²²⁵Ra - Comments on evaluation of decay data by Huang Xiaolong and Wang Baosong

This evaluation was completed in 2007. Literature available by May 2007 was included.

1 Decay Scheme

²²⁵Ra disintegrates 100 % by β^- emission to levels in ²²⁵Ac. ²²⁵Ra ground state has $J^{\pi} = 1/2^+$ (1990Ak03).

The recommended $Q(\beta^{-})$ value of 356 (5) keV in Audi (2003Au03) agrees with the $Q(\beta^{-})$ value of 353 (8) keV, calculated by the evaluator (using program RADLST) from average radiation energies. This agreement supports the completeness and correctness of the decay scheme.

2 Nuclear Data

The Q(β -) value is from the mass adjustment in 2003Au03. Level energies, spin and parities are from 1990Ak03. The measured and recommended ²²⁵Ra half-life values are listed in Table 1.

$T_{1/2}(d)$	References	Measurement method	
14	1947En03		
14.8 (2)	1950Ha52	Alpha pulse analyser, $10 T_{1/2}$	
15.02 (56)	1987Mi10	Solid-state detector, linear least squares fit	
14.91 (11)		Unweighted mean	
14.82 (19)		Weighted mean, $\chi^2 = 0.14$	
14.82 (19)	Recommended value	From weighted mean	

Table 1: Measured half-life values of ²²⁵Ra and recommended value.

The half-life weighted average has been calculated using the LWM computer program. The recommended half-life is from LWM result. Further measurements are needed to determine this value with greater precision.

2.1 β ⁻ Transitions

The maximum energies of the β^{-} transitions in the decay of ²²⁵Ra have been deduced from the Q(β -) value (2003Au03) and the level energies.

The adopted β^- transition probabilities and their associated uncertainties to the 40-keV level and to the ground state were deduced from P(γ) = 30.0 (7) % and α_T = 1.293 (19) for the 40-keV γ -ray. No β^- transitions to the 120.8- and 155.6- keV levels were observed. Based on Ac KX-ray intensities an upper limit of < 0.01 % for the respective β^- transitions to these levels was reported in 1984Ah01.

The *logft* values and average β energies have been calculated with the program LOGFT.

2.2 γ Transitions

The transition probability of the 40-keV γ -ray was calculated using its γ -ray emission intensity and the relevant total internal conversion coefficient.

The multipolarity of this γ -ray transition is from 1990Ak03.

The internal conversion coefficient (ICC) (and its associated uncertainty) for the 40-keV γ -ray transition has been interpolated from theoretical values based on the "Frozen Orbital" approximation (2002Ba85) using the BrIcc computer program (2008Ki07).

3 Atomic Data

Atomic fluorescence yields ($\omega_K, \varpi_L, \varpi_M, \eta_{KL}$ and η_{LM}) are from Schönfeld (1996Sc06).

The X-ray and Auger electron emission probabilities have been deduced from γ -ray and conversion electron data by using the computer code RADLST.

4 Electron emissions

The conversion electron emission probabilities have been deduced from γ -ray transition data using theoretical internal conversion coefficients.

5 Photon emissions

5.1 γ-ray energy

Measurements of the 40-keV γ -ray energy from ²²⁵Ra are listed in Table 2 together with their weighted mean value. The recommended value is from the weighted mean value.

Table 2: Measured and recommended γ -ray energy from ²²⁵Ra β ⁻ decay.

1955Ma61	1955St04	1981Di14	1987Ah05	LWM	Evaluation
41 (2)	40(1)	40.12 (5)	40.09 (5)	40.11 (4)	40.11 (4)

5.2 Absolute values of the γ-ray emission probability

The measurements of the absolute γ -ray emission probabilities from ²²⁵Ra decay are listed in Table 3. The present recommended value is taken from a precise measurement in equilibrium with ²²⁹Th (1986He06).

Table 3: Measured and recommended absolute γ -ray emission probability of 40.09keV for ²²⁵Ra.

$P_{\gamma}(40.09 \text{ keV}) (\%)$	References	Measurement method
33	1955Ma61	Scintillation spectrometry
29	1955St04	
39.3 (12)	1981Di14	Ge(Li)
30.0 (7)	1986He06	Ge(Li) and Au-Si surface barrier, in
		equilibrium with ²²⁹ Th
30.0 (7)		Recommended value from 1986He06

6 References

- 1947En03 A. C. English, T. E. Cranshaw, P. Demers, J. A. Harvey, E. P. Hincks, J. V. Jelley, A. N. May, Phys. Rev. 72, 253(1947) [T_{1/2}].
 1950Ha52 E. Hagemann, L. Kotzin, M. H. Studior, G. T. Sashorg, A. Chiorso, Phys. Rev. 70, 435.
- 1950Ha52 F. Hagemann, L. I. Katzin, M. H. Studier, G. T. Seaborg, A. Ghiorso, Phys. Rev. 79, 435 (1950) [T_{1/2}].
- 1955Ma61 L. B.Magnusson, F. Wagner, Jr., D. W. Engelkemeir, M. S. Freedman, ANL-5386 (1955) $[E_{\gamma}, P_{\gamma}]$.
- 1955St04 F. S. Stephens, UCRL-2970 (1955) $[E_{\gamma}, P_{\gamma}]$.
- 1981Di14 J. K. Dickens, J. W. McConnell, Radiochem. Radioanal. Lett. 47, 331 (1981) [E_y, P_y].
- 1984Ah01 I. Ahmad, R.R. Chasman, J.E. Gindler, A.M. Friedman, Phys. Rev. Lett. 52, 503 (1984) [Ac KX-ray].
- 1986He06 R. G. Helmer, C. W. Reich, M. A. Lee, I. Ahmad, Int. J. Appl. Radiat. Isotop. 37, 139(1986) [P_y].
- 1987Ah05 I. Ahmad, J. E. Gindler, A. M. Friedman, R. R. Chasman, T. Ishii, Nucl. Phys. A472, 285 (1987) [E_γ].
- 1987Mi10 G. J. Miller, J. C. McGeorge, I. Anthony, R. O. Owens, Phys. Rev. C36, 420 (1987) [T_{1/2}].
- 1990Ak03 Y. A.Akovali, Nucl. Data Sheets 60, 617 (1990) [Level energies, spin and parity].
- 1996Sc06 E. Schönfeld, H. Janssen, Nucl. Instrum. Meth. Phys. Res. A369, 527 (1996) [Atomic data].
- 2002Ba85 I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor, Jr., P.O. Tikkanen, S. Raman, At. Data Nucl. Data Tables 81, 1 (2002) [Calculated ICC]
- 2003Au03 G. Audi, A. H. Wapstra, C. Thibault, Nucl. Phys. A729, 129(2003)[Q].
- 2008Ki07 T. Kibédi, T. W. Burrows, M. B. Trzhaskovskaya, P. M. Davidson, C. W. Nestor Jr., Nucl. Instrum. Meth. Phys. Res. A589, 202(2008) [Theoretical ICC].