²²⁷Ac – Comments on evaluation of decay data by V. P. Chechev and N.K. Kuzmenko

This evaluation was completed in June 2008 with a literature cut off by the same date. The SAISINUC software and associated supporting computer programs were used in assembling the data following the established protocol within DDEP (2002Be).

1. Decay Scheme

The ²²⁷Ac decay scheme is based on the evaluation of Browne (2001Br31). ²²⁷Ac disintegrates (1,380 (4) %) by alpha transitions to the ground state and excited states of ²²³Fr and (98,620 (4) %) by beta transitions to the ground state and excited states of ²²⁷Th. The decay scheme cannot be considered well established since only approximate values are available for beta and gamma transition probabilities in the β -decay of ²²⁷Ac and the measurements of weak alpha transitions probabilities in the α -decay of ²²⁷Ac are not sufficiently accurate.

2. Nuclear Data

 $Q(\alpha)$ value is from 2003Au03.

The evaluated half-life of ²²⁷Ac is based on the experimental results given in Table 1.

Reference	Author(s)	Value
1950Ho79	Hollander and Leininger	22,0 (3)
1955To07	Tobailem	21,6 (4)
1956Sh43	Shimanskaya and Yashugina	21,2 (8)
1959Ro51	Robert	21,6 (3)
1963Ei10	Eichelberger et al.	21,7714 (+56 -33)
1967JoZX	Jordan and Blanke	21,7728 (+29 -32)

Table 1. Experimental values of the ²²⁷Ac half-life (in years)

The weighted mean of the 6 values is 21,772. The internal uncertainty is 0,0022, if we use the smallest uncertainties from 1963Ei10 and 1967JoZX, and 0,0028, if we use the largest uncertainties from these measurements. $\chi^2/\nu = 0.34$ and 0.33, respectively.

Our recommended value for the ²²⁷Ac half-life is 21,772 (3) years.

2.1 Alpha Transitions

The energies of the alpha transitions have been obtained from $Q(\alpha)$ value and the level energies given in Table 2 from 2001Br31 where they were deduced from a least squares fit to gamma-ray energies.

The comparison of the adopted energies of alpha particles for most intense transitions with the measured values is shown in Table 3 (columns 3 and 4). The measured energies of the alpha particles (Table 3) have been adjusted for changes in the calibration standards (1986Ry04, 1991Ry01): +3,5 keV correction for values from 1966Ba19, +5 keV correction for values from 1959No41.

Level	Level energy, keV	Spin and parity	Half-life	a-transition energy, keV	Probability of alpha transitions (×100)
0	0	3/2(_)	22,00 (7) min	5042,19 (14)	0,658 (14)
1	12,89 (5)	(5/2)		5029,30 (15)	0,546 (17)
2	54,97 (7)	1/2(-)		4987,22 (16)	0,0015
3	82,13 (6)	(7/2-)		4960,06 (15)	0,087 (7)
4	99,63 (6)	(3/2 ⁻)		4942,56 (15)	ן
5	101,00 (6)	(5/2 ⁻)		4941,19 (15)	} 0,08 (1)
6	134,51 (6)	(3/2+)		4907,68 (15)	0,001
7	149,3 (3)	$(1/2^{+})$			
8	160,48 (7)	$(3/2^{+})$		4881,71 (16)	0,014 (7)
9	172,08 (6)	$(5/2^{+})$		4870,11 (15)	0,0011
10	187,18 (10)	(5/2-)		4855,01 (17)]
11	189,10 (7)	(7/2)		4853,09 (16)) 0,025 (7)
12	219,61 (9)	$(7/2^{+})$		4822,58 (17))
13	222,75 (10)	$(7/2^{+})$		4819,44 (17)) 0,0012
14	242,63 (7)	(5/2)		4799,56 (16)	_
15	243,85 (13)	(5/2)		4798,34 (19)	$\{0,006,(3)\}$
16	244,66 (15)	(7/2 ⁻)		4797,53 (21)	J 0,000 (3)
17	298,7 (3)	(9/2-)			
18	365,47 (10)			4676,72 (17)	≈ 3·10 ⁻⁴
19	379 (7)			4663 (7)	$\approx 4 \cdot 10^{-5}$
20	449 (5)			4593 (5)	$\approx 4 \cdot 10^{-5}$
21	503 (7)			4539 (7)	≈ 7·10 ⁻⁵
22	515,20 (22)	3/2-		4526,99 (26)	$\approx 7.10^{-4}$
23	540,74 (25)	(5/2+)		4501,45 (29)	$\approx 8.10^{-5}$
24	601 (7)	(5/2)		4441,19 (16)	$\approx 4.10^{-5}$

Table 2. ^{223}Fr levels populated in the ^{227}Ac $\alpha\text{-decay}$

The recommended probabilities of the $\alpha_{0,i}$ -transitions with i = 0, 1, 3, 4, 8, 11, 14 are from 1959No41. The remaining ones are from 1966Ba19. A comparison of the α -transition probabilities, taken directly from measurements of 1959No41, 1966Ba19 with those deduced from P(γ +ce) intensity balance, is given in Table 3. The total probability of α -transitions is from 1970Ki12 (1,3800 (36) %), see also 1974Mo05 (1,359 (14) %). The α -decay hindrance factors have been calculated using the ALPHAD computer program from the ENSDF evaluation package with $r_0 = 1,538$ fm, average of $r_0(^{222}Rn) = 1,5397$ (4) fm, $r_0(^{222}Ra) = 1,5383$ (8) fm and $r_0(^{224}Ra) = 1,5332$ (8) fm, see 2001Br31.

Level	Level	Energies of a-	Measured	Probabilities	Probabilities
	energy,	particles,	energies of	(×100),	$(\times 100)$, deduced
	keV	obtained from	a-particles,	adopted from	from intensity
		$Q(\alpha)$, keV	keV	1959No41,	balance
				1966Ba19	
0	0	4953,23 (14)	4953,26 (14)	0,658 (14)	0,48 (24)
1	12,89 (5)	4940,57 (15)	4940,7 (8)	0,546 (16)	0,63 (15)
3	82,13 (6)	4872,55 (15)	4872,7 (2)	0,087 (7)	0,09 (3)
4	99,63 (6)	4855,36 (15)	4855 (2)		
5	101,00 (6)	4854,01 (15)		} 0,08 (1)	j 0,10 (6)
6	134,51 (6)	4821,09 (15)	4822 (4)	0,014 (7)	0,0090 (26)
10	187,18 (10)				
11	189,10 (7)	4767,47 (15)	4768 (3)	j 0,025 (7)	j 0,028 (10)

Table 3. Energies and probabilities (×100) of most intense α -transitions in the ²²⁷Ac decay

2.2 Beta Transitions

The energies of β^- transitions have been obtained from $Q^-(^{227}Ac)$ and ^{227}Th level energies given in Table 4. The β^- -emission probabilities per 100 β^- particles in $^{227}Ac \beta^-$ -decay have been taken from 1995Li04. The value of $\Sigma P_{\beta^-}(i)$ has been obtained as (100 % - ΣPa (i)) = 98,620 (4) %. This is the total probability of beta transitions to the ground state and excited states of ^{227}Th .

Level	Level Energy, keV	Spin and Parity	Half-life	β^- -emission probability per 100 β^- particles
0	0,0	1/2 +	18,68 (9) d	≈ 54
1	9,3	(5/2+)		≈ 35
2	24,5	3/2+		≈ 10
3	37,9	3/2-		0,3

Table 4. ²²⁷Th levels populated in the ²²⁷Ac β^- -decay

2.3 Gamma Transitions and Internal Conversion Coefficients

The evaluated energies of the gamma-ray transitions are virtually the same as the gamma-ray energies because nuclear recoil is negligible.

The gamma-ray transition probabilities in ²²³Fr have been deduced from their gamma-ray emission probabilities and the calculated total ICCs. The gamma-ray transition probabilities in ²²⁷Th have been adopted from 1995Li04. ICCs have been calculated by a program supplied with the SAISINUC software (2002Be). This code uses interpolated values of Band et al. (2002Ba85). The multipolarities and mixing ratios δ of the gamma-ray transitions in ²²³Fr and ²²⁷Th have been taken from 2001Br31. The uncertainties in the ICCs for pure multipolarities have been taken as 2 %.

3. Atomic Data

The atomic data (fluorescence yields, X-ray energies and relative probabilities, Auger electrons energies and relative probabilities) were obtained using the SAISINUC software (2002Be).

4.1 Alpha Emissions

Details are given in Section 2.1.

4.2 Beta Emissions

Details are given in Section 2.2.

5. Photon Emissions

5.1 X-Ray Emissions

The absolute emission probabilities of Fr KX and LX-rays and Th LX-rays have been calculated using the EMISSION code (2000Schönfeld). An experimental Fr KX-rays intensity value of 0,0136 (16) % (from 1995Sh03) agrees well with 0,0145 (24) %, deduced by the evaluators.

5.2 Gamma-Ray Emissions

Gamma-Ray Energies

The energies of gamma-rays in ²²³Fr have been adopted from 1995Sh03. The energies of gamma-rays $\gamma_{1,0}$ and $\gamma_{2,1}$ in ²²⁷Th have been adopted from 1959No41. The energies of gamma-rays $\gamma_{2,0}$ and $\gamma_{3,1}$ in ²²⁷Th have been adopted from 1997Mu08.

Gamma-Ray Emission Probabilities

The absolute emission probabilities of gamma-rays in ²²³Fr are from 1995Sh03. The absolute emission probabilities of gamma-rays in ²²⁷Th have been deduced from the absolute β^- -emission probabilities in the ²²⁷Ac β^- -decay and α_T using the ratio of P(γ 37,9-keV) / P(γ 28,6-keV) = 9,0 (12) / 7,7 (10) = 1,17 (22) from ²²⁷Pa EC decay (1995Li04), and the value of P(γ 24,3-keV) / P(γ 15,2-keV) = 20 / 0,44 = 45,5 from alpha decay of ²³¹U (2001Br31).

6. Electron Emissions

The energies of conversion electrons have been obtained from the gamma transition energies and atomic electron binding energies. The emission probabilities of conversion electrons have been deduced from the evaluated $P(\gamma)$ and ICC values.

The number of K- and L- Auger electrons per 100 disintegrations has been calculated using the EMISSION code (2000Schönfeld).

Average β^- energies have been calculated using the LOGFT computer program.

Comments on evaluation

7. References

1950Ho79	J.M. Hollander and R.F. Leininger, Phys. Rev. 80, 915 (1950) (Half-life)
1955To07	J. Tobailem, J. Phys. Radium 16, 48 (1955) (Half-life)
1956Sh43	N.S. Shimanskaya and E.A. Yashugina, At.Energ. 1, 133 (1956); J.Nuclear Energy 5, 161 (1957) (Half-life)
1959No41	G.I. Novikova, E.A. Volkova, L.I. Goldin, D.M. Ziv and L.I. Tretyakova, Zh. Eksp. Teor. Fyz. 37, 928(1959) (Sov. Phys. JETP 10, 663 (1960)) (Total α-transition probability, gamma-ray energies and α- energies, electron conversion)
1959Ro51	J. Robert, Ann. Phys.(Paris) 4, 89 (1959) (Half-life)
1963Ei10	J.F. Eichelberger, G.R. Grove, L.V. Jones and E.A. Rembold, MLM-1155, p.12 (1963) (Half-life)
1966Ba19	G. Bastin, CF. Leang, and R.J. Walen, Compt.Rend. 262B, 370 (1966) (α -transition probabilities and α - energies)
1967JoZX	K.C. Jordan and B.C. Blanke, Proc. Symp. Standardization of Radionuclides, Vienna, Austria (1966), IAEA, Vienna, p.567 (1967); CONF-661012-4 (1967) (Half-life)
1970Ki12	H.W. Kirby, J. Inorg. Nucl. Chem. 32, 2823 (1970) (Total α-transition probability)
1974Mo05	 M. Monsecour, P. De Regge, A. Demildt, and L.H. Baetsle, J. Inorg. Nucl. Chem. 36, 719 (1974) (Total α-transition probability)
1986Ry04	A. Rytz, R.A.P. Wiltshire, and M. King, Nucl. Instrum. Methods Phys. Res. A253, 47 (1986) $(\alpha$ -transition energies)
1991Ry01	A. Rytz, At. Data Nucl. Data Tables 47, 205 (1991) (α-transition energies)
1995Li04	C.F. Liang, P. Paris, R.K. Sheline, D. Nosek, and J. Kvasil, Phys. Rev. C51, 1199 (1995) (Beta emission probabilities)
1995Sh03	R.K. Sheline, C.F. Liang, P. Paris, J. Kvasil, and D. Nosek, Phys. Rev. C51, 1708 (1995) (Gamma-ray energies)
1997Mu08	U. Muller, P. Sevenich, K. Freitag, C. Gunther, P. Herzog, G.D. Jones, C. Kliem, J. Manns, T. Weber, B. Will, and the ISOLDE Collaboration, Phys. Rev. C55, 2267 (1997) (Gamma-ray energies)
2000Schönf	Feld E. Schönfeld and H. Janßen, Nucl. Instr. Meth. Phys. Res. A369, 527 (2000) (EMISSION computer code)
2001Br31	E. Browne, Nucl. Data Sheets 93, 763 (2001) (Decay scheme of ²²⁷ Ac, gamma-ray multipolarities, admixture coefficients) p. 975 (Decay scheme of ²³¹ U, gamma- ray emission probabilities of $P(\gamma_{2,0})$ and $P(\gamma_{2,1})$ in ²²⁷ Th) p. 978
2002Ba85	I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor, P.O. Tikkanen and S. Raman, Atom. Data and Nucl. Data Tables 91, 1 (2002) (Theoretical internal conversion coefficients)
2002Be	M.M. Bé, R. Helmer and V. Chisté, J. Nucl. Sci. Tech., suppl.2, 481 (2002) (Saisinuc software)
2003Au03	G. Audi, A.H. Wapstra and C. Thibault, Nucl. Phys. A729, 337 (2003) (Q value)