOVALI, Nucl. Data Sheets 96 (2002) 177 (Nuclear levels) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	143	(2)	У
$Q^{'}_{lpha}$:	5637.10	(25)	keV
Q_{IT}	:	48.60	(5)	keV
IT	:	99.54	(1)	%
α	:	0.46	(1)	%
SF	:	$<\!\!4.8$		$ imes 10^{-9}$ %

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,68}$	4975(3)	0.000009(5)
$\alpha_{0,64}$	$5027.3\ (15)$	0.00009~(5)
$lpha_{0,59}$	5068~(3)	0.0012~(3)
$lpha_{0,57}$	5082.6(12)	0.00014~(5)
$lpha_{0,56}$	5091.9(7)	0.0009 (3)
$\alpha_{0,48}$	5143.07(26)	$0.0258\ (11)$
$\alpha_{0,47}$	$5153.2\ (15)$	0.00009~(5)
$\alpha_{0,42}$	$5173.45\ (26)$	0.00009~(5)
$\alpha_{0,41}$	5175.4(10)	0.00009~(5)
$\alpha_{0,36}$	$5207.15\ (25)$	0.409(9)
$lpha_{0,35}$	5215.4(7)	0.00014~(5)
$\alpha_{0,28}$	5248.15(25)	0.0018~(5)
$\alpha_{0,27}$	5248.21 (26)	0.0018~(5)
$\alpha_{0,25}$	5249.64(26)	0.00009 (5)
$\alpha_{0,23}$	5251.80(25)	0.00009~(5)
$\alpha_{0,20}$	$5272.96\ (25)$	0.0046~(5)
$\alpha_{0,14}$	$5314.95\ (25)$	0.0028~(5)
$\alpha_{0,11}$	$5331.97\ (25)$	0.0007~(5)
$lpha_{0,9}$	$5367.73\ (25)$	0.0051 (9)
$lpha_{0,6}$	5410.13(25)	0.0046~(9)
$lpha_{0,3}$	5458.68(25)	0.00064 (18)
$lpha_{0,1}$	5517.93(25)	0.000014(14)

		Energy keV	Electrons per 100 disint.
e_{AL}	(Am)	6.26 - 23.70	22.1(11)
$e_{\rm AL}$	(Np)	6.036 - 13.516	0.35~(4)
e _{AK}	(Np) KLL KLX KXY	73.501 - 83.134 90.358 - 101.054 107.19 - 118.66	0.0019 (7) } } }

		Energy keV	Electrons per 100 disint.
$ec_{1,0 L} ec_{1,0 M} ec_{1,0 N} ec_{1,0 O}$	(Am) (Am) (Am) (Am)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 47.1 \ (10) \\ 37.6 \ (9) \\ 11.9 \ (3) \\ 2.71 \ (6) \end{array}$

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Am)	12.377 - 22.836		25.0(11)	
XL	(Np)	11.871 - 21.491		0.37~(4)	
$\begin{array}{l} { m XK} lpha_2 \ { m XK} lpha_1 \end{array}$	(Np) (Np)	$97.069 \\ 101.059$		$\begin{array}{c} 0.019 \ (9) \\ 0.030 \ (14) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	$egin{array}{c} (\mathrm{Np}) \ (\mathrm{Np}) \ (\mathrm{Np}) \end{array}$	$113.303 \\ 114.234 \\ 114.912$	} } }	0.011(5)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Np) (Np) (Np)	$117.463 \\ 117.876 \\ 118.429$	} } }	0.0037(17)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \gamma_{3,2}(\mathrm{Np}) \\ \gamma_{1,0}(\mathrm{Np}) \\ \gamma_{11,10}(\mathrm{Np}) \\ \gamma_{9,6}(\mathrm{Np}) \\ \gamma_{9,6}(\mathrm{Np}) \\ \gamma_{10,6}(\mathrm{Np}) \\ \gamma_{10,6}(\mathrm{Np}) \\ \gamma_{10,0}(\mathrm{Am}) \\ \gamma_{6,3}(\mathrm{Np}) \\ \gamma_{14,9}(\mathrm{Np}) \\ \gamma_{30,19}(\mathrm{Np}) \\ \gamma_{30,19}(\mathrm{Np}) \\ \gamma_{3,1}(\mathrm{Np}) \\ \gamma_{36,20}(\mathrm{Np}) \\ \gamma_{28,14}(\mathrm{Np}) \\ \gamma_{6,2}(\mathrm{Np}) \\ \gamma_{10,0}(\mathrm{Np}) \\ \gamma_{10,0$	$\begin{array}{c} 24.34 \ (1) \\ 26.427 \ (2) \\ 32.64 \ (1) \\ 43.11 \ (1) \\ 43.33 \ (1) \\ 46.833 \ (3) \\ 48.60 \ (5) \\ 49.371 \ (3) \\ 53.67 \ (1) \\ 53.85 \ (2) \\ 57.51 \ (1) \\ 60.247 \ (3) \\ 66.92 \ (1) \\ 67.92 \ (2) \\ 73.72 \ (1) \\ 75.98 \ (1) \end{array}$	$\begin{array}{c} 0.021 \ (3) \\ < 0.24 \\ 0.0026 \ (4) \\ 0.0040 \ (9) \\ 0.00112 \ (18) \\ 0.00037 \ (7) \\ 99.54 \ (1) \\ 0.244 \ (8) \\ 0.097 \ (13) \\ 0.00011 \ (6) \\ 0.0015 \ (4) \\ 0.132 \ (12) \\ 0.0205 \ (6) \\ 0.100 \ (8) \\ 0.0101 \ (7) \\ 0.00052 \ (8) \end{array}$	$\begin{array}{c} M1 + E2 \\ E4 \\ E1 \\ M1 + E2 \\ E1 \\ F2 \\ \end{array}$	$\begin{array}{c} 322 \ (5) \\ 338 \ (5) \\ 136.4 \ (20) \\ 61.3 \ (9) \\ 126.7 \ (18) \\ 48.8 \ (7) \\ 704000 \ (8000) \\ 0.821 \ (12) \\ 46.0 \ (7) \\ 37.2 \ (6) \\ 0.549 \ (8) \\ 23.1 \ (4) \\ 0.368 \ (6) \\ 24 \ (3) \\ 0.285 \ (4) \\ 52.8 \ (8) \end{array}$	$\begin{array}{c} 0.000064 \ (9) \\ < 0.000708 \\ 0.000019 \ (3) \\ 0.000064 \ (14) \\ 0.0000087 \ (14) \\ 0.0000074 \ (14) \\ 0.0001414 \ (22) \\ 0.134 \ (4) \\ 0.0021 \ (3) \\ 0.0000028 \ (14) \\ 0.00097 \ (23) \\ 0.0055 \ (5) \\ 0.0150 \ (5) \\ 0.0050 \ (5) \\ 0.0079 \ (6) \\ 0.0000077 \ (14) \end{array}$
/19,10(1 P)	10.00 (1)	0.00002 (0)	1.1.4	02.0 (0)	0.0000001 (14)

	${ m Energy}\ { m keV}$	${ m P}_{\gamma+{ m ce}} \ imes 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{11.6}(Np)$	79.48(1)	0.0033(8)	M1+E2	26(4)	0.000124(23)
$\gamma_{27,11}(Np)$	85.16 (7)	0.020(7)	M1+E2	19(3)	0.0010(3)
$\gamma_{30}(Np)$	86.674(2)	0.205(7)	M1+E2	7.95(12)	0.0229(7)
$\gamma_{-1,1}(Np)$	89.60 (5)	0.0013(3)			0.0013(3)
$\gamma_{9,3}(Np)$	92.48(1)	0.00324(35)	$\mathrm{E1}$	0.1574(22)	0.0028(3)
$\gamma_{11.5}(Np)$	93.88(1)	0.0042(5)	$\mathrm{E1}$	0.1513(22)	0.0036(4)
$\gamma_{14.6}(Np)$	96.78(1)	0.0059(10)	E2	16.90(24)	0.00033(6)
$\gamma_{30,11}(Np)$	97.18(2)	0.00013(7)	E2	16.58(24)	0.000007(4)
$\gamma_{36,14}(Np)$	109.61(1)	≤ 0.14	M1+E2	6.7(7)	≤ 0.0184
$\gamma_{6,1}(Np)$	109.618(3)	≤ 0.02	E1	0.1010(15)	≤ 0.0184
$\gamma_{14,5}(Np)$	111.18(1)	0.0027~(5)	E1	0.0974(14)	0.0025~(4)
$\gamma_{19,6}(\mathrm{Np})$	122.81(1)	0.00039(18)	M1+E2	9.6(9)	0.00004~(2)
$\gamma_{36,11}(\mathrm{Np})$	126.92(1)	0.0008(4)	E2	5.03(7)	0.00013~(7)
$\gamma_{23,8}(\mathrm{Np})$	131.50(5)	0.00034(8)	$\mathrm{E1}$	0.268(4)	0.00027~(6)
$\gamma_{28,8}(\rm Np)$	$135.21\ (2)$	0.0085~(5)	$\mathrm{E1}$	0.251~(4)	0.0068~(4)
$\gamma_{6,0}(\mathrm{Np})$	136.045~(2)	0.0118(3)	$\mathrm{E1}$	0.247~(4)	0.0094(3)
$\gamma_{28,7}(\rm Np)$	139.05~(3)	≤ 0.00014	$\mathrm{E1}$	0.235~(4)	≤ 0.00011
$\gamma_{8,1}(\mathrm{Np})$	139.11(2)	≤ 0.00049	E2	3.40(5)	≤ 0.00011
$\gamma_{30,7}(\mathrm{Np})$	151.01(3)	0.000099~(22)	$\mathrm{E1}$	0.194(3)	0.000083~(18)
$\gamma_{19,4}(\mathrm{Np})$	152.70(2)	≤ 0.00082	E1	0.189(3)	≤ 0.00069
$\gamma_{9,1}(\mathrm{Np})$	152.73(1)	≤ 0.00082	E1	0.189(3)	≤ 0.00069
$\gamma_{11,2}(Np)$	153.19(1)	0.00037(4)	$\mathrm{E1}$	0.187(3)	0.00031(4)
$\gamma_{20,5}(\mathrm{Np})$	153.87(1)	0.0266(8)	M1+E2	7.02(10)	0.00332(10)
$\gamma_{10,1}(\mathrm{Np})$	156.451(3)	0.00032(5)	$\mathrm{E1}$	0.1784~(25)	0.00027(5)
$\gamma_{-1,2}(Np)$	160.61(2)	0.0004(2)			0.00041 (18)
$\gamma_{34,8}(\mathrm{Np})$	163.1(5)	≤ 0.079	M1+E2	3.9(5)	≤ 0.0161
$\gamma_{36,9}(\mathrm{Np})$	163.29(1)	≤ 0.079	M1+E2	3.9(5)	≤ 0.0161
$\gamma_{-1,3}(\mathrm{Np})$	165.97(15)	0.000046(23)			0.000046(23)
$\gamma_{45,13}(\mathrm{Np})$	170.7(8)	0.00280(22)	M1+E2	3.4(5)	0.00063(5)
$\gamma_{48,14}(\mathrm{Np})$	174.76(6)	0.00720(16)	M1+E2	3.1(4)	0.00017(4)
$\gamma_{30,6}(\mathrm{Np})$	176.66(2)	0.00006(3)	E2	1.285(18)	0.000028(14)
$\gamma_{10,0}(\mathrm{Np})$	182.878(2)	0.00103(4)	E1	0.1238(18)	0.00092(3)
$\gamma_{11,1}(Np)$	189.10(1)	0.00030(5)	EI E1	0.1146(16)	0.00027(5)
$\gamma_{23,4}(Np)$	190.88(5)	0.00012(3)	EI E1	0.1121(16)	0.000106(24)
$\gamma_{28,4}(Np)$	194.59(2)	0.00157(5)	EI E1	0.1072(15)	0.00142(5)
$\gamma_{19,2}(Np)$	190.52(1)	0.00011(5)	E1 F9	0.1048(15)	0.00010(5)
$\gamma_{36,6}(Np)$	200.39(1)	0.0027(3)	E_Z	0.711(10)	0.00150(18)
$\gamma_{20,2}(Np)$	213.19(1)	0.00015(5)	M1+E2	1.73(25)	0.000055(18)
$\gamma_{11,0}(Np)$	215.522(4)	0.00064 (10)	E1	0.0847(12)	0.00059(10)
$\gamma_{19,1}(Np)$	232.43(1)	0.00000(3)	E1	0.0712(10)	0.00050(3)
$\gamma_{-1,4}(Np)$	200.09 (10) 226.00 (6)	0.00013(3)	M1 + F 9	1.97(10)	0.00013 (3)
$\gamma_{25,2}(Np)$	230.90(0)	0.00010(3)	M1+D2	1.27 (19) 0.0672 (10)	0.000040 (23) 0.000016 (8)
$\gamma_{27,2}(Np)$	⊿эо.ээ (7) 250 33 (3)	< 0.000017 (9)	ы (M1+F9)	1.0073(10)	0.00010 (8)
$\gamma_{17,0}(Np)$	200.00 (0) 250 27 (2)	≤ 0.0012	(M11+E2) F1	1.00(10)	<0.00056
$\gamma_{30,2}(mp)$	230.37 (2) 270.55 (7)	$\overline{-0.0000}$	已1 下1	0.0002 (9) 0.0506 (7)	<u>~0.00030 (8)</u>
$\gamma_{42,4}(Np)$	270.00 (7) 272 80 (6)	0.000000 (9)	ビI M1 + F9	0.0000 (1)	0.000029 (8)
$\gamma_{25,1}(\mathbf{Np})$	212.00(0) 280.11(1)	0.000009(10) 0.000063(7)	F1	0.00(13) 0.0468(7)	$\begin{array}{c} 0.000037 \\ 0.000037 \\ 0 \end{array}$
/30,2(11P)	200.11 (1)	0.000000 (1)		0.0100(1)	0.00000 (0)

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}}$ × 100	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{25,0}(\mathrm{Np})$	299.23(6)	0.000046 (23)	M1+E2	0.65(10)	0.000028(14)

5 References

K.Street Jr., A.Ghiorso, G.T.Seaborg, Phys. Rev. 79 (1950) 530 (Approximate half-life) R.F.BARNES, D.J.HENDERSON, A.L.HARKNESS, H.DIAMOND, J. Inorg. Nucl. Chem. 9 (1959) 105 (Branching fraction (alpha)) F.Asaro, I.Perlman, J.O.Rasmussen, S.G.Thompson, Phys. Rev. 120 (1960) 934 (Resolution of isomers) J.T.CALDWELL, S.C.FULTZ, C.D.BOWMAN, R.W.HOFF, Phys. Rev. 155 (1967) 1309 (SF half-life) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) S.A.BARANOV, V.M.SHATINSKII, L.V.CHISTYAKOV, Sov. At. Energy 47 (1980) 1022 (Alpha emission energies, Alpha emission probabilities) A.G.ZELENKOV, V.A.PCHELIN, YU.F.RODIONOV, L.V.CHISTYAKOV, V.M.SHUBKO, Sov. At. Energy 47 (1980) 1024 (Half-life, Branching fraction (alpha)) TS.VYLOV, V.M.GOROZHANKIN, ZH.ZHELEV, A.I.IVANOV, R.B.IVANOV, V.G.KALINNIKOV, M.YA.KUZNETSOVA, N.A.LEBEDEV, M.A.MIKHAILOVA, A.I.MUMINOV, A.F.NOVGORODOV, YU.V.NORSEEV, SH.OMANOV, B.P.OSIPENKO, E.K.STEPANOV, ET AL., Spectra of Radiations of Radioactive Nuclides, Ed. K.Ya. Gromov, FAN Publishing, Tashkent, USSR (1980)(X-ray and Gamma-ray Energies and Emission Probabilities) A.G.ZELENKOV, V.A.PCHELIN, YU.F.RODIONOV, L.V.CHISTYAKOV, V.S.SHIRYAEV, V.M.SHUBKO, Sov. At. Energy 60 (1986) 492 (SF half-life) R.W.HOFF, S.DRISSI, J.KERN, W.STRASSMANN, H.G.BORNER, K.SCHRECKENBACH, G.BARREAU, W.D.RUHTER, L.G.MANN, D.H.WHITE, J.H.LANDRUM, R.J.DUPZYK, R.F.CASTEN, W.R.KANE, D.D.WARNER, Phys. Rev. C41 (1990) 484 (Alpha emission energies, Alpha emission probabilities, Gamma-ray energies, Gamma-ray emission probabilities, transition types, mixing ratios) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (X(K), X(L), Auger electrons)Y.A.Akovali, Nucl. Data Sheets 84 (1998) 1 (Alpha decay, radius parameter) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (X(K))Y.A.AKOVALI, Nucl. Data Sheets 96 (2002) 177 (Nuclear levels) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) F.E.CHUKREEV, V.E.MAKARENKO, M.J.MARTIN, Nucl. Data Sheets 97 (2002) 129 (Nuclear levels) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	7367	(23)	У
$Q^{'}_{lpha}$:	5438.8	(10)	keV
α	:	100		%
SF	:	3.8	(7)	$\times 10^{-9}~\%$

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,16}$	4695(3)	0.0017(5)
$lpha_{0,15}$	4919(3)	0.000085
$\alpha_{0,14}$	4930(3)	0.00018
$\alpha_{0,13}$	4946(3)	0.00034
$\alpha_{0,12}$	4997(3)	0.0009(4)
$\alpha_{0,11}$	5008~(3)	0.0009(4)
$\alpha_{0,10}$	5029~(3)	0.0020~(6)
$lpha_{0,9}$	5035~(3)	0.0020~(6)
$lpha_{0,8}$	5088~(5)	0.0055~(6)
$\alpha_{0,7}$	5113(1)	0.010(1)
$\alpha_{0,6}$	5181(1)	1.383(7)
$\alpha_{0,4}$	5233.3(10)	11.46(5)
$lpha_{0,3}$	5275.3(10)	86.74(5)
$\alpha_{0,1}$	5321(1)	0.192(3)
$lpha_{0,0}$	5349.4(23)	0.240(3)

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
e_{AL}	(Np)	6.04 - 13.52	18.4 (11)
e _{AK}	(Np) KLL KLX KXY	73.501 - 83.134 90.358 - 101.054 107.19 - 118.66	0.00058 (9) } } }
$ec_{1,0}$ L $ec_{4,3}$ L $ec_{3,1}$ L $ec_{1,0}$ M $ec_{1,0}$ N $ec_{6,4}$ L $ec_{4,3}$ M $ec_{3,1}$ M $ec_{3,1}$ N	(Np) (Np) (Np) (Np) (Np) (Np) (Np) (Np)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 9.4 \ (22) \\ 7.4 \ (8) \\ 5.04 \ (11) \\ 2.4 \ (6) \\ 0.65 \ (15) \\ 1.10 \ (33) \\ 1.95 \ (26) \\ 1.266 \ (28) \\ 0.53 \ (6) \\ 0.336 \ (7) \\ 0.20 \ (0) \end{array}$
$ec_{6,4}$ M	(Np)	49.441 - 51.516	0.30(9)

LBNL /E. Browne, CEA/LNE-LNHB /M.M. Bé, INE /R.G. Helmer

		Energy keV	Electrons per 100 disint.
$\begin{array}{c} {\rm eC}_{3,0} \ {\rm L} \\ {\rm eC}_{6,4} \ {\rm N} \\ {\rm eC}_{4,1} \ {\rm L} \\ {\rm eC}_{3,0} \ {\rm M} \\ {\rm eC}_{3,0} \ {\rm N} \\ {\rm eC}_{6,3} \ {\rm L} \\ {\rm eC}_{4,1} \ {\rm M} \\ {\rm eC}_{6,3} \ {\rm M} \\ {\rm eC}_{4,0} \ {\rm L} \end{array}$	(Np) (Np) (Np) (Np) (Np) (Np) (Np) (Np)	52.23 - 57.05 53.679 - 54.777 64.28 - 69.10 68.92 - 71.00 73.16 - 74.26 76.073 - 80.890 80.97 - 83.05 92.761 - 94.836 95.41 - 100.23 02.007	$\begin{array}{c} 13.91 \ (32) \\ 0.08 \ (2) \\ 0.0485 \ (14) \\ 3.44 \ (8) \\ 0.917 \ (21) \\ 0.17 \ (2) \\ 0.01194 \ (36) \\ 0.05 \ (1) \\ 0.0361 \ (32) \\ 0.010 \ (2) \end{array}$

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Np)	11.871 - 21.491		18.9(7)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Np) (Np)	$97.069 \\ 101.059$		0.0058(4) 0.0092(7)	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	$egin{array}{c} (\mathrm{Np}) \ (\mathrm{Np}) \ (\mathrm{Np}) \end{array}$	$113.303 \\ 114.234 \\ 114.912$	} } }	0.00335(25)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	$\begin{array}{c} {\rm (Np)}\\ {\rm (Np)}\\ {\rm (Np)} \end{array}$	$117.463 \\ 117.876 \\ 118.429$	} } }	0.00115 (9)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Np)$	31.14 (3)	12.7(30)	M1+3.08%E2	263(13)	0.048 (11)
$\gamma_{4,3}(\mathrm{Np})$	43.1	10.1	M1+12.6%E2	154(18)	0.065
$\gamma_{3,1}(Np)$	43.53(2)	12.62(23)	${ m E1}$	1.143(16)	5.89(10)
$\gamma_{6,5}(\mathrm{Np})$	50.6(10)	0.011(2)	(E1)	0.77(5)	0.0062~(10)
$\gamma_{6,4}(Np)$	55.18(5)	1.81(26)	$\mathrm{M1{+}26.4\%E2}$	107 (14)	0.0168(11)
$\gamma_{3,0}(\mathrm{Np})$	74.66(2)	85.7(16)	${ m E1}$	0.276(4)	67.2(12)
$\gamma_{4,1}(Np)$	86.71(2)	0.41(1)	${ m E1}$	0.186(3)	0.346~(9)
$\gamma_{6,3}(Np)$	98.5(2)	0.25~(4)	(E2)	15.6(3)	$0.0151\ (21)$
$\gamma_{4,0}(Np)$	117.60(15)	0.62(5)	${ m E1}$	0.0842(13)	0.57(5)
$\gamma_{6,1}(Np)$	141.90(6)	0.141(10)	${ m E1}$	0.224(4)	0.115(8)
$\gamma_{7,2}(Np)$	169	0.0014	(E1)	0.149(3)	0.0012
$\gamma_{9,5}(\mathrm{Np})$	195.0(18)	0.001	(E1)	0.107(3)	0.00085

LBNL /E. Browne, CEA/LNE-LNHB /M.M. Bé, INE /R.G. Helmer

5 References

M.-M.Bé, V.CHISTÉ, C.DULIEU, E.BROWNE, V.CHECHEV, N.KUZMENKO, R.HELMER, A.NICHOLS, E.SCHÖNFELD, R.DERSCH., in Table of Radionuclides (Vol.2 - A = 151 to 242), Monographie BIPM-5, Bureau International des Poids et Mesures, Sevres () (Am-241 half-life) F.STEPHENS, J.HUMMEL, F.ASARO, Phys. Rev. 98 (1955) 261 (Am-243 alpha-particle emission probabilities) J.P.HUMMEL, Thesis, Report UCRL-3456, Univ. California (1956) (Am-243 alpha-particle emission probabilities) R.F.BARNES, D.J.HENDERSON, A.L.HARKNESS, H.DIAMOND, J. Inorg. Nucl. Chem. 9 (1959) 105 (Am-243 half-life) F.Asaro, F.S.Stephens, J.M.Hollander, I.Perlman, Phys. Rev. 117 (1960) 492 (Am-243 gamma-ray emission probabilities) A.B.BEADLE, D.F.DANCE, K.M.GLOVER, J.MILSTED, J. Inorg. Nucl. Chem. 12 (1960) 359 (Am-243 half-life) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKY, Nucl. Phys. 56 (1964) 252 (Am-243 alpha-particle energies and emission probab) C.M.LEDERER, J.K.POGGENBURG, F.ASARO, J.O.RASMUSSEN, I.PERLMAN, Nucl. Phys. 84 (1966) 481 (Am-243 alpha-particle emission probabilities) B.A.GVOZDEV, B.B.ZAKHVATAEV, V.I.KUZNETSOV, V.P.PERELYGIN, S.V.PIROZKOV, E.G.CHUDINOV, I.K.SHVETSOV, Sov. Radiochem. 8 (1966) 459 (Spontaneous fission branching) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 7 (1968) 442 (Am-243 alpha-particle energies) G.BERZINS, M.E.BUNKER, J.W.STARNER, Nucl. Phys. A114 (1968) 512 (Am-243 half-life) J.R.VAN HISE, D.ENGELKEMEIR, Phys. Rev. 171 (1968) 1325 (Am-243 gamma-ray energies and emission probabilities) D.ENGELKEMEIR, Phys. Rev. 181 (1969) 1675 (Am-243 gamma-ray energies) B.M.Aleksandrov, O.I.Grigorev, N.S.Shimanskaya, Sov. J. Nucl. Phys. 10 (1970) 8 (Am-243 gamma-ray emission probabilities) I.AHMAD, M.WAHLGREN, Nucl. Instrum. Methods 99 (1972) 333 (Am-243 gamma-ray emission probabilities) V.G.POLYUKHOV, G.A.TIMOFEEV, P.A.PRIVALOVA, V.Y.GABESKIRIYA, A.P.CHETVERIKOV, Sov. J. At. Energy 37 (1975) 1103 (Am-243 half-life) J.C.PATE, K.R.BAKER, R.W.FINK, D.A.MCCLURE, N.S.KENDRICK JR., Z. Phys. A272 (1975) 169 (Am-243 gamma-ray energies and emission probabilities) D.I.STAROZHUKOV, YU.S.POPOV, P.A.PRIVALOVA, Sov. At. Energy 42 (1977) 355 (Am-243 gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Atomic electron binding energies) F.RÖSEL, H.M.FRIES, K.ALDER, H.C.PAULI, At. Data Nucl. Data Tables 21 (1978) 92 (Gamma-ray theoretical internal conversion coefficients) YU.S.POPOV, D.I.STAROZHUKOV, V.B.MISHENEV, P.A.PRIVALOVA, A.I.MISHCHENKO, Sov. At. Energy 46 (1979) 123(Am-243 gamma-ray emission probabilities) S.K.AGGARWAL, A.R.PARAB, H.C.JAIN, Phys. Rev. C22 (1980) 767 (Am-243 half-life) I.Ahmad, Nucl. Instrum. Methods 193 (1982) 9 (Am-243 gamma-ray energies and emission probabilities) R.VANINBROUKX, G.BORTELS, B.DENECKE, Int. J. Appl. Radiat. Isotop. 35 (1984) 1081 (Am-243 gamma-ray emission probabilities) W.L.ZIJP, Report ECN FYS/RASA-85/19 (1985) (Discrepant Data - Limited Relative Statistical Weight Method) A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Am-243 recommended half-life)

E.BROWNE, Nucl. Instrum. Methods Phys. Res. A265 (1988) 541 (Uncertainties in alpha-particle emission probabilities) W.BAMBYNEK, T.BARTA, R.JEDLOVSZKY, P.CHRISTMAS, N.COURSOL, K.DEBERTIN, R.G.HELMER, A.L.NICHOLS, F.J.SCHIMA, Y.YOSHIZAWA, X-ray and Gamma-ray Standards for Detector Calibration, TECDOC-619, IAEA, Vienna (1991) (Am-243 recommended half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Am-243 alpha-particle energies) E.GARCIA-TORAÑO, M.L.ACENA, G.BORTELS, D.MOUCHEL, Nucl. Instrum. Methods Phys. Res. A312 (1992) 317 (Am-243 alpha-particle energies and emission probabilities) Y.A.Akovali, Nucl. Data Sheets 66 (1992) 897 (Am-243 recommended half-life) E.Schönfeld, H.Janssen, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data, X-rays, Auger electrons) D.SARDARI, T.D.MCMAHON, S.P.HOLLOWAY, Nucl. Instrum. Methods Phys. Res. A369 (1996) 486 (Am-243 gamma-ray energies and emission probabilities) S.A.WOODS, D.H.WOODS, M.J.WOODS, S.M.JEROME, M.BURKE, N.E.BOWLES, S.E.M.LUCAS, C.PATON, Nucl. Instrum. Methods Phys. Res. A369 (1996) 472 (Am-243 gamma-ray emission probabilities) A.M.SANCHEZ, P.R.MONTERO, F.V.TOME, Nucl. Instrum. Methods Phys. Res. A369 (1996) 593 (Am-243 alpha-particle energies and emission probabilities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electron energies) Y.A.Akovali, Nucl. Data Sheets 84 (1998) 1 (Alpha decay, Radius parameter of even-even nuclei) J.YANG, J.NI, Nucl. Instrum. Methods Phys. Res. A413 (1998) 239 (Alpha emission intensities) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger electron emission probabilities) F.DAYRAS, Nucl. Instrum. Methods Phys. Res. A490 (2002) 492 (Am-243 alpha-particle energies and emission probabilities) R.SAMPATHKUMAR, P.C.KALSI, A.RAMASWAMI, J. Radioanal. Nucl. Chem. 253 (2002) 523 (Am-243 spontaneous fission branching) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (2003 Atomic Mass Adjustment) E.BROWNE, Nucl. Data Sheets 98 (2003) 665 (Evaluated data (ENSDF for nuclei with A=239)) S.K.AGGARWAL, D.ALAMELU, P.M.SHAH, N.N.MIRASHI, Nucl. Instrum. Methods Phys. Res. A571 (2007) 663 (Am-243 half-life) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical Internal Conversion Coefficients)

$T_{1/2}$:	10.1	(1)	h
Q_{β^-}	:	1427.3	(10)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,9}^-$	387.1 (10)	100	1st forbidden non-unique	5.63

		Energy keV	Electrons per 100 disint.	F	Cnergy keV
e_{AL}	(Cm)	6.19 - 14.46	86 (9)		
e_{AK}	(Cm)		0.213(27)		
	KLL	78.858 - 89.973	}		
	KLX	97.226 - 109.267	}		
	KXY	115.57 - 128.23	}		
$ec_{1,0 L}$	(Cm)	18.439 - 24.000	73~(15)		
$ec_{3,2 K}$	(Cm)	25.622 (2)	$3.3\ (7)$		
$ec_{1,0 M}$	(Cm)	36.628 - 38.956	$21 \ (4)$		
$ec_{1,0 N}$	(Cm)	41.281 - 42.500	5.7(12)		
$ec_{2,1 L}$	(Cm)	74.857 - 80.410	70(15)		
$ec_{4,3}$ K	(Cm)	77.334 (4)	0.049(11)		
$ec_{2,1}$ M	(Cm)	93.046 - 95.374	20(4)		
$ec_{2,1 N}$	(Cm)	97.699 - 98.910	5.5(12)		
$ec_{3,2 L}$	(Cm)	129.337 - 134.890	36~(8)		
$ec_{3,2}$ M	(Cm)	147.526 - 149.854	10.2(21)		
$ec_{3,2 N}$	(Cm)	152.179 - 153.390	2.8(6)		
$ec_{4,3}$ L	(Cm)	181.049 - 186.600	0.19~(4)		
$ec_{4,3}$ M	(Cm)	199.238 - 201.566	0.053~(12)		
$ec_{4,3}$ N	(Cm)	203.891 - 205.100	0.0147~(34)		
$ec_{9,4 \rm K}$	(Cm)	410.161 (16)	0.019~(6)		
$ec_{9,3 \rm K}$	(Cm)	615.736 (5)	3.9(5)		
$ec_{9,3 L}$	(Cm)	719.451 - 725.010	0.86(11)		
$ec_{9,3}$ M	(Cm)	737.640 - 739.968	0.21~(3)		
ec _{9,3} N	(Cm)	742.293 - 743.510	0.058~(8)		
$ec_{9,2}$ K	(Cm)	769.599 (7)	0.34(10)		
$ec_{9,2}$ L	(Cm)	873.31 - 878.87	0.10~(3)		
$ec_{9,2}$ M	(Cm)	891.50 - 893.83	0.026~(7)		
$\beta^{0,9}$	max:	387.1 (10)	100	avg:	109.6(3)

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Cm)	12.633 - 23.527		100 (10)	
${ m XK}lpha_2 \ { m XK}lpha_1$	(Cm) (Cm)	$104.59 \\ 109.271$		$\begin{array}{c} 2.2 \ (3) \\ 3.4 \ (4) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Cm) (Cm) (Cm)	$122.304 \\123.403 \\124.124$	} } }	1.29 (16)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Cm) (Cm) (Cm)	$\begin{array}{c} 126.889 \\ 127.352 \\ 127.97 \end{array}$	} } }	0.45~(6)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Cm)$ $\gamma_{2,1}(Cm)$ $\gamma_{3,2}(Cm)$ $\gamma_{4,3}(Cm)$ $\gamma_{9,4}(Cm)$ $\gamma_{9,3}(Cm)$ $\gamma_{2,3}(Cm)$	$\begin{array}{c} 42.965 \ (10) \\ 99.383 \ (4) \\ 153.863 \ (2) \\ 205.575 \ (4) \\ 538.402 \ (16) \\ 743.977 \ (5) \\ 807.840 \ (7) \end{array}$	$\begin{array}{c} 100 \ (21) \\ 100 \ (22) \\ 72 \ (15) \\ 0.66 \ (15) \\ 0.69 \ (20) \\ 71 \ (9) \\ 28 \ (8) \end{array}$	$E2 \\ E2 \\ E2 \\ E2 \\ E2 \\ E2 \\ M1+0.46\% E2 \\ E2 \\ E2 \\ E2 \\ E2 \\ E2 \\ E3 \\ E3 \\$	1050 (15) 19.3 (3) 2.81 (4) 0.887 (13) 0.0495 (7) 0.077 (5) 0.01607 (24)	$\begin{array}{c} 0.096 \ (20) \\ 5.0 \ (11) \\ 19 \ (4) \\ 0.35 \ (8) \\ 0.66 \ (19) \\ 66 \ (8) \\ 28 \ (8) \end{array}$

5 References

S.E.VANDENBOSCH, P.DAY, Nucl. Phys. 30 (1962) 177 (Half-life, Beta emission probabilities, Conversion electron emission probabilities, Relative gamma-ray emission probabilities) P.G.HANSEN, K.WILSKY, C.V.K.BABA, S.E.VANDENBOSCH, Nucl. Phys. 45 (1963) 410 (Nuclear levels, Mixing ratio) R.P.SCHUMAN, Report IN-1126 (1967) 19 (Relative gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) R.W.HOFF, T.VON EGIDY, R.W.LOUGHEED, D.H.WHITE, H.G.BORNER, K.SCHRECKENBACH, G.BARREAU, D.D. WARNER, Phys. Rev. C29 (1984) 618 (Relative gamma-ray emission probabilities, Multipolarities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (KX-rays, LX-rays, Auger Electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger Electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-rays) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC)

I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1
(Theoretical ICC)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337
(Q)
Y.A.AKOVALI, Nucl. Data Sheets 99 (2003) 197
(Nuclear levels)
T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202
(Theoretical ICC)

$T_{1/2}$:	26	(3)	\min
Q_{β^-}	:	1516	(3)	keV
Q_{EC}	:	164	(9)	keV
β^-	:	99.964	(1)	%
EC	:	0.036	(1)	%

2 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$	P_K	P_L	P_{M+}
$\epsilon_{0,0}$	164(9)	0.036(1)	allowed	6.37	0.24(5)	0.53(4)	0.168(12)

3 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\begin{array}{c} \beta_{0,11}^{-} \\ \beta_{0,10}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,6}^{-} \end{array}$	$\begin{array}{rrrr} 410 & (3) \\ 432 & (3) \\ 496 & (3) \\ 531.1 & (30) \end{array}$	$\begin{array}{ccc} 0.35 & (9) \\ 0.56 & (13) \\ 0.08 & (2) \\ 1.36 & (16) \end{array}$	(1st forbidden non-unique) (allowed) (allowed) allowed	6.8 6.67 7.7 6.58
$egin{array}{c} eta_{0,1}^{-} \ eta_{0,0}^{-} \end{array}$	$\begin{array}{ccc} 1473 & (3) \\ 1516 & (3) \end{array}$	$\begin{array}{ccc} 31 & (9) \\ 67 & (9) \end{array}$	allowed allowed	$\begin{array}{c} 6.74 \\ 6.45 \end{array}$

		${ m Energy}\ { m keV}$	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e_{AL}	(Pu)	6.19 - 22.99	0.0124 (11)	
e _{AK}	(Pu) KLL KLX KXY	75.263 - 85.357 92.607 - 103.729 109.93 - 121.78	0.000253 (45) } } }	
e_{AL}	(Cm)	6.19 - 14.46	10.6(23)	
e _{AK}	(Cm) KLL KLX KXY	78.858 - 89.973 97.226 - 109.267 115.57 - 128.23	0.00125 (27) } } }	
$ec_{1,0 L} ec_{1,0 M+} ec_{6,0 T} \beta_{0,11}^{-}$	(Cm) (Cm) (Cm) max:	18.439 - 23.995 36.628 - 42.965 856.66 - 984.91 $410 \qquad (3)$	$\begin{array}{c} 23 \ (7) \\ 9 \ (3) \\ 1.0 \ (1) \\ 0.35 \ (9) \end{array}$	avg: 116.9 (7)

		Ene ke	ergy eV	Electrons per 100 disint.	Ι	Energy keV
$\begin{array}{c} \beta_{0,10}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,6}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,0}^{-} \end{array}$	max: max: max: max: max:	$\begin{array}{c} 432 \\ 496 \\ 531.1 \\ 1473 \\ 1516 \end{array}$	(3) (3) (30) (3) (3)	$\begin{array}{c} 0.56 \ (13) \\ 0.08 \ (2) \\ 1.36 \ (16) \\ 31 \ (9) \\ 67 \ (9) \end{array}$	avg: avg: avg: avg: avg:	123.7 (7) 144.0 (7) 155.7 (7) 495.8 (9) 512.3 (9)

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Cm)	12.633 - 23.527		12.3(27)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Cm) (Cm)	$104.59 \\ 109.271$		$\begin{array}{c} 0.013 \ (4) \\ 0.020 \ (6) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Cm) (Cm) (Cm)	$122.304 \\123.403 \\124.124$	} } }	0.0076 (21)	$\mathrm{K}\beta_1'$
$egin{array}{c} XKeta_2\ XKeta_4\ XKO_{2,3} \end{array}$	(Cm) (Cm) (Cm)	$\begin{array}{c} 126.889 \\ 127.352 \\ 127.97 \end{array}$	} } }	0.0027 (8)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Cm)$	42.965(10)	32(9)	E2	1050 (15)	0.030(9)
$\gamma_{6,1}(\text{Cm})$	941.95(3)	0.36(12)	$\mathrm{E2}$	0.01547~(22)	0.35~(12)
$\gamma_{7,1}(\mathrm{Cm})$	977.80(4)	0.08(2)	E0(+M1+E2)		
$\gamma_{6,0}(\text{Cm})$	984.91(2)	1.0(1)	$\mathrm{E0}$		
$\gamma_{10,1}(\text{Cm})$	1041.22(3)	0.19(6)	(M1+E2)		0.19(6)
$\gamma_{11,1}(\text{Cm})$	1062.95(3)	0.30(9)	anomalous E1	0.11(3)	0.27(8)
$\gamma_{10,0}(\text{Cm})$	1084.181(14)	0.37(12)	anomalous (E2)	0.041(11)	0.36(12)
$\gamma_{11,0}(\text{Cm})$	1105.91(2)	0.05(2)	anomalous (E1)	0.17(4)	0.04(2)

6 References

K.STREET JR., A.GHIORSO, G.T.SEABORG, Phys. Rev. 79 (1950) 530
(Half-life)
A.GHIORSO, S.G.THOMPSON, G.R.CHOPPIN, B.G.HARVEY, Phys. Rev. 94 (1954) 1081
(Half-life)
P.R.FIELDS JR., J.E.GINDLER, A.L.HARKNESS, M.H.STUDIER, J.R.HUIZENGA, A.M.FRIEDMAN, Phys. Rev. 100 (1955) 172
(Electron Capture/Beta minus ratio)

S.E.VANDENBOSCH, P.DAY, Nucl. Phys. 30 (1962) 177 (Spin and Parity) R.VANDENBOSCH, P.R.FIELDS, S.E.VANDENBOSCH, D.METTA, J. Inorg. Nucl. Chem. 26 (1964) 219 (Am243(n,gamma)Am244 cross-section ratio, Spin) V.YA.GABESKIRIYA, A.P.CHETVERIKOV, V.V.GRYZINA, V.V.TIKHOMIROV, Sov. At. Energy 41 (1976) 1008 (Branching fraction (EC)) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) R.W.HOFF, T.VON EGIDY, R.W.LOUGHEED, D.H.WHITE.H.G.BORNER, K.SCHRECKENBACH, G.BARREAU, D.D. WARNER, Phys. Rev. C29 (1984) 618 (Gamma-ray emission probabilities, Multipolarities) T.VON EGIDY, R.W.HOFF, R.W.LOUGHEED, D.H.WHITE, H.G.BORNER, K.SCHRECKENBACH, D.D.WARNER, G.BARREAU, Phys. Rev. C29 (1984) 1243 (Spin and Parity, Nuclear level energy of Am244m) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K and LX-rays, Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-rays) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) Y.A.AKOVALI, Nucl. Data Sheets 99 (2003) 197 (Nuclear levels) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods

Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	162.86	(8)	d
$Q^{'}_{lpha}$:	6215.56	(8)	keV
α	:	100		%
SF	:	6.36	(14)	$\times 10^{-6}~\%$

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,15}$	4869.43(23)	0.00000052 (14)
$\alpha_{0,14}$	4904.44~(23)	$0.00000055 \ (15)$
$\alpha_{0,13}$	5005.64(19)	0.00000031 (10)
$\alpha_{0,12}$	5101.21(10)	0.0000037 (10)
$\alpha_{0,11}$	5111.1(3)	≤ 0.0000002
$\alpha_{0,10}$	5146.07(12)	0.0000017~(5)
$lpha_{0,9}$	5165.95(16)	$0.00000113\ (21)$
$\alpha_{0,8}$	5186.95(12)	0.000035(7)
$\alpha_{0,7}$	5366.22(15)	≤ 0.00000022
$\alpha_{0,6}$	5462.47(14)	0.000013 (3)
$lpha_{0,5}$	5517.75(11)	0.00025(5)
$\alpha_{0,4}$	5607.76(16)	0.00002
$\alpha_{0,3}$	5816.39(11)	0.0046(5)
$\alpha_{0,2}$	5969.24(9)	0.034(2)
$\alpha_{0,1}$	6069.37(9)	25.94(7)
$\alpha_{0,0}$	6112.72 (8)	74.06 (7)

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pu)	6.19 - 22.99	8.99(21)
e _{AK}	(Pu) KLL KLX KXY	75.2 - 85.3 92.6 - 103.6 109.8 - 121.5	0.0000082 (15) } } }
ес _{1,0 L} ес _{1,0 M} ес _{2,1 L}	(Pu) (Pu) (Pu)	20.98 - 26.02 38.15 - 40.31 78.82 - 83.86	$\begin{array}{c} 18.8 \ (6) \\ 5.25 \ (15) \\ 0.0263 \ (16) \end{array}$

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pu)	12.12 - 23.07		9.92(23)	
${ m XK}lpha_2 { m XK}lpha_1$	(Pu) (Pu)	$99.525 \\ 103.734$		$0.000082 (9) \\ 0.000130 (15)$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	$116.244 \\117.228 \\117.918$	} } }	0.000048 (6)	$\mathrm{K}\beta_1'$
$\begin{array}{l} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$\begin{array}{c} 120.54 \\ 120.969 \\ 121.543 \end{array}$	} } }	0.0000165 (19)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy	$P_{\gamma+ce}$	Multipolarity	$lpha_{ m T}$	P_{γ}
	keV	\times 100			\times 100
$\gamma_{1,0}(Pu)$	44.08 (3)	26.0(8)	E2	787(16)	0.0330(7)
$\gamma_{2,1}(\mathrm{Pu})$	101.92(4)	0.0388(22)	E2	14.45(21)	0.00251(14)
$\gamma_{3,2}(Pu)$	157.42(9)	0.0046(5)	[E2]	2.19(4)	0.00145(16)
$\gamma_{4,3}(Pu)$	210.20(14)	0.00002052	E2	0.710(14)	0.000012
$\gamma_{8,5}(\mathrm{Pu})$	336.36(15)	0.00000072 (31)	[E1]	0.0323~(6)	0.0000007 (3)
$\gamma_{9,5}(\mathrm{Pu})$	357.64(7)	0.000000055(11)	M1+E2	0.214(15)	0.00000045 (9)
$\gamma_{7,3}(\mathrm{Pu})$	459.8(2)	0.0000006 (3)			0.0000006 (3)
$\gamma_{6,2}(Pu)$	$515.25\ (19)$	0.0000046~(12)	E1+M2	0.022~(3)	0.0000045~(12)
$\gamma_{5,1}(\mathrm{Pu})$	561.02(10)	0.000152~(40)	${ m E1}$	0.01153(23)	0.00015~(4)
$\gamma_{5,0}(\mathrm{Pu})$	605.04(10)	0.000106 (30)	${ m E1}$	0.00999(20)	0.000105 (30)
$\gamma_{6,1}(\mathrm{Pu})$	617.20(12)	0.0000080 (21)	E1+M2	0.0120(12)	0.0000079(21)
$\gamma_{7,2}(Pu)$	617.22(13)	0.0000016			0.00000016
$\gamma_{10,2}(Pu)$	$837.01\ (15)$	0.00000019~(6)	[E2]	0.0174(3)	0.00000019~(6)
$\gamma_{12,2}(Pu)$	882.63(3)	0.000000068 (15)	(E2)	0.0157~(3)	0.00000067 (15)
$\gamma_{8,1}(\mathrm{Pu})$	897.33(10)	0.000022~(6)	(E2)	0.0152(3)	0.000022~(6)
$\gamma_{9,1}(\mathrm{Pu})$	918.7(2)	0.00000054~(15)	${ m E1}$	0.00469~(9)	0.00000054 (15)
$\gamma_{10,1}(\mathrm{Pu})$	938.91~(10)	0.00000097~(33)	E0+E2	4.4(4)	0.00000018~(6)
$\gamma_{9,0}(\mathrm{Pu})$	962.8(2)	$0.00000053\ (15)$	${ m E1}$	0.00432(8)	0.00000053 (15)
$\gamma_{11,1}(\mathrm{Pu})$	974.5(3)	0.0000002			0.0000002
$\gamma_{13,2}(\mathrm{Pu})$	979.8(2)	0.0000026 (8)			0.0000026 (8)
$\gamma_{10,0}(\mathrm{Pu})$	983.0(3)	$0.00000051 \ (18)$	[E2]	$0.01276\ (25)$	0.00000050 (18)
$\gamma_{12,1}(\mathrm{Pu})$	984.5(1)	0.0000020 (6)	M1+E2	0.01279(26)	0.0000020 (6)
$\gamma_{12,0}(\mathrm{Pu})$	1028.5(2)	0.0000016 (5)	E2	0.01171(23)	0.0000016 (5)
$\gamma_{13,1}(\mathrm{Pu})$	1081.7(3)	0.00000005~(2)			0.00000005~(2)
$\gamma_{15,2}(\mathrm{Pu})$	1118.3(3)	0.00000017 (9)	[E2]	0.01001 (20)	0.00000017 (9)
$\gamma_{14,1}(\mathrm{Pu})$	1184.6(3)	0.00000050 (15)	$\mathrm{E2}$	0.00899(18)	0.00000050 (15)
$\gamma_{15,1}(\mathrm{Pu})$	1220.2(3)	0.00000035~(11)	E0 + E2 + (M1)	0.26(3)	0.0000028 (9)

5	References
U	neierences

G.C.HANNA, B.G.HARVEY, N.MOSS, Phys. Rev. 78 (1950) 617 (Half-life) G.C.HANNA, B.G.HARVEY, N.MOSS, P.R.TUNNICLIFFE, Phys. Rev. 81 (1951) 466 (SF half-life) D.C.DUNLAVEY, G.T.SEABORG, Phys. Rev. 87 (1952) 165 (Conversion electron measurements, gamma-ray multipolarities) F.Asaro, S.G.Thompson, I.Perlman, Phys. Rev. 92 (1953) 694 (Alpha emission energies and probabilities) K.M.GLOVER, J.MILSTED, Nature 173 (1954) 1238 (Half-life) W.P.HUTCHINSON, A.G.WHITE, Nature 173 (1954) 1238 (Half-life) S.A.BARANOV, K.N.SHLYAGIN, J. Nucl. Energy 3 (1956) 132 (Conversion electron measurements, gamma-ray multipolarities) W.G.SMITH, J.M.HOLLANDER, Phys. Rev. 101 (1956) 746 (Gamma-ray energies and multipolarities) L.N.TREIMAN, R.A.PENNEMAN, B.BEVAN, unpublished, cited in J. Inorg. Nucl. Chem. 5 (1957) 6 (Half-life) L.N.KONDRATEV, V.B.DEDOV, L.L.GOLDIN, IZV. Akad. Nauk SSSR, Ser. Fiz. 22 (1958) 99 (Alpha emission energies and probabilities) F.Asaro, I.Perlman, Report UCRL-9566, Univ. California (1960) 50 (Conversion electron measurements, gamma-ray multipolarities) C.M.LEDERER, Report UCRL-11028, Univ. California (1963) (Absolute gamma-ray emission probabilities) B.S.DZHELEPOV, R.B.IVANOV, V.G.NEDOVESOV, V.P.CHECHEV, Sov. Phys. - JETP 18 (1964) 937 (Alpha emission energies and probabilities) G.G.AKALAEV, N.A.VARTANOV, P.S.SAMOILOV, Report NP-14688 (1965) (Conversion electron measurements, gamma-ray multipolarities) K.F.FLYNN, L.E.GLENDENIN, E.P.STEINBERG, Nucl. Sci. Eng. 22 (1965) 416 (Half-life) S.A.BARANOV, Y.F.RODIONOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 4 (1967) 798 (Alpha emission energies and probabilities) R.J.ARMANI, R.GOLD, Proc. Symp. on Standardization of Radionuclides, STI/PUB/139, IAEA, Vienna (1967) 621 (SF half-life) J.A.BEARDEN, Rev. Mod. Phys. 39 (1967) 78 (X-ray energies) J.Byrne, R.J.D.Beattie, S.Benda, I.Collingwood, J. Phys. (London) B3 (1970) 1166 (Experimental LX-ray absolute emission probability) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha emission energies) J.C.POST, A.H.W.ATEN JR., Radiochim. Acta 15 (1971) 205 (Gamma-ray energies) K.L.SWINTH, IEEE Trans. Nucl. Sci. 18 (1971) 125 (Experimental LX-ray absolute emission probability) W.J.B.WINTER, A.H.WAPSTRA, P.F.A.GOUDSMIT, J.KONIJN, Nucl. Phys. A197 (1972) 417 (Gamma-ray energies) I.AHMAD, R.K.SJOBLOM, R.F.BARNES, F.WAGNER JR., P.R.FIELDS, Nucl. Phys. A186 (1972) 620 (Gamma-ray energies) S.A.BARANOV, V.M.SHATINSKII, V.M.KULAKOV, Sov. J. Nucl. Phys. 14 (1972) 614 (Alpha emission energies) W.J.KERRIGAN, C.J.BANICK, J. Inorg. Nucl. Chem. 37 (1975) 641 (Half-life) H.DIAMOND, W.C.BENTLEY, A.H.JAFFEY, K.F.FLYNN, Phys. Rev. C15 (1977) 1034 (Half-life) HUAN-QIAO CHANG, JIN-CHENG XU, TONG-QING WEN, Chin. J. Nucl. Phys. 1 (1979) 21 (SF half-life)

J.K.DICKENS, J.W.MCCONNELL, Phys. Rev. C22 (1980) 1344 (Experimental X-ray energies) A.V.JADHAV, K.A.MATHEW, K.RAGHURAMAN, C.K.SIVARAMAKRISHNAN, Proc. of the Nucl. Chem. and Radiochem. Symp., Waltair (1980) 184 (Half-life) C.M.LEDERER, Phys. Rev. C24 (1981) 1175 (Gamma-ray energies and probabilities) S.USUDA, H.UMEZAWA, J. Inorg. Nucl. Chem. 43 (1981) 3081 (Half-life) S.K.AGGARWAL, A.V.JADHAV, S.A.CHITAMBAR, Radiochem. Radioanal. Lett. 54 (1982) 99 (Half-life) G.BARREAU, H.G.BORNER, T.VON EGIDY, R.W.HOFF, Z. Phys. A308 (1982) 209 (Experimental X-ray energies) K.RAGHURAMAN, N.K.CHAUDHURI, A.V.JADHAV, C.K.SIVARAMAKRISHNAN, R.H.IYER, Radiochem. Radioanal. Lett. 55 (1982) 1 (SF half-life) H.UMEZAWA, Report INDC(NDS)-138, IAEA, Vienna (1982) 32 (SF half-life) R.A.P.WILTSHIRE, Nucl. Instrum. Methods 223 (1984) 535 (Half-life) A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Half-life evaluation) A.G.ZELENKOV, V.A.PCHELIN, YU.F.RODIONOV, L.V.CHISTYAKOV, V.S.SHIRYAEV, V.M.SHUBKO, Sov. At. Energy 60 (1986) 492 (SF half-life) S.USUDA, H.UMEZAWA, Int. J. Radiat. Appl. Instr. D16 (1989) 247 (SF half-life) YU.S.POPOV, I.B.MAKAROV, D.KH.SRUROV, E.A.ERIN, Sov. J. Radiochemistry 32 (1990) 425 (Experimental relative LX-ray emission probabilities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-emission energies) P.N.JOHNSTON, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A361 (1995) 229 (Experimental relative LX-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.YANG, J.NI, Nucl. Instrum. Methods Phys. Res. A413 (1998) 239 (Alpha-transition probabilities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilities) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger electron emission probabilities, EMISSION code) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (SF half-life) F.E.CHUKREEV, V.E.MAKARENKO, M.J.MARTIN, Nucl. Data Sheets 97 (2002) 129 (Nuclear data evaluation for A=238) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) V.P.CHECHEV, Phys. Atomic Nuclei 69 (2006) 1188 (242Cm decay data evaluation-2005) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	28.9	(4)	У
$Q^{'}_{lpha}$:	6168.8	(10)	keV
Q_{EC}	:	7.5	(17)	keV
α	:	99.71	(3)	%
EC	:	0.29	(3)	%
SF	:	5.3	(9)	$\times 10^{-9}~\%$

2 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$	P_K	P_L	P_{M+}
$\epsilon_{0,0}$	7.5(17)	0.29(3)	1st forbidden	7.2	0 (0)	0 (0)	1.000 (0)

3 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,27}$	5231 (15)	0.00039
$\alpha_{0,26}$	5268~(3)	0.0015
$\alpha_{0,25}$	5317~(3)	0.001
$\alpha_{0,24}$	5324~(3)	0.003
$\alpha_{0,23}$	5333~(3)	0.003
$\alpha_{0,22}$	5520.1(11)	0.002
$\alpha_{0,21}$	5533~(3)	0.006
$\alpha_{0,20}$	5538~(3)	0.002
$\alpha_{0,19}$	5569.9(10)	0.007
$\alpha_{0,18}$	5576(3)	0.007
$\alpha_{0,17}$	5583.2(10)	0.009
$\alpha_{0,16}$	5588(3)	0.02
$\alpha_{0,15}$	5594(3)	0.01
$\alpha_{0,14}$	5605.1(11)	≤ 0.01
$\alpha_{0,13}$	5613(3)	0.03
$\alpha_{0,12}$	5624(5)	0.06
$\alpha_{0,11}$	5640(3)	0.14
$\alpha_{0,10}$	5647(3)	0.03
$\alpha_{0,9}$	5682(1)	0.2
$\alpha_{0,8}$	5686.1(10)	1.6(1)
$\alpha_{0,7}$	5742.5(10)	11.3(2)
$\alpha_{0,6}$	5786.4(10)	73.4(4)
$\alpha_{0,5}$	5877.6(14)	0.7
$\alpha_{0,4}$	5906.1(10)	0.1
$\alpha_{0,3}$	5992.7(10)	5.7(2)
$\alpha_{0,2}$	6010.8(10)	1.05(12)
$\alpha_{0,1}$	6059.4(10)	4.4(2)
$\alpha_{0,0}$	6067.2(10)	1.3(2)

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pu)	6.19 - 22.99	49.3(15)
e _{AK}	(Pu)		1.34(19)
	KLĹ	75.263 - 85.357	}
	KLX	92.607 - 103.729	}
	KXY	109.93 - 121.78	}
$ec_{1,0}$ M	(Pu)	1.93 - 4.09	63.0(45)
$ec_{1,0 N}$	(Pu)	6.30 - 7.44	17.4(12)
$ec_{3,2}$ M	(Pu)	12.50 - 14.66	0.6(6)
$ec_{3,2}$ N	(Pu)	16.87 - 18.01	0.16(16)
$ec_{7,6}$ L	(Pu)	21.559 - 26.606	9.4(16)
$ec_{2,1}$ L	(Pu)	26.308 - 31.355	18.4(12)
$ec_{2,0 L}$	(Pu)	34.169 - 39.216	9.67(14)
$ec_{8,7 L}$	(Pu)	34.2 - 39.2	1.720(24)
$ec_{7,6}$ M	(Pu)	38.730 - 40.888	2.36(49)
$ec_{7,6 N}$	(Pu)	43.104 - 44.239	0.66~(12)
$ec_{2,1}$ M	(Pu)	43.479 - 45.637	4.96(34)
ec _{7,4 K}	(Pu)	44.60 (6)	0.079(34)
$ec_{3,1}$ L	(Pu)	44.737 - 49.784	14.3(36)
$ec_{2,1 N}$	(Pu)	47.853 - 48.988	1.36(10)
$ec_{2,0 M}$	(Pu)	51.340 - 53.498	2.700(42)
$ec_{8,7 M}$	(Pu)	51.4 - 53.5	0.419(6)
$ec_{8,7 N}$	(Pu)	55.7 - 56.9	0.1142~(16)
$ec_{2,0 N}$	(Pu)	55.714 - 56.849	0.742(11)
$ec_{3,1}$ M	(Pu)	61.908 - 64.066	4(1)
$ec_{4,3}$ L	(Pu)	64.96 - 70.00	0.01633~(23)
$ec_{3,1 N}$	(Pu)	66.282 - 67.417	1.10(28)
$ec_{8,6 L}$	(Pu)	78.86 - 83.90	0.0837~(12)
$ec_{9,6 L}$	(Pu)	83.021 - 88.068	$0.056\ (10)$
$ec_{4,2 L}$	(Pu)	83.37 - 88.41	0.1284 (18)
$ec_{6,3}$ K	(Pu)	87.962 (2)	8.42(29)
$ec_{5,3}$ L	(Pu)	94 - 99	0.442~(19)
$ec_{8,6}$ M	(Pu)	96.03 - 98.18	0.02344~(40)
$ec_{9,6}$ M	(Pu)	100.192 - 102.350	0.0148~(27)
$ec_{4,2}$ M	(Pu)	100.54 - 102.70	0.0360~(6)
$ec_{6,2 K}$	(Pu)	106.392 (2)	21.4(7)
$ec_{5,3}$ M	(Pu)	111.2 - 113.3	0.123~(6)
$ec_{5,3 N}$	(Pu)	115.5 - 116.7	$0.0340\ (14)$
$ec_{7,3}$ K	(Pu)	132.61 (3)	$0.160\ (15)$
$ec_{7,4}$ L	(Pu)	143.29 - 148.33	0.016(7)
$ec_{7,2 \rm K}$	(Pu)	151.08 (9)	0.096(12)
$ec_{6,1~\rm K}$	(Pu)	155.808 (2)	16.0(5)
$ec_{6,0 K}$	(Pu)	163.669 (2)	0.0615(19)
$ec_{6,3}$ L	(Pu)	186.649 - 191.696	1.68(6)
$ec_{8,3}$ K	(Pu)	189.9 (2)	0.0143~(18)
$ec_{6,3}$ M	(Pu)	203.820 - 205.978	0.408(14)

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
ес _{6,2 L}	(Pu)	205.079 - 210.126	4.27(14)
$ec_{6,3 N} ec_{6,2 M}$	(Pu)	208.194 - 209.329 222.250 - 224.408	$\begin{array}{c} 0.1112 \\ 1.038 \\ (33) \end{array}$
ес _{6,2 N} ес _{7,3 L}	(Pu) (Pu)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.282 \ (9) \\ 0.0323 \ (30) \end{array}$
ес _{7,2 L} ес _{6,1 L}	(Pu) (Pu)	249.77 - 254.81 254.495 - 259.542	$\begin{array}{c} 0.0193 \ (24) \\ 3.22 \ (11) \end{array}$
$ec_{6,0 L}$ $ec_{6,1 M}$	(Pu) (Pu)	262.36 - 267.40 271.666 - 273.824	0.0869(27) 0.784(25)
$ec_{6,1 N}$	(Pu) (Pu)	276.040 - 277.175 279.53 - 281.68	0.213(7) 0.0238(7)

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pu)	12.1246 - 21.9844		52.1(16)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pu) (Pu)	$\begin{array}{c} 99.525 \\ 103.734 \end{array}$		$\begin{array}{c} 13.34 \ (28) \\ 21.1 \ (5) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	$116.244 \\117.228 \\117.918$	} } }	7.75 (21)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$120.54 \\ 120.969 \\ 121.543$	} } }	2.69 (8)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(\mathrm{Pu})$	7.861(2)	85.5	M1+E2	5700 (400)	0.015
$\gamma_{3,2}(\mathrm{Pu})$	18.430(4)	0.8	(M1+E2)	8000~(6200)	0.0001
$\gamma_{7,6}(\mathrm{Pu})$	44.663(5)	12.7~(23)	M1+E2	96(13)	0.131(16)
$\gamma_{2,1}(\mathrm{Pu})$	49.414(2)	25.4	M1+E2	126(8)	0.2
$\gamma_{2,0}(\mathrm{Pu})$	57.273(4)	13.38	E2	222 (4)	0.06
$\gamma_{8,7}(Pu)$	57.30(2)	2.368	[M1]	28.6(4)	0.08
$\gamma_{9,7}(\mathrm{Pu})$	61.460(2)	0.0222 (19)	E1	0.473(7)	$0.0151\ (13)$
$\gamma_{3,1}(Pu)$	67.841(7)	20(5)	E2	98.5(14)	0.20(5)
$\gamma_{4,3}(\mathrm{Pu})$	88.06(3)	0.024	M1+E2	12.26(18)	0.0018
$\gamma_{8,6}(\mathrm{Pu})$	101.96(2)	0.123	E2	14.42(21)	0.008
$\gamma_{9,6}(\mathrm{Pu})$	106.125(2)	0.373(34)	E1(+M2)	0.26(4)	$0.296\ (25)$

ANNEX I: RECOMMENDED DECAY DATA

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{4,2}(\mathrm{Pu})$	106.47(4)	0.192	E2	11.80 (17)	0.015
$\gamma_{5,3}(\mathrm{Pu})$	117.1 (10)	0.7(0)	[E2]	7.6(4)	0.08
$\gamma_{7,4}(Pu)$	166.39(6)	0.12(5)	M1	6.22(9)	0.016(7)
$\gamma_{6,3}(Pu)$	209.753(2)	13.95(45)	M1+E2	3.24(5)	3.29(10)
$\gamma_{6,2}(Pu)$	228.183(2)	37.7(11)	M1+E2	2.56(4)	10.6(3)
$\gamma_{7,3}(\mathrm{Pu})$	254.40(3)	0.314(29)	M1+E2	1.85(3)	0.11(1)
$\gamma_{7,2}(Pu)$	272.87(9)	0.201 (25)	M1+E2	1.518(22)	0.08(1)
$\gamma_{6,1}(Pu)$	277.599(2)	34.3(10)	M1+E2	1.448(21)	14.0(4)
$\gamma_{6,0}(\mathrm{Pu})$	285.460(2)	0.910(25)	E2	0.247~(4)	0.73~(2)
$\gamma_{8,3}(Pu)$	311.7(2)	0.0350(42)	M1+E2	1.06(3)	0.017(2)
$\gamma_{9,3}(\mathrm{Pu})$	315.880(3)	0.0187(21)	E1(+M2)	0.0372(9)	0.018(2)
$\gamma_{7,1}(Pu)$	322.3(2)	0.0082(12)	[E2]	0.1699(24)	0.007(1)
$\gamma_{9,2}(\mathrm{Pu})$	334.310(3)	0.0248(21)	E1(+M2)	0.0329(6)	0.024(2)

6 References

S.G.THOMPSON, A.GHIORSO, G.T.SEABORG, Phys. Rev. 80 (1950) 781 (Half-life) F.Asaro, S.G.Thompson, I.Perlman, Phys. Rev. 92 (1953) 694 (Gamma-ray energies) F.Asaro, Thesis, Report UCRL-2180, Univ. California (1953) (Half-life) J.F.SCHOOLEY, J.RASMUSSEN, Report UCRL-2932, Univ. California (1955) 63 (Alpha-particle and gamma-ray energies) J.O.NEWTON, B.ROSE, J.MILSTED, Phil. Mag. 1 (1956) 981 (Gamma-ray energies) F.Asaro, S.G.Thompson, F.S.Stephens Jr., I.Perlman, Bull. Am. Phys. Soc. 2 (1957) 393 (Alpha-particle energies) G.R.CHOPPIN, S.G.THOMPSON, J. Inorg. Nucl. Chem. 7 (1958) 197 (Total and EC decay half-life, alpha-particle energies and emission probabilities) G.T.EWAN, J.S.GEIGER, R.L.GRAHAM, D.R.MCKENZIE, Phys. Rev. 116 (1959) 950 (Conversion electron intensities and ICC) R.B.IVANOV, A.S.KRIVOKHATSKII, V.G.NEDOVESOV, Izv. Akad. Nauk SSSR, Ser. Fiz. 26 (1962) 976 (Alpha-particle energies) C.M.LEDERER, Thesis, Report UCRL-11028, Univ. California (1963) (Alpha-particle energies) B.S.DZHELEPOV, R.B.IVANOV, V.G.NEDOVESOV, V.P.CHECHEV, Zh. Eksp. Teor. Fiz. 45 (1963) 1360 (Alpha-particle energies and emission probabilities) F.ASARO, S.G.THOMPSON, F.S.STEPHENS JR., I.PERLMAN, Priv. Comm. (1957), cited in E.K.Hyde et al., The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha-particle energies and emission probabilities) I.A.BARANOV, A.S.KRIVOKHATSKII, A.N.SILANTEV, Izv. Akad. Nauk SSSR, Ser. Fiz. 28 (1964) 1255 (Gamma-ray energies) E.K.HYDE, I.PERLMAN, G.T.SEABORG, The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha-particle energies) B.P.K.MAIER, Z. Phys. 184 (1965) 143 (Gamma-ray energies) S.A.BARANOV, Y.F.RODIONOV, V.M.KULAKOV, V.M.SHATINSKII, Yad. Fiz. 4 (1966) 1108 (Alpha-particle energies and emission probabilities) J.BYRNE, R.J.D.BEATTIE, S.BENDA, I.COLLINGWOOD, J. Phys. (London) B3 (1970) 1166 (Alpha-particle energies)

S.A.BARANOV, V.M.SHATINSKII, V.M.KULAKOV, Yad. Fiz. 14 (1971) 1101 (Alpha-particle energies) F.T.PORTER, I.AHMAD, M.S.FREEDMAN, R.F.BARNES, R.K.SJOBLOM, F.WAGNER JR., P.R.FIELDS, Phys. Rev. C5 (1972) 1738 (Gamma-ray energies) I.AHMAD, M.WAHLGREN, Nucl. Instrum. Methods 99 (1972) 333 (KX-ray and gamma-ray emission probabilities) K.S.KRANE, C.E.OLSEN, W.A.STEYERT, Phys. Rev. C5 (1972) 1671 (E2/M1 mixing ratios) I.AHMAD, H.DIAMOND, J.MILSTED, J.LERNER, R.K.SJOBLOM, Nucl. Phys. A208 (1973) 287 (Alpha-transition probabilities) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting on Transactinium Nucl. Data, Karlsruhe, Vol.III, IAEA-186, IAEA, Vienna (1976) 249 (Alpha-particle energies) V.I.VAKATOV, H.SODAN, R.KALPAKCHIEVA, Y.T.OGANESYAN, Y.E.PENIONZHKEVICH, V.N.POLYANSKII, L.P. CHELNOKOV, Report JINR-P7-10123, Joint Institute of Nuclear Research, Dubna (1977) (Alpha-particle energies) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251 (Gamma-ray energies) I.AHMAD, Nucl. Instrum. Methods 193 (1982) 9 (Gamma-ray energies) G.A.TIMOFEEV, V.V.KALYGIN, P.A.PRIVALOVA, At. Energ. 60 (1986) 286 (Half-life) V.N.Polynov, A.A.Druzhinin, A.M.Korochkin, E.A.Nikitin, V.A.Bochkarev, V.N.Vyachin, V.G.Lapin, M.YU.MAKSIMOV, At. Energ. 62 (1987) 277 (SF half-life) E.SIMECKOVA, P.CIZEK, M.FINGER, J.JOHN, P.MALINSKY, V.N.PAVLOV, Hyperfine Interactions 59 (1990) 185 (E2/M1 mixing ratios)A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-particle energies) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 98 (2003) 665 (243Cm alpha decay scheme and alpha decay data evaluation) Y.A.AKOVALI, Nucl. Data Sheets 103 (2004) 515 (243Cm EC decay scheme and EC decay data evaluation) A.TRKOV, G.L.MOLNAR, ZS.REVAY, S.F.MUGHABGHAB, R.B.FIRESTONE, V.G.PRONYAEV, A.L.NICHOLS, M.C. MOXON, Nucl. Sci. Eng. 150 (2005) 336 (239Pu gamma-ray emission probabilities in decay of 239Np) V.P.CHECHEV, N.K.KUZMENKO, in Table of Radionuclides (Vol.4 - A = 133 to 252), Monographie BIPM-5, Bureau International des Poids et Mesures, Sevres (2008) (Pu-239 gamma-ray intensities from Np-239 decay) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Band-Raman ICC for gamma-ray transitions) F.G.KONDEV, I.AHMAD, M.P.CARPENTER, C.J.CHIARA, J.P.GREENE, R.V.F.JANSSENS, M.A.KELLETT, T.L. KHOO, T.LAURITSEN, C.J.LISTER, E.F.MOORE, A.L.NICHOLS, D.SEWERYNIAK, S.ZHU, Proc. 13th Int. Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Cologne, Germany, 25-29 Aug.2008; AIP Conf. Proc. 1090 (2009) 199

(Alpha-transition probabilities)

$T_{1/2}$:	18.11	(3)	У
$Q^{'}_{lpha}$:	5901.74	(5)	keV
α	:	100		%
SF	:	1.36	(8)	$\times 10^{-4}~\%$

2 α Emissions

	Energy keV	Probability × 100
$lpha_{0,9}$	4882.12 (8)	0.0000047(11)
$lpha_{0,8}$	4919.24(7)	0.000050 (5)
$\alpha_{0,7}$	4958.20(9)	0.000149(16)
$\alpha_{0,6}$	5166.58(7)	0.0000042(30)
$\alpha_{0,5}$	5217.24(7)	0.000055 (9)
$\alpha_{0,4}$	5315.3	0.00004
$\alpha_{0,3}$	5515.29(6)	0.00352(18)
$\alpha_{0,2}$	5665.41(5)	0.0204(15)
$\alpha_{0,1}$	5762.65(5)	23.3(4)
$\alpha_{0,0}$	5804.77 (5)	76.7(4)

3 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
e_{AL}	(Pu)	6.19 - 22.99	8.09 (20)
e _{AK}	(Pu) KLL KLX KXY	75.263 - 85.357 92.607 - 103.729 109.93 - 121.78	0.0000061 (9) } } }
$ec_{1,0 L} ec_{1,0 M} ec_{2,1 L}$	(Pu) (Pu) (Pu)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 16.9 \ (6) \\ 4.72 \ (16) \\ 0.0164 \ (11) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$	Photons per 100 disint.	
XL	(Pu)	12.125 - 21.984	8.92(23)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pu) (Pu)	99.525 103.734	$\begin{array}{c} 0.000061 \ (4) \\ 0.000097 \ (5) \end{array}$	} Κα }

		Energy keV		Photons per 100 disint.	
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	$116.244 \\117.228 \\117.918$	} } }	0.0000354 (20)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$\begin{array}{c} 120.54 \\ 120.969 \\ 121.543 \end{array}$	} } }	0.0000123 (7)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(\mathrm{Pu})$	42.824 (8)	23.4(8)	E2	905(18)	0.0258(7)
$\gamma_{2,1}(Pu)$	98.860(13)	0.0239(16)	E2	16.6(3)	0.00136(9)
$\gamma_{3,2}(Pu)$	152.63(2)	0.00355(18)	(E2)	2.48(5)	0.00102(5)
$\gamma_{4,3}(Pu)$	202.4	0.00004	(E2)	0.817(16)	0.000022
$\gamma_{8,6}(\mathrm{Pu})$	251.47(6)	0.0000121 (24)	(E1)	0.0606(12)	0.0000114 (23)
$\gamma_{7,5}(\mathrm{Pu})$	263.37~(8)	0.000065 (9)	(E1)	0.0547(11)	0.000062 (9)
$\gamma_{9,6}(\mathrm{Pu})$	289.21(7)	0.0000048 (48)	E2+M3	7(7)	0.0000006 (3)
$\gamma_{8,5}(\mathrm{Pu})$	302.98~(6)	0.0000198(31)	(E1)	0.0405~(8)	0.000019 (3)
$\gamma_{9,5}(\mathrm{Pu})$	340.72(7)	0.0000018 (9)			0.0000018 (9)
$\gamma_{6,2}(Pu)$	507.16(5)	0.0000088(28)	(E1)	0.01401~(29)	0.0000087~(28)
$\gamma_{5,1}(\mathrm{Pu})$	554.52~(4)	0.000088(11)	(E1)	0.01179(24)	0.000087(11)
$\gamma_{5,0}(\mathrm{Pu})$	597.34(4)	0.000054(7)	(E1)	0.01024~(21)	0.000053~(7)
$\gamma_{6,1}(\mathrm{Pu})$	606.03~(4)	0.0000081(14)			0.0000081(14)
$\gamma_{8,2}(Pu)$	758.63(5)	0.0000141 (19)	(E2)	0.0212~(4)	0.0000138(19)
$\gamma_{7,1}(Pu)$	817.89(7)	0.000069 (9)	(E2)	0.0182(4)	0.000068 (9)
$\gamma_{8,1}(Pu)$	857.50(4)	0.0000057 (8)			0.0000057 (8)
$\gamma_{7,0}(\mathrm{Pu})$	860.71(7)	0.0000082(20)	(E0)		
$\gamma_{9,1}(\mathrm{Pu})$	895.24~(6)	0.0000019(7)	E1+M2	0.07~(7)	0.0000018~(6)
$\gamma_{8,0}(\mathrm{Pu})$	900.32~(4)	0.0000013~(6)			0.0000013~(6)
$\gamma_{9,0}(\mathrm{Pu})$	938.06~(6)	0.0000004 (4)			0.0000004 (4)

5 References

A.GHIORSO, G.H.HIGGINS, A.E.LARSH, G.T.SEABORG, S.G.THOMPSON, Phys. Rev. 87 (1952) 163 (SF half-life)
A.M.FRIEDMAN, A.L.HARKNESS, P.R.FIELDS, M.H.STUDIER, J.R.HUIZENGA, Phys. Rev. 95 (1954) 1501 (Half-life)
C.M.STEVENS, M.H.STUDIER, P.R.FIELDS, J.F.MECH, P.A.SELLERS, A.M.FRIEDMAN, H.DIAMOND, J.R.HUIZENGA, Phys. Rev. 94 (1954) 974 (Half-life)
J.P.HUMMEL, Thesis, Report UCRL-3456, Univ. California (1956) (Alpha-transition probabilities)
W.G.SMITH, J.M.HOLLANDER, Phys. Rev. 101 (1956) 746 (Conversion electron measurements, gamma-ray multipolarities)
F.ASARO, I.PERLMAN, Priv. Comm. (1960) (Alpha-transition probabilities, alpha-emission energies)

W.T.CARNALL, S.FRIED, A.L.HARKNESS, J. Inorg. Nucl. Chem. 17 (1961) 12 (Half-life) S.BJORNHOLM, C.M.LEDERER, F.ASARO, I.PERLMAN, Phys. Rev. 130 (1963) 2000 (E0 gamma and alpha transition probabilities) B.S.DZHELEPOV, R.B.IVANOV, V.G.NEDOVESOV, V.P.CHECHEV, Sov. Phys. - JETP 18 (1964) 937 (Alpha-transition probabilities, alpha-emission energies) L.Z.MALKIN, I.D ALKHAZOV, A.S.KRIVOKHATSKII, K.A.PETRZHAK, L.M.BELOV, Sov. J. At. Energy 16 (1964) 170(SF half-life) D.METTA, H.DIAMOND, R.F.BARNES, J.MILSTED, J.GRAY JR., D.J.HENDERSON, C.M.STEVENS, J. INOrg. Nucl. Chem. 27 (1965) 33 (SF half-life) J.A.BEARDEN, Rev. Mod. Phys. 39 (1967) 78 (X-ray energies) S.A.BARANOV, Y.F.RODIONOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 4 (1967) 798 (Alpha-transition probabilities, alpha-emission energies) R.J.ARMANI, R.GOLD, Proc. Symp. on Standardization of Radionuclides, STI/PUB/139, IAEA, Vienna (1967) 621(SF half-life) W.C.BENTLEY, J. Inorg. Nucl. Chem. 30 (1968) 2007 (Half-life) C.L.DUKE, W.L.TALBERT JR., Phys. Rev. 173 (1968) 1125 (Conversion electron measurements, gamma-ray multipolarities) M.R.SCHMORAK, ET AL., Int. Conf. Radioact. Nucl. Spectroc. Tech. And Appl., Nashville (1969) 22 (Gamma-ray energies and probabilities) M.R.SCHMORAK, Nucl. Data Sheets B4 (1970) 661 (Gamma-ray energies and probabilities) D.M.BARTON, P.G.KOONTZ, J. Inorg. Nucl. Chem. 32 (1970) 769 (SF half-life) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha-particle energies) H.J.SPECHT, J.WEBER, E.KONECNY, D.HEUNEMANN, Phys. Lett. 41B (1972) 43 (Level energies) I.AHMAD, R.F.BARNES, R.K.SJOBLOM, P.R.FIELDS, J. Inorg. Nucl. Chem. 34 (1972) 3335 (Gamma-ray energies) J.D.HASTINGS, W.W.STROHM, J. Inorg. Nucl. Chem. 34 (1972) 3597 (SF half-life) W.J.KERRIGAN, R.S.DORSETT, J. Inorg. Nucl. Chem. 34 (1972) 3603 (Half-life) M.SCHMORAK, C.E.BEMIS JR., M.J.ZENDER, N.B.GOVE, P.F.DITTNER, Nucl. Phys. A178 (1972) 410 (Gamma-ray energies and probabilities) C.M.LEDERER, V.S.SHIRLEY, E.BROWNE, J.M.DAIRIKI, R.E.DOEBLER, A.A.SHIHAB-ELDIN, L.J.JARDINE, J.K.TULI, A.B.BUYRN, Table of Isotopes, 7th Ed., John Wiley and Sons Inc., N.Y. (1978) (Gamma-ray energies and probabilities) C.M.LEDERER, Priv. Comm. (1967), cited in C.M.Lederer et al., Table of Isotopes, 7th Ed., John Wiley and Sons Inc., N.Y. (1978) (Gamma-ray energies and probabilities) J.K.DICKENS, J.W.MCCONNELL, Phys. Rev. C22 (1980) 1344 (Experimental X-ray energies) H.-C.HSEUH, E.-M.FRANZ, P.E.HAUSTEIN, S.KATEOFF, L.K.PEKER, Phys. Rev. C23 (1981) 1217 (Gamma-ray energies and probabilities) G.BARREAU, H.G.BORNER, T.VON EGIDY, R.W.HOFF, Z. Phys. A308 (1982) 209 (Experimental X-ray energies) V.G.POLYUKHOV, G.A.TIMOFEEV, V.V.KALYGIN, P.A.PRIVALOVA, Sov. Radiochem. 24 (1982) 408 (Half-life) P.A.BURNS, P.N.JOHNSTON, J.R.MORONEY, Priv. Comm. (1984), cited in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1984) 147 (Alpha-transition probabilities) J.PEARCEY, S.A.WOODS, P.CHRISTMAS, Nucl. Instrum. Methods Phys. Res. A286 (1990) 563 (Conversion electron measurements, gamma-ray multipolarities)

YU.S.POPOV, I.B.MAKAROV, D.KH.SRUROV, E.A.ERIN, Cov. J. Radiochemistry 32 (1990) 425 (Experimental relative LX-ray emission probabilities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-emission energies) E.A.FROLOV, Appl. Radiat. Isot. 43 (1992) 211 (Alpha-emission energies) A.K.PANDEY, R.C.SHARMA, P.C.KALSI, R.H.IYER, Nucl. Instrum. Methods Phys. Res. B82 (1993) 151 (SF half-life) P.N.JOHNSTON, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A361 (1995) 229 (LX-ray emission probabilities) A.M.SANCHEZ, P.R.MONTERO, F.V.TOME, Nucl. Instrum. Methods Phys. Res. A369 (1996) 593 (Alpha-transition probabilities) C.C.BUENO, J.A.C.GONCALVES, M.DAMY DE S.SANTOS, Nucl. Instrum. Methods Phys. Res. A371 (1996) 460 (Alpha-transition probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.KASAGI, H.YAMAZAKI, N.KASAJIMA, T.OHTSUKI, H.YUKI, J. Phys. (London) G23 (1997) 1451 (Alpha-transition probabilities) J.YANG, J.NI, Nucl. Instrum. Methods Phys. Res. A413 (1998) 239 (Alpha-transition probabilities) E.GARCIA-TORAÑO, Appl. Radiat. Isot. 49 (1998) 1325 (Alpha-transition probabilities, alpha-emission energies) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-energies and relative emission probabilities) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525 (Spontaneous fission half-life) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger electron emission probabilities, EMISSION code) F.DAYRAS, Nucl. Instrum. Methods Phys. Res. A490 (2002) 492 (Alpha-transition probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) F.E.CHUKREEV, BALRAJ SINGH, Nucl. Data Sheets 103 (2004) 325 (Decay scheme, 240Pu level energies, gamma-ray multipolarities and probabilities) V.P.CHECHEV, Phys. Atomic Nuclei 69 (2006) 1188 (244Cm decay data evaluation-2005) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

$T_{1/2}$:	8250	(70)	У
$Q^{'}_{lpha}$:	5622.3	(5)	keV
α	:	100		%
SF	:	5.9	(9)	$\times 10^{-7}~\%$

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,8}$	5152(3)	≤ 0.005
$\alpha_{0,7}$	5234.4(12)	0.32
$\alpha_{0,6}$	5303.6(12)	5.0(1)
$\alpha_{0,5}$	5361.8(12)	93.2(5)
$\alpha_{0,4}$	5371.4(5)	0.0210(9)
$\alpha_{0,3}$	5371.7(5)	0.39(22)
$\alpha_{0,2}$	5436.1(5)	0.04
$\alpha_{0,1}$	5488.5(5)	0.83
$lpha_{0,0}$	5530.4(4)	0.58
·	, ,	

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pu)	6.19 - 22.99	50.1(13)
e_{AK}	(Pu)		1.91(27)
	KLĹ	75.263 - 85.357	}
	KLX	92.607 - 103.729	}
	KXY	109.93 - 121.78	}
$ec_{5,1 K}$	(Pu)	11.290 (2)	24.7(7)
$ec_{6,2}$ K	(Pu)	14.365 (9)	0.70(14)
$ec_{7,3}$ K	(Pu)	18.067 (16)	0.032~(32)
$ec_{1,0 L}$	(Pu)	18.868 - 23.915	28.1 (16)
$ec_{2,1 L}$	(Pu)	30.703 - 35.750	2.43(15)
$ec_{6,5 L}$	(Pu)	33.79 - 38.83	2.30(22)
$ec_{1,0 M}$	(Pu)	36.039 - 38.197	7.16(42)
$ec_{4,0 K}$	(Pu)	39.894 (1)	0.0135~(6)
$ec_{1,0 N}$	(Pu)	40.413 - 41.548	1.96(11)
$ec_{3,2}$ L	(Pu)	42.431 - 47.478	0.32~(17)
$ec_{7,6}$ L	(Pu)	46.133 - 51.180	0.15~(9)
$ec_{2,1}$ M	(Pu)	47.874 - 50.032	0.615~(37)
$ec_{6,5 M}$	(Pu)	50.96 - 53.12	0.62~(6)
$ec_{2,1 N}$	(Pu)	52.248 - 53.383	0.168(10)
$ec_{5,0 K}$	(Pu)	53.2613 (14)	40.0(11)
$ec_{6,5 N}$	(Pu)	55.33 - 56.47	0.169(17)
$ec_{5,2}$ L	(Pu)	56.169 - 61.216	1.9(6)

		Energy keV	Electrons per 100 disint.
ес _{3,2 М}	(Pu)	59.602 - 61.760	0.081 (44)
$ec_{7,6 M}$	(Pu)	63.304 - 65.462	0.035(26)
$ec_{3,2 N}$	(Pu)	63.976 - 65.111	0.022(13)
ec _{7,6} N	(Pu)	67.678 - 68.813	0.010(7)
$ec_{6,1 K}$	(Pu)	68.17 (1)	0.502(34)
$ec_{2,0 L}$	(Pu)	72.676 - 77.722	$0.153\ (32)$
$ec_{5,2}$ M	(Pu)	73.340 - 75.498	0.52~(15)
$ec_{5,2 N}$	(Pu)	77.714 - 78.849	0.144~(49)
$ec_{7,2}$ K	(Pu)	83.602 (16)	0.013~(12)
$ec_{2,0 M}$	(Pu)	89.846 - 92.004	0.043~(9)
$ec_{2,0 N}$	(Pu)	94.220 - 95.355	0.0118~(25)
$ec_{7,5 L}$	(Pu)	102.99 - 108.03	0.028~(8)
$ec_{5,1 L}$	(Pu)	109.977 - 115.024	5.40(16)
$ec_{6,2}$ L	(Pu)	113.052 - 118.099	$0.231\ (19)$
$ec_{7,3 L}$	(Pu)	116.754 - 121.801	0.0160 (45)
$ec_{5,1 M}$	(Pu)	127.148 - 129.306	1.329(39)
$ec_{6,2 M}$	(Pu)	130.223 - 132.381	0.059~(6)
$ec_{5,1 N}$	(Pu)	131.522 - 132.657	0.362(10)
$ec_{6,2}$ N	(Pu)	134.597 - 135.732	0.0162~(17)
$ec_{4,0 L}$	(Pu)	138.581 - 143.628	0.0915~(41)
$ec_{5,0 L}$	(Pu)	151.948 - 156.995	8.40(22)
$ec_{4,0 M}$	(Pu)	155.752 - 157.910	$0.0256\ (11)$
$ec_{6,1 L}$	(Pu)	166.861 - 171.908	0.1357~(45)
$ec_{5,0 M}$	(Pu)	169.119 - 171.277	2.05(5)
$ec_{5,0 N}$	(Pu)	173.493 - 174.628	0.560(15)
$ec_{6,1 M}$	(Pu)	184.032 - 186.190	0.0343~(11)

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pu)	12.1246 - 21.9844		51.7(10)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pu) (Pu)	$\begin{array}{c} 99.525 \\ 103.734 \end{array}$		$\begin{array}{c} 19.0 \ (5) \\ 30.1 \ (7) \end{array}$	$ K\alpha $
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	$116.244 \\117.228 \\117.918$	} } }	11.06 (30)	$\mathrm{K}\beta_1'$
$\begin{array}{l} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$120.54 \\ 120.969 \\ 121.543$	} } }	3.84 (12)	$\mathrm{K}\beta_2'$
	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
---	--	---	---	--	--
$\begin{array}{c} \gamma_{1,0}(\mathrm{Pu}) \\ \gamma_{2,1}(\mathrm{Pu}) \\ \gamma_{6,5}(\mathrm{Pu}) \\ \gamma_{3,2}(\mathrm{Pu}) \\ \gamma_{7,6}(\mathrm{Pu}) \\ \gamma_{5,2}(\mathrm{Pu}) \\ \gamma_{2,0}(\mathrm{Pu}) \end{array}$	$\begin{array}{c} 41.972 \ (1) \\ 53.807 \ (1) \\ 56.89 \ (3) \\ 65.535 \ (3) \\ 69.237 \ (18) \\ 79.2728 \ (18) \\ 95.7795 \ (12) \end{array}$	$\begin{array}{c} 38.2 \ (22) \\ 3.34 \ (20) \\ 3.16 \ (17) \\ 0.45 \ (22) \\ 0.20 \ (4) \\ 2.8 \ (7) \\ 0.221 \ (47) \end{array}$	$M1+E2 \\ M1+E2 \\ M1+E2 \\ M1+E2 \\ M1(+E2) \\ M1(+E2) \\ E2 \\$	102.4 (20) 44.7 (11) 87 (7) 24 (12) 28 (14) 22 (6) 19.3 (3) 5.00 (2) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20)	$\begin{array}{c} 0.369 \ (20) \\ 0.073 \ (4) \\ 0.0359 \ (21) \\ 0.018 \ (2) \\ 0.007 \ (3) \\ 0.120 \ (7) \\ 0.0109 \ (23) \end{array}$
$\begin{array}{l} \gamma_{7,5}(\mathrm{Pu}) \\ \gamma_{5,1}(\mathrm{Pu}) \\ \gamma_{6,2}(\mathrm{Pu}) \\ \gamma_{7,3}(\mathrm{Pu}) \\ \gamma_{4,0}(\mathrm{Pu}) \\ \gamma_{5,0}(\mathrm{Pu}) \\ \gamma_{5,0}(\mathrm{Pu}) \\ \gamma_{6,1}(\mathrm{Pu}) \\ \gamma_{7,2}(\mathrm{Pu}) \\ \gamma_{6,0}(\mathrm{Pu}) \\ \gamma_{-1,1}(\mathrm{Pu}) \end{array}$	$\begin{array}{c} 126.09 \ (4) \\ 133.081 \ (2) \\ 136.156 \ (9) \\ 139.858 \ (16) \\ 161.685 \ (1) \\ 175.0523 \ (14) \\ 189.965 \ (10) \\ 205.393 \ (16) \\ 231.935 \ (9) \\ 388.16 \ (5) \end{array}$	$\begin{array}{c} 0.046 \ (13) \\ 34.7 \ (10) \\ 1.13 \ (12) \\ 0.064 \ (33) \\ 0.210 \ (9) \\ 61.0 \ (16) \\ 0.889 \ (42) \\ 0.028 \ (13) \\ 0.0175 \ (27) \\ 0.019 \ (1) \end{array}$	$\begin{array}{c} [E2] \\ M1+E2 \\ M1+E2 \\ [M1,E2] \\ E2 \\ M1+E2 \\ M1+E2 \\ [M1,E2] \\ [E2] \end{array}$	$\begin{array}{c} 5.59 \ (8) \\ 11.36 \ (17) \\ 9 \ (1) \\ 7 \ (4) \\ 1.96 \ (3) \\ 5.21 \ (8) \\ 3.36 \ (16) \\ 2.1 \ (14) \\ 0.498 \ (7) \end{array}$	$\begin{array}{c} 0.007 \ (2) \\ 2.81 \ (7) \\ 0.113 \ (4) \\ 0.008 \ (1) \\ 0.071 \ (3) \\ 9.83 \ (22) \\ 0.204 \ (6) \\ 0.009 \ (1) \\ 0.0117 \ (18) \\ 0.019 \ (1) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

E.K.HULET, S.G.THOMPSON, A.GHIORSO, Phys. Rev. 95 (1954) 1703 (Half-life) A.M.FRIEDMAN, A.L.HARKNESS, P.R.FIELDS, M.H.STUDIER, J.R.HUIZENGA, Phys. Rev. 95 (1954) 1501 (Half-life) C.I.BROWNE, D.C.HOFFMAN, W.T.CRANE, J.P.BALAGNA, G.H.HIGGINS, J.W.BARNES, R.W.HOFF, H.L.SMITH, J.P.MIZE, M.E.BUNKER, J. Inorg. Nucl. Chem. 1 (1955) 254 (Half-life) I.PERLMAN, F.ASARO, F.S.STEPHENS, J.P.HUMMEL, Report UCRL-2932, Univ. California (1955) 59 (Gamma-ray energies) J.R.HUIZENGA, H.DIAMOND, Phys. Rev. 107 (1957) 1087 (Half-life) W.T.CARNALL, S.FRIED, A.L.HARKNESS, J. Inorg. Nucl. Chem. 17 (1961) 12 (Half-life) B.S.DZHELEPOV, R.B.IVANOV, V.G.NEDOVESOV, V.P.CHECHEV, Zh. Eksp. Teor. Fiz. 45 (1963) 1360 (Alpha-particle energies and emission probabilities) E.K.HYDE, I.PERLMAN, G.T.SEABORG, The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha-particle energies and emission probabilities) F.ASARO, I.PERLMAN, Priv. Comm. (1960), cited in E.K.Hyde et al., The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha-particle energies and emission probabilities) S.A.BARANOV, Y.F.RODIONOV, V.M.KULAKOV, V.M.SHATINSKII, Yad. Fiz. 4 (1966) 1108 (Alpha-particle energies and emission probabilities) A.M.FRIEDMAN, J.MILSTED, Phys. Lett. 21 (1966) 179 (Alpha-particle energies and emission probabilities) D.N.METTA, H.DIAMOND, F.R.KELLY, J. Inorg. Nucl. Chem. 31 (1969) 1245 (Half-life) K.W.MACMURDO, R.M.HARBOUR, R.W.BENJAMIN, J. Inorg. Nucl. Chem. 33 (1971) 1241 (Half-life) S.A.BARANOV, V.M.SHATINSKY, Yad. Fiz. 22 (1975) 670 (Alpha-particle energies and emission probabilities)

S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting on Transactinium Nucl. Data, Karlsruhe, Vol.III, IAEA-186, IAEA, Vienna (1976) 249 (Alpha-particle energies and emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Atomic electron binding energies) J.K.DICKENS, J.W.MCCONNELL, Phys. Rev. C22 (1980) 1344 (Gamma-ray energies and emission probabilities) V.G.POLYUKHOV, G.A.TIMOFEEV, V.V.KALYGIN, P.A.PRIVALOVA, Radiokhimiya 24 (1982) 490; Sov. Radiochemistry 24 (1982) 408 (Half-life) A.A.DRUZHININ, V.N.POLYNOV, S.P.VESNOVSKY, A.M.KOROCHKIN, A.A.LBOV, E.A.NIKITIN, Dok. Akad. Nauk SSSR 280 (1985) 1351 (SF half-life) N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483 (Half-life) YU.S.POPOV, D.KH.SRUROV, I.B.MAKAROV, E.A.ERIN, G.A.TIMOFEEV, Radiokhimiya 33 (1991) 3; Sov. J. Radiochemistry 33 (1991) 1 (Gamma-ray energies and emission probabilities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-particle energies and emission probabilities) R.DANIELS, Thesis, Univ. Manchester (1992) (Gamma-ray energies and emission probabilities) J.A.SHANNON, W.R.PHILLIPS, B.J.VARLEY, I.AHMAD, L.R.MORSS, Nucl. Instrum. Methods Phys. Res. A339 (1994) 183 (Gamma-ray energies and emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) D.H.WHITE, R.W.HOFF, H.G.BORNER, K.SCHRECKENBACH, F.HOYLER, G.COLVIN, I.AHMAD, A.M.FRIEDMAN, J.R.ERSKINE, Phys. Rev. C57 (1998) 1112 (Gamma-ray energies and emission probabilities) E.Schönfeld, H.Janssen, Appl. Radiat. Isot. 52 (2000) 595 (Calculation of emission probabilities of X-rays and Auger electrons) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) M.J.MARTIN, Nucl. Data Sheets 106 (2005) 89 (245Cm alpha decay scheme, 241Pu levels, gamma-ray energies and multipolarities) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2007) 202 (Band-Raman ICC for gamma-ray transitions) F.G.KONDEV, M.A.KELLETT, I.AHMAD, J.P.GREENE, A.L.NICHOLS, Proc. Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France (2008) (Half-life) F.G.Kondev, I.Ahmad, M.P.Carpenter, C.J.Chiara, J.P.Greene, R.V.F.Janssens, M.A.Kellett, T.L. KHOO, T.LAURITSEN, C.J.LISTER, E.F.MOORE, A.L.NICHOLS, D.SEWERYNIAK, S.ZHU, Proc. 13th Int. Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Cologne, Germany, 25-29 Aug. 2008; AIP Conf. Proc. 1090 (2009) (Half-life)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	4723	(27)	У
$Q^{'}_{lpha}$:	5476.7	(9)	keV
α	:	99.97385	(7)	%
SF	:	0.02615	(7)	%
$\bar{\nu}$:	2.948		n/fission

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 5242.5 \ (10) \\ 5343.7 \ (9) \\ 5387.5 \ (9) \end{array}$	$\begin{array}{c} 0.020 \ (2) \\ 20.81 \ (22) \\ 79.17 \ (22) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pu)	6.19 - 22.99	7.20(21)
$ec_{1,0} L ec_{1,0} M ec_{1,0} M ec_{2,1} L$	(Pu) (Pu) (Pu) (Pu)	21.441 - 26.488 38.612 - 40.770 42.986 - 44.121 79.7 - 84.7	$\begin{array}{c} 15.1 \ (6) \\ 4.22 \ (17) \\ 1.161 \ (47) \\ 0.0135 \ (15) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$	Photons per 100 disint.
XL	(Pu)	12.125 - 21.984	7.95(24)

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{1,0}(\mathrm{Pu})$ $\gamma_{2,1}(\mathrm{Pu})$	$\begin{array}{c} 44.545 \ (9) \\ 102.8 \ (1) \end{array}$	$\begin{array}{c} 20.82 \ (22) \\ 0.020 \ (2) \end{array}$	E2 E2	$\begin{array}{c} 746 \ (22) \\ 13.86 \ (42) \end{array}$	$\begin{array}{c} 0.0279 \ (8) \\ 0.00134 \ (14) \end{array}$

5 References

A.M.FRIEDMAN, A.L.HARKNESS, P.R.FIELDS, M.H.STUDIER, J.H.HUIZENGA, Phys. Rev. 95 (1954) 1501 (Half-life) C.I.BROWNE, D.C.HOFFMAN, W.T.CRANE, J.P.BALAGNA, G.H.HIGGINS, J.W.BARNES, R.W.HOFF, H.L.SMITH, J.P.MIZE, M.E.BUNKER, J. Inorg. Nucl. Chem. 1 (1955) 254 (Half-life) J.P.BUTLER, T.A.EASTWOOD, H.G.JACKSON, R.P.SCHUMAN, Phys. Rev. 103 (1956) 965 (Half-life) P.R.Fields, M.H.Studier, H.Diamond, J.F.Mech, M.G.Inghram, G.L.Pyle, C.M.Stevens, S.Fried, W.M. MANNING, A.GHIORSO, S.G.THOMPSON, G.H.HIGGINS, G.T.SEABORG, Phys. Rev. 102 (1956) 180 (SF Half-life) S.M.FRIED, G.L.PYLE, C.M.STEVENS, J.R.HUIZENGA, J. Inorg. Nucl. Chem. 2 (1956) 415 (SF Half-life) W.T.CARNALL, S.FRIED, A.L.HARKNESS, J. Inorg. Nucl. Chem. 17 (1961) 12 (Half-life) L.M.BELOV, B.S.DZHELEPOV, R.B.IVANOV, A.S.KRIVOKHATSKII, V.G.NEDOVESOV, V.P.CHECHEV, Sov. J. Radiochemistry 5 (1963) 362 (Alpha-decay transition energies and probabilities) B.S.DZHELEPOV, R.B.IVANOV, V.G.NEDOVESOV, V.P.CHECHEV, Sov. Phys. - JETP 18 (1963) 937 (Alpha-decay transition energies and probabilities) D.METTA, H.DIAMOND, R.F.BARNES, J.MILSTED, J.GRAY JR., D.J.HENDERSON, C.M.STEVENS, J. INOrg. Nucl. Chem. 27 (1965) 33 (SF Half-life) S.A.BARANOV, YU.P.RADIONOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 4 (1967) 798 (Alpha-decay transition energies and probabilities) D.N.METTA, H.DIAMOND, F.R.KELLY, J. Inorg. Nucl. Chem. 31 (1969) 1245 (Half-life, Alpha/SF ratio) K.W.MACMURDO, R.M.HARBOUR, R.W.BENJAMIN, J. Inorg. Nucl. Chem. 33 (1971) 1241 (Half-life) J.E.MCCRACKEN, J.R.STOKELY, R.D.BAYBARZ, C.E.BEMIS JR., R.EBY, J. Inorg. Nucl. Chem. 33 (1971) 3251 (Half-life, Alpha/SF ratio) E.EICHLER, N.R.JOHNSON, C.E.BEMIS JR., R.O.SAYER, D.C.HENSLEY, M.R.SCHMORAK, Report ORNL-4706, Oak Ridge National Laboratory (1971) (Gamma-ray transition energies) M.SCHMORAK, C.E.BEMIS JR., M.J.ZENDER, N.B.GOVE, P.F.DITTNER, Nucl. Phys. A178 (1972) 410 (Gamma-ray energies and emission probabilities) V.G.POLYUKHOV, G.A.TIMOFEEV, P.A.PRIVALOVA, V.YA.GARBESKIRIYA, A.P.CHETVERIKOV, Sov. J. Radiochemistry 19 (1977) 414 (Half-life) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 313 (Electron shells binding energies) W.Spreng, F.Azgui, H.Emling, E.Grosse, R.Kulessa, Ch.Michel, D.Schwalm, R.S.Simon, H.J.Woller-SHEIM, M.MUTTERER, J.P.THEOBALD, M.S.MOORE, N.TRAUTMANN, J.L.EGIDO, P.RING, Phys. Rev. Lett. 51 $(1983)\ 1522$ (Gamma-ray energies) V.M.Shatinskii, Sov. J. At. Energy 56 (1984) 282 (Alpha-decay energies and transition probabilities) N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483 (Half-life, evaluation) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-decay energies and transition probabilities) M.U.RAJPUT, T.D.MCMAHON, Nucl. Instrum. Methods Phys. Res. A312 (1992) 289 (Evaluation techniques) S.I.KAFALA, T.D.MCMAHON, P.W.GRAY, Nucl. Instrum. Methods Phys. Res. A339 (1994) 151 (Evaluation techniques) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Fluorescence yields) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (K Auger electron energies)

A.ARTNA-COHEN, Nucl. Data Sheets 84 (1998) 901 (Half-life, evaluation) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilitie) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525 (SF half-life evaluation) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (Program Emission) Y.A.AKOVALI, Nucl. Data Sheets 94 (2001) 131 (250Cf half-life) M.-M.Bé, R.HELMER, V.CHISTÉ, J. Nucl. Sci. Technol. (Tokyo) suppl. 2 (2002) 481 (Saisinuc and supporting software) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR, P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 91 (2002) 1 (ICC) Y.A.AKOVALI, Nucl. Data Sheets 96 (2002) 177 (242Pu Decay scheme) R.D.DESLATTES, E.G.KESSLER, P.INDELICATO, L.DE BILLY, E.LINDROTH, J.ANTON, Rev. Mod. Phys. 77 (2003) 35 (K and L X-ray energies) G.AUDI, A.H.WAPSTRA, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) D.MACMAHON, A.PEARCE, P.HARRIS, Appl. Radiat. Isot. 60 (2004) 275 (Evaluation techniques) V.P.CHECHEV, http://www.nucleide.org/DDEP WG/DDEPdata.htm (2006) (244Cm Half-life) F.G.KONDEV, I.AHMAD, J.P.GREENE, M.A.KELLETT, A.L.NICHOLS, Appl. Radiat. Isot. 65 (2007) 335 (Half-life, Alpha-decay transition probabilities)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	2.6470	(26)	У
$Q^{'}_{lpha}$:	6216.87	(4)	keV
α	:	96.914	(3)	%
SF	:	3.086	(8)	%
$\bar{\nu}$:	3.7675	(40)	n/fission

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,3} lpha_{0,2} lpha_{0,1} lpha_{0,0}$	$5826.3 \\ 5976.6 \\ 6075.64 \ (11) \\ 6118.1 \ (1)$	$\begin{array}{c} 0.0019 \\ 0.23 \ (4) \\ 15.1 \ (3) \\ 81.7 \ (3) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Cm)	6.3 - 24.5	5.02(13)
e_{AK}	(Cm) KLL KLX KXY	78.858 - 89.973 97.226 - 109.267 115.57 - 128.23	0.0000025 (4) } }
$\begin{array}{c} ec_{1,0} \ L \\ ec_{1,0} \ M \\ ec_{1,0} \ N \\ ec_{2,1} \ L \\ ec_{2,1} \ M \\ ec_{2,1} \ N \end{array}$	(Cm) (Cm) (Cm) (Cm) (Cm) (Cm)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 10.93 \ (33) \\ 3.08 \ (9) \\ 0.856 \ (26) \\ 0.159 \ (27) \\ 0.045 \ (8) \\ 0.0125 \ (21) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

_		Energy keV		Photons per 100 disint.	
XL	(Cm)	12.634 - 23.319		6.07(14)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Cm) (Cm)	$104.59 \\ 109.271$		$0.0000257 (7) \\ 0.0000402 (11)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Cm) (Cm) (Cm)	$122.304 \\123.403 \\124.124$	} } }	0.0000151 (5)	$\mathrm{K}\beta_1'$

		Energy keV		Photons per 100 disint.	
$\begin{array}{c} {\rm XK}\beta_2\\ {\rm XK}\beta_4\\ {\rm XKO}_{2,3} \end{array}$	(Cm) (Cm) (Cm)	$\begin{array}{c} 126.889 \\ 127.352 \\ 127.97 \end{array}$	} } }	0.00000530 (19)	$\mathrm{K}eta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$ \begin{array}{c} \gamma_{1,0}(\mathrm{Cm}) \\ \gamma_{2,1}(\mathrm{Cm}) \\ \gamma_{3,2}(\mathrm{Cm}) \end{array} $	$\begin{array}{c} 43.399\ (25)\\ 100.2\ (4)\\ 154.5\ (6)\end{array}$	$\begin{array}{c} 15.2 \ (3) \\ 0.232 \ (39) \\ 0.00192 \end{array}$	E2 E2 E2	$\begin{array}{c} 1000 \ (15) \\ 18.5 \ (5) \\ 2.76 \ (6) \end{array}$	$\begin{array}{c} 0.0152 \ (4) \\ 0.0119 \ (20) \\ 0.00051 \end{array}$

5 References

F.Asaro, F.S.Stephens, B.G.Harvey, I.Perlman, Phys. Rev. 100 (1955) 137 (Alpha emission energies and intensities) S.BJORNHOLM, C.M.LEDERER, F.ASARO, I.PERLMAN, Phys. Rev. 130 (1963) 2000 (Alpha spectra) D.METTA, H.DIAMOND, R.F.BARNES, J.MILSTED, J.GRAY JR., D.J.HENDERSON, C.M.STEVENS, J. INOrg. Nucl. Chem. 27 (1965) 33 (Half-life) A.DE VOLPI, K.G.PORGES, Inorg. Nucl. Chem. Letters 5 (1969) 699 (Half-life) S.A.BARANOV, V.M.SHATINSKII, V.M.KULAKOV, Sov. J. Nucl. Phys. 11,3 (1970) 393 (Alpha emission energies and intensities) B.M.ALEKSANDROV, M.A.BAK, V.G.BOGDANOV, S.S.BUGORKOV, L.V.DRAPCHINSKII, Z.I.SOLOVEVA, A.V.SORO-KINA, Sov. At. Energy 28 (1970) 462 (Spontaneous fission half life) R.L.WATSON, T.K.LI, Nucl. Phys. A178 (1971) 201 (Gamma-ray energies and emission intensities) J.D.HASTINGS, W.W.STROHM, Report MLM-1845, Mound Laboratory (1971) 1 (Spontaneous fission half-life) S.A.BARANOV, V.M.SHATINSKII, V.M.KULAKOV, Sov. J. Nucl. Phys. 14,5 (1972) 614 (Alpha emission energies) B.J.MIJNHEER, E.VAN DEN HAUTEN-ZUIDEMA, Int. J. Appl. Radiat. Isotop. 24 (1973) 185 (Half-life) V.SPIEGEL, Nucl. Sci. Eng. 53 (1974) 327 (Half-life) V.T.Shchebolev, Z.A.Ramendik, E.A.Shlyamin, Sov. At. Energy 36 (1974) 507 (Half-life) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting Transactinium Nucl. Data, Karlsruhe, IAEA-186, IAEA, Vienna B6 (1976) 249 (Alpha emission intensities) V.K.MOZHAEV, Sov. At. Energy 40 (1976) 200 (Half-life) F.LAGOUTINE, J.LEGRAND, Int. J. Appl. Radiat. Isotop. 33 (1982) 711 (Half-life) W.G.Alberts, et al., Report PTB-Mitteilungen 93, Braunschweig (1983) 315 (Half-life) M.DIVADEENAM, J.R.STEHN, Ann. Nucl. Energy 11 (1984) 375 (Neutron number)

J.R.SMITH, S.D.REEDER, R.J.GEHRKE, Report EPRI NP-3436 (1984) (Half-life) R.A.P.WILTSHIRE, Nucl. Instrum. Methods Phys. Res. A236 (1985) 514 (Alpha spectra) E.J.AXTON, A.G.BARDELL, Metrologia 21 (1985) 59 (Half-life) A.RYTZ, R.A.P.WILTSHIRE, M.KING, Nucl. Instrum. Methods Phys. Res. A253 (1986) 47 (Alpha emission energies) E.A.SHLYAMIN, I.A.KHARITONOV, in Proc. of an Advisory Group Meeting on Properties of Neutron Sources, TECDOC-410, IAEA, Vienna (1987) 225 (Half-life) CHEN KELIANG, ET AL., China Nucl. Information Centre Beijing, CNIC-I-004 (1988) 23 (Half-life) YU.S.POPOV, I.B.MAKAROV, D.KH.SRUROV, E.A.ERIN, Sov. J. Radiochemistry 32 (1990) 425 (X-ray emission probabilities) A.Rytz, At. Data Nucl. Data Tables 47,2 (1991) 229 (Alpha emission energies and intensities) V.T.SHCHEBOLEV, N.N.MOISEEV, Z.A.RAMENDIK, Sov. At. Energy 73 (1992) 1015 (Half-life) A.K.PANDEY, R.C.SHARMA, P.C.KALSI, R.H.IYER, Nucl. Instrum. Methods Phys. Res. B82 (1993) 151 (Alpha to fission branching ratio) I.A.KHARITONOV, Report INDC(CCP)-362, IAEA, Vienna (1994) (Half-life) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (L X-ray emission intensities) YU.S.POPOV, D.KH.SRUROV, N.P.LEONTEV, V.I.BORISENKOV, G.A.TIMOFEEV, Radiochemistry 41 (1999) 43 (Spontaneous fission half-life) Y.A.AKOVALI, Nucl. Data Sheets 87 (1999) 257 (Spin and Parity) M.BALASUBRAMANIAM, R.K.GUPTA, Phys. Rev. C60 (1999) 064316 (Theoretical half-life) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (ICC)