²⁰⁸Tl – Comments on evaluation of decay data by A. L. Nichols

Evaluated: July/August 2001 Re-evaluated: January 2004 and July 2010

Evaluation Procedures

Limitation of Relative Statistical Weight Method (LWM) was applied to average numbers throughout the evaluation. The uncertainty assigned to the average value was always greater than or equal to the smallest uncertainty of the values used to calculate the average.

Decay Scheme

The ground state of 208 Tl (J^{π} = 5⁺) decays by beta minus emission to various excited levels of 208 Pb. A consistent decay scheme has been derived, assuming no direct beta decay to both the 2614.55-keV nuclear level and ground state of 208 Pb (based on spin-parity considerations). This decay scheme is primarily based on the gamma-ray measurements of 1960Em01, 1960Sc07, 1961Si11, 1969Au10, 1969La23, 1969Pa02, 1972DaZA/1973Da38, 1972Ja25, 1975Ko02, 1977Ge12, 1978Av01, 1982Sa36, 1983Sc13, 1983Va22, 1984Ge07, 1992Li05 and 1993El08.

Nuclear Data

²²⁸Th decay chain is important in quantifying the environmental impact of the decay of naturallyoccurring ²³²Th. Specific radionuclides in this decay chain are noteworthy because of their decay characteristics (²²⁴Ra alpha decay to ²²⁰Rn; ²¹²Bi and ²⁰⁸Tl gamma-ray emissions).

Half-life

The half-life is the weighted mean of the measurements of 1957Ba05, 1967La20, 1970Mu21 and 1971Ac02, with the uncertainty increased artificially to encompass the most precise study.

Reference	Half-life (min)
1957Ba05	3.100 (15)
1967La20	3.055 (6)
1970Mu21	3.17 (5)
1971Ac02	$3.0527(33)^{*}$
Recommended value	3.058 (6) [#]

* Uncertainty adjusted to ± 0.0055 to reduce weighting to no more than 0.50.

[#] Weighted mean adopted, with uncertainty increased to include most precise value.

Gamma Rays

Energies

Both the 583.187 (2)- and 2614.511 (10)-keV gamma-ray energies were taken from 2000He14. All other gamma-ray transition energies were calculated from the structural details of the proposed decay scheme; the nuclear level energies of 2007Ma45 were adopted, and used to determine the energies and associated uncertainties of the gamma-ray transitions between the various populated-depopulated levels.

Adopted nuclear levels of ²⁰⁸Pb: Energy, J^{π} and origins (2007Ma45).

Nuclear	Nuclear level	\mathbf{J}^{π}	Origins
level	energy (keV)*		
			²⁰⁸ Bi EC decay, ²⁰⁸ Tl β^- decay, ²¹² Po α decay, ²⁰⁶ Pb(t,x), ²⁰⁷ Pb(n, γ),
0	0.0	0 +	207 Pb(d,x), 208 Pb(γ , x), 208 Pb(e,x), 208 Pb(n,n' γ), 208 Pb(p,x), 208 Pb(d,x),
			208 Pb(α ,x), 210 Pb(p,x), 209 Bi(d,x), 209 Bi(t,x), Coulomb excitation, etc.
			²⁰⁸ Bi EC decay, ²⁰⁸ Tl β^- decay, ²¹² Po α decay, ²⁰⁶ Pb(t,x), ²⁰⁷ Pb(n, γ),
1	2614.552 ± 0.010	3 –	207 Pb(d,x), 208 Pb(e,x), 208 Pb(n,n' γ), 208 Pb(p,x), 208 Pb(d,x), 208 Pb(α ,x),
			210 Pb(p,x), 209 Bi(d,x), 209 Bi(t,x), Coulomb excitation, etc.
			²⁰⁸ Tl β ⁻ decay, ²¹² Po α decay, ²⁰⁶ Pb(t,x), ²⁰⁷ Pb(d,x), ²⁰⁸ Pb(e,x), ²⁰⁸ Pb(n,n'γ),
2	3197.711 ± 0.010	5 –	208 Pb(p,x), 208 Pb(d,x), 208 Pb(α ,x), 210 Pb(p,x), 209 Bi(d,x), 209 Bi(t,x), Coulomb
			excitation, etc.
3	3475.078 ± 0.011	4 –	²⁰⁸ Tl β^- decay, ²⁰⁷ Pb(d,x), ²⁰⁸ Pb(n,n' γ), ²⁰⁸ Pb(p,x), ²⁰⁸ Pb(d,x), ²⁰⁹ Bi(d,x), etc.
4	2700 451 + 0.012	~	208 Tl β^- decay, 206 Pb(t,x), 207 Pb(d,x), 208 Pb(e,x), 208 Pb(n,n' γ), 208 Pb(p,x),
4	$3/08.451 \pm 0.012$	5 –	208 Pb(d,x), 208 Pb(α ,x), 209 Bi(d,x), 209 Bi(t,x), etc.
5	3919.966 ± 0.013	6 –	²⁰⁸ Tl β ⁻ decay, 207 Pb(d,x), 208 Pb(n,n'γ), 208 Pb(p,x), 208 Pb(d,x), etc.
6	3946.578 ± 0.014	4 –	²⁰⁸ Tl β^- decay, ²⁰⁷ Pb(d,x), ²⁰⁸ Pb(n,n' γ), ²⁰⁸ Pb(p,x), ²⁰⁸ Pb(d,x), ²⁰⁹ Bi(d,x), etc.
_		_	208 Tl β^- decay. 206 Pb(t,x). 207 Pb(d,x). 208 Pb(e,x). 208 Pb(n,n' γ). 208 Pb(p,x).
7	3961.162 ± 0.013	5 -	208 Pb(d.x), 208 Pb(a.x), 210 Pb(p.x), 209 Bi(d.x), 209 Bi(t.x), etc.
			²⁰⁸ Tl β^- decay. ²⁰⁷ Pb(n, γ). ²⁰⁷ Pb(d, x). ²⁰⁸ Pb(n, $n'\gamma$). ²⁰⁸ Pb(n, x). ²⁰⁸ Pb(d, x).
8	3995.438 ± 0.013	4 –	209 Bi(d x) etc
			206 Pb(t x) 207 Pb(d x) 208 Pb(e x) 208 Pb(n n'y) 208 Pb(n x) 208 Pb(d x)
9	4037.443 ± 0.014	7 –	208 Pb(α, x), 210 Pb(n, x), etc.
			$^{207}Pb(n \gamma)$ $^{207}Pb(d x)$ $^{208}Pb(n n'\gamma)$ $^{208}Pb(n x)$ $^{208}Pb(d x)$ $^{208}Pb(a x)$
10	4051.134 ± 0.013	3 –	209Bi(d.x), etc.
			$^{206}Pb(t x)$ $^{207}Pb(n y)$ $^{207}Pb(d x)$ $^{208}Pb(y x)$ $^{208}Pb(e x)$ $^{208}Pb(n n'y)$
11	4085.52 ± 0.04	2 +	208 Pb(n x) 208 Pb(d x) 208 Pb(a x) 210 Pb(n x) 209 Bi(d x) Coulomb excitation
	1000102 0101	-	etc.
		_	²⁰⁸ Tl β^- decay. ²⁰⁷ Pb(d,x). ²⁰⁸ Pb(e,x). ²⁰⁸ Pb(n,n'y). ²⁰⁸ Pb(n,x). ²⁰⁸ Pb(d,x).
12	4125.347 ± 0.012	5 –	208 Pb(α x). 209 Bi(d x). 209 Bi(d x). etc.
10		_	²⁰⁸ Tl β^- decay. ²⁰⁶ Pb(t,x). ²⁰⁷ Pb(d,x). ²⁰⁸ Pb(e,x). ²⁰⁸ Pb(n,n' γ). ²⁰⁸ Pb(n,x).
13	4180.414 ± 0.014	5 -	208 Pb(d x), 208 Pb(a x), 210 Pb(n x), 209 Bi(d x), etc.
14	$4206\ 277\pm 0\ 004$	6 -	207 Pb(d x) 208 Pb(n n' γ) 208 Pb(n x) 208 Pb(d x) 209 Bi(d x) etc
15	4229590 ± 0.017	2 –	$\frac{207}{207} Pb(n y) = \frac{207}{207} Pb(d x) = \frac{208}{208} Pb(n n'y) = \frac{208}{208} Pb(n x) = \frac{208}{208} Pb(d x)$
	1227.070 - 0.017		$\frac{206}{206}Ph(t x) = \frac{207}{207}Ph(n x) = \frac{207}{207}Ph(n x) = \frac{208}{208}Ph(n x) = \frac{208}{$
16	4254.795 ± 0.017	3 –	208 Ph(d x) 208 Ph(d x) 210 Ph(n x) 209 Bi(d x)
17	$4261\ 871\pm 0\ 013$	4 –	²⁰⁸ Tl β^{-} decay ²⁰⁷ Pb(d x) ²⁰⁸ Pb(n n' γ) ²⁰⁸ Pb(n x) ²⁰⁸ Pb(d x) ²⁰⁹ Bi(d x) etc
	01.071 0.015		$\frac{208}{10} \frac{B^2}{10} \frac{10}{10} $
18	4296.560 ± 0.013	5 –	208 Ph(αx) 210 Ph(αx) 209 Bi($d x$) etc
-			208 TLB ⁻ decay 206 Pb(t x) 207 Pb(d x) 208 Pb(e x) 208 Pb(n n'y) 208 Pb(n x)
19	4323.946 ± 0.014	4 +	208 Ph(d x) 208 Ph(d x) 210 Ph(n x) 209 Bi(d x) etc
20	4358670 ± 0.013	4 _	$\frac{208 \text{TL B}^{-} \text{decay}}{207 \text{Ph}(d x)} \frac{208 \text{Ph}(n x'y)}{208 \text{Ph}(n x)} \frac{208 \text{Ph}(n x)}{208 \text{Ph}(n x)} \frac{208 \text{Ph}(d x)}{208 \text{Ph}(d x)} \frac{209 \text{Ph}(d x)}{208 \text{Ph}(d x)} \frac{209 \text{Ph}(d x)}{208 \text{Ph}(d x)} \frac{208 \text{Ph}(d x)} 208 \text{$
20	1550.070 - 0.015	+ '	$\frac{208}{16^{-}} \frac{10}{20^{-}} \frac{207}{16^{-}} \frac{10}{20^{-}} \frac{10}{10^{-}} \frac{10}{10^{-}$
21	4383.285 ± 0.017	6 –	$209 \text{ Bi}(d \mathbf{x}) \text{ etc}$
		1	$\frac{207}{208}$ Ph(d x) $\frac{208}{208}$ Ph(e x) $\frac{208}{208}$ Ph(n n'y) $\frac{208}{208}$ Ph(d x) $\frac{208}{208}$ Ph(d x)
22	4423.647 ± 0.015	6+	2^{10} Ph(n x) 2^{209} Ri(d x) etc
			$\frac{208 \text{T} \text{R}^{-} \text{decay } 207 \text{Ph}(\text{d} \mathbf{x}) = 208 \text{Ph}(\text{e} \mathbf{x}) = 208 \text{Ph}(n n' \alpha) = 208 \text{Ph}(n \mathbf{x}) $
23	4480.746 ± 0.016	6 –	$\frac{208 \text{Ph}(\alpha \mathbf{x})}{208 \text{Ph}(\alpha \mathbf{x})} = \frac{10(0, \pi)}{209 \text{Ph}($
1		1	$I \cup (u, \Lambda), D I (u, \Lambda), C U.$

* Nuclear levels at 4144 (5) and 4447 (5) keV not included, although proposed in studies of the ²⁰⁹Bi(d,³He) reaction.

	Adopted E _γ * (keV)	Proposed location in decay scheme (²⁰⁸ Pb nuclear levels)		Adopted E _γ * (keV)	Proposed location in decay scheme (²⁰⁸ Pb nuclear levels)
γ _{5,4}	211.52 (2)	3919.966 (13) - 3708.451 (12)	_	835.90 (11)	not placed in decay scheme
γ _{4,3}	233.37 (2)	3708.451 (12) - 3475.078 (11)	γ _{3,1}	860.53 (2)	3475.078 (11) - 2614.552 (10)
$\gamma_{7,4}$	252.71 (2)	3961.162 (13) - 3708.451 (12)	γ _{20,3}	883.59 (2)	4358.670 (13) - 3475.078 (11)
γ3,2	277.37 (2)	3475.078 (11) - 3197.711 (10)	γ12,2	927.64 (2)	4125.347 (12) - 3197.711 (10)
γ _{7,3}	486.08 (2)	3961.162 (13) - 3475.078 (11)	γ _{13,2}	982.70 (2)	4180.414 (14) - 3197.711 (10)
γ _{4,2}	510.74 (2)	3708.451 (12) - 3197.711 (10)	$\gamma_{4,1}$	1093.90 (2)	3708.451 (12) - 2614.552 (10)
$\gamma_{2,1}$	583.187 (2)	3197.711 (10) - 2614.552 (10)	γ19,2	1126.24 (2)	4323.946 (14) - 3197.711 (10)
$\gamma_{18,4}$	588.11 (2)	4296.560 (13) - 3708.451 (12)	γ _{20,2}	1160.96 (2)	4358.670 (13) - 3197.711 (10)
γ _{12,3}	650.27 (2)	4125.347 (12) - 3475.078 (11)	γ _{21,2}	1185.57 (2)	4383.285 (17) – 3197.711 (10)
γ _{13,3}	705.34 (2)	4180.414 (14) - 3475.078 (11)	γ _{23,2}	1283.04 (2)	4480.746 (16) - 3197.711 (10)
γ5,2	722.26 (2)	3919.966 (13) - 3197.711 (10)	γ _{8,1}	1380.89 (2)	3995.438 (13) - 2614.552 (10)
γ6,2	748.87 (2)	3946.578 (14) - 3197.711 (10)	γ 17,1	1647.32 (2)	4261.871 (13) - 2614.552 (10)
γ _{7,2}	763.45 (2)	3961.162 (13) - 3197.711 (10)	γ _{20,1}	1744.12 (2)	4358.670 (13) - 2614.552 (10)
_	808.32 (13)	not placed in decay scheme	γ 1,0	2614.511 (10)	2614.552 (10) – 0
γ _{18,3}	821.48 (2)	4296.560 (13) - 3475.078 (11)			

Placements of gamma-ray transitions (2007Ma45).

* Values derived from the adopted energies of the ²⁰⁸Pb nuclear levels as specified in columns 3 and 6, with the uncertainties rounded upwards on the basis of the recommended uncertainties of the nuclear level energies (2007Ma45).

Emission Probabilities

A consistent decay scheme has been constructed from the gamma-ray measurements of 1960Em01, 1960Sc07, 1961Si11, 1969Au10, 1969Pa02, 1969La23, 1972Ja25, 1972DaZA/1973Da38, 1975Ko02, 1977Ge12, 1978Av01, 1982Sa36, 1983Sc13, 1983Va22, 1984Ge07, 1992Li05 and 1993El08. The study of 1975Ko02 is particularly comprehensive, along with the gamma-ray measurements of 1993El08 below 1000 keV. Gamma-ray emission probabilities have been expressed relative to the 2614.511-keV transition, and specific sets of data were adjusted accordingly (some of the original measurements were quantified relative to the 583.187-keV gamma ray or as absolute emission probabilities, while minor modifications were made to the relevant emission probabilities for the partially resolved 277.37-, 510.74- and 583.187-keV gamma rays as reported by 1983Sc13). 1993El08 observed additional gamma rays (808.32 and 835.90 keV) that have not been successfully placed in the proposed decay scheme – all nuclear levels of ²⁰⁸Pb below an energy of 4611 keV have been assessed in terms of shell-model calculations and particle-gamma coincidence measurements by 1997Sc21, arguing against the possible existence of additional nuclear levels below this energy that might accommodate either of these two gamma transitions.

Experimental studies have been made of weak crossover gamma transitions by Vasil'ev et al. (2006Va23) to provide upper limits for the emission probabilities of three such emissions:

Eγ(keV)	P_{γ} (%), expressed per 100 decays of ²⁰⁸ Tl
3197.7	≤ 0.0007
3475.0	\leq 0.0003
3708.5	≤ 0.0004

Other high-energy gamma emissions were identified as summation peaks. These crossover gamma transitions have not been included in the proposed decay scheme because of their somewhat ill-defined, low emission probabilities and tentative nature.

E _y (keV)	Ργ							
	1960Em01	1960Sc07	19615	Si11	1969Au10*	1969La23	1969Pa02	
211.52 (2)	-	-	-	-	-	0.20 (5)	0.17 (8)	
233.37 (2)	-	0.3	-	-	-	0.30(5)	0.33 (17)	
252.71 (2)	1.5 (7)	1.1	-	-		0.8(1)	0.70(11)	
277.37 (2)	6.9 (8)	8.6	-	7.2 (7)	-	6.9 (5)	6.5 (4)	
486.08 (2)	-	0.1 (1)	-	-	-	0.07 (4)	0.05 (2)	
510.74 (2)	23 (2)	25.3 (12)	24 (3)	22.5 (25)	-	23 (1)	22.5 (12)	
583.187 (2)	86.4 (56)	85.1 (40)	81 (5)	84 (5)	100	85 (4)	86 (4)	
588.11 (2)	-	-	-	-	-	-	-	
650.27 (2)	-	-	-	-	-	-	-	
705.34 (2)	-	-	-	-	-	-	-	
722.26 (2)	-	-)	-	-	0.3 (1)	0.27 (8)	
748.87 (2)	-	-) 22.5 (20)	-	-	-	-	
763.45 (2)	1.9 (5)	3.4 (2))	3.6(7)	-	2.0 (2)	1.68 (8)	
808.32 (13)	-	-	-	-	-	-	-	
821.48 (2)	-	-	-	-	-	-	0.09 (4)	
835.90 (11)	-	-	-	-	-	-	-	
860.53 (2)	11.4 (12)	14.2 (6)	15.3 (20)	15.2 (15)	-	13 (1)	12.0 (8)	
883.59 (2)	-	-	-	-	-	-	-	
927.64 (2)	-	-	-	-	-	0.15 (5)	0.13 (3)	
982.70 (2)	-	-	-	-	-	0.20 (5)	0.20 (3)	
1004 (2)	-	-	-	-	-	-	~ 0.01	
1093.90 (2)	-	0.7 (1)	~ 2	-	-	0.5 (1)	0.38 (5)	
1126.24 (2)	-	-	-	-	-	-	-	
1160.96 (2)	-	-	-	-	-	-	-	
1185.57 (2)	-	-	-	-	-	-	-	
1283.04 (2)	-	-	-	-	-	-	0.05 (2)	
1380.89 (2)	-	-	-	-	-	-	0.02(1)	
1647.32 (2)	-	-	~ 3	-	-	-	~ 0.01	
1744.12 (2)	-	-	-	-	-	-	-	
2614.511 (10)	100	(100)	100	100	116.7 (24)	100	100	

Published gamma-ray emission probabilities.

E _γ (keV)	P_{γ} (cont.)	I		/		
	1973Da38	1972Ja25	1975Ko02	1977Ge12*	1978Av01	1982Sa36 [†]
211.52 (2)	0.16 (4)	-	0.17 (2)	-	-	-
233.37 (2)	~ 0.2	-	0.31 (3)	-	-	-
252.71 (2)	0.8 (2)	-	0.80 (5)	-	0.62 (4)	0.28 (3)
277.37 (2)	6.6 (13)	6.2 (7)	6.8 (3)	-	6.1 (2)	2.4 (1)
486.08 (2)	0.04(1)	-	0.050 (5)	-	-	-
510.74 (2)	22.9 (23)	21.9 (7)	21.6 (9)	-	22.8 (7)	7.8 (4)
583.187 (2)	85.0 (85)	86.0 (4)	86 (3)	100	85	30.0 (14)
588.11 (2)	~ 0.04	-	0.04 (2)	-	-	-
650.27 (2)	-	-	0.036 (5)	-	-	-
705.34 (2)	~ 0.02	-	0.022 (4)	-	-	-
722.26 (2)	0.21 (6)	-	0.203 (14)	-	0.27 (2)	-
748.87 (2)	0.05 (1)	-	0.043 (4)	-	-	-
763.45 (2)	1.7 (3)	-	1.64 (9)	-	1.82 (9)	0.7 (1)
808.32 (13)	-	-	-	-	-	-
821.48 (2)	0.04 (1)	-	0.040 (4)	-	-	-
835.90 (11)	-	-	-	-	-	-
860.53 (2)	11.8 (12)	11.5 (10)	12.0 (4)	14.79 (15)	13.9 (6)	4.2 (2)
883.59 (2)	~ 0.025	-	0.031 (3)	-	-	-
927.64 (2)	0.13 (4)	-	0.125 (11)	-	-	-
982.70 (2)	0.20 (6)	-	0.197 (15)	-	-	-
1004 (2)	-	-	< 0.005	-	-	-
1093.90 (2)	0.37 (7)	-	0.37 (4)	-	-	-
1126.24 (2)	-	-	0.005 (2)	-	-	-
1160.96 (2)	-	-	0.011 (3)	-	-	-
1185.57 (2)	-	-	0.017 (5)	-	-	-
1283.04 (2)	~ 0.05	-	0.052 (5)	-	-	-
1380.89 (2)	-	-	0.007 (3)	-	-	-
1647.32 (2)	-	-	0.002 (1)	-	-	-
1744.12 (2)	-	-	0.002 (1)	-	-	-
2614.511 (10)	100	(100)	100	118.5 (16)	(100)	-

Published gamma-ray emission probabilities (cont.).

E _y (keV)	$\mathbf{P}_{\boldsymbol{\gamma}}$ (cont.)	$\mathbf{P}_{\mathbf{Y}}$ (cont.)							
• • • •	1983Sc13‡	1983Va22#	1984Ge07*	1992Li05	1993E108¶				
211.52 (2)	-	-	0.228 (20)	-	0.18(1)				
233.37 (2)	-	-	0.31 (4)	-	0.30(1)				
252.71 (2)	-	-	0.955 (13)	-	0.77 (2)				
277.37 (2)	2.33 (7)	2.29 (4)	7.55 (6)	2.54 (7) [§]	6.88 (12)				
486.08 (2)	-	-	-	-	0.055 (11)				
510.74 (2)	7.90 (23)	8.31 (14)	26.9 (9)	-	22 (1)				
583.187 (2)	30.7 (8)	30.8 (6)	100.0 (6)	29.4 (7) [§]	86 (3)				
588.11 (2)	-	-	-	-	0.07(1)				
650.27 (2)	-	-	-	-	0.065 (11)				
705.34 (2)	-	-	-	-	-				
722.26 (2)	-	-	0.31 (6)	-	0.27 (2)				
748.87 (2)	-	-	-	-	0.054 (9)				
763.45 (2)	0.73 (5)	-	2.15 (2)	0.651 (40)	1.72 (8)				
808.32 (13)	-	-	-	-	0.029(7)				
821.48 (2)	-	-	-	-	0.041 (17)				
835.90 (11)	-	-	-	-	0.075 (11)				
860.53 (2)	4.55 (12)	-	14.78 (9)	4.32 (15)	12.6 (7)				
883.59 (2)	-	-	-	-	-				
927.64 (2)	-	-	-	-	0.13 (1)				
982.70 (2)	-	-	-	-	0.21 (1)				
1004 (2)	-	-	-	-	-				
1093.90 (2)	-	-	0.525 (8)	-	0.47 (4)				
1126.24 (2)	-	-	-	-	-				
1160.96 (2)	-	-	-	-	-				
1185.57 (2)	-	-	-	-	-				
1283.04 (2)	-	-	-	-	0.049 (13)				
1380.89 (2)	-	-	-	-	-				
1647.32 (2)	-	-	-	-	-				
1744.12 (2)	-	-	-	-	-				
2614.511 (10)	35.6 (11)	-	119.1 (21)	-	98.1 (13)				

Published gamma-ray emission probabilities (cont.).

* Emission probabilities relative to $P_{\gamma}(583.187 \text{ keV})$ of 100.

 † Emission probabilities relative to $P_{\gamma}(583.187~keV)$ of 30.0.

 ‡ Emission probabilities relative to $P_{\gamma}(583.187~keV)$ of 30.7.

 $^{\#}$ Emission probabilities relative to $P_{\gamma}(583.187~keV)$ of 30.8.

[¶] Absolute emission probabilities.

[§] Unresolved overlap with another gamma-ray emission.

Equivalent measurements of specific emission probabilities deviate significantly between laboratories: 252.71-keV gamma ray: 1960Em01 and 1978Av01;

252.71-keV gamma ray: 1960Enf01 and 1978Av01,
486.08-keV gamma ray: 1960Sc07;
510.74-keV gamma ray: 1960Sc07;
583.187-keV gamma ray: 1960Sc07 and 1961Si11;
763.45-keV gamma ray: 1960Sc07, 1961Si11 and 1978Av01;
927.64-keV gamma ray: 1969La23;
1093.90-keV gamma ray: 1960Sc07.

These particular values were judged to be outliers, and were not included in the weighted-mean analyses. Other gamma-ray emission probabilities were not reported with uncertainties within 1960Sc07, along with the 583.187-keV gamma-ray emission in 1978Av01; these data were also not included in the weighted-mean analyses. 1982Sa36, 1983Va22 and 1992Li05 reported measurements that did not include the main 2614.511-keV gamma-ray transition: the evaluated relative emission probability of the 583.187-keV gamma ray was adopted to create data sets comparable with the other studies, and therefore the assumed $P\gamma(583.187 \text{ keV})$ in these particular calculations were not included in the subsequent analysis.

While an uncertainty of 0.8 % can be derived for the relative emission probability of the 2614.511-keV gamma ray from the emission probabilities and uncertainties determined experimentally by 1969Au10, 1977Ge12, 1983Sc13, 1984Ge07 and 1993El08, the precise nature of this transition in such a well-

Reference	P _γ (2614.511 keV)
1969Au10	100 (2)
1977Ge12	100.0 (14)
1983Sc13	100 (3)
1984Ge07	100 (2)
1993El08	100.0 (13)
Weighted-mean value (LRSW)	$100.0(8) \to 100(1)$
Recommended value	100

Gamma-ray emission probabilities: Relative to P_y(2614.511 keV) of 100 %.

E _γ (keV)	Pγ ^{rel}						
	1960Em01	1960Sc07	1961	Si11	1969Au1	1969La23	1969Pa02
					0		
211.52 (2)	-	-	-	_	-	0.20 (5)	0.17 (8)
233.37 (2)	-	0.3 [§]	-	-	-	0.30 (5)	0.33 (17)
252.71 (2)	1.5 (7) [†]	1.1 [§]	-	-		0.8 (1)	0.70(11)
277.37 (2)	6.9 (8)	8.6 [§]	-	7.2 (7)	-	6.9 (5)	6.5 (4)
486.08 (2)	-	$0.1(1)^{\dagger}$	-	-	-	0.07 (4)	0.05 (2)
510.74 (2)	23 (2)	25.3 (12) [†]	24 (3)	22.5 (25)	-	23 (1)	22.5 (12)
583.187 (2)	86.4 (56)	85.1 (40)	81 (5) [†]	84 (5)	85.7 (18)	85 (4)	86 (4)
588.11 (2)	-	-	-	-	-	-	-
650.27 (2)	-	-	-	-	-	-	-
705.34 (2)	-	-	-	-	-	-	-
722.26 (2)	-	-)	-	-	0.3 (1)	0.27 (8)
748.87 (2)	-	-) 22.5 (20)‡	-	-	-	-
763.45 (2)	1.9 (5)	3.4 (2) [†])	3.6 (7)†	-	2.0 (2)	1.68 (8)
808.32 (13)	-	-	-	-	-	-	-
821.48 (2)	-	-	-	-	-	-	0.09 (4)
835.90 (11)	-	-	-	-	-	-	-
860.53 (2)	11.4 (12)	14.2 (6)†	15.3 (20)*	15.2 (15)†	-	13 (1)	12.0 (8)
883.59 (2)	-	-	-	-	-	-	-
927.64 (2)	-	-	-	-	-	0.15 (5)*	0.13 (3)
982.70 (2)	-	-	-	-	-	0.20 (5)	0.20 (3)
1004 (2)	-	-	-	-	-	-	~ 0.01
1093.90 (2)	-	0.7 (1)*	~ 2	-	-	0.5 (1)	0.38 (5)
1126.24 (2)	-	-	-	-	-	-	-
1160.96 (2)	-	-	-	-	-	-	-
1185.57 (2)	-	-	-	-	-	-	-
1283.04 (2)	-	-	-	-	-	-	0.05 (2)
1380.89 (2)	-	-	-	-	-	-	0.02(1)
1647.32 (2)	-	-	~ 3	-	-	-	~ 0.01
1744.12 (2)	-	-	-	-	-	-	-
2614.511 (10)	100	(100)	100	100	100 (2)	100	100

E _y (keV)	$\mathbf{P}_{\boldsymbol{\gamma}}^{\text{rel}}$ (cont.)				,	
• • • •	1973Da38	1972Ja25	1975Ko02	1977Ge12	1978Av01	1982Sa36
211.52 (2)	0.16 (4)	-	0.17 (2)	_	_	-
233.37 (2)	~ 0.2	-	0.31 (3)	-	-	-
252.71 (2)	0.8 (2)	-	0.80 (5)	-	0.62 (4)*	0.80 (9)
277.37 (2)	6.6 (13)	6.2 (7)	6.8 (3)	-	6.1 (2)	6.8 (3)
486.08 (2)	0.04(1)	-	0.050 (5)	-	-	-
510.74 (2)	22.9 (23)	21.9 (7)	21.6 (9)	-	22.8 (7)	22.2 (11)
583.187 (2)	85.0 (85)	86.0 (4)	86 (3)	84.4 (11)	85 [§]	[85.2 (3)]#
588.11 (2)	~ 0.04	-	0.04 (2)	-	-	-
650.27 (2)	-	-	0.036 (5)	-	-	-
705.34 (2)	~ 0.02	-	0.022 (4)	-	-	-
722.26 (2)	0.21 (6)	-	0.203 (14)	-	0.27 (2)	-
748.87 (2)	0.05(1)	-	0.043 (4)	-	-	-
763.45 (2)	1.7 (3)	-	1.64 (9)	-	1.82 (9)	2.0 (3)
808.32 (13)	-	-	-	-	-	-
821.48 (2)	0.04(1)	-	0.040 (4)	-	-	-
835.90 (11)	-	-	-	-	-	-
860.53 (2)	11.8 (12)	11.5 (10)	12.0 (4)	12.48 (13)	13.9 (6)*	11.9 (6)
883.59 (2)	~ 0.025	-	0.031 (3)	-	-	-
927.64 (2)	0.13 (4)	-	0.125 (11)	-	-	-
982.70 (2)	0.20 (6)	-	0.197 (15)	-	-	-
1004 (2)	-	-	< 0.005	-	-	-
1093.90 (2)	0.37 (7)	-	0.37 (4)	-	-	-
1126.24 (2)	-	-	0.005 (2)	-	-	-
1160.96 (2)	-	-	0.011 (3)	-	-	-
1185.57 (2)	-	-	0.017 (5)	-	-	-
1283.04 (2)	~ 0.05	-	0.052 (5)	-	-	-
1380.89 (2)	-	-	0.007 (3)	-	-	-
1647.32 (2)	-	-	0.002(1)	-	-	-
1744.12 (2)	-	-	0.002(1)	-	-	-
2614.511 (10)	100	(100)	100	100.0 (14)	(100)	-

Gamma-ray emission probabilities: Relative to P_y(2614.511 keV) of 100 % (cont.).

Gamma-rav	emission	nrohahilities	Relative to	P.(2614 511	keV)	of 100 % (c	ont)
Gamma-ray	CHIISSION	probabilities.	iterative to	ΓΙγ(2014.311	nuj	01 100 /0 (0	unt.j.

E _γ (keV)	P_{γ}^{rel} (cont.)					
	1983Sc13	1983Va22	1984Ge07	1992Li05	1993El08	Recommended
						value*
211.52 (2)	-	-	0.19 (2)	-	0.18(1)	0.18(1)
233.37 (2)	-	-	0.26 (3)	-	0.31 (1)	0.31 (1)
252.71 (2)	-	-	0.80(1)	-	0.78 (2)	0.78 (2)
277.37 (2)	6.5 (2)	6.3 (1)	6.34 (5)	7.36 (20)♥	7.01 (12)	6.6 (3)
486.08 (2)	-	-	-	-	0.056 (11)	0.049 (4)
510.74 (2)	22.2 (6)	23.0 (4)	22.6 (8)	-	22 (1)	22.6 (2)
583.187 (2)	85.8 (22)	[85.2 (3)]#	84.0 (5)	[85.2 (3)] ^{\phi}	88 (3)	85.2 (3)
588.11 (2)	-	-	-	-	0.07(1)	0.06(1)
650.27 (2)	-	-	-	-	0.066 (11)	0.041 (5)
705.34 (2)	-	-	-	-	-	0.022 (4)
722.26 (2)	-	-	0.26 (5)	-	0.28 (2)	0.24 (4)
748.87 (2)	-	-	-	-	0.055 (9)	0.046 (3)
763.45 (2)	2.05 (14)	-	1.81 (2)	1.89 (12)	1.75 (8)	1.80(2)
808.32 (13)	-	-	-	-	0.030(7)	0.030(7)
821.48 (2)	-	-	-	-	0.042 (17)	0.041 (4)
835.90 (11)	-	-	-	-	0.076 (11)	0.076 (11)
860.53 (2)	12.8 (3)	-	12.41 (8)	12.5 (4)	12.8 (7)	12.4 (1)
883.59 (2)	-	-	-	-	-	0.031 (3)
927.64 (2)	-	-	-	-	0.13 (1)	0.128 (7)
982.70 (2)	-	-	-	-	0.21 (1)	0.205 (8)
1004 (2)	-	-	-	-	-	-
1093.90 (2)	-	-	0.441 (7)	-	0.48 (4)	0.44 (1)
1126.24 (2)	-	-	-	-	-	0.005 (2)
1160.96 (2)	-	-	-	-	-	0.011 (3)
1185.57 (2)	-	-	-	-	-	0.017 (5)
1283.04 (2)	-	-	-	-	0.050 (13)	0.052 (5)
1380.89 (2)	-	-	-	-	-	0.007 (3)
1647.32 (2)	-	-	-	-	-	0.002 (1)
1744.12 (2)	-	-	-	-	-	0.002 (1)
2614.511 (10)	100 (3)	-	100 (2)	-	100.0 (13)	100

^{*} Weighted mean values adopted when appropriate; remainder derived from proposed decay scheme; normalisation factor of 0.997 55 (4) calculated from total theoretical internal conversion coefficient of 2614.511-keV (0.002 46 (4)) gamma transition and transition probability of 100 % (1.00), with no direct β^2 decay to the 2614.552-keV nuclear level and ground state of ²⁰⁸Pb.

[†] Rejected as outlier, and not included in weighted-mean analysis.

[§] No uncertainty quoted; data not included in the weighted-mean analysis.

[‡] Unresolved data not included in the weighted-mean analysis.

[#] Measurements did not include determination of the 2614.511-keV gamma ray; therefore, relative emission probability of 85.2 (3) for the 583.187-keV gamma ray was used to convert all other data in this study to comparable relative values – under these circumstances, P₁(583.187 keV) was not included in the weighted-mean analysis.

^Ψ unresolved overlap with another gamma-ray emission, and measurement did not include 2614.511-keV γ ray; therefore relative emission probability of 85.2 (3) was used for the 583.187-keV γ ray to convert other data in this study to comparable relative values – under these circumstances, P_γ(277.37 keV) and P_γ(583.187 keV) were not included in the weighted-mean analyses.

The major 583.187- and 2614.511-keV gamma rays were identified as E2 and E3 transitions, respectively. Many other gamma rays have mixed M1 + E2 multipolarities; these transitions were generally assumed to be 100 % M1, although estimated mixing ratios derived from the studies of 1954El07, 1957Kr56, 1957Vo22, 1963Da11, 1972Ja25, 1976Av03, 1978Av01 and 1990Go33 were used determine specific multipolarities and theoretical internal conversion coefficients: to ((97 % M1 + 3 % E2) for the 211.52-keV gamma transition, (67 % M1 + 33 % E2) for the 233.37-keV (86 % M1 + 14 % E2) transition, for the 252.71-keV gamma gamma transition. (99.96 % M1 + 0.04 % E2) for the 277.37-keV gamma transition, (99.75 % M1 + 0.25 % E2) for the 510.74-keV gamma transition, (91.2 % M1 + 8.8 % E2) for the 722.26-keV gamma transition, (99.0 % M1 + 1.0 % E2) for the 763.45-keV gamma transition, and (99.98 % M1 + 0.02 % E2) for the 860.53-keV gamma transition). The assigned multipolarity of the 860.53-keV gamma ray is particularly important in achieving the desired population-depopulation balance for the 2614.552-keV nuclear level. Recommended internal conversion coefficients have been determined from the frozen orbital approximation of Kibédi et al. (2008Ki07), based on the theoretical model of Band et al. (2002Ba85, 2002Ra45). Ion-pair formation coefficients were calculated by means of the methodology described by Kibédi et al. (2008Ki07). Uncertainties of ± 1.5 % were adopted for the E1 and E2 gamma transitions.

A normalisation factor (NF) of 0.997 55 (4) was calculated for the relative emission probabilities of the gamma rays, assuming no direct beta decay to the ground state of 208 Pb:

absolute transition probability of 2614.511-keV gamma ray = 100 %,

relative emission probability of 2614.511-keV gamma ray = 100 %, and

total theoretical internal conversion coefficient (2614.511-keV E3 transition) = 0.002 46 (4) (2002Ba85, 2002Ra45, 2008Ki07) →

$$P_{\gamma}^{abs} = P_{\gamma}^{rel} x NF = \frac{T P_{\gamma}^{abs}}{[1 + \alpha_{total}]}$$

and, therefore:

 $NF = \frac{TP_{Y}^{abs}}{[1 + \alpha_{total}] \ x \ P_{Y}^{rel}} = \frac{100}{[1 + 0.00246(4)] \ x \ 100}$ NF = 0.99755(4)

July 2010

Gamma-ray emissions: multipolarities,	theoretical	internal	conversion	coefficients	(frozen	orbital
approximation) and ion-pair formation	coefficients.					

E _y (keV)	Multipolarity	ακ	$\alpha_{\rm L}$	α_{M^+}	α _{IPF}	α _{total}
211.52 (2)	97%M1 + 3%E2 $\delta = 0.18(2)$ 1957Kr56, 1957Vo22	0.890 (14)	0.1570 (22)	0.049	_	1.096 (17)
233.37 (2)	67%M1 + 33%E2 $\delta = 0.70(7)$ 1957Kr56, 1957Vo22	0.51 (3)	0.1136 (18)	0.0364	-	0.66 (3)
252.71 (2)	$86\%M1 + 14\%E2 \delta = -0.40(4) 1957Vo22, 1963Da11, 1978Av01$	0.495 (14)	0.0926 (14)	0.0284	_	0.616 (15)
277.37 (2)	$\begin{array}{r} 99.96\% M1 + \\ 0.04\% E2 \\ \delta = 0.02(1) \\ 1957 Vo22, 1963 Da11, \\ 1976 Av03, 1978 Av01, \\ 1990 Go33 \end{array}$	0.432 (6)	0.0739 (11)	0.0231	-	0.529 (8)
486.08 (2)	[M1] 1957Vo22	0.0954 (14)	0.01608 (23)	0.00492	_	0.1164 (17)
510.74 (2)	$\begin{array}{c} 99.75\%M1 + \\ 0.25\%E2 \\ \delta = -0.05(5) \\ 1957Vo22, 1963Da11, \\ 1976Av03, 1978Av01 \end{array}$	0.0835 (13)	0.01406 (21)	0.00434	_	0.1019 (16)
583.187 (2)	E2 1954El07, 1957Kr56, 1963Da11, 1972Ja25, 1978Av01	0.01509 (22)	0.00410 (6)	0.00131	_	0.0205 (3)
588.11 (2)	[M1]	0.0577 (8)	0.00968 (14)	0.00302	_	0.0704 (10)
650.27 (2)	[M1]	0.0444 (7)	0.00742 (11)	0.00228	_	0.0541 (8)
705.34 (2)	[M1]	0.0360 (5)	0.00599 (9)	0.00181	_	0.0438 (7)
722.26 (2)	91.2%M1 + 8.8%E2 $\delta = 0.31(3)$ 1976Av03, 1978Av01	0.0317 (6)	0.00534 (10)	0.00166	_	0.0387 (7)
748.87 (2)	[M1]	0.0308 (5)	0.00512 (8)	0.00158	—	0.0375 (6)
763.45 (2)	$\begin{array}{l} 99.0\% M1 + 1.0\% E2 \\ \delta = -0.10(1) \\ 1957 Vo22, 1963 Da11, \\ 1978 Av01, 1990 Go33 \end{array}$	0.0291 (4)	0.00484 (7)	0.00146	_	0.0354 (5)
808.32 (13)	-	_	_	-	—	_
821.48 (2)	[M1]	0.0242 (4)	0.00402 (6)	0.00128	—	0.0295(5)
835.90 (11)	-	—	—	-	—	-
860.53 (2)	$\begin{array}{r} 99.98\% M1 + \\ 0.02\% E2 \\ \delta = 0.015 \\ 1957 Vo22, 1963 Da11, \\ 1972 Ja25, 1976 Av03, \\ 1978 Av01, 1990 Go33 \end{array}$	0.0215 (3)	0.00356 (5)	0.00114	_	0.0262 (4)
883.59 (2)	[M1]	0.0201 (3)	0.00333 (5)	0.00097	—	0.0244 (4)
927.64 (2)	[M1]	0.01774 (25)	0.00293 (5)	0.00093	_	0.0216 (3)
982.70 (2)	[M1]	0.01530 (22)	0.00253 (4)	0.00077	—	0.0186 (3)
1093.90 (2)	E2	0.00449 (7)	0.000844 (12)	0.000266	_	0.00560 (8)
1126.24 (2)	E1	0.001691 (24)	0.000256 (4)	0.000081	0.00000206 (3)	0.00203 (3)
1160.96 (2)	[M1]	0.01000 (14)	0.001641 (23)	0.000496	0.00000259 (4)	0.01214 (17)
1185.57 (2)	[M1]	0.00947 (14)	0.001555 (22)	0.000480	0.00000501 (7)	0.01151 (17)
1283.04 (2)	[M1]	0.00775 (11)	0.001269 (18)	0.000388	0.0000232 (4)	0.00943 (14)
1380.89 (2)	[M1]	0.00643 (9)	0.001050 (15)	0.000315	0.0000546 (8)	0.00785 (11)
1647.32 (2)	[M1]	0.00411 (6)	0.000669 (10)	0.000207	0.000194 (3)	0.00518 (8)
1744.12 (2)	[M1]	0.00356 (5)	0.000578 (8)	0.000177	0.000255 (4)	0.00457 (7)
2614.511 (10)	E3	0.001708 (24)	0.000292 (4)	0.000089	0.000371 (6)	0.00246 (4)

Beta Particles

Energies

All beta-particle energies were calculated from the structural details of the proposed decay scheme. The nuclear level energies of 2007Ma45 and the $Q_{\beta-}$ value of 4999.0 (17) keV adopted from 2003Au03 were used to determine the energies and uncertainties of the beta-particle transitions to the various levels.

Emission Probabilities

The beta-particle emission probabilities were calculated from gamma-ray probability balances, through the recommended gamma-ray emission intensities, and adopted multipolarities and theoretical internal conversion coefficients. A significant majority of the beta-particle transitions were defined as first forbidden non-unique.

	E _β (keV)	P _β				Transition	log ft
						type	
		1960Em01	1960Sc07	1967Os01	Recommended		
					value*		
β0,23	518.3 (17)	_	—	—	0.052 (5)	1 st forbidden	6.67
-						non-unique	
β0,21	615.7 (17)	_	—	—	0.017 (5)	1 st forbidden	7.41
						non-unique	
β0,20	640.3 (17)	—	—	4.15 (15)	0.045 (4)	1 st forbidden	7.04
-						non-unique	
β0,19	675.1 (17)	—	—	—	0.005 (2)	allowed	8.1
β0,18	702.4 (17)	_	_	_	0.102 11)	1 st forbidden	6.82
						non-unique	
β0,17	737.1(17)	_	_	_	0.002(1)	1 st forbidden	8.6
• ^						non-unique	
β0,13	818.6 (17)	_	_	_	0.231 (9)	1 st forbidden	6.70
						non-unique	
β0,12	873.7 (17)	_	_	_	0.174 (9)	1 st forbidden	6.92
						non-unique	
β0,8	1003.6 (17)	—	—	—	0.007 (3)	1 st forbidden	8.5
						non-unique	
β0,7	1037.8 (17)	3.6	4.6 (2)	< 0.6	3.17 (4)	1 st forbidden	5.92
•						non-unique	
β0,6	1052.4 (17)	—	—	—	0.048 (3)	1 st forbidden	7.76
-						non-unique	
β0,5	1079.0 (17)	—	—	—	0.63 (4)	1 st forbidden	6.68
						non-unique	
β0,4	1290.5 (17)	24.3	23.9 (8)	21 (2)	24.1 (2)	1 st forbidden	5.38
-						non-unique	
β0,3	1523.9 (17)	20.6	22.7 (7)	22 (2)	22.1 (5)	1 st forbidden	5.69
						non-unique	
β0,2	1801.3 (17)	51.3	48.8 (27)	52 (1)	49.2 (6)	1 st forbidden	5.61
						non-unique	
					Σ 99.9 (8)		

Beta-particle emission probabilities per 100 disintegrations of ²⁰⁸Tl.

* Recommended emission probabilities derived from evaluated gamma-ray emission probabilities and theoretical internal conversion coefficients.

Atomic Data

The x-ray and Auger-electron data have been calculated using the evaluated gamma-ray data, and atomic data from 1996Sc06, 1998ScZM and 1999ScZX. Both the x-ray and Auger-electron emission probabilities were determined by means of the EMISSION computer program (version 4.01, 28 January 2003). This program incorporates atomic data from 1996Sc06 and the evaluated gamma-ray data.

		-	Energy	Photons
			(keV)	per 100 disint.
XL		(Pb)	9.184 - 15.216	2.75 (12)
	XL_l	(Pb)	9.184	0.0671 (19)
	XL_{α}	(Pb)	10.450 - 10.551	1.27 (4)
	XL_{η}	(Pb)	11.349	0.0209 (7)
	XL_{β}	(Pb)	12.142 - 13.015	1.155 (25)
	XL_{γ}	(Pb)	14.765 – 15.216	0.220 (5)
XK_{α}	$XK_{\alpha 2}$	(Pb)	72.8049 (8)	2.03 (5)
	$XK_{\alpha 1}$	(Pb)	74.9700 (9)	3.42 (7)
X 777	3717		04.451	``
$\mathbf{X}\mathbf{K}_{\beta 1}$	ΧΚ _{β3}	(Pb)	84.451)
	$XK_{\beta 1}$	(Pb)	84.937) 1.17 (3)
	$XK_{\beta 5}$	(Pb)	85.470)
XK er	XKer	(Ph)	87 238)
2 H p2	XK 04	(Pb)	87 580) 0 353 (11)
	XKO22	(Pb)	87 911) 0.555 (11)
	201202,3	(10)	07.711)

K and L X-ray emission probabilities per 100 disintegrations of 2

Electron energies were determined from electron binding energies tabulated by Larkins (1977La19) and the evaluated gamma-ray energies. Absolute electron emission probabilities were calculated from the evaluated absolute gamma-ray emission probabilities and associated internal conversion coefficients.

Data Consistency

A Q_β-value of 4999.0 (17) keV has been adopted from the atomic mass evaluation of Audi *et al.* (2003Au03) while in the course of formulating the decay scheme of ²⁰⁸Tl. This value has subsequently been compared with the Q-value calculated by summing the contributions of the individual emissions to the ²⁰⁸Tl beta-decay process (i.e. β^- , conversion electrons, γ , etc.):

calculated Q-value = $\sum (E_i \times P_i)$ = 4989 (14) keV

Percentage deviation from the Q-value of Audi *et al.* is (0.2 ± 0.3) %, which supports the derivation of a highly consistent decay scheme.

Acknowledgement

ALN would like to thank M.J. Martin (ORNL, USA) for an exchange of information in November 2006 with respect to an earlier DDEP evaluation of the β^- decay of ²⁰⁸Tl undertaken in January 2004. This further re-evaluation of July 2010 to May 2011 includes a number of adjustments and corrections based on this welcome communication.

Comments on evaluation

1954El07	L.G. Elliott, R.L. Graham, J. Walker, J.I. Wolfson, Spins and Parities of Energy Levels in Pb ²⁰⁸ , Phys. Rev. 93 (1954) 356. \circle{ak}
1957Ba05	D.L. Baulch, H.A. David, J.F. Duncan, The Half-life of Thorium C", Australian J. Chem. 10 (1957) 85-87. [Half-life]
1957Kr56	E.M. Krisiuk, A.G. Sergeev, G.D. Latyshev. K.I. Il'in, V.I. Fadeev, The Decay Scheme of Tl ²⁰⁸ , Sov. Phys. JETP 6 (1958) 880-882. [Multipolarity]
1957Vo22	V.D. Vorob'ev, K.I. Il'in, T.I. Kol'chinskaia, G.D. Latyshev, A.G. Sergeev, Iu.N. Trofimov, V.I. Fadeev, Internal Conversion Electron Spectrum of Radiothorium, Part III. $H_{\rho} = 1380-2700$ and 3500-9000 Gauss-cm Regions, Izvest. Akad. Nauk SSSR, Ser. Fiz. 21 (1957) 954; Columbia Technical Translation 21 (1958) 956-963. [P _{ce}]
1960Em01	G.T. Emery, W.R. Kane, Gamma-ray Intensities in the Thorium Active Deposit, Phys. Rev. 118 (1960) 755-762. $\label{eq:gamma-ray} [P_\beta, P_\gamma]$
1960Sc07	G. Schupp, H. Daniel, G.W. Eakins, E.N. Jensen, Transition Intensities in the Tl^{208} Beta Decay, the $Bi^{212} \rightarrow Po^{212}$ Decay Scheme, and the Bi^{212} Branching Ratio, Phys. Rev. 120 (1960) 189-198. [P _{\beta} , P _{\gamma}]
1961Si11	L. Simons, M. Brenner, L. Käld, K-E. Nystén, E. Spring, Angular Correlations of Gamma-Gamma Cascades in Pb^{208} , Soc. Sci. Fenn. Comm. Phys. Math. 26 (1961) part 6. $[P_{\gamma}]$
1963Da11	H. Daniel, G. Lührs, Aufbau eines automatisch arbeitenden $\pi\sqrt{2}$ -Spektrometers und Untersuchung des Konversionslinienspektrums von In ^{114m} und ThB mit Folgeprodukten, Z. Phys. 176 (1963) 30-44. [P _{ce} , α_K , multipolarity]
1967La20	N.O. Lassen, N. Hornstrup, Half-life of ²⁰⁸ Tl (ThC"), Kgl. Danske Videnskab. Selskab., MatFys. Medd. 36, No. 4 (1967). [Half-life]
1967Os01	H. Ostertag, K.H. Lauterjung, Der β -Zerfall des ²⁰⁸ Tl, Z. Phys. 199 (1967) 25-40. [P _{β}]
1969Au10	G. Aubin, J. Barrette, G. Lamoureux, S. Monaro, Calculated Relative Efficiency for Coaxial and Planar Ge(Li) Detectors, Nucl. Instrum. Methods 76 (1969) 85-92. $[P_{\gamma}]$
1969La23	J.S. Larsen, B.C. Jørgensen, The Decay of 208 Tl: Gamma-ray Measurement, Z. Phys. 227 (1969) 65-70. [P _{γ}]
1969Pa02	A. Pakkanen, J. Kantele, P. Suominen, Levels in ²⁰⁸ Pb Populated in the Decay of ²⁰⁸ Tl (ThC"), Z. Phys. 218 (1969) 273-281. $[P_{\gamma}]$
1970Mu21	V.H. Mundschenk, Über ein Verfahren zur Abtrennung kurzlebiger Radionuklide unter Ausnutzung des Rückstoβeffektes, Radiochim. Acta 14 (1970) 72-77. [Half-life]
1971Ac02	R. Ackerhalt, P. Ellerbe, G. Harbottle, The Half-life of ²⁰⁸ Tl/ThC", Radiochem. Radioanal. Lett. 8 (1971) 75-77. [Half-life]
1972DaZA	J. Dalmasso, Recherches sur le Rayonnement Gamma de Quelques Radioéléments Naturels Appartenant à la Famille du Thorium, PhD thesis, University of Nice (1972). $[P_{\gamma}]$
1972Ja25	P. Jagam, D.S. Murty, Multipole Mixing Ratios of γ -transitions in ²⁰⁸ Pb, Nucl. Phys. A197 (1972) 540- 552. [P _{γ} , δ]
1973Da38	J. Dalmasso, H. Maria, C. Ythier, Étude du Rayonnement γ du Thorium 228 et de ses Dérivés, et plus Particulièrement du Thallium 208 (ThC [°]), C. R. Acad. Sci. Paris 277B (1973) 467-470. [P _{γ}]
1975Ko02	M. Kortelahti, A. Pakkanen, J. Kantele, Electromagnetic Transition Rates in ²⁰⁸ Pb, Nucl. Phys. A240 (1975) 87-97. $[P_{\gamma}, \delta]$
1976Av03	F.T. Avignone, S.M. Blankenship, W.W. True, Experimental and Theoretical Multipole Mixing Ratios in Transitions of ²⁰⁸ Pb, Phys. Rev. C14 (1976) 267-274. [δ]
1977Ge12	R.J. Gehrke, R.G. Helmer, R.C. Greenwood, Precise Relative γ -ray Intensities for Calibration of Ge Semiconductor Detectors, Nucl. Instrum. Methods 147 (1977) 405-423. [P _{γ}]
1977La19	F.P. Larkins, Semiempirical Auger-electron Energies for Elements $10 \le Z \le 100$, At. Data Nucl. Data Tables 20 (1977) 311-387. [Auger-electron energies]
1978Av01	F.T. Avignone, A.G. Schmidt, γ -ray and Internal-conversion Intensity Studies of Transitions in the Decay of ²²⁸ Th, Phys. Rev. C17 (1978) 380-384. [P _{γ} , δ]

- 1982Sa36 S. Sadasivan, V.M. Raghunath, Intensities of Gamma Rays in the ²³²Th Decay Chain, Nucl. Instrum. Methods 196 (1982) 561-563.
- 1983Sc13 U. Schötzig, K. Debertin, Photon Emission Probabilities per Decay of ²²⁶Ra and ²³²Th in Equilibrium with their Daughter Products, Int. J. Appl. Radiat. Isot. 34 (1983) 533-538. [P₁]
- 1983Va22 R. Vaninbroukx, H.H. Hansen, Determination of γ -ray Emission Probabilities in the Decay of ²²⁸Th and its Daughters, Int. J. Appl. Radiat. Isot. 34 (1983) 1395-1397. [P_{γ}]
- 1984Ge07 R.J. Gehrke, V.J. Novick, J.D. Baker, γ-ray Emission Probabilities for the ²³²U Decay Chain, Int. J. Appl. Radiat. Isot. 35 (1984) 581-589.
 [P_γ]
- 1990Go33 L.I. Govor, A.M. Demidov, V.A. Kurkin, Spectrum and Angular Distribution of γ rays from the Reaction ²⁰⁸Pb(n,n'γ), Bull. Acad. Sci. USSR, Phys. Ser. 54 (1990) 147-155. [δ]
- 1992Li05 W-J. Lin, G. Harbottle, Gamma-ray Emission Intensities of the ²³²Th Chain in Secular Equilibrium, of ²³⁵U and the Progeny of ²³⁸U, J. Radioanal. Nucl. Chem. 157 (1992) 367-372. [Pγ]
- 1993E108O. El Samad, J. Dalmasso, G. Barci-Funel, G. Ardisson, Fast Radiochemical Separation and γ
Spectroscopy of Short-lived Thallium Isotopes, Radiochim. Acta 62 (1993) 65-69. $[P_{\gamma}]$
- 1996Sc06 E. Schönfeld, H. Janβen, Evaluation of Atomic Shell Data, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527-533. [X_K, X_L, Auger electrons]
- 1997Sc21 M. Schramm, K.H. Maier, M. Rejmund, L.D. Wood, N. Roy, A. Kuhnert, A. Aprahamian, J. Becker, M. Brinkman, D.J. Decman, E.A. Henry, R. Hoff, D. Manatt, L.G. Mann, R.A. Meyer, W. Stoeffl, G.L. Struble, T.-F. Wang, Study of Excited States in ²⁰⁸Pb by Particle-γ Coincidences with the ²⁰⁷Pb(d,p)²⁰⁸Pb and ²⁰⁹Bi(t,α)²⁰⁸Pb Reactions, Phys. Rev. C56 (1997) 1320-1337. [Nuclear levels, spin, parity]
- 1998ScZM E. Schönfeld, G. Rodloff, Tables of the Energies of K-Auger Electrons for Elements with Atomic Numbers in the Range from Z = 11 to Z = 100, PTB Report PTB-6.11-98-1, October 1998. [Auger electrons]
- 1999ScZX E. Schönfeld, G. Rodloff, Energies and Relative Emission Probabilities of K X-rays for Elements with Atomic Numbers in the Range from Z = 5 to Z = 100, PTB Report PTB-6.11-1999-1, February 1999. [X_K]
- 2000He14R. G. Helmer, C. van der Leun, Recommended Standards for γ-ray Energy Calibration (1999), Nucl.
Instrum. Methods Phys. Res. A450 (2000) 35-70.[E_γ]
- 2002Ba85 I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor, Jr., P.O. Tikkanen, S. Raman, Dirac–Fock Internal Conversion Coefficients, At. Data Nucl. Data Tables 81 (2002) 1-334. [ICC]
- 2002Ra45 S. Raman, C.W. Nestor, Jr., A. Ichihara, M.B. Trzhaskovskaya, How Good are the Internal Conversion Coefficients Now? Phys. Rev. C66 (2002) 044312, 1-23. [ICC]
- 2003Au03 G. Audi, A.H. Wapstra, C. Thibault, The AME2003 Atomic Mass Evaluation (II). Tables, Graphs and References, Nucl. Phys. A729 (2003) 337-676. [Q-value]
- 2006Va23 S.I. Vasil'ev, K.Ya. Gromov, A.A. Klimenko, Zh.K. Samatov, A.A. Smol'nikov, V.I. Fominykh, V.G. Chumin, Coincidence Summing in γ-ray Spectra and Determination of the Intensity of Weak Crossover γ Transitions, Instruments and Experimental Techniques 49 (2006) 34-40. [Crossover γ]
- 2007Ma45 M.J. Martin, Nuclear Data Sheets for A = 208, Nucl. Data Sheets 108 (2007) 1583-1806.

[Nuclear structure, level energies]

2008Ki07 T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, C.W. Nestor, Jr., Evaluation of Theoretical Conversion Coefficients using BrIce, Nucl. Instrum. Methods Phys. Res. A589 (2008) 202-229. [ICC]