²⁴⁰Pu – Comments on evaluation of decay data by V. P. Chechev

This evaluation was done originally in 2004 (2004BeZQ, 2005ChZU) and then updated in June 2009 with a literature cut-off by the same date.

1. DECAY SCHEME

The decay scheme is based on 2006Br20. Some expected weak gamma-ray transitions were not observed directly in ²⁴⁰Pu alpha decay but have been adopted from decay of ²³⁶Pa and ²³⁶Np and from data on nuclear reactions.

The alpha transitions to ²³⁶U highly excited levels with energy of 958.960 and 967 keV were not observed. They are expected from data on level spins and gamma-rays de-excited these levels.

2. NUCLEAR DATA

 $Q(\alpha)$ value is from 2003Au03.

The recommended half-life of 240 Pu is based on the experimental results given in Table 1. Reestimated values were used for averaging where necessary.

		nentui vulues oi	I u nun me (n	i years)
Reference	Author(s)	Original value	Re-estimated	Measurement method
Reference	Aution(3)		value	
1951In03	Inghram et al.	6580 (40)	6500 (45) ^{b, c}	Mass-Spectrometry
1951We21	Westrum	6300 (600)		a-Particle Counting
1954Farwell	Farwell et al.	6760		a-Particle Counting
1956Bu92	Butler et al.	6600 (100)		a-Particle Counting
1959Dokuchaev	Dokuchaev	6620 (50)	6610 (55) ^b	a-Particle Counting
1968Oe02	Oetting	6524 (10)	6537 (15) ^c	Calorimetry
1978Ja11	Jaffey et al.	6569 (6)	6569 (7) ^c	a-Particle Counting
1984Be19	Beckmann et al.	6574 (6) ^a	6574 (7) ^c	Mass-Spectrometry
1984St06	Steinkruger et al.	6571 (9) ^a		a-Particle Counting
1984Lu04	Lucas and Noyce	6552.2 (20)	6552.2 (66) ^c	a-Particle Counting
1984Ru04	Rudy et al.	6552.4 (17)	6552.4 (66)	Calorimetry
2007Ah05	Ahmad et al.	6545 (19)		Ingrowth of ²⁴⁰ Pu in ²⁴⁴ Cm
				source, ²⁴⁰ Pu/ ²⁴⁴ Cm activity
				ratio measurement

Table	1.	Ext	perimenta	1 values	of	²⁴⁰ Pu	half-life	(in	vears))
I uoic	т.	LAN	Joi monta	i varues	O1	1 u	man me	(111)	yours	,

^a Quoted uncertainties, corresponding to 95 % confidence level, have been reduced by a factor 2.

^b Re-estimated in 1978Ja11.

^c Re-estimated in 1986LoZT.

With omitting the value of 1954Farwell reported without uncertainty the weighted average of the remaining 11 values is 6561 yr with the internal uncertainty 3.1 yr and external uncertainty 3.8 yr.

Comments on evaluation

According to the criterion adopted by the members of the CRP (1986LoZT) a minimum uncertainty of the recommended ²⁴⁰Pu half-life should be attributed as 7 years.

Therefore, the adopted value of the ²⁴⁰Pu half-life is 6561(7) years.

The recommended of ²⁴⁰Pu spontaneous fission half-life is based on the experimental results given in Table 2.

	1	1		
		Measure-	Measurement method	Used for
Reference	Author(s)	ment value		final
				averaging
1953Ki72	Kinderman	1.314 (26)	Low geometry a-counting	No
1954Ba14	Barclay et al.	1.225 (30)	Low geometry a-counting	No
1954Ch74	Chamberlain et al.	1.20	Low geometry a-counting	No
1959Mi90	Mikheev et al.	1.20	Low geometry a-counting	No
1962Wa13	Watt et al.	1.340 (15)	Low geometry a-counting	No
1963Ma50	Malkin et al.	1.45 (2)	Low geometry a-counting	No
1967White	White	1.27 (5)	No details available	No
1967Fi13	Fieldhouse et al.	$1.176(25)^{a}$	SF neutron emission rates	Yes
1979BuZC	Budtz-Jorgensen et al.	1.15 (3)	Fragment spectra,	Yes
	_		ionization chamber	
1984An25	Androsenko et al.	1.15 (3)	SF neutron emission rates	Yes
1988SeZY	Selickij et al.	1.17 (3)	Fragment detection in 2p	Yes
			geometry	
1989Dy01	Dytlewski et al.	1.12 (2)	Neutron coincidences and	Yes
			low geometry a-counting	
1991Iv01	Ivanov et al.	1.15 (2)	? _{SF} /?a in ²⁴⁰ Pu standards	Yes

Table 2. Experimental values of 240 Pu spontaneous fission half-life (in 10^{11} years)

^a Re-estimated in 2000Ho27. Original value is 1.170 (25).

Early measurement values have been omitted from averaging according to analysis of Holden and Hoffman (2000Ho27). The weighted average of 6 selected values is 1.15 with the internal uncertainty 0.010 and external uncertainty 0.0087.

The recommended value of the ²⁴⁰Pu spontaneous fission is $1.15(2) \cdot 10^{11}$ years where the uncertainty is the smallest quoted uncertainty.

2.1 Alpha Transitions

The energies of the alpha transitions have been obtained from the Q value and the level energies given in Table 3 from 2006Br20.

	Tuble 5.	e ieveis pope	ilated III I a w decay	
Level	Energy, keV	Spin and	Half-life	Probability of α-
number		parity		transition (x100)
0	0,0	0^+	2.343 (6)·10 ⁷ yr	72.74 (18)
1	45.2440 (20)	2^{+}	234 (6) ps	27.16 (19)
2	149.477 (6)	4^{+}	124 (7) ps	0.0863 (18)
3	309.785 (7)	6+	58 (3) ps	0.001082 (18)
4	522.25 (5)	8^+	24 (2) ps	4.7 (5)·10 ⁻⁵
5	687.59 (4)	1^{-}	3.78 (9) ns	1.93 (4)·10 ⁻⁵
6	744.18 (7)	3-	< 0.1 ns	
7	919.14 (17)	0^+		$\approx 6.5 \cdot 10^{-7}$
8	957.90 (17)	(2^{+})		$< 1.7 \cdot 10^{-7}$
9	960.3 (3)	(2^{+})		$< 1.3 \cdot 10^{-7}$
10	966.62 (9)	1-		$< 1 \cdot 10^{-7}$

Table 3. ²³⁶U levels populated in ²⁴⁰Pu α -decay

The probabilities of the most intense transitions $\alpha_{0,0}$ and $\alpha_{0,1}$ have been obtained by averaging experimental data (Table 4). The probabilities of all the remaining α -transitions have been deduced from the P(γ +ce) balances at relevant levels in ²³⁶U. The $\alpha_{0,6}$ -transition probability of 1.3 (7) 10⁻⁸ % has been taken from 2006Br20.

	a- particle energy keV	1956 Ko67	1956 Go43	1952 As28 1957 As83	1969 Le05	1977 Ba69	1984 Ah06	1990 An33	1992 B113	1994 Ra27	1994 Sa63	1996 Vi07	2004 Si03	Recommended
a _{0,0}	5168	75.5	75.5	76		73.51 (36)	72.8 (1)	73.0 (5)	72.55 (20)	73.1 (1)	72.5 (11)	74 (2)	72.56 (6)	72.74 (18) ^a
a _{0,1}	5124	24.4	24.5	24		26.39 (21)	27.1 (1)	27.0 (5)	27.35 (10)	26.8 (1)	27.5 (11)	26(2)	27.35 (7)	27.16 (19) ^b
a _{0,2}	5021	0.091 (6)	0.085 (15)	0.1		0.096 (5)	0.090 (5)		0.10(2)					0.0863 (18) °
a _{0,3}	4864	0.0032 (1)				0.001								0.001082 (18) °
$a_{0,4}$	4655													4.7 (5)·10 ^{-5 c}
a _{0,5}	4492				2.1(4) 10 ⁻⁵									1.93 (4)·10 ^{-5 c}

Table 4. Experimental and recommended values of α -transition probabilities (×100) in ²⁴⁰Pu decay

^a LWEIGHT computer program has increased the uncertainty of 2004Si03 to 0.0649 and recommended a weighted average (72.74) with the expanded uncertainty of 0.18 so range includes the most precise value of 72.56.

^bLWEIGHT computer program has recommended a weighted average (27.16) with the expanded uncertainty of 0.19 so range includes the most precise value of 27.35.

^c Deduced from (γ +ce)-intensity balance at relevant levels.

2.2. Gamma Transitions and Internal Conversion Coefficients

The recommended energies of gamma-ray transitions are virtually the same as the gamma-ray energies because nuclear recoil is negligible for 234 U.

The gamma-ray transition probabilities have been deduced from the gamma-ray emission probabilities and total internal conversion coefficients (ICCs). The ICCs have been interpolated using the BrIcc package with the so called "*Frozen Orbital*" approximation (2008Ki07). The uncertainties in the ICCs for pure multipolarities have been taken as 2 %. The multipolarities have been taken from 2006Br20.

The experimental values of ICC have been adopted for the E1 anomalously converted gamma-ray transitions $\gamma_{5,1}$ (642.4 keV) and $\gamma_{5,0}$ (687.6 keV).

3. ATOMIC DATA

3.1. Fluorescence yields

The fluorescence yield data are from 1996Sc06 (Schönfeld and Janßen).

3.2. X-Rays

The energies of U LX-rays taken from the SAISINUC software supporting programs agree with the measurements of 1994Le28 and 1994Le37 where the fine structure of LX-radiation was measured in decays of ²³⁹Pu and ²⁴⁰Pu. Other measurements of U LX-rays can be found in 1983Ah02, 1984Bo41, 1992Ba08 and 1995Jo23.

The U KX-ray energies have been taken from 1999Schönfeld where the calculated values based on X-ray wavelengths from 1967Be65 (Bearden). In Table 5 the adopted values of U KX-ray energies are compared with experimental values.

The relative KX-ray emission probabilities have been taken from 1999Schönfeld.

acre et En		•••••••••••••••••••••••••••••••••••••••		
	1976GuZN	1982Ba56	1983Ah02	Adopted
$K\alpha_2$	94.655 (5)	94.656 (2)	94.67 (2)	94.666
$K\alpha_1$	98.442 (5)	98.435 (2)	98.45 (2)	98.440
Kβ ₃	110.42	110.416 (3)	110.42 (3)	110.421
$K\beta_1$	111.30	111.300 (2)	111.31 (2)	111.298
Kβ5	-	111.868 (5) - Kβ ₅ 112/043 (5) - Kβ ₅	112.01 (5)	111.964
$K\beta_{2,4}$	114.54	-	114.50 (3)	114.46
KO _{2,3}	115.40	-	115.40 (5)	115.377

Table 5. Experimental and recommended (calculated) values of U KX-ray energies (keV)

3.3. Auger Electrons

The energies of Auger electrons are from the SAISINUC software supporting programs.

The ratios P(KLX)/P(KLL), P(KXY)/P(KLL) are taken from 1996Sc06.

4. ALPHA EMISSIONS

The energy of alpha particles corresponding to the alpha transition to a ground state of 236 U, E($\alpha_{0,0}$), has been adopted from the absolute measurement of 1972Go33 taking into account the correction of -0.17 keV recommended by A.Rytz in 1991Ry01.

The energies of all other alpha particles have been deduced from $Q(\alpha)$, $E(\alpha_{0,0})$ and the level energies taking into account the ²³⁶U recoil energies.

In Table 6 the deduced (recommended) values of α -particle energies are compared with the experimental results.

				Measured ^a			
	1956	1956	1952As28	1962	1972	1977	Recommended
	K067	Go43	1957As83	Le11	Go33	Ba69	
$\alpha_{0,0}$	5166	5165	5168 (4)	5167.7 (7)	5168.13 (15) ^b	5168.13 (15) ^b	5168.13 (15) ^b
$\alpha_{0,1}$	5122	5121	5123 (5)	5123.3 (7)	5123.26 (23)	5123.45 (25)	5123.6 (2)
$\alpha_{0,2}$	5021 (2)	5020	5019			5021.3 (5)	5021.1 (2)
$\alpha_{0,3}$	4858 (5)	4856				4863.4 (5)	4863.5 (2)

Table 6. Experimental and recommended α -particle energies in decay of ²⁴⁰Pu, keV

^a Original values have been adjusted taking into account changes in calibration energies as suggested in 1991Ry01. ^b Absolute measurement; the value was adopted as recommended in 1991Ry01 and used in 2003Au03 for obtaining $Q(\alpha)$.

It should be noted that Sibbens and Romme (2004Si03) measured (using a 50 mm² high-resolution planar silicon detector) the energies of ²⁴⁰Pu alpha particles relatively to reference peaks of ²³⁸Pu and ²³⁹Pu for a ^{238,239,240}Pu mixture. They obtained $E(a_{0,0}) = 5168.54$ (14) keV and $E(a_{0,1}) = 5124.10$ (15) keV discrepant with other published data.

5. ELECTRON EMISSIONS

The energies of the conversion electrons have been obtained from the gamma transition energies and the atomic-electron binding energies.

The emission probabilities of conversion electrons have been deduced from the evaluated $P(\gamma)$ and ICC values. The experimental spectrum of the conversion electrons in decay of ²⁴⁰Pu is given in 1958Sa21.

The absolute emission probabilities of K Auger electrons have been calculated using the EMISSION computer program (2000Schönfeld).

The total absolute emission probability of L Auger electrons has been deduced using the adopted total absolute emission probability of U LX–rays and fluorescence yield $\varpi_L = 0.500$ (19).

6. PHOTON EMISSIONS

6.1. X-Ray Emissions

The absolute emission probabilities of U LX-rays have been obtained as weighted averages of measurement results from 1994Le28 and 1994Le37. The uncertainties are the smallest quoted uncertainties.

The total absolute emission probability of U LX–rays P(XL) = 10.34 (15) %, adopted from measurements of 1994Le28, 1994Le37, agrees well with the value of P(XL) = 10.14 (23) %, calculated with using the EMISSION computer program (2000Schönfeld). The measurement result of 1970Swinth (11.5 (3) %) disagrees with the adopted and calculated values.

The absolute KX –ray emission probabilities have been calculated using the EMISSION computer program (2000Schönfeld).

6.2. Gamma-Ray Emissions

The energies of gamma-rays have been adopted from 2006Br20 based on the available experimental data from 240 Pu α -decay (Table 7) and data from decay of 236 Pa and 236 Np.

	1969Le05	1971GuZY	1972Sc01	1974HeYW	1975OtZX	1976GuZN	1981He16	Recommended
γ _{1.0}		45.235 (20)	45.242 (6)			45.232 (5)	45.244 (3)	45.2440 (20)
$\gamma_{2,1}$		104.233 (10)	104.233 (5)	104.15 (2)		104.244 (5)	104.234 (6)	104.233 (5)
Y3.2		160.35 (50)	160.310 (8)	160.27 (2)	160.312 (10)	160.280 (15)	160.308 (3)	160.308 (3)
γ _{4.3}			212.4 (1)		212.48 (5)			212.46 (5)
γ _{5.2}	538.05 (30)				538.09 (15)			538.10 (10)
γ _{5.1}	642.43 (10)			642.48 (15)	642.33 (10)	642.48		642.34 (5)
γ _{5.0}	687.77 (15)			688.01 (15)	687.57 (10)	687.7		687.56 (10)
$\gamma_{7,1}$	873.91 (20)				873.92 (15)			874.0 (2)

Table 7. Measured in ²⁴⁰Pu α -decay ^a and recommended values of gamma-ray energies (keV)

^a. Other much more inaccurate measurements results see in 1958Sa21, 1959Tr37 and 1972CiZS.

The experimental and recommended gamma-ray emission probabilities for γ -rays with energy less than 200 keV are given in Table 8. The recommended P(γ) values have been obtained by averaging several experimental results (except for P($\gamma_{1,0}$) that calculated from intensity balance).

				0.		· 1	•			
	Energy	1971	1972	1975	1976	1976	1981	1981	1994	Recommended
	(keV)	GuZY	Sc01	OtZX	GuZN	Um01	He16	Morel	Ba91	
$\gamma_{1,0}$	45.24	4.50 (10) ^a	4.50 ^b		4.53 (9) ^d	4.61 (14) ^e	4.35 (9)			$4.62(9)^{f}$
$\gamma_{2,1}$	104.23	0.700 (14) ^a	0.91 (5) ^c	0.70 ^b	0.698 (14) ^d		0.718 (7)			0.714 (7) ^g
γ _{3.2}	160.31	0.0420 (8) ^a	0.049 (12) ^c	0.0408 (10)	0.0402 (8) ^d		0.0402 (4)	0.0402 (7)	0.04065 (17)	0.04045 (22) ^h

Table 8. Experimental and recommended emission probabilities of gamma-rays in ²⁴⁰Pu decay with energy less than 200 keV (per $10^4 \alpha$ -decays)

^a Omitted from averaging as the results of 1971GuZY were superseded in 1976GuZN.

^bOmitted from averaging as an uncertainty is not quoted.

^c Omitted on statistical considerations (using Chauvenet's criterion).

^d The uncertainty quoted in 1976GuZN was re-estimated in 1986LoZT to include a 2 % detector efficiency uncertainty.

^e The uncertainty quoted in 1976Um01 was re-estimated in 1986LoZT to include a 2 % detector efficiency uncertainty and 1 % from the sample isotopic composition.

^f Deduced from intensity balance at level 45,24 keV using $P(\alpha_{0,1}) = 27,16$ (19) % and total ICC $a_T(\gamma_{1,0}) = 589$ (12). The recommended value agrees with the measurement of 1976Um01and differs from the measurement result of 1981He16.

^g Weighted average of 1976GuZN and 1981He16; the uncertainty is the smallest quoted uncertainty.

^h LWEIGHT computer program identified an outlier (1972Sc01). With the five remained experimental values for processing the program increased the uncertainty of 1994Ba91 to 0.00030 and recommended a weighted average; the uncertainty is internal.

The emission probabilities of $\gamma_{4,3}(212 \text{ keV})$ and $\gamma_{5,2}(538 \text{ keV})$ have been adopted from absolute measurements of 1975OtZX. The emission probabilities of $?_{5,1}(642 \text{ keV})$ and $?_{5,0}(687 \text{ keV})$ have been obtained by averaging experimental data (Table 9).

Table 9. Experimental and recommended emission probabilities of gamma-rays de-exciting the ²³⁶U level with energy of 687.6 keV in ²⁴⁰Pu decay (per 10⁸ a-decays)

	Energy, keV	1969Le05	1971GuZY	1975OtZX	1975Dr05	1976GuZN	Recomme nded
$\gamma_{5,2}$	538.1	$\approx 0.23^{a}$		0.147 (12)			0.147 (12)
$\gamma_{5,1}$	642.4	14.5 ^a	14.5 (5) ^b	12.6 (4)	13 (1)	12.45 (30)	12.6 (3) ^c
γ _{5,0}	687.6	3.77 (11)	3.70 (15) ^b	3.30 (13)		3.55 (9)	3.56 (9) ^c

^aOmitted from averaging as an uncertainty is not quoted.

^b Omitted from averaging as the results of 1971GuZY were superseded in 1976GuZN.

^c Weighted average of 3 experimental values; the uncertainty is the smallest quoted uncertainty.

The emission probability of $\gamma_{7,1}$ (874 keV) has been obtained as a weighted average of measurement results from 1969Le05 and 1975OtZX.

The weak gamma-rays with energy more than 900 keV were reported in 1969Le05 and 1976GuZN. They are expected from the decay scheme but their emission probabilities ($<10^{-7}$ per 100 decays) were determined with a great inaccuracy.

7. CONSISTENCY OF RECOMMENDED DATA

The most accurate Q value, Q(M), is taken from the atomic mass adjustment table of Audi et al. (2003Au03). Comparison of Q(eff)(deduced as the sum of average energies per disintegration ($\Sigma E_i \times P_i$) for all emissions accompanying ²⁴⁰Pu α - decay) with the tabulated decay energy Q(M) allows to check a consistency of the recommended decay-scheme parameters obtained in this evaluation.

Here E_i and P_i are the evaluated energies and emission probabilities of the i-th alpha particle, beta particle, gamma-ray, X-ray, etc. Consistency (percentage deviation) is determined by {[Q(M) – Q(eff))] / Q(M)} × 100. "Percentage deviations above 5 % would be regarded as high and imply a poorly

Comments on evaluation

defined decay scheme; a value of less than 5 % indicates the construction of a reasonably consistent decay scheme" (quoted from the article by A. L. Nichols in Appl. Rad. Isotopes 55(2001) 23-70). For the above ²⁴⁰Pu decay data evaluation we have Q(M) = 5255.75 (14) keV and Q(eff) =

For the above ²⁴⁰Pu decay data evaluation we have Q(M) = 5255.75 (14) keV and Q(eff) = 5255 (9) keV. Thereafter, the percentage deviation is (0.00 ± 0.17) %, i.e. consistency is superior.

8. REFERENCES

1951In03	M. G. Inghram, D. C. Hess, P. R. Fields, G. L. Pyle, Phys. Rev. 83(1951)1250. (Half-life)
1951We21	E. F. Westrum, Phys. Rev. 83(1951)1249, (Half-life)
1952As28	F. Asaro, I. Perlman, Phys. Rev. 88(1952)828, (α -transition energies and probabilities)
1953Ki72	E. M. Kinderman, Hanford Lab, Report HW-27660(1953), (SF half-life)
1954Ba14	F. R. Barclay, W. Galbraith, K. M. Glover, G. R. Hall, W. J. Whitehouse, Proc. Phys.
170 .2.41	Soc. (London) 67A(1954)646. (SF half-life)
1954Ch74	O. Chamberlain, G. W. Farwell, E. Segre, Phys. Rev. 94(1954)156. (SF half-life)
1954Farwell	G. Farwell., J. E. Roberts, A. C. Wahl, Phys. Rev. 94(1954)363. (Half-life)
1956Bu92	J. P. Butler, T. A. Eastwood, T. L. Collins, M. E. Jones, F. M. Rourke, R. P. Schuman,
	Phys. Rev. 103(1956) 634. (Half-life)
1956Go43	L. L. Goldin, G. I. Novikova, E. F. Tretyakov, Phys. Rev. 103(1956)1004. (α-transition
	energies and probabilities)
1956Ko67	L. M. Kondratev, G. I. Novikova, Y. P. Sobolev, L. L. Goldin, Zh. Eksp. Teor. Fiz. 31
	(1956) 771. (Soviet Phys. JETP 4(1956)645). (α-transition energies and probabilities)
1957As83	F. Asaro, S. G. Thompson, F. S. Stephens, Jr., I. Perlman, Priv. Comm (1957), quoted by
	1964Hy02. (α -transition energies and probabilities)
1958Sa21	P. S. Samoilov, Atomnaya Energ. 4(1958)81 Soviet. J. At. Energy 4(1958)102.
	(Gamma-ray energies)
1959Dokuchaev	v Ya. P. Dokuchaev, Atomnaya Energ. 6(1959)74. (Half-life)
1959Mi90	V. L. Mikheev, N. K. Skobelev, V. A. Druin, G. N. Flerov, Zhur. Eksptl. i Teoret. Fiz.
	37(1959)859 Soviet Phys. JETP 10 (1960) 612. (Half-life)
1959Tr37	E. F. Tretyakov, L. N. Kondratev, G. I. Khlebnikov, L. L. Goldin, Zh. Eksp. Teor. Fiz.
10.00	36(1959)362 Soviet Phys. JETP 9(1959)250. (Gamma-ray energies)
1962Le11	C. F. Leang, Compt. Rend. $255(1962)3155$. (α -transition energies)
1962Wa13	D. E. Watt, F. J. Bannister, J. B. Laidler, F. Brown, Phys. Rev. 126(1962)264. (SF half-
106214-50	IIIC) I 7 Mallin I D Alliharam A C Krivalihatalm K A Daturbali At Enorg USSD
1905111850	L. Z. Markini, I. D. Arkinazov, A. S. Krivoknaisky, K. A. Petrznak, Al. Energ. USSK 15(1062)158 Soviet I. At Energy 15(1064)851 (SE helf life)
106/14v02	E K Hyde I Perlman G T Seaborg (1964): The Nuclear Properties of the Heavy
190411y02	Elements Vol II Prentice Hall Inc. Englewood Cliffs N I (a transition energies and
	probabilities)
1967Be65	I A Bearden Rev Mod Phys 39(1967)78 (X-ray energies)
1967Fi13	P Fieldhouse D S Mather E R Culliford J Nucl Energy 21(1967)749 (SF half-life)
1967White	P. H. White, priv, comm., cited in J.Nucl.Energy 21(1967)749 and in 2000Ho27. (SF
	half-life)
1968Oe02	F. L. Oetting, Proc. Symp. Thermodyn. Nucl. Mater. With Emphasis on Solution Syst.,
	Vienna, Austria (1967), IAEA, Vienna, p. 55 (1968). (Half-life)
1969Le05	C. M. Lederer, J. M. Jaklevic, S. G. Prussin, Nucl. Phys. A135(1969)36. (α-transition
	energies and probabilities)
1970Swinth	K. L. Swinth, IEEE Nuclear Science Symp., 1970, Vol. 4, p.125. (LX-ray emission
	probabilities)
1971GuZY	R. Gunnink, R. J. Morrow, UCRL 51087(1971). (Gamma-ray energies and emission
	probabilities)
1972CIZS	J. E. Cline, R. J. Gehrke, L. D. McIsaac, ANCR1069(1972). (Gamma-ray energies)
1972Go33	D. J. Gorman, A. Rytz, H. V. Michel, Compt. Rend. B275(1972)291. (α -transition energies)

1972Sc01	M. Schmorak, C. E. Bemis Jr, M. J. Zender, N. B. Gove, P. F. Dittner, Nucl. Phys. A178(1972)410 (Gamma-ray energies and emission probabilities)
1974HeYW	R. L. Heath, Gamma-Ray Spectrum Catalogue, ANCR 1000(1974)2. (Gamma-ray energies)
1975Dr05	T. Dragnev, K. Scharf, Intern. J. Appl. Radiat. Isotop. 26(1975)125. (Gamma-ray emission probabilities)
1975OtZX	H. Ottmar, P. Matussek, I. Piper, Proc. Int. Symp. Neutron Capture, Gamma-Ray Spectroscopy and Related Topics, 2nd, Petten, The Netherlands (1974), K. Abrahams, F. Stecher-Rasmussen, P. Van Assche, Eds, Reactor Centrum Nederland, p. 658 (1975). (Gamma-ray energies and emission probabilities)
1976GuZN	R. Gunnink, J. E. Evans, A. L. Prindle, UCRL-52139(1976). (Gamma-ray energies and emission probabilities)
1976Um01	H. Umezawa, T. Suzuki, S. Ichikawa, J. Nucl. Sci. Technol. 13(1976)327. (Gamma-ray emission probabilities)
1977Ba69	S. A. Baranov, V. M. Shatinskii, Yad. Fiz. 26(1977)461Soviet J. Nucl. Phys. 26(1977)244. (α-transition energies and probabilities)
1978Ja11	A. H. Jaffey, H. Diamond, W. C. Bentley, D. G. Graczyk, K. P. Flynn, Phys. Rev. C18(1978)969. (Half-life)
1979BuZC	C. Budtz-Jorgensen, HH. Knitter, NEANDC(E) 202U, Vol III, p. 9 (1979). (SF half- life)
1981He16	R. G. Helmer, C. W. Reich, Intern. J. Appl. Radiat. Isotop. 32(1981)829. (Gamma-ray energies and emission probabilities)
1981Morel	J. Morel et al., LMRI, Saclay, private communication, 1981 Cited in IAEA, Vienna, Tec. Rep. 261, 1986. (Gamma-ray emission probabilities)
1982Ba56	G. Barreau, H. G. Borner, T. von Egidy, R. W. Hoff. Z. Phys. A308(1982)209. (KX-ray energies)
1983Ah02	I. Ahmad, J. Hines, J. E. Gindler, Phys. Rev. C27(1983)2239, (KX-ray energies)
1984Ab06	L Ahmad Nuclear Instrum Methods 223(1984)319 (α-transition probabilities)
1084 Am 25	A A Androsonko D A Androsonko VII V Jugnov A E Konvoov V E Kositevn E
1704A1125	M. Tsenter, V. T. Shchebolev, At. Energ. 57(1984)357 Sov. At. Energy 57(1984)788. (SF half-life)
1984Be19	R. J. Beckman, S. F. Marsh, R. M. Abernathey, J. E. Rein, Intern. J. Appl. Radiat. Isotop. 35(1984)163. (Half-life)
1984Bo41	G. Bortels, B. Denecke, R. Vaninbroukx, Nuclear Instrum. Methods 223(1984)329. (LX-ray energies)
1984Lu04	L. L. Lucas, J. R. Noyce, Intern. J. Appl. Radiat. Isotop. 35(1984)173. (Half-life)
1984Ru04	C. R. Rudy, K. C. Jordan, R. Tsugawa, Intern. J. Appl. Radiat. Isotop. 35(1984)177. (Half-life)
1984St06	F. J. Steinkruger, G. M. Matlack, R. J. Beckman, Intern. J. Appl. Radiat. Isotop. 35(1984)171.(Half-life)
1986LoZT	A. Lorentz, Decay Data of the Transactinium Nuclides, IAEA, Vienna, Tec. Rep. Ser. 261(1986). (Gamma-ray emission probabilities)
1988SeZY	Yu. A. Selitsky, V. B. Funshtein, V. A. Yakovlev, Program and Theses, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Baku, Acad. Sci. USSR, (1988)131. (SF half-life)
1989Dy01	N. Dytlewski, M. G. Hines, J. W. Boldeman, Nucl. Sci. Eng. 102(1989)423. (SF half-life)
1990An33	S. V. Anichenkov, Yu. S. Popov, Radiokhimiya 32(1990)109 Sov. Radiochem. 32(1991)401. (α-transition probabilities)
1991Iv01	Yu. V. Ivanov, A. E. Konyaev, V. F. Kositsyn, E. A. Kholnova, V. T. Shchebolev, M. F. Yudin, At. Energ. 70(1991)396 Sov. At. Energy 70(1991)491. (SF half-life)
1991Rv01	A. Rytz, At. Data Nucl. Data Tables 47(1991)205. (α -transition energies)
1992Ba08	G. Barci-Funel, J. Dalmasso, G. Ardisson, Appl. Radiat. Isot. 43(1992)37. (X-ray energies)
1992R113	C I Bland I Truffy Appl Radiat Icot 43(1992)1241 (a-transition probabilities)
100/P_01	D T Baran Appl Radiat Isot 45(1004)1177 (a transition probabilities)
1774Da71	M C Long K Debortin Nucl Instrum Math Days Dec A 220(1004)219 (IV and
1774LC20	energies and emission probabilities)

Comments on evaluation

1994Le37	M. C. Lépy, B. Duchemin, J. Morel, Nucl. Instrum. Meth. Phys. Res. A353(1994)10. (LX-ray energies and emission probabilities)
1994Ra27	W. Raab, J. L. Parus, Nucl. Instrum. Meth. Phys. Res. A339(1994)116. (α -transition probabilities)
1994Sa63	A. M. Sanchez, F. V. Tome, J. D. Bejarano, Nucl. Instrum. Meth. Phys. Res. A340(1994)509. (α-transition probabilities)
1995Jo23	P. N. Johnston, P. A. Burns, Nucl. Instrum. Meth. Phys. Res. A361(1995)229. (U LX-ray energies and emission probabilities)
1996Vi07	L. L. Vintro, P. I. Mitchell, O. M. Condren, M. Moran, J. Vives i Batlle, J. A. Sanchez- Cabeza, Nucl. Instrum. Meth. Phys. Res. A369(1996)597. (α-transition probabilities)
1999Schönfeld	E. Schönfeld and G. Rodloff PTB-6.11-1999-1999-1, Braunschweig, Februar 1999 (KX-ray energies and relative emission probabilities)
2000Ho27	N. E. Holden, D. C. Hoffman, Pure Appl. Chem. 72(2000)1525. (SF half-life)
2000Schönfeld	E. Schönfeld, H. Jan β en, Appl. Rad. Isot. 52(2000)595. (X-ray and Auger electron emission probabilities, EMISSION code)
2003Au03	G. Audi, A. H. Wapstra, C. Thibault, Nucl. Phys. A729(2003)337. (Q value)
2004BeZQ	M. M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A. Nichols, E. Schönfeld, and R. Dersch, Table of Radionuclides (Vol.2 $A = 151$ to 242), Monographie BIPM-5, Vol. 2, p. 247 – 255. Bureau International des Poids et Mesures(2004)
2004Si03	G. Sibbens, S. Pommé, Appl. Radiat. Isot. $60(2004)155$. (α -transition energies and probabilities)
2005ChZU	V. P. Chechev, Proc. Intern. Conf. Nuclear Data for Science and Technology, Santa Fé, New Mexico, 26 September-1 October, 2004, R. C. Haight, M. B. Chadwick, T. Kawano, P. Talou, Eds., Vol. 1, p. 91 (2005); AIP Conf. Proc. 769(2005). (²⁴⁰ Pu Decay Data Evaluation)
2006Br20	E. Browne, J. K. Tuli, Nuclear Data Sheets 107(2006)2649. (Decay scheme, ²³⁶ U level energies, gamma-ray multipolarities, data from ²³⁶ Pa and ²³⁶ Np decays)
2007Ah05	I. Ahmad, F. G. Kondev, J. P. Greene, M. A. Kellett, A. L. Nichols, Nucl. Instrum. Meth. Phys. Res. A579(2007)458. (Half-life)
2008Ki07	T. Kibédi, T. W. Burrows, M. B. Trzhaskovskaya, P. M. Davidson, C. W. Nestor Jr., Nucl. Instrum. Meth. Phys. Res. A589(2008)202. (Theoretical ICC)