²⁴²Pu - Comments on evaluation of decay data by V. P. Chechev

This evaluation was done originally in 2004 (2004BeZQ, 2005ChZU) and then updated in June 2009 with a literature cut-off by the same date.

1 Decay Scheme

The decay scheme can be basically considered completed though weak alpha transitions to some highly excited ²³⁸U levels (with energy more than 307 keV, see 2002Ch52) are possible but have not been observed yet. They are expected from data on level spins and $Q(\alpha)$ value and cannot appreciably influence intensity balances at the four lower levels well established.

2 Nuclear Data

 $Q(\alpha)$ value is from 2003Au03.

The recommended half-life of ²⁴²Pu is based on the experimental results given in Table 1. Reestimated values were used for averaging where necessary.

Reference	Author(s)	Original value	Re-estimated value	Measurement method
1956Bu64	Butler et al.	3.73 (5)	3.65 (5) ^a	242 Pu/ 238 Pu,
1956Bu92	Butler et al.	3.79 (5)		mass- and α-spectrometry Specific activity,
1956Me37	Metch et al.	3.88 (10)	3.85 (10) ^a	ionization chamber ²⁴² Pu/ ²⁴⁰ Pu,
1969Be06	Bemis et al.	3.869 (16)	3.82 (3) ^b	mass- and α -spectrometry 242 Pu/ 239 Pu,
1970Du02	Durham and Molson	3.66 (7)	3.67 (7) ^a	mass- and α -spectrometry 242 Pu/ 238 Pu,
1976Bu23	Bulaynitsa et al.	3.702 (7) ^c		mass- and α-spectrometry Specific activity,
1976Os05 1978MeZL	Osborne and Flotov Meadows	3.763 (9) 3 736 (25)	3 708 (29) ^a	$4\pi\alpha$ -X coincidences Calorimetry 242 Pu/ ²³⁹ Pu
1979Ag03	Aggarwal et al.	3.742 (24)	2., 00 (2))	mass- and α -spectrometry $^{242}Pu/^{239}Pu$,
1979Ag03	Aggarwal et al.	3.766 (25)		mass- and α -spectrometry 242 Pu/ 238 Pu,
				mass- and α -spectrometry

Table 1. Experimental values of ²⁴²Pu half-life (in 10⁵ years).

^a Re-estimated in 1979Ag03 using the values of 87.74 yr for ²³⁸Pu half-life and 24110 yr for ²³⁹Pu half-life.

^b Re-estimated in 1976Bu23 as a result of analysis of systematic uncertainties in 1969Be06 and using better values of auxiliary half-lives (see also 1979Ag03).

^c Quoted uncertainty, corresponding to 95 % confidence level, has been reduced by a factor 2.

The weighted average of the ten values is 3.7304 with the internal uncertainty 0.0051 and external uncertainty 0.0116 and $\chi^2/\nu = 3.16$. The uncertainty of 1976Bulaynitsa was increased to 0.00724 to adjust weights according to the Limitation of Relative Statistical Weight method.

The LWEIGHT computer program has used the weighted average and expanded the uncertainty to 0.0284 so range includes the most precise value of 3.702 (1976Bu23).

242D 1 101°C (* 1010

The recommended value of 242 Pu half-life is 3.73 (3)·10⁵ years.

The recommended spontaneous fission half-life of ²⁴²Pu is based on the experimental results given in Table 2.

Table 2. Experimental values of the spontaneous rission Pu haif-life (in 10 years).				
Reference	Author(s)	Original value	Re-estimated	Measurement method
Kelefenee			value ^a	
1956Studier	Studier and Hirsch	6.7 (7)		Quoted by Mech et al.(1956); no
				details available
1956Me37	Mech et al.	7.06 (19)	6.79 (19)	α /SF; low geometry α -counting
				and Ar-CH ₃ counter for SF
1956Bu92	Butler et al.	6.64 (10)	6.65 (10)	α /SF; ionization chamber
1961Dr04	Druin et al.	6.6 (7)		Gas scintillator; relative to α half-
				life of ²³⁸ Pu
1963Ma50	Malkin et al.	7.45 (17)		Gas scintillator; specific activity
1978MeZL	Meadows	6.80 (5)	6.74 (5)	α /SF; relative to half-life of ²³⁹ Pu
1980Kh05	Khan et al.	7.43		Mica fission track detector
1988SeZY	Selickij et al.	6.86 (26)		Fission fragment detection in 2π
				geometry

^a Re-estimated in 2000Ho27.

Omitting the value of 1980Kh05 reported without uncertainty, the weighted average of the seven remaining values is 6.79 with the internal uncertainty 0.032 and external uncertainty 0.090 and $\chi^2/v = 2.94$.

The adopted value of the 242 Pu spontaneous fission is 6.79 (10)·10¹⁰ years where the uncertainty is the smallest quoted experimental uncertainty.

2.1 α Transitions

The energies of the alpha transitions have been obtained from the Q value and the level energies given in Table 3 from 2002Ch52.

	ruble 5. O levels populated in the ruble decay.				
Level	Energy,	Spin and	Half-life	Probability of α-	
number	keV	parity		transition (x100)	
0	0,0	0^+	4.468 (5)·10 ⁹ yr	76.53 (17)	
1	44.915 (13)	2^{+}	206 (3) ps	23.44 (17)	
2	148.39 (3)	4^{+}		0.030 4 (13)	
3	307.19 (8)	6+		0.000 84 (6)	

Table 3. ²³⁸U levels populated in the ²⁴²Pu α -decay.

The probabilities of the transitions of $\alpha_{0,0}$, $\alpha_{0,1}$ and $\alpha_{0,2}$ have been obtained by averaging the direct alpha-emission measurement results (the most accurate of them are from 1986Va33) and the values deduced from the gamma-ray transition probability (P(γ +ce)) balances at the corresponding ²³⁸U levels. The deduced values are based on the measurements of absolute gamma-ray emission probabilities (P(γ)) from 1986Va33 (see Table 6) and adopted total internal conversion coefficients (ICCs).

Such averaging is possible as in 1986Va33 the independent measurements were carried out for alphaemission intensities (with Si(Au) detector) and gamma-ray intensities (with two Ge detectors). The correlation between these measurements can be only due to the same sources used but it is negligible taking into account a large difference between the methods and detectors. Determination of the ²⁴²Pu disintegration rates for six sources required for the absolute gamma intensity measurements was made in 1986Va33 using absolute alpha particle counting under well-defined low solid angles, i.e. out of connection with the alpha - emission intensity measurements with Si(Au) detector.

Comments on evaluation

The probability of the $\alpha_{0,3}$ -transition has been deduced from the P(γ +ce) balance at the ²³⁸U level of 307.19 keV (Table 4).

	i u uccay.						
	α-particle energy (keV)	1953Asaro	1956Hu96	1976Barano v	1986Va33	Deduced from P(γ) measured in 1986Va33	Recommended
$\alpha_{0,0}$	4902	$80(6)^{a}$	$74(4)^{a}$	79.7 (20) ^b	76.45 (17)	77.3 (6)	76.53 (17) ^c
$\alpha_{0,1}$	4858	$20(6)^{a}$	$26(4)^{a}$	20.2 (20) ^b	23.52 (17)	22.7 (6)	$23.44(17)^{c}$
$\alpha_{0,2}$	4756	-	-	-	0.0290 (14)	0.0317(13)	0.030 4 (13)
α _{0,3}	4600	-	-	-	-	0.000 84 (6)	0.000 84 (6)

Table 4. Experimental, deduced and recommended values of α -transition probabilities (×100) in ²⁴²Pu decay

^a No uncertainties were quoted by the authors. The uncertainties adopted here were estimated by R. Vaninbroukx from the spectra shown in the papers (1986LoZT).

^b The uncertainties of 2.7 for 79.7 and 1.1 for 20.2 quoted by the authors were re-estimated by R. Vaninbroukx (1986LoZT).

^cWeighted average of the five values including direct measurement results and deduced value, uncertainty is the smallest quoted one.

^d Weighted average of the two values including direct $\alpha_{0,2}$ -transition measurement result and deduced value, uncertainty is the smallest quoted one.

2.2 γ Transitions

The recommended energies of gamma-ray transitions are virtually the same as the gamma-ray energies because nuclear recoil is negligible for 234 U.

The gamma-ray transition probabilities have been deduced from the gamma-ray emission probabilities and total internal conversion coefficients (ICCs). The ICCs have been interpolated using the BrIcc package with the so called "*Frozen Orbital*" approximation (2008Ki07). The uncertainties in the ICCs for pure multipolarities have been taken as 2 %. The multipolarities have been taken from 2002Ch52.

3 Atomic Data

3.1. Fluorescence yields

The fluorescence yield data are from 1996Sc06 (Schönfeld and Janßen).

3.2 X-rays and Auger electrons

The energies of U LX-rays taken from the SAISINUC software supporting programs agree with the measurements of 1994Le37 where the fine structure of LX radiation was measured in decay of ²⁴⁰Pu.

The U KX-ray energies have been taken from 1999Schönfeld where the calculated values based on X-ray wavelengths from 1967Be65.

The relative KX-ray emission probabilities have been taken from 1999Schönfeld.

The energies of Auger electrons are from the SAISINUC software supporting programs. The ratios P(KLX)/P(KLL), P(KXY)/P(KLL) are taken from 1996Sc06.

4 Alpha Emissions

The α -emission energies have been obtained from Q value and ²³⁸U level energies taking into account

Comments on evaluation

the 238 U recoil energies. In Table 5 the recommended values of α -emission energies are compared with the experimental results from alpha-spectrometric measurements and also with the evaluated data by A. Rytz (1991Ry01).

	Measured ^a				$1001 P_{\rm M} 01$	
	1953Asaro	1956Hu96	1956Ko67	1968Ba25	1991Ky01	Recommended
$\alpha_{0,0}$	4904.6 (20)	4903.7 (30)	4907.2 (30)	4900.4 (12)	4902.3 (14)	4902.3 (10)
$\alpha_{0,1}$	4860.6 (20)	4859.7 (30)	4863.2 (30)	4856.1 (12)	4858.1 (15)	4858.2 (10)
$\alpha_{0,2}$	-	-	-	-	-	4756.2 (10)
$\alpha_{0,3}$	-	-	-	-	-	4600.1 (10)

Table 5. Experimental and recommended α -emission energies in decay of ²⁴²Pu (keV).

^a Original values have been adjusted taking into account changes in calibration energies as suggested in 1991Ry01.

5 Electron Emissions

The energies of conversion electrons have been obtained from the gamma-ray transition energies and the atomic-electron binding energies. The emission probabilities of the conversion electrons have been deduced from the evaluated $P(\gamma)$ and ICC values.

The absolute emission probabilities of K and L Auger electrons have been calculated using the EMISSION computer program (2000Schönfeld).

6 Photon emissions

6.1 X-ray Emissions

The absolute emission probability of U MX–rays ($\alpha\beta$) in decay of ²⁴²Pu has been deduced from the relative intensity P(XM $\alpha\beta$)/P(XL $\eta\beta$) = 0.41 (4) measured in 1990Po14.

The absolute emission probabilities of U KX- and U LX-rays in decay of ²⁴²Pu have been calculated using the EMISSION computer program (2000Schönfeld).

6.2 Gamma-ray Emissions

The energies of gamma-rays have been adopted from 1972Sc01.

The absolute emission probabilities of the gamma-rays $\gamma_{1,0}$ (44.915 keV) and $\gamma_{2,1}$ (103.50 keV) have been deduced from the recommended P(α) values (Table 4) and the adopted total ICCs on the basis of intensity balances at the corresponding ²³⁸U levels. The absolute emission probability of the gamma-ray $\gamma_{3,2}$ (158.80 keV) has been adopted from the direct measurement of 1986Va33 (Table 6).

		ue	euj.	
	Energy (keV)	1972Sc01	1986Va33	Recommended
γ _{1,0}	44.915	-	0.0372 (7)	0.0384 (8)
$\gamma_{2,1}$	103.50	0.0081 (9) ^a	0.00263 (9)	0.00253 (12)
γ _{3,2}	158.80	$0.005(2)^{a}$	0.000298 (20)	0.000298 (20)
ant (1. (1 1		100/1 77	

Table 6. Experimental and recommended absolute emission probabilities of gamma-rays (×100) in ²⁴²Pu decay

Not used in the evaluation as considered in 1986LoZT.

7 Consistency of recommended data

The most accurate Q value, Q(M), is taken from the atomic mass adjustment table of Audi et al. (2003Au03). Comparison of Q(eff)(deduced as the sum of average energies per disintegration ($\Sigma E_i \times P_i$) for all emissions accompanying ²⁴²Pu α - decay) with the tabulated decay energy Q(M) allows to check a consistency of the recommended decay-scheme parameters obtained in this evaluation.

Here E_i and P_i are the evaluated energies and emission probabilities of the i-th alpha-particle, beta particle, gamma-ray, X-ray, etc. Consistency (percentage deviation) is determined by $\{[Q(M)-Q(eff))]/Q(M)\} \times 100$. "Percentage deviations above 5 % would be regarded as high and imply a poorly defined decay scheme; a value of less than 5 % indicates the construction of a reasonably consistent decay scheme" (quoted from the article by A.L. Nichols in Appl. Rad. Isotopes 55 (2001) 23-70).

For the above ²⁴²Pu decay data evaluation we have Q(M) = 4984.5 (10) keV and Q(eff) = 4984 (13) keV. Thereafter, the percentage deviation is (0.01 ± 0.26) %, i.e. consistency is superior.

8 References

1953Asaro	F. Asaro, Thesis, Univ. of California, Livermore, CA, Rep. UCRL-2180(1953) (Alpha- partials apargias and amission probabilities)
1056D.v64	L D. Dutler, M. Lounghury, I. Marritt, Can. J. Cham. 24(1056)252 (Helf life)
1930Du04	J. P. Dutter, M. Louisbury, J. Merriu, Call. J. Chem. $34(1930)233$ (nan-life).
1956Bu92	J. P. Butler, T. A. Eastwood, T. L. Collins, M. E. Jones, F. M. Rourke, R. P. Schuman, Phys. Rev. 103(1956)634 (Half-life, SF half-life).
1956Hu96	J. P. Hummel, Thesis, Univ. California, Livermore, CA, Rep. UCRL-3456(1956) (Alpha-
	particle energies and emission probabilities).
1956Ko67	L. M. Kondratev, G. I. Novikova, Y. P. Sobolev, L. L. Goldin, Zh. Eksp. Teor. Fiz.
	31(1956)771 -Soviet Phys. JETP 4(1956)645 (Alpha-particle energies and emission
	probabilities).
1956Me37	J. F. Mech, H. Diamond, M. H. Studier, P. R. Fields, A. Hirsch, C. M. Stephens, R. F.
	Barnes, D. J. Henderson, J. R. Huizenga, Phys. Rev. 103(1956)340 (Half-life, SF half-life).
1956Studier	M. H. Studier, A. Hirch, Private Communication. Quoted in 1956Me37 (SF half-life).
1961Dr04	V. A. Druin, V. P. Perelygin and G. I. Khlebnikov, Soviet Phys. JETP 13(1961)913
	Zhurn. Eksptl. i Teoret. Fiz. 40(1961)1296 (SF half-life).
1963Ma50	L. Z. Malkin, I. D. Alkhazov, A. S. Krivokhatsky, K. A. Petrzhak, At. Energ. USSR
	15(1963)158 Soviet. J. At. Energy 15(1964)851 (SF half-life).
1967Be65	J. A. Bearden, Rev. Mod. Phys. 39(1967)78 (X-ray energies).
1968Ba25	S. A. Baranov, V. M. Kulakov, V. M. Shatinskii, Nucl. Phys. 7(1968)442Yadern. Fiz.
	7(1968)727 (Alpha-particle energies).
1969Be06	C. E. Bemis Jr., J. Halperin, R. Eby, J. Inorg. Nucl. Chem. 31(1969)599 (Half-life).
1970Du02	R. W. Durham, F. Molson, Can. J. Phys. 48(1970)716 (Half-life).
1972Sc01	M. Schmorak, C. E. Bemis Jr, M. J. Zender, N. B. Gove, P. F. Dittner, Nucl. Phys.
	A178(1972)410 (Gamma-ray energies and emission probabilities).
1976Baranov	S. A. Baranov, A. G. Zelenkov; V. M. Kulakov, Sov. At. Energy 41(1976)987 (Alpha-
	emission probabilities).
1976Bu23	L. S. Bulyanitsa, A. M. Geidelman, Y. S. Egorov, L. M. Krizhanskii, A. A. Lipovskii, L. D.
	Preobrazhenskaya, A. V. Lovtsyus, Y. V. Kholnov, Bull. Akad. Sci. USSR, Phys. Ser.

	40(10)(1976)42 Izv Akad Nauk SSSR, Ser. Fiz. 40(1976)2075 (Half-life).
1976Os05	D. W. Osborne, H. E. Flotow, Phys. Rev. C14(1976)1174 (Half-life).
1978MeZL	J. W. Meadows, BNL-NCS-24273(1978)10 (A830926) (Half-life, SF half-life).
1979Ag03	S. K. Aggarwal, S. N. Acharya, A. R. Parab, H. C. Jain, Phys. Rev. C20(1979)1135 (Half-
	Life).
1980Kh05	N. A. Khan, H. A. Khan, K. Gul, M. Anwar, G. Hussain, R. A. Akbar, A. Waheed, M. S.
	Shaikh, Nucl. Instrum. Methods 173(1980)163 (SF half-life).
1986LoZT	A. Lorenz, IAEA Tech. Rep. Ser., No 261(1986) (A871001 M881119 Part 2) (Evaluated
	decay data).
1986Va33	R. Vaninbroukx, G. Bortels, B. Denecke, Int. J. Appl. Radiat. Isotop. 37(1986)1167 (Alpha-,
	gamma-ray emission probabilities).
1988SeZY	Yu. A. Selitsky, V. B. Funshtein, V. A. Yakovlev, Proc. 38th Ann. Conf. Nucl. Spectrosc.
	Struct. At. Nuclei, Baku, Acad. Sci. USSR (1988)131 (SF half-life).
1990Po14	Yu. S. Popov, I. B. Makarov, D. Kh. Srurov, E. A. Erin, Radiokhimiya. 32(1990)2
	Sov. J. Radiochemistry 32(1990)425 (MX-, LX-ray relative emission probabilities).
1991Ry01	A. Rytz, At. Data Nucl. Data Tables. 47(1991)205 (Alpha-emission energies).
1994Le37	M.C. Lépy, B. Duchemin, J. Morel, Nucl. Instrum. Meth. Phys. Res. A353(1994)10 (LX-ray
	energies and emission probabilities).
1996Sc06	E. Schönfeld, H. Janβen, Nucl. Instrum. Meth. Phys. Res. A369(1996)527 (Atomic data).
1999Schönfeld	E. Schönfeld, G. Rodloff, PTB-6.11-1999-1999-1, Braunschweig, Februar 1999 (KX-ray
	energies and relative emission probabilities).
2000Но27	N. E. Holden, D. C. Hoffman, Pure Appl. Chem. 72(2000)1525 (SF half-life).
2000Schönfeld	E. Schönfeld, H. Janßen, Appl. Rad. Isotop. 52(2000)595 (X-ray and Auger electron
	emission probabilities, EMISSION code).
2002Ch52	F. E. Chukreev, V. E. Makarenko, M. J. Martin, Nucl. Data Sheets 97(2002)129 (Decay
	Scheme, ²³⁸ U level energies, gamma-ray multipolarities).
2003Au03	G. Audi, A. H. Wapstra, C. Thibault, Nucl. Phys. A729(2003)337 (Q value).
2004BeZQ	M.M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A.
	Nichols, E. Schönfeld, and R. Dersch, Table of Radionuclides (Vol.2 $A = 151$ to 242),
	Monographie BIPM-5, Vol. 2, p. 277 – 281. Bureau International des Poids et Mesures
	(2004) (²⁴² Pu Decay Data Evaluation).
2005ChZU	V. P. Chechev, Proc. Intern. Conf. Nuclear Data for Science and Technology, Santa Fé, New
	Mexico, 26 September-1 October, 2004, R. C. Haight, M. B. Chadwick, T. Kawano, P.
	Talou, Eds., Vol. 1, p. 91 (2005); AIP Conf. Proc. 769 (2005) (²⁴² Pu Decay Data Evaluation).
2008Ki07	T. Kibédi, T. W. Burrows, M. B. Trzhaskovskaya, P. M. Davidson, C. W. Nestor Jr., Nucl.
	Instrum. Meth. Phys. Res. A589(2008)202 (Theoretical ICC).