²⁴⁴Cm - Comments on evaluation of decay data by V. P. Chechev

This evaluation was completed in February 2005 (see 2006Ch34) and then corrected in October 2009 with a literature cut-off by the same date.

1 Decay Scheme

The decay scheme is based on the evaluation of 2004Ch64. It can be considered essentially complete although some weak gamma-ray transitions have not been observed in 244 Cm alpha decay. Such gamma-rays were taken from the 240 Np β^- -decay and the 240 Am electron capture and have been included in the decay scheme.

2 Nuclear Data

 $Q(\alpha)$ value is from 2003Au03.

The evaluated half-life of ²⁴⁴Cm is based on the experimental values given in Table 1.

		Table 1. Experimental	values of the	Cin nan-inc (in years).
Refer	rence	Author(s)	Value	Measurement method
1954	Fr19	Friedman et al.	17.9 (5)	α -activity relative to ²⁴² Cm
1954	St33	Stevens et al.	19.2 (6)	α -activity relative to ²⁴² Cm
19610	Cao1	Carnall et al.	17.59 (6)	Specific activity
19681	Be26	Bentley	18.099 (32) ^a	$2\pi \alpha$ -counting
19721	Ke29	Kerrigan and Dorsett	18.13 (4)	Calorimetry
1982	Po14	Polyukhov et al.	18.24 (25)	Specific activity

Table 1. Experimental values of the ²⁴⁴Cm half-life (in years).

^a Revised value, recalculated in 2000Ho27.

The EV1NEW program has led to successive rejections of values from 1961Ca01 and 1954St33 due to their too large contribution to χ^2 -value (more than 80 %). The LRSW method has increased 1.03 times the uncertainty of the value from 1968Be26. The weighted mean of the data set including only the four remaining values is 18.115, with the internal uncertainty 0.028 and $\chi^2/\nu = 0.25$. The smallest experimental uncertainty is 0.032, thus the recommended value of ²⁴⁴Cm half-life is **18.11 (3) a**.

The recommended spontaneous fission partial half-life of ²⁴⁴Cm is based on the experimental values given in Table 2.

Table 2. Experimental values of the	⁴⁴ Cm spontaneous fission	half-life (in 10^7	years).
-------------------------------------	--------------------------------------	----------------------	---------

10010 2	Experimental values	or the emispe	intaneous inssion nuir me (in ro years).
Reference	Author(s)	Value	Measurement method
1952Gh27	Ghiorso et al.	$1.4(2)^{a}$	Ionization chamber
1963Ma56	Malkin et al.	1.46 (6)	Gas scintillator
1965Me02	Metta et al.	1.345 (8) ^a	α /SF counting, α with low geometry counter,
			SF with 2π parallel plate chamber
1967Ar09	Armani and Gold	1.33 (3)	Fission neutron counting, LiI detector
1970Ba11	Barton and Koontz	1.250 (7)	Low geometry fission fragment counting
1972Ha80	Hastings and	1.343 (6) ^a	α /SF counting, Si(Au) detector
	Strohm		
1993Pa29	Pandey et al.	1.263 (5)	α /SF counting by sequential etching of alpha
			and fission tracks

^a Revised value, recalculated in 2000Ho27.

The recommended value of ²⁴⁴Cm spontaneous fission half-life is $1.34 (8) \times 10^7$ years.

2.1 α Transitions

The energies of the alpha transitions have been obtained from the Q value and the ²⁴⁰Pu level energies given in Table 3 from 2004Ch64.

Level number	Energy (keV)	Spin and parity	Half-life	Probability of α- transition (%)
0	0.0	0+	6561 (7) a	76.7 (4)
1	42.824 (8)	2^{+}	164 (5) ps	23.3 (4)
2	141.690 (15)	4+		0.0204 (15)
3	294.319 (24)	6^+		0.00352 (18)
4	497.6 ^a	8^+		4×10^{-5}
5	597.34 (4)	1-		$5.5(9) \times 10^{-5}$
6	648.85 (4)	3-		$4.2(30) \times 10^{-6}$ b
7	860.71(7)	0^+		$1.49(16) \times 10^{-4}$
8	900.32 (4)	2^{+}		$5.0(5) \times 10^{-5}$
9	938.06 (6)	(1^{-})		$4.7(11) \times 10^{-6}$ b

Table 3. ²⁴⁰Pu levels populated in the ²⁴⁴Cm α -decay.

^a Energy has been taken from ²³⁸U(α , 2n γ)-reaction measurements of 1972Sp06.

^b Deduced from $P(\gamma+ce)$ decay-scheme probability balances.

The probabilities of the transitions $\alpha_{0,i}(i=0, 1, 2, 3, 7)$ have been obtained by averaging experimental data (Table 4). The experimental results from 1998Ga19 agree well with the evaluated probabilities of the most intense alpha-transitions. The probabilities of the remaining α -transitions have been deduced using the experimental values and the values obtained from P(γ +ce) decay-scheme balances (see footnotes).

	α- energy (keV)	1956 Hu96	1960 As11, 1984 Asaro	1963 Dz07	1966 Ba07	1984 BuZJ	1996 Bu50	1996 Sa24	1997 Ka59	1998 Ga19	1998 Ya17	2002 Da21	Recommended
$\alpha_{0,0}$	5805	76.7 (6)	-	76.2 (20)	76.4 (20) ^a	76.98 (5)	76.8 (7)	76.9 (5)	-	76.63 (18)	76.31 (5)	77.16 (11)	76.7 (4) ^b
$\alpha_{0,1}$	5763	23.3 (6)	-	23.8 (9)	23.6 (9) ^a	23.00 (5)	23.2 (5)	23.1 (5)	-	23.34 (18)	23.69 (6)	22.80 (5)	23.3 (4) °
$\alpha_{0,2}$	5664	0.017 (3)	0.023 (2)	0.021 (2)	0.02	0.0163 (7)	-	0.0135 (2)	-	0.0205 (15)	-	0.020(1)	$0.0204(15)^{d}$
$\alpha_{0,3}$	5515	-	0.0036 (3)	0.003(1)	0.0034	-	-	-	0.003 42 (9)	0.0038 (5)	-	0.012(1)	0.003 52 (18) ^e
$\alpha_{0,4}$	5315		$\sim 1.5 \ 10^{-4}$		$\sim 4 10^{-5}$								$4 \ 10^{-5 \text{ f}}$
$\alpha_{0,5}$	5215	-	$1.5 \ 10^{-4}$	-	1 10 ⁻⁴	-	-	-	4.2 (9) 10 ⁻⁵	-	-	-	5.5 (9) 10 ^{-5 g}
α _{0,7}	4960	-	1.55 (16) 10 ⁻⁴	-	3 10-4	-	-	-	1.42 (16) 10 ⁻⁴	-	-		1.49 (16) 10 ^{-4 h}
$\alpha_{0,8}$	4920	-	5.0 (5) 10 ⁻⁵	-	1.3 10 ⁻⁴	-	-	-	4.9 (8) 10 ⁻⁵	-	-	-	5.0 (5) 10 ^{-5 i}

Table 4. Experimental and recommended α -transition probabilities (%) in the ²⁴⁴Cm decay.

^aNo uncertainties are quoted by the authors. The uncertainties have been adopted by the evaluator based on the analogy of the spectra obtained with magnetic spectrometers in 1963Dz07and 1966Ba07.

^b This set of experimental values is discrepant. The LWEIGHT computer program has recommended a weighted average and expanded the uncertainty so the range includes the most precise value from 1998Ya17.

^c Obtained from the relation $P(\alpha_{0,1}) = 100 - P(\alpha_{0,0})$ per 100 disintegrations. An unweighted average of the discrepant set of the experimental values is 23.31, a weighted average is 23.11.

^d Weighted average of the values from 1956Hu96, 1960As11, 1963Dz07, 1998Ga19 and 2002Da21. The lower values from 1984BuZJ and 1996Sa24 have been omitted as outliers. These values conflict greatly with the ratio $P(\gamma_{2,1})/P(\gamma_{1,0}) = 0.067$ (7) measured in 1972Sc01. The uncertainty of the evaluated $\alpha_{0,2}$ probability has been adopted from the experimental result of 1998Ga19.

^e Average of values from 1960As11, 1963Dz07, 1997Ka59 and 1998Ga19. The EV1NEW computer program using a limitation of relative statistical weights of 0.5 has expanded the uncertainty from 1997Ka59 to 0.00025 and recommended a weighted average and an internal uncertainty.

Comments on evaluation

^f Adopted from 1966Ba07.

^g Deduced from the P(γ +ce)-probability balance at the 597-keV level ("5").

^h Weighted average of values from 1960As11, 1997Ka59.

ⁱ Weighted average of values from 1960As11, 1997Ka59 and a value of 5.2 (7) \times 10⁻⁵, calculated from P(γ +ce)probability balance at the 900-keV level ("8"). The uncertainty is the smallest experimental one.

2.2 y Transitions

The evaluated energies of gamma-ray transitions are virtually the same as the photon energies because nuclear recoil is negligible.

The probabilities, $P(\gamma+ce)$, for gamma-ray transitions of 42.8-keV ($\gamma_{1,0}$), 98.9-keV ($\gamma_{2,1}$), 152.6-keV $(\gamma_{3,2})$, and 202-keV $(\gamma_{4,3})$ have been deduced from intensity balances, using the probabilities of α -particle transitions evaluated directly from experimental data.

For the 861-keV ($\gamma_{7,0}$) E0 transition its P(ce) value has been obtained from the (α -ce)-coincidence measurement of 1963Bj03: P(ce $\gamma_{7,0}$) + P(ce $\gamma_{7,1}$) = 9.5 (20) × 10⁻⁶ per 100 disintegrations.

The remaining $P(\gamma+ce)$ values have been calculated from the gamma-ray emission probabilities and the total internal conversion coefficients (ICC's). The ICC's have been interpolated using the BrIcc package with the so called "Frozen Orbital" approximation (2008Ki07). The fractional uncertainties of $\alpha_{\rm K}$, $\alpha_{\rm L}$, $\alpha_{\rm M} \alpha_{\rm T}$ for pure multipolarities have been taken as 2 %.

Multipolarities are from 2004Ch64. These are based on conversion electron measurements of 1956Sm18, 1963Bj03, 1968Du06 and 1990Pe03.

3 Atomic Data

3.1. Fluorescence yields

The fluorescence yields are from 1996Sc06 (Schönfeld and Janßen).

3.2 X radiations

The Pu KX-ray energies and relative emission probabilities are from 1999Schönfeld, where the calculated energy values are based on X-ray wavelengths from 1967Be65 (Bearden). In Table 5 the recommended values of U KX-ray energies are compared with experimental values.

_ rable 5. Experimental and recommend values of 1 d KA-ray energies (kev)				
	1980Di13	1982Ba56	Recommended	
Κα2	99.55 (3)	99.530 (2)	99.525	
$K\alpha_1$	103.76 (3)	103.741 (2)	103.734	
$K\beta_3$	116.27	116.242 (2)	116.244	
$K\beta_1$	117.26	117.233 (2)	117.228	
$K\beta_{2,4}$	120.60 (15)	-	120.553	
KO _{2,3}	121.55 (6)	-	121.543	

Table 5. Experimental	l and recommend	values of Pu KX-ra	y energies (keV).

In 1980Di13 the Pu KX-ray energies were measured in the alpha decay of ²⁴⁵Cm. The relative emission probabilities of KX-rays were obtained as:

 $K\alpha_2: K\alpha_1: K\beta_3: K\beta_1: K\beta_{2,4} = 64.7 (23): 100.0 (33): 12.9 (7): 23.1 (10): 8.9 (5).$

3.3. Auger Electrons

The energies of Auger electrons have been calculated from atomic electron binding energies.

The P(KLX)/P(KLL), P(KXY)/P(KLL) ratios have been taken from 1996Sc06.

4α Emissions

The energy of alpha particles to the ground state of 240 Pu, E($\alpha_{0,0}$), are from the absolute measurement of 1971Gr17 but including the correction of -0.19 keV recommended by A. Rytz in 1991Ry01.

The energies of all other α -particles have been deduced from Q_{α} and ²⁴⁰Pu level energies including the recoil energy corrections.

In Table 6 the recommended values of α -particle energies are compared with experimental results obtained with magnetic alpha spectrometers.

	rable 6. Experimental and evaluated a-particle energies in the decay of the Chi (Ke v).						
	1960	1963	1966	1971	1992	1998	Recommended
	As11	Dz07	Ba07	Gr17	Fr04	Ga19	
$\alpha_{0,0}$	5805	5805 (3)	5805 (1)	5804.77 (5)	5803.6 (22)	-	5804.77 (5)
$\alpha_{0,1}$	5763	5762	5763 (1)	5762.16 (3)	-	-	5762.65 (5)
$\alpha_{0,2}$	5666	5665	5664 (3)	-	-	5664 (2)	5665.41 (5)
$\alpha_{0.3}$	5514	5514	5513 (3)	-	-	5515 (3)	5515.29 (6)
$\alpha_{0.4}$	5316	-	5313	-	-	-	5315.3
$\alpha_{0.5}$	5215	-	5215 (3)	-	-	-	5217.24 (7)
$\alpha_{0.7}$	4956	-	4960 (3)	-	-	-	4958.20 (9)
$\alpha_{0.8}$	4916	-	4920 (3)	-	-	-	4919.24 (7)

Table 6. Experimental^a and evaluated α -particle energies in the decay of ²⁴⁴Cm (keV).

^a Authors' values have been adjusted for changes in calibration energies (see 1991Ry01).

5 Electron emissions

The energies of conversion electrons have been obtained from gamma transition energies and relevant electron binding energies. The emission probabilities of conversion electrons have been deduced from the evaluated $P(\gamma)$ and ICC values.

The absolute emission probabilities of K and L Auger electrons have been calculated using the EMISSION computer program (2000Schönfeld).

6 Photon emissions

6.1 X-ray emissions

The absolute emission probabilities of U KX- and U LX-rays in decay of ²⁴²Pu have been calculated using the EMISSION computer program (2000Schönfeld).

The calculated total absolute emission probability of LX-rays P(XL) = 8.92 (23) % agrees with the experimental value of 8.77 (6) % from 1995Jo23.

In 1990Po14 the relative LX-ray emission probabilities in 244 Cm α -decay were measured: [5.3 (8) : L1; 72 (7) : L α ; 100: L $\eta\beta$; 22.4 (23) : L γ].

These values agree with the recommended ones with the exception of the $(L\alpha/L\eta\beta)$ -ratio.

6.2 Gamma-ray emissions

6.2.1. Gamma-ray energies

The energies of the 43-keV ($\gamma_{1,0}$), 99-keV ($\gamma_{2,1}$), and 153-keV ($\gamma_{3,2}$) gamma rays are from ²⁴⁴Cm α -decay (1972Sc01). Other, less accurate measurements of ²⁴⁴Cm α -decay (1956Sm18), ²⁴⁰Np β ⁻decay (1981Hs02) and ²⁴⁰Am ϵ -decay (1972Ah07) agree with data from 1972Sc01.

The energies of remaining gamma rays have been obtained from the adopted ²⁴⁰Pu level energies. In Table 7 the recommended gamma ray energies are compared with the available experimental data.

	1967Lederer	1972Ah07	1972Sc01	1981Hs02	Recommended
	(1978LeZA)				
γ _{1,0}		42.9 (1)	42.824 (8)	-	42.824 (8)
$\gamma_{2,1}$	-	98.9 (1)	98.860 (13)	-	98.860 (13)
γ _{3,2}	-	-	152.630 (20)	-	152.630 (20)
γ8,6	251.20 (20)	-	-	251.5 (1)	251.47 (6)
γ7,5	263.34 (15)	-	-	263.4 (1)	263.37 (8)
γ _{8,5}	302.99 (15)	-	-	303.0(1)	302.98 (6)
γ6,2	506.9 (3)	-	-	507.2 (1)	507.16 (5)
γ5,1	554.5 (2)	-	-	554.6 (1)	554.52 (4)
γ5,0	597,2 (2)	-	-	597.4 (1)	597.34 (4)
γ _{6,1}	605.8 (2)	-	-	606.1 (1)	606.03 (4)
γ8,2	758.6 (2)	-	-	758.6 (1)	758.63 (5)
γ _{7,1}	817.8 (2)	-	-	817.9 (1)	817.89 (7)
γ _{8,1}	857.5 (2)	-	-	857.5 (1)	857.50 (4)
γ9,1	894.7 (5)	-	-	895.3 (1)	895.24 (6)
γ8,0	900.1 (5)	-	-	900.3 (1)	900.32 (4)
γ 9.0	937.6 (10)	-	-	938.0(1)	938.06 (6)

Table 7. Experimental and recommended gamma-ray energies (keV).

6.2.2. Gamma-Ray Emission Probabilities

The absolute emission probabilities for gamma rays of 43-keV ($\gamma_{1,0}$), 99-keV ($\gamma_{2,1}$), 153-keV ($\gamma_{3,2}$) and 202-keV ($\gamma_{4,3}$) have been deduced from intensity balances, using the experimental α -particle probabilities. The relative emission probabilities for the first three gamma rays were measured in 1972Sc01 as [100 - $\gamma_{1,0}$, 6.7 (7) - $\gamma_{2,1}$, and 4.1 (1) - $\gamma_{3,2}$]. The measured P($\gamma_{2,1}$)/P($\gamma_{1,0}$)×100 ratio disagrees with the evaluated 5.3 (4), and the measured P($\gamma_{3,2}$)/P($\gamma_{1,0}$)×100 ratio agrees with the evaluated 3.95 (23).

The recommended relative emission probabilities of gamma rays with energies greater than 150-keV, obtained by averaging the experimental data from 1967Lederer (1978LeZA) and 1969Sc18 (1970Sc39), are given in Table 8.

	of > 150 -keV	/ gamma rays fro	om the decay of	²⁴⁴ Cm.
	Energy	1967Lederer	1969Sc18	Recommended
	(keV)	1978LeZA	1970Sc39	
γ _{3,2}	152.6	-	1240 (150)	1170 (160) ^a
γ _{8,6}	251.5	14 (3)	12.7 (20)	13.1 (20) ^b
γ7,5	263.4	73 (5)	68 (6)	71 (5) ^b
γ _{8,5}	303.0	23 (4)	21.0 (20)	21.4 (20) ^b
γ6,2	507.2	10 (3)	-	$10(3)^{c}$
γ5,1	554.5	100	100	100
γ5,0	597.3	61 (2)	62 (4)	61 (2) ^b
γ6,1	606.0	10 (2)	9.1 (11)	9.3 (20) ^b
γ8,2	758.6	15.6 (8)	18.3 (21)	15.9 (8) ^b
$\gamma_{7,1}$	817.9	75 (4)	91 (8)	78 (4) ^b
$\gamma_{8,1}$	857.5	6.6 (4)	< 7.5	6.6 (4) ^c
γ _{9,1}	895.2	2.1 (6)	< 1.3	2.1 (6) ^c
$\gamma_{8,0}$	900.3	1.5 (6)	< 0.4	1.5 (6) ^c
γ9,0	938.1	0.5 (5)	< 0.75	$0.5(5)^{c}$

Table 8. Experime	ental and recomme	ended relative	emission	probabilities
of > 150 -keV	V gamma ravs fro	om the decay o	f ²⁴⁴ Cm.	

^a Deduced from the evaluated absolute emission probabilities $P(\gamma 153 \text{ keV})$ and $P(\gamma 555 \text{ keV})$.

^b Weighted average, uncertainty is the smallest experimental value reported.

^c Adopted from 1967Lederer (1978LeZA).

The deduced absolute emission probabilities of gamma-rays with energies greater than 250 keV are based on our recommended relative gamma-ray emission probabilities $P(\gamma)/P(\gamma 555 \text{ keV})$ in Table 8 and a normalization factor obtained from decay scheme.

The absolute gamma-ray emission probability $P^{(1)}(\gamma 555 \text{ keV}) = 9.1 (11) \times 10^{-5}$ per 100 disintegrations (used for decay-scheme normalization) has been obtained from the intensity balance at the 861-keV level ("7") using the alpha-transition probability $P(\alpha_{0,7}) = 1.49 (16) \times 10^{-4}$ per 100 disintegrations, deduced from the experimental data of 1960As11 and 1997Ka59:

 $P(\gamma 555 \text{ keV}) = [P(\alpha_{0,7}) - P(\text{ce 861 keV})] / [P'(\gamma 263 \text{ keV}) \times (1 + \alpha_T^{263}) + P'(\gamma 818 \text{ keV}) \times (1 + \alpha_T^{818}],$

where P'(γ) is a gamma-ray emission probability relative to that of the 555-keV transition (i.e., P(γ)/P(γ 555 keV)).

Another way of deducing a normalization factor is by using the relative gamma-ray emission probability $P(\gamma 153 \text{ keV})/P(\gamma 555 \text{ keV}) = 12.4$ (15) measured in 1969Sc18 (1970Sc39) and the absolute probability $P(\gamma 153 \text{ keV})$ obtained from the intensity balance for the level 294-keV level ("3"):

 $P^{(2)}(\gamma 555 \text{ keV}) = 8.2 (11) \times 10^{-5} \text{ per 100 disintegrations.}$

The average of the two P(γ 555 keV) values, 8.7 (11) × 10⁻⁵ per 100 disintegrations, was used as a normalization factor for calculating absolute emission probabilities of gamma-rays with energy greater than 250 keV.

The absolute emission probabilities for the 289-keV ($\gamma_{9,6}$) and 341-keV ($\gamma_{9,5}$) gamma rays have been deduced using the ratios P(γ 895 keV)/P(γ 289 keV) = 3.6 (15) and P(γ 895 keV)/P(γ 341 keV) = 1.0 (3) measured in ²⁴⁰Np β -decay (1981Hs02, 2004Ch64).

The absolute emission probability of the 202-keV ($\gamma_{4,3}$) gamma ray has been obtained using the adopted $\alpha_{0,4}$ -transition probability. The 202-keV E2-gamma-ray transition was not observed in the ²⁴⁴Cm alpha decay; however, it is expected from theoretical considerations and by analogy with the ²⁴²Cm decay scheme.

7 Consistency of recommended data

The most accurate Q value, Q(M), is taken from the atomic mass adjustment table of Audi et al. (2003Au03). Comparison of Q(eff)(deduced as the sum of average energies per disintegration ($\Sigma E_i \times P_i$) for all emissions accompanying ²⁴⁴Cm α - decay) with the tabulated decay energy Q(M) allows to check a consistency of the recommended decay-scheme parameters obtained in this evaluation.

Here E_i and P_i are the evaluated energies and emission probabilities of the i-th alpha particle, beta particle, gamma ray, X-ray, etc. Consistency (percentage deviation) is determined by {[Q(M) – Q(eff)]] / Q(M)} ×100. "Percentage deviations above 5 % would be regarded as high and imply a poorly defined decay scheme; a value of less than 5 % indicates the construction of a reasonably consistent decay scheme" (quoted from the article by A.L. Nichols in Appl. Rad. Isotopes 55 (2001) 23-70).

For the above ²⁴⁴Cm decay data evaluation we have Q(M) = 5901.74 (5) keV and Q(eff) = 5903 (33) keV, i.e. consistency of (0.02 ± 0.56) % is not superior, but better than 0.6 %.

8 References

1952Gh27	A. Ghiorso, G. H. Higgins, A. E. Larsh, G. T. Seaborg, S. G. Thompson, Phys. Rev. 87, 163 (1952) (SF half-life)
1954Fr19	A. M. Friedman, A. L. Harkness, P. R. Fields, M. H. Studier, J. R. Huizenga, Phys. Rev. 95, 1501 (1954) (Half-life)
1954St33	C. M. Stevens, M. H. Studier, P. R. Fields, J. F. Mech, P. A. Sellers, A. M. Friedman, H. Diamond, J. R. Huizenga, Phys. Rev. 94, 974 (1954) (Half-life)
1956Hu96	J. P. Hummel, Thesis, Univ. California (1956), UCRL-3456 (1956) (α-transition probabilities)
1956Sm18	W. G. Smith, J. M. Hollander, Phys. Rev. 101, 746 (1956) (Conversion electron measurements, gamma ray multipolarities)
1960As11	F. Asaro, I. Perlman, Priv. Comm. (1960), quoted by E. K. Hyde et al. in: The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall, Englewood Cliffs, New Jersey, 1964, p. 880 (α -transition probabilities, α -emission energies)
1961Ca01	W. T. Carnall, S. Fried, A. L. Harkness, J. Inorg. Nuclear Chem., 17, 12 (1961) (Half-life)
1963Bj03	S. Bjornholm, C. M. Lederer, F. Asaro, I. Perlman, Phys. Rev. 130, 2000 (1963) (E0 gamma and alpha transition probabilities)
1963Dz07	B. S. Dzhelepov, R. B. Ivanov, V. G. Nedovesov, V. P. Chechev, Zh. Eksperim. i Teor. Fiz. 45, 1360 (1963); Soviet Phys. JETP 18, 937 (1964) (α-transition probabilities, α-emission energies)
1963Ma56	L. Z. Malkin, I. D. Alkhazov, A. S. Krivokhatskii, K. A. Petrzhak, L. M. Belov, At. Energ. USSR 16, 148 (1964); Soviet J. At. Energy 16, 170 (1964) (SF half-life)
1965Me02	D. Metta, H. Diamond, R. F. Barnes, J. Milsted, J. Gray, Jr, D. J. Henderson, C. M. Stevens, J. Inorg. Nucl. Chem. 27, 33 (1965) (SF half-life)
1966Ba07	S. A. Baranov, Y. F. Rodionov, V. M. Kulakov, V. M. Shatinskii, Yadern. Fiz. 4, 1108 (1966); Soviet J. Nucl. Phys. 4, 798 (1967) (α-transition probabilities, α-emission energies)
1967Ar09	R. J. Armani, R. Gold, Proc Symp Standardization of Radionuclides, Vienna, Austria (1966), Intern At Energy Agency, Vienna, p 621 (1967) (SF half-life)
1967Be65	J.A. Bearden, Rev. Mod. Phys. 39, 78(1967) (X-ray energies)
1967Lederer	C. M. Lederer, Priv. Comm. (1967), quoted in 1978LeZA (Gamma ray energies and probabilities)
1968Be26	W. C. Bentley, J. Inorg. Nucl. Chem. 30, 2007 (1968) (Half-life)
1968Du06	C. L. Duke, W. L. Talbert, Jr, Phys. Rev. 173, 1125 (1968) (Conversion electron measurements, gamma ray multipolarities)
1969Sc18	M. R. Schmorak et al., Int. Conf. Radioactivity in Nucl. Spectroscopy Tech. and Appl., Nashville, p. 22. Priv. Comm. (1969) quoted in M. R. Schmorak, Nucl. Data Sheets B4, 661 (1970) (Gamma-ray energies and probabilities)
1970Ba11	D. M. Barton, P. G. Koontz, J. Inorg. Nucl. Chem. 32, 769 (1970) (SF half-life)
1970Sc39	M. R. Schmorak, Nucl. Data Sheets B4, 661 (1970) (Gamma-ray energies and probabilities)

1971Gr17	B. Grennberg, A. Rytz, Metrologia. 7, 65 (1971) (Alpha-particle energies)
1972Ah07	I. Ahmad, R. F. Barnes, R. K. Sjoblom, P. R. Fields, J. Inorg. Nucl. Chem. 34, 3335 (1972) (Gamma ray energies)
1972Ha80	J. D. Hastings, W. W. Strohm, J. Inorg. Nucl. Chem. 34, 3597 (1972) (SF half-life)
1972Ke29	W. J. Kerrigan, R. S. Dorsett, J. Inorg. Nucl. Chem. 34, 3603 (1972) (Half-life)
1972Sc01	M. Schmorak, C. E. Bemis, Jr., M. J. Zender, N. B. Gove, P. F. Dittner, Nucl. Phys. A178, 410 (1972) (Gamma ray energies and probabilities)
1972Sp06	H. J. Specht, J. Weber, E. Konecny, D. Heunemann, Phys. Lett. 41B, 43 (1972) (Level energies)
1978LeZA	C. M. Lederer, V. S. Shirley, E. Browne, J. M. Dairiki, R. E. Doebler, A. A. Shihab-Eldin, L. J. Jardine, J. K. Tuli, A. B. Buyrn, Table of Isotopes, 7 th Ed., John Wiley and Sons, Inc., New York (1978) (Gamma ray energies and probabilities)
1980Di13	J. K. Dickens, J. W. McConnell, Phys. Rev. C22, 1344 (1980) (Experimental X-ray energies)
1981Hs02	HC. Hseuh, EM. Franz, P. E. Haustein, S. Kateoff, L. K. Peker, Phys. Rev. C23, 1217 (1981) (Gamma ray energies and probabilities)
1982Ba56	G. Barreau, H. G. Borner, T. von Egidy, R. W. Hoff, Z. Phys. A308, 209 (1982) (Experimental X-ray energies)
1982Po14	V. G. Polyukhov, G. A. Timofeev, V. V. Kalygin, P. A. Privalova, Sov. Radiochem. 24, 408 (1982); Radiokhimiya 24, 490 (1982) (Half-life)
1984BuZJ	P. A. Burns, P. N. Johnston, J. R. Moroney, Priv. Comm. (1984), quoted in 1986LoZT, p.147 (α-transition probabilities)
1990Pe03	J. Pearcey, S. A. Woods, P. Christmas, Nucl. Instrum. Methods Phys. Res. A286, 563 (1990) (Conversion electron measurements, gamma ray multipolarities)
1990Po14	Yu. S. Popov, I. B. Makarov, D. Kh. Srurov, E. A. Erin, Radiokhimiya 32, 2 (1990); Sov. J. Radiochemistry 32, 425 (1990) (Experimental relative LX-ray emission probabilities)
1991Rv01	A. Rytz. At. Data Nucl. Data Tables. 47, 205 (1991) (Alpha-emission energies)
1992Fr04	E. A. Frolov, Appl. Radiat. Isot. 43, 211 (1992) (α-emission energies)
1993Pa29	A. K. Pandey, R. C. Sharma, P. C. Kalsi, R. H. Iyer, Nucl. Instrum. Methods Phys. Res.B82, 151 (1993) (SF half-life)
1995Jo23	P. N. Johnston, P. A. Burns, Nucl. Instrum. Methods Phys. Res. A361, 229 (1995) (LX-ray emission probabilities)
1996Bu50	C. C. Bueno, J. A. C. Goncalves, M. Damy de S. Santos, Nucl. Instrum. Methods Phys. Res. A371–460 (1996) (q-transition probabilities)
1996Sa24	A. M. Sanchez, P. R. Montero, F. V. Tome, Nucl. Instrum. Methods Phys. Res. A369, 593 (1996) (α-transition probabilities)
1996Sc06	E Schönfeld H Janßen Nucl Instrum Methods Phys Res A369 527 (1996) (Atomic data)
1997Ka59	J. Kasagi, H. Yamazaki, N. Kasajima, T. Ohtsuki, H. Yuki, J. Phys.(London) G23, 1451 (1997) (α -transition probabilities)
1998Ga19	E. Garcia-Torano, Appl. Radiat. Isot. 49, 1325 (1998) (α -transition probabilities, α -emission energies)
1998Ya17	J. Yang, J. Ni Nucl. Instrum. Methods Phys. Res. A413, 239 (1998) (α -transition probabilities)
1999Schönfeld	E. Schönfeld, G. Rodloff - PTB-6.11-1999-1999-1. Braunschweig, February 1999 (KX ray
	energies and relative emission probabilities)
2000Но27	N. E. Holden, D. C. Hoffman, Pure Appl. Chem. 72, 1525 (2000) (Spontaneous fission half-life)
2000Schönfeld	E. Schönfeld, H. Janβen, Appl. Rad. Isot. 52, 595 (2000) (X-ray and Auger electron emission probabilities, EMISSION code)
2002Da21	F. Dayras, Nucl. Instrum. Methods Phys. Res. A490, 492 (2002) (α -transition probabilities)
2003Au03	G. Audi, A. H. Wapstra, C. Thibault, Nucl. Phys. A729, 337 (2003) (Q value)
2004Ch64	F. E. Chukreev, Balraj Singh, Nuclear Data Sheets 103, 325 (2004) (Decay scheme, ²⁴⁰ Pu
	level energies, gamma ray multipolarities and probabilities)
2006Ch34	V. P. Chechev, Phys. Atomic Nuclei 69, 1188 (2006) (²⁴⁴ Cm decay data evaluation-2005)
2008Ki07	T. Kibedi, T. W. Burrows, M. B. Trzhaskovskaya, P. M. Davidson, C. W.Nestor, Jr., Nucl. Instrum. Methods Phys. Res. A589, 202 (2008) (Theoretical ICC)