²¹⁰Tl - Comments on evaluation of decay data by V. Chisté and M. M. Bé

This evaluation was completed in 2007. Literature available by August 2007 has been included.

1 Decay Scheme

²¹⁰Tl disintegrates by beta minus emission to excited levels of ²¹⁰Pb. A weak delayed neutron emission was reported (1961St20 and 1957Ko42). Level energies, spins and parities are from the mass-chain evaluation of E. Browne (2003Br13) and B. Harmatz (1981Ha54).

This decay scheme is mainly based on the measurements of P. Weinzierl (1964We06). Several inconsistencies appeared :

- β branching to levels : 3879-, 3458-, and 3069-keV were deduced from γ -ray transition intensity imbalance. β ⁻ feedings to the 1096- and 1192-keV levels are uncertain. There is no experimental evidence for β ⁻ transitions with energy > 3 MeV to these levels. β ⁻ feedings the 1869-, 2208- and 2412-keV levels, suggested by γ -ray transition intensity imbalances (< 10 %, < 9 % and < 12 %, respectively), are uncertain.
- An 83-keV γ -ray is not placed in the present decay scheme as suggested by B. Harmatz (1981Ha54) (transition between 1275-keV level and 1192-keV level), because there is no experimental evidence that the 1275-keV level in ²¹⁰Pb was populated in the β ⁻ decay of ²¹⁰Tl.

These discrepancies cannot be resolved without new experimental results. New measurements are strongly suggested.

Some agreement was found between the adopted $Q(\beta^{-})$ value of Audi and the effective $Q(\beta^{-})$ value of 5470 (1000) keV calculated from decay scheme data, which indicates a consistency and correctness of the decay scheme.

2 Nuclear Data

The Q value is from the atomic mass evaluation of Audi et al. (2003Au03).

Experimental ²¹⁰Tl half-life values (in minutes) are given in Table 1:

Reference	Experimental value (min)	Comments
M. Curie (1931Cu01)	1.32	Not used. No uncertainty.
A.V. Kogan (1957Ko42)	1.50 (25)	
P. Weinzierl (1964We06)	1.30 (3)	
Recommended value	1.30 (3)	$\chi^2 = 0.63$

Table 1: Experimental values of ²¹⁰Tl half-life.

A weighted average has been calculated using Lweight computer program (version 3). The largest contribution to the weighted average comes from P. Weinzierl (1964We06), amounting to a statistical weight of 98 %.

The recommended value of ²¹⁰Tl half-life is the weighted average of 1.30 minutes with an internal uncertainty of 0.03 minutes. The reduced- χ^2 value is 0.63.

2.1 **b**⁻ Transitions and Emissions.

The end-point energies of the β^{-} transitions in the decay of ${}^{210}\text{Tl} \rightarrow {}^{210}\text{Pb}$ have been obtained from the Q(β^{-}) value (2003Au03) and the level energies given by E. Browne (2003Br13).

The adopted β^{-} transition probabilities were deduced from the P(γ + ce) balance at each level of the decay scheme. Table 2 shows the adopted β^{-} transition probabilities compared with the only three β^{-} transitions reported by P. Weinzierl (1964We06). No β^{-} transitions with E_{β -} > 3MeV were observed by these authors.

Level	Energy (keV)	P. Weinzierl	Adopted
		(1964We06)	values
11	1380 (12)	25 %	2 %
10	1603 (12)		7 %
9	1860 (12)	56 %	24 %
8	2024 (12)		10 %
7	2413 (12)	19 %	10 %
3	4290 (12)		31 %
2	4386 (12)		13 %

Table 2: Experimental and recommended (calculated) values of β^{-} transition probabilities.

The sum of the adopted β^{-} transition probabilities is equal to 97 %. The 3 % missing cannot be placed in the decay scheme without more information about the β^{-} decay of ²¹⁰Tl.

The values of lg ft and the average β^{-} energies have been calculated using the computer program LOGFT for β^{-} transitions.

2.2 gTransitions.

The transition probabilities were deduced from the absolute γ -ray emission intensities and the relevant internal conversion coefficients. (see **5.2 gEmissions**).

Multipolarities of the γ -ray transitions were deduced from conversion electron measurements and K/L ratios of 1964We06:

83-keV γ-ray: [E2]	97-keV γ-ray: M1 + E2	296-keV γ-ray: E2
356-keV γ-ray: [M1]	356-keV γ-ray: [M1]	799-keV γ-ray: E2
1070-keV γ-ray: [E1]		

The internal conversion coefficients (ICC's) for these γ -ray transitions were calculated using the BrIcc computer program (calculation for 'frozen orbital approximation'), which interpolates from theoretical values of I. M. Band *et al.* (2002Ba85).

Due to the large uncertainty on the 83- and 97-keV transition energy, only estimated ICC values are given.

3 Atomic Data.

Atomic values, ω_{K} , $\overline{\omega}_{L}$ and n_{KL} and the X-ray relative probabilities are from Schönfeld and Jan β en (1996Sc06).

4 Electron Emissions.

The conversion electrons emission probabilities have been deduced using the γ -ray emission intensities and ICC's.

5.1 X-ray Emissions.

The X-ray absolute intensities have been calculated from γ -ray data and ICC using the EMISSION computer program. The KX-ray intensity is compared in Table 3 to the measured value of P. Weinzierl (1964We06).

Table 3: Experimental and recommended (calculated) values of X-ray absolute intensities.

	P. Weinzierl	Recommended value
	(1964We04)	
K x-ray	20 (4) %	23 (11) %

5.2 gEmissions.

The energies of the γ -ray emissions given in Section 5 are from E. Browne (2003Br13).

The experimental relative γ -ray emission intensities measured by P. Weinzierl (1964We06) (single experimental data set found in the literature) given in Table 4 are relative to that of the 799-keV γ -ray. Only one set of measured data (1964We06) is available.

Energy	Relative γ-ray Emission intensity (%)
(keV)	(1964We06)
83 ^(a)	2.0
97	4 (2)
296	80 (10)
356 ^(a)	4 (2)
382 ^(a)	3 (2)
480	2 (1)
670 ^(a)	2 (1)
799	100
860	7 (2)
910 ^(a)	3 (2)
1070	12 (5)
1110	7 (2)
1210	17 (4)
1316	21 (5)
1410	5 (2)
1490 ^(a)	2 (1)
1540 ^(a)	2 (1)
1590	2 (1)
1650 ^(a)	2 (1)
2010	7 (2)
2090 ^(a)	5 (2)
2270	3 (2)
2360	8 (3)
2430	9 (3)

Table 4: The experimental data set of the relative γ -ray emission intensities.

(a) γ -ray not placed in level scheme as explained in Weinzierl (1964We06).

The normalization factor of **98.969** (**30**) to convert the relative γ -ray emission intensities to absolute intensities was obtained using the formula of :

$$\mathbf{N} = \left(\frac{100}{(1 + \boldsymbol{a}_T)P_{rel}(799\boldsymbol{g})}\right)$$

The uncertainties were calculated through their propagation on the above formula.

Comments on evaluation

The evaluated relative and absolute γ -ray emission intensities are given in Table 5.

Energy (keV)	Relative γ-ray Emission intensity (%)	Absolute γ-ray emission intensity (%)
83 ^(a)	2.0	1.98 (40)
97	4 (2)	4 (2)
296	80 (10)	79 (10)
356 ^(a)	4 (2)	4 (2)
382 ^(a)	3 (2)	3 (2)
480	2 (1)	2 (1)
670 ^(a)	2 (1)	2 (1)
799	100	98.969 (30)
860	7 (2)	6.9 (20)
910 ^(a)	3 (2)	3 (2)
1070	12 (5)	11.9 (49)
1110	7 (2)	6.9 (20)
1210	17 (4)	16.8 (40)
1316	21 (5)	20.8 (50)
1410	5 (2)	4.9 (20)
1490 ^(a)	2 (1)	2 (1)
1540 ^(a)	2 (1)	2 (1)
1590	2 (1)	2 (1)
1650 ^(a)	2 (1)	2 (1)
2010	7 (2)	6.9 (20)
2090 ^(a)	5 (2)	4.9 (20)
2270	3 (2)	3 (2)
2360	8 (3)	7.9 (30)
2430	9(3)	8.9 (30)

Table 5: Evaluated relative and absolute γ -ray emission intensities.

(a) γ -ray not placed in level scheme as explained in Weinzierl (1964We06).

6 References

1931C01 M. Curie, A. Debierne, A. S. Eve, H. Geiger, O. Hahn, S. C. Lind, St. Meyer, E. Rutherford, E. Schweildler, Rev. Mod. Phys. 3(1931)427 [Half-life] 1957Ko42 A. V. Kogan, L. I. Rusinov, Sov. Phys. JETP 5(1957)365 [Half-life, neutron emission probability] 1961St20 G. Stetter, TID - 14880 (1961) [Neutron emission probability] 1964We06 P. Weinzierl, E. Ujlaki, G. Preinreich, G. Eder, Phys. Rev. 134(1964)B257 [Half-life, E_{β} , I_{β} , E_{γ} , I_{γ}] 1981Ha54 B. Harmatz, Nucl. Data Sheets 34(1981)735 [Spin, parity, energy level, I_{β} , I_{γ}] E. Schönfeld, H. Janβen, Nucl. Instrum. Meth. Phys. Res. A369(1996)527 [Atomic data]. 1996Sc06 2002Ba85 - I. M. Band, M. B. Trzhaskovskaya, C. W. Nestor, Jr., P. O. Tikkanen, S. Raman, At. Data Nucl. Data Tables 81(2002)1 [Theoretical ICC] 2003Au03 G. Audi, A. H. Wapstra, C. Thibault, Nucl. Phys. A729(2003)129 [Q] 2003Br13 E. Browne, Nucl. Data Sheets 99(2003)483 [Spin, parity, energy level, I_{β} , I_{γ}]