²¹⁵At -Comments on evaluation of decay data by V.P. Chechev

This evaluation was done in December 2010 with a literature cut-off by the same date.

1. DECAY SCHEME

²¹⁵At decays 100 % to levels of ²¹¹Bi by emission of α particles. The adopted ²¹¹Bi levels populated in the ²¹⁵At decay are based on the experiment of 1966Gr07 and the evaluation by Browne (2004Br45).

The decay scheme of ²¹⁵At seems to be incomplete as the alpha decays to higher levels in daughter ²¹¹Bi, which are known from the β^- decay of ²¹¹Pb (see ²¹¹Bi Adopted Levels, Gammas of 2004Br45), are not observed yet.

The current evaluated data are supported by the agreement between Q(calculated) = 8178 (5) keV, deduced from the calculated average energies of all emissions, and Q(α) = 8178 (4) keV, adopted from 2003Au03.

2. NUCLEAR DATA

 $Q(\alpha)$ is from 2003Au03 where this value has been deduced from the measurement of α -particle energy $E(\alpha_{0,0}) = 8026$ (4) keV by 1982Bo04 recommended in 1991Ry01.

The 215 At half-life of 0.10 (2) ms is from the single measurement of 1951Me10.

2.1. Alpha Transitions

The alpha transition energies have been obtained from the $Q(\alpha)$ value and ²¹¹Bi level energies given in Table 1 from ²¹¹Bi Adopted Levels, Gammas of 2004Br45.

Level	Energy (keV)	Spin and parity	Half-life	Probability of α- transition (%)
0	0.0	9/2-	2.14 (2) min	99.95 (2)
1	404.854 (9)	7/2-	0.317 (11) ns	0.05 (2)

Table 1. ²¹¹Bi levels populated in ²¹⁵At α -decay

The alpha transition probability P ($\alpha_{0,1}$) is from the measurement of 1966Gr07 by means of $\alpha-\gamma$ coincidence technique with surface-barrier semi-conductor and NaI(Tl) detectors. The accurate P($\alpha_{0,0}$) value has been deduced from the expression of P($\alpha_{0,0}$) + P($\alpha_{0,1}$) = 100 %.

The α decay hindrance factors have been calculated using the ALPHAD computer program from the ENSDF evaluation package with r_0 (²¹¹Pb) = 1.5443 fm (2004Br45).

2.2. Gamma Transitions and Internal Conversion Coefficients

The 405-keV gamma-ray transition probability has been deduced from the intensity balance at the 405-keV level using the adopted alpha transition probability $P(\alpha_{0,1})$ and total internal conversion coefficient (ICC) α_T for $\gamma_{1,0}$ (405 keV). The multipolarity (M1+E2) and E2/M1 mixing ratio (δ) of -1.1 (1) have been taken from 2004Br45. These are based on the measurements of conversion electrons in ²¹¹Pb β^- decay and $\gamma(\theta)$ measurements with polarized ²¹¹Bi nuclei. ICCs α_T , α_K , α_L , α_M have been interpolated using the BrIcc computer program, version v2.2a, data set BrIccFO (2008Ki07).

3. ATOMIC DATA

The fluorescence yields, X-ray energies and relative probabilities, and Auger electrons energies and relative probabilities are from the SAISINUC software.

4. ALPHA EMISSIONS

The energy of alpha-particle group $\alpha_{0,0}$ that populates the ²¹¹Bi ground state is the measured value from 1982Bo04 recommended in 1991Ry01. In 1966Gr07 the measured value of 8.00 (1) MeV was reported.

The energy of alpha-particle group $\alpha_{0,1}$ of 7628 (4) keV has been deduced from the Q(α) value taking into account the level energy of 404.854 (9) keV and the recoil energy for ²¹¹Bi. The above value of E($\alpha_{0,1}$) can be compared to the value of 7626 (15) keV as measured by 1966Gr07 and adjusted by the evaluator to the adopted E($\alpha_{0,0}$) = 8026 (4) keV (the original value of 1966Gr07 is 7.60 (1) MeV).

The earlier measured energy of α -emission in the decay of ²¹⁵At is 8.00 (2) MeV (1951Me10).

5. ELECTRON EMISSIONS

The energies of the conversion electrons for $\gamma_{1,0}$ (405 keV) have been obtained from the gamma-ray transition energy and the atomic electron binding energies.

The emission probabilities of the conversion electrons have been deduced using the $P_{\boldsymbol{\gamma}}$ and ICC values.

The absolute emission probabilities of K and L Auger electrons have been calculated using the EMISSION computer program.

6. PHOTON EMISSIONS

6.1 X - Ray emissions

The absolute emission probabilities of Pb KX- and LX-rays were calculated using the EMISSION computer program.

6.2. Gamma emissions

6.2.1. Gamma ray energies

The 405-keV gamma-ray energy has been adopted from the 405-keV level energy. In 1966Gr07 this energy was obtained from the ²¹⁵At α decay as \approx 404 keV.

6.2.2. Gamma ray emission probabilities

The 405-keV gamma-ray emission probability has been deduced from the alpha transition probability $P(\alpha_{0,1}) = 0.05$ (2) % and total internal conversion coefficient $\alpha_T = 0.122$ (8).

7. REFERENCES

1951Me10	W.W. Meinke, A. Ghiorso, G.T. Seaborg, Phys. Rev. 81, 782 (1951)			
	(Half-life, energy of α -emission)			
1966Gr07	G. Graeffe, P. Kauranen, J. Inorg. Nucl. Chem. 28, 933 (1966)			
	(α -particle energies and emission probabilities, ²¹¹ Bi levels)			
1982Bo04	J.D. Bowman, R.E. Eppley, E.K. Hyde, Phys. Rev. C25, 941 (1982)			
	$(\alpha \text{-particle energies})$			
1991Ry01	A. Rytz, At. Data Nucl. Data Tables 47, 205 (1991)			
-	(α -particle energies and emission probabilities)			
2003Au03	G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A729, 337 (2003)			
	(Q value)			
2004Br45	E. Browne, Nucl. Data Sheets 103, 183 (2004)			
	$(^{215}\text{At }\alpha \text{ decay scheme}, ^{211}\text{Bi levels})$			
2008Ki07	T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, C.W. Nestor, Jr, Nucl.			
	Instrum. Methods Phys. Res. A589, 202 (2008)			
	(Band-Raman ICC for γ -ray transitions)			