²¹³Po - Comments on evaluation of the decay data by Huang Xiaolong, Wang Baosong

This evaluation was completed in 2007. Literature available by December 2007 was included.

1 Decay Scheme

²¹³Po disintegrates 100 % by α emissions to levels in ²⁰⁹Pb. ²¹³Po ground state has $J^{\pi} = 9/2^+$ (2007Ba19).

2 Nuclear Data

The Q value is from the 2003Au03 evaluation. The level energies, spin and parities are from 2007Ba19. The measured and evaluated ²¹³Po half-life values are listed in Table 1.

Table 1 - Measured half-life values of ²¹³ Po and evaluated value, in µs.				
T _{1/2} (µs)	References	measurement method		
4.2 (8)	1948Je05			
3.74 (2)	1995WaZQ	Superseded by 1998Wa25		
3.70 (3)	1997VaZV	Superseded by 1998Wa25		
3.75 (4)	1997Wa27	Si(Au), delayed β - α coincidences		
3.65 (4)	1998Wa25	Three-dimensional single-crystal scintillation time spectrometer		
3.65	2002Mo46	HPGe and 4π autocorrelation single-crystal scintillation time		
		spectrometer. No uncertainty given		
3.70 (5)		Unweighted mean of 1997Wa27 and 1998Wa25		
3.70 (5)		Weighted mean of 1997Wa27 and 1998Wa25, χ^2 =3.1		
3.70 (5)	Recommended value			

Table 1 - Measured half-life values of 213 Po and evaluated value, in u

Values given by 1995WaZQ, 1997VaZV, 1997Wa27, and 1998Wa25 have authors in common, thus, they may not be independent of each other. A recommended value of 3.70(5) µs has been estimated by the evaluator.

2.1 gTransitions

The γ -ray transition probability is calculated using the γ -ray emission intensity and the relevant internal conversion coefficient.

Multipolarity of 778.8 keV γ -ray is from level scheme (not measured).

The internal conversion coefficient (ICC) and their associated uncertainties for γ -ray transitions have been obtained using the BRICC computer program, which uses the "Frozen Orbital" approximation (2002Ba85).

2.2 a Transitions

Measured and recommended alpha particles energies are listed in table 2. The recommended values are from 1964Va20 and 1991Ry01.

Table 2 - Measured and recommended value of α -particle energy from ²¹³Po decay

		1 81	
1964Va20	1982Bo04 ^a	1991Ry01 ^b	Recommended value
7614 (10)			7614 (10)
8377 (5)	8376 (3)	8375.9 (25)	8375.9 (25)

^a: Original energies of 1982Bo04 have been increased by 2 keV due to changes in calibration energies (1991Ry01).

^b: evaluation.

The measured and recommended alpha particle emission probabilities are listed in table 3. The recommended alpha particle emission probabilities have been deduced from γ -ray transition intensity balance.

Table 3 - Measured and recommended α -particle emission probabilities from ²¹³Po decay

E_{α} (keV)				P_{α}	
	1964Va20	1969LeZW	1997Ch53	Recommended	
7614 (10)	0.003 (1)	0.006 (2)	0.0031 (2)	0.0050 (5)	
8375.9 (25)	100	100	99.997 (31)	99.9950 (5)	

 $P_{\alpha} = 0.0031$ (2) % in 1997Ch53 is from an α -particle spectrum. This very weak peak is at the low-energy tail of the intense 8376-keV α -particle group. Thus, the evaluator has considered its reported intensity to be quite inaccurate, despite the value reported in 1997Ch53.

3. Photon Emissions

There is only one γ -ray emitted from ²¹³Po α decay. Only 1989Ko26 measured the γ -ray energy: 778.8 (3) keV. The present recommended γ -ray energy has been taken from this measurement.

The recommended absolute γ -ray emission probability has been obtained as follows: 1989Ko26 measured the ratio: I γ (779 keV) / I γ (440 keV) (in ²¹³Bi β ⁻ decay) = 0.000181 (18). Using P γ (440 keV) = 26.1 (3) % and % β ⁻ = 0.9791 (3) (2007HuXX) then P γ (778 keV) = 0.0048 (5) %.

4. References

1948Je05	J.V.Jelley, Can.J.Res. 26A, 255 (1948) [T _{1/2}].			
1964Va20	K.Valli, Ann.Acad.Sci.Fennicae, Ser.A VI, No.165 (1964) [E _α].			
1969LeZW	CF.Leang, Thesis, Univ.Paris (1969) $[E_{\alpha}]$.			
1982Bo04	J.D.Bowman, R.E.Eppley, E.K.Hyde, Phys.Rev. C25, 941 (1982) $[E_{\alpha}]$.			
1989Ko26	M.C.Kouassi, A.Hachem, C.Ardisson, G.Ardisson, Nucl.Instrum.Methods Phys.Res. A280,			
	424 (1989) $[E_{\gamma}, I_{\gamma}]$.			
1991Ry01	A.Rytz, At.Data Nucl.Data Tables 47, 205 (1991) [Evaluation]			
1995WaZQ	J. Wawryszczuk, M.B.Yuldashev, K.Ya. Gromov, T.M. Muminov, Program and Thesis,			
	Proc.45 th Ann. Conf. Nucl.Spectrosc.Struct.At.Nuclei, St.Petersburg, p.107 (1995) [T _{1/2}].			
1997Ch53	V.G. Chumin, J.K. Jabber, K.V. Kalyapkin, S.A.Kudrya, V.V. Tsupko-Sitnikov, K.Ya.			
	Gromov, V.I. Fominykh, T.A. Furyaev, Bull. Rus. Acad. Sci. Phys. 61, 1606 (1997) $[P_{\alpha}]$.			
1997VaZV	Ya. Vavryshchuk, K.Ya. Gromov, V.B. Zlokazov, V.G. Kalinnikov, V.A. Morozov, N.V.			
	Morozova, V.I. Fominykh, V.V. Tsupko-Sitnikov, I.N. Churin, JINR-P6-97-180 (1997)			
	$[T_{1/2}].$			
1997Wa27	J. Wawryszczuk, K.V. Kalyapkin, M.B. Yuldashev, K.Ya. Gromov, V.I. Fominykh, Bull.			
	Rus .Acad. Sci. Phys. 61, 25 (1997) [T _{1/2}].			
$1008W_{2}$	I Wawryszczuk K Ya Gromov V B Zlokazov V G Kalinnikov V A Morozov			

¹⁹⁹⁸Wa25 J. Wawryszczuk, K.Ya. Gromov, V.B. Zlokazov, V.G. Kalinnikov, V.A. Morozov,

N.V.Morozova, V.I. Fominikh, V.V. Tsupko-Sitnikov, I.N. Churin, Phys.Atomic Nuclei 61, 1322 (1998) [T_{1/2}].

- 2002Mo46 V.A.Morozov, N.V.Morozova, Yu.V.Norseev, Zh.Sereeter, V.B.Zlokazov, Nucl. Instrum. Methods Phys.Res. A484, 225 (2002) [T_{1/2}].
- 2003Au03 G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729(2003)129 [Q].
- 2007Ba19 M.S.Basunia, Nucl.Data Sheets 108, 633 (2007) [NDS]
- 2007HuXX Huang Xiaolong, Wang Baosong, Nuclear Science and Techniques, Vol. 108, 261(2007) [Evaluation].