²¹⁸At - Comments on evaluation of decay data by V. Chisté and M. M. Bé

This evaluation was completed in 2007. Literature available by January 2007 was included.

1 Decay Scheme

²¹⁸At disintegrates by alpha emission (99.9 (1) %) to ²¹⁴Bi mainly. The γ transitions between the ²¹⁴Bi levels have not been observed. However, a Q value of 6811 (12) keV is calculated in the disintegration of ²¹⁸At to ²¹⁴Bi from the decay scheme data compared to a value of 6867 (3) keV from the Audi's tables. This deficiency in the calculated Q value suggests the possible existence of a weak gamma transition from the 62-keV to the ground state levels.

A weak beta minus emission (0.1 (1) %) to Rn-218 has been pointed out (1948Wa20). Spins and parities are from the mass-chain evaluation of Y. A. Akovali (1987El12, 1995El08 for A = 218 and 1995El07 for A = 214) and A. K. Jain (2006Ja03 for A = 218).

2 Nuclear Data

The Q values (α and β ⁻) are from the atomic mass evaluation of Audi *et al.* (2003Au03).

Experimental ²¹⁸At half-life values (in seconds) are given in Table 1:

Reference	Experimental value (s)	Comments
R. J. Walen (1949Wa05)	1.3 (2)	Uncertainty increased to take into account
		systematic uncertainty.
D. G. Burke (1989Bu09)	1.5 (3)	
Recommended value	1.4 (2)	$\chi^2 = 0.31$

Table 1: Experimental values of ²¹⁸At half-life.

The original uncertainty value given by R. J. Walen (1949Wa05) was multiplied by 2, in order to take into account the systematic uncertainties which were not considered by 1949Wa05. A weighted average has been calculated using Lweight computer program (version 3).

The recommended value of ²¹⁸At half-life is the weighted average of **1.4** second with an internal uncertainty of 0.2 second. The reduced- χ^2 value is 0.31.

2.1 a Transitions and Emissions

The energies of the α -particle transitions given in Section 2.1 were calculated from Q_{α} (2003Au03) and level energies.

The energy of $\alpha_{0,0}$, $\alpha_{0,1}$ and $\alpha_{0,2}$ emissions given in section 3 were measured by R.J. Walen (1963Wa29 (see 1964Hy02) and 1958Wa16), the adopted values are those recommended by A. Rytz (1991Ry01) where the original energy was decreased by 1 keV, due to a change in calibration energy (1995El07).

The $\alpha_{0,0}$, $\alpha_{0,1}$ and $\alpha_{0,2}$ emission probabilities are the measured values of R. J. Walen (1958Wa16), 3.6, 90.0 and 6.4 respectively, without uncertainties. From R. J. Walen, the total α decay is 99.9 (1) %. Since, there is no precision in the Walen's paper, the uncertainty of 0.1 % from propagation of the β^{-} transition probability (1948Wa20) has been assigned to each α line.

2.2 **b** Transitions and Emissions

The maximum energy of the β^{-} transition in the decay of ${}^{218}\text{At} \rightarrow {}^{218}\text{Rn}$ is given by Audi (2003Au03) and, without any other information available, is affected to a ground state to ground state transition.

The adopted β^{-} transition probability was measured by R. J. Walen (1948Wa20) to be 0.1 (1) %

3 References

- 1948Wa20 R. J. Walen, Comp. Rend. Acad. Sci. (Paris) 227(1948)1090 [Branching ratio]. 1949Wa05 R. J. Walen, J. Phys. Radium 10(1949)95 [I_β, Half-life]. 1958Wa16 R. J. Walen, G. Bastin, Comp. Rend. Int. Conf. Nucl. Phys., Paris, (1959)910 [E_a, I_a, I_b]. 1963Wa29 R. J. Walen, G. Bastin-Scoffier, Priv. Comm. quoted by 1964Hy02 (1963) $[I_{\alpha}]$. 1964Hy02 E. K. Hyde, I. Perlman, G. T. Seaborg, The nuclear properties of heavy elements, Vol. II,Pretence-Hall, Inc., Englewood Cliffs, N.J., (1964)460 [I_{α}]. 1979Ry03 A. Rytz, At. Data and Nucl. Data Tables 23(1979)205 $[E_{\alpha}, I_{\alpha}]$. 1987El12 Y. A. Ellis-Akovali, Nucl. Data Sheets 52(1987)789 [I_a, E_a, spin and parity]. D. G. Burke, H. Folger, H. Gabelmann, E. Hagebø, P. Hill, P. Hoff, O. Jonsson, N. Kaffrell, W. 1989Bu09 Kurcewicz, G. Løvhøiden, K. Nybø, G. Nyman, H. Ravn, K. Riisager, J. Rogowski, K. Steffensen, T. F. Thorsteinsen and ISOLDE Collaboration, Z. Phys. A333(1989)131 [Half-life]. 1991Ry01 A. Rytz, At. Data and Nucl. Data Tables 47(1991)205 $[E_{\alpha}, I_{\alpha}]$. 1995El07 Y. A. Akovali, Nucl. Data Sheets 76(1995)127 [I_{α} , E_{α} , spin and parity]. 1995El08 Y. A. Akovali, Nucl. Data Sheets 76(1995)457 [I_{α} , E_{α} , spin and parity]. G. Audi, A. H. Wapstra, C. Thibault, Nucl. Phys. A729(2003)129 [Q]. 2003Au03
- 2006Ja03 A. K. Jain, B. Singh, Nucl. Data Sheets 107(2006)1027 [I_{α} , E_{α} , spin and parity].