The NUBASE2016 evaluation of nuclear properties^{*}

G. Audi (欧乔治)¹ F.G. Kondev² Meng Wang (王猛)^{3,4;1)} W.J. Huang(黄文嘉)¹ S. Naimi⁵

¹ CSNSM, Univ Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay, France

² Argonne National Laboratory, Argonne, IL 60439, USA

³ Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China

⁴Joint Department for Nuclear Physics, Institute of Modern Physics, CAS and Lanzhou University, Lanzhou 730000, China

⁵RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

Abstract: This paper presents the NUBASE2016 evaluation that contains the recommended values for nuclear and decay properties of 3437 nuclides in their ground and excited isomeric ($T_{1/2} \ge 100$ ns) states. All nuclides for which any experimental information is known were considered. NUBASE2016 covers all data published by October 2016 in primary (journal articles) and secondary (mainly laboratory reports and conference proceedings) references, together with the corresponding bibliographical information. During the development of NUBASE2016, the data available in the "Evaluated Nuclear Structure Data File" (ENSDF) database were consulted and critically assessed for their validity and completeness. Furthermore, a large amount of new data and some older experimental results that were missing from ENSDF were compiled, evaluated and included in NUBASE2016. The atomic mass values were taken from the "Atomic Mass Evaluation" (AME2016, second and third parts of the present issue). In cases where no experimental data were available for a particular nuclide, trends in the behavior of specific properties in neighboring nuclides (TNN) were examined. This approach allowed to estimate values for a range of properties that are labeled in NUBASE2016 as "non-experimental" (flagged "#"). Evaluation procedures and policies used during the development of this database are presented, together with a detailed table of recommended values and their uncertainties.

AMDC: http://amdc.impcas.ac.cn/

Keywords: NUBASE2016 evaluation, nuclear properties, Atomic Mass Evaluation (AME), excitation energies of isomers, Evaluated Nuclear Structure Data File (ENSDF)

PACS: 21.10.-k, 21.10.Dr, 21.10.Hw, 21.10.Tg DOI: 10.1088/1674-1137/41/3/030001

1 Introduction

NUBASE is a database containing values of the main nuclear properties, such as masses, excitation energies of isomers, half-lives, spins and parities, and decay modes and their intensities, for all known nuclides in their ground and excited isomeric states. The information presented in NUBASE represents the fundamental building blocks of modern nuclear physics, and specifically, of nuclear structure and nuclear astrophysics research. The first version of NUBASE was published in 1997 [1] and since then it has been widely used in many fields from fundamental physics to applied nuclear sciences. The present publication includes updated information of all nuclear properties given in the previous publications of NUBASE [1–3].

One of the main applications of NUBASE2016 is the "Atomic Mass Evaluation" (AME2016, second and third parts of this issue) where it is imperative to have an unambiguous identification of all states involved in a particular decay, reaction or mass-spectrometric measurement. This is the primary reason for which the two evaluations are published jointly in the present issue, for the third time since the publication of the NUBASE2003 [2].

Furthermore, with the advances of modern massspectrometry techniques (see for example the special issue of "one hundred years of mass spectrometry" for relevant topics [4]) and the availability of intense stable and rare-isotope beams, a large number of unstable nuclei can be produced in a single experiment in their ground and/or isomeric states, and their masses can be measured with high precision. Thus, NUBASE2016 can be particularly useful in future mass measurements, where an unambiguous identification of complex mass-spectrometric data would be required.

Applications of this database in astrophysics network calculations and in theoretical studies of nuclear properties, where complete and reliable data for all known nuclei are needed, are also envisioned.

Received 10 March 2017

^{*} This work has been undertaken with the endorsement of the IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO).

¹⁾ E-mail: wangm@impcas.ac.cn

^{©2017} Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

Last, but not least, the evaluated data presented in NUBASE2016 are also useful for specialists in applied nuclear fields, such as reactor engineering and design, fuel manufacture and transport, waste management, material analysis, medical diagnostics and radiotherapy, and others, where one needs to access basic information for a given nuclide.

The information presented in NUBASE2016 fulfills several user-demanded requirements, namely that it is: a) *complete* – includes all measured quantities and their uncertainties, b) *up-to-date* – results from the most recent publications are included, c) *credible and reliable* – identifies and resolves contradictory results that exist in the scientific literature, as well as in other nuclear physics databases, d) *properly referenced* – provides comprehensive information for the traceability of all included data.

Most of the data included in NUBASE2016 are in principle available in two other evaluated databases: the "Evaluated Nuclear Structure Data File" (ENSDF) [5] and the "Atomic Mass Evaluation" (AME2016). Therefore, the demand for NUBASE could be partially fulfilled by combining these two databases into a single, 'horizontal' structure, which exists in AME, but not in ENSDF. Therefore, NUBASE2016 can be considered at a first level as a critical combination of those two evaluations.

During the development of the present version of NUBASE, it was imperative to examine all available literature for several nuclides in order to revise results adopted in ENSDF, and to ensure that the recommended data are presented in a consistent way (*credibility and reliability* requirements). It was also necessary to include all the available experimental data, i.e. not only results that were published recently (*up-to-date* requirement), but also older data that were missing in ENSDF (*completeness* requirement). This implied that some extra evaluation work was necessary. The corresponding conclusions are added as remarks in the NUBASE2016 table, and in the discussions below. Complete bibliographical references are given for all added experimental data in Table I (see Section 2.8).

There is no strict literature cut-off date for the results presented in the NUBASE2016 evaluation: all data available to the authors until October 2016 have been included. Results that were not incorporated for special reasons, e.g. the need for a heavy revision of the evaluation at too late a stage of development, are added, whenever possible, in remarks to the relevant data.

During the preparation of NUBASE2016, we noticed that Ref. [6] reports important decay data for proton-rich nuclides ⁶⁷Kr, ⁶³Se and ⁵⁹Ge, where a two-proton emission from ⁶⁷Kr was observed. We found that it was too heavy an effort at this stage to include these results into NUBASE2016, especially to establish the atomic mass surface in this region. They are not included in the currect evaluation, but the original paper is just mentioned here.

The contents of NUBASE2016 are described below, together with the adopted policies that were used during the development of this database. Section 3 presents the updating procedures, while the electronic distribution and interactive display of NUBASE2016 contents by means of a stand-alone PC-program are described in Section 4.

2 Contents of NUBASE2016

The NUBASE2016 evaluation contains recommended values for the basic nuclear ground-state properties, for 3437 nuclides, derived from all available experimental results, together with some values estimated by extrapolating neighboring ones. It also contain data for 1318 nuclides which have one or more excited isomeric states with half-lives longer than 100 ns.

Similar to the previous editions, NUBASE2016 also contains data on 186 isobaric analog states (IAS), which have their excitation energies determined either through an "internal relation" and taken from ENSDF, or through an "external relation" and then determined by the AME2016 evaluation.

For each nuclide (A, Z), and for each state (ground or excited isomer), the following properties were compiled and, when necessary, evaluated: mass excess, excitation energy of excited isomeric states, half-life, spin and parity, decay modes and their intensities, isotopic abundance (for a stable nuclide), year of discovery and the corresponding bibliographical information for all experimental data.

References to published articles in the description sections below are given by means of the keynumber style used in the "Nuclear Science Reference" (NSR) bibliographical database [7]. However, references quoted in the NUBASE2016 tables are abbreviated with the first two digits of the year of publication being omitted from the NSR keynumbers. The complete reference list is given at the end of this issue, together with the references used in AME (see AME2016, Part II).

At the time the work on NUBASE2016 was completed, superheavy elements (SHE) up to Z = 118were officially named by The Commission on Nomenclature of Inorganic Chemistry of the International Union of Pure and Applied Chemistry (IUPAC) [8]:

- 113 Nihonium (Nh),
- 115 Moscovium (Mc),
- 117 Tennessine (Ts),
- 118 Oganesson (Og).

We were not able to include the new names in AME2016 and NUBASE2016, but instead we used the provisional symbols Ed, Ef, Eh, and Ei for elements 113, 115, 117, and 118, respectively.

NUBASE2016 contains numerical and bibliographical data for all known nuclides for which at least one property is known experimentally in their ground state, excited isomeric states with $T_{1/2} \ge 100$ ns, and/or IAS. It also includes information on yet unobserved nuclides, estimated from the observed experimental trends of neighboring nuclides (TNN). This ensures continuity in the set of considered nuclides simultaneously in *N*, in *Z*, in *A* and in N - Z. The chart of nuclides defined in this way has a smooth contour.

For experimentally unknown properties, values were also estimated from TNN. Similarly to AME2016, the estimated values are flagged with the symbol '#' to indicate nonexperimental information.

As a rule, one standard deviations (1σ) are used in NUBASE2016 to represent the uncertainties associated with the quoted experimental values. Unfortunately, authors of research articles do not always define the meaning of their reported uncertainties and those values were assumed to be one standard deviations. In many cases, uncertainties are not even given at all and were estimated by us, considering the limitations of the experimental method.

Values and corresponding uncertainties for properties given in NUBASE2016 are rounded, even if unrounded values were given in the literature or in ENSDF. In cases where the two furthest left significant digits in the uncertainty were larger than a given limit (set to 30 for masses and energies to be consistent with AME2016, and set to 25 for all other quantities, as used in ENSDF), values and uncertainties were rounded accordingly (see examples in the 'Explanation of table'). In a few cases that were deemed essential for traceability purposes (e.g. isotopic abundances) the original (unrounded) value is also provided in an associated comment.

2.1 Mass excess

In NUBASE2016 the mass excess values (in keV), defined as being differences between the atomic mass (in mass units) and the mass number, together with their one-standarddeviation uncertainty, are taken from the mass tables of the AME2016 evaluation.

In general, knowledge of masses can provide valuable information on decay modes, in particular for a particle-decay instability, or β -delayed particle-decay, for nuclei far from the line of stability. Such information is used in NUBASE2012, for example for ¹⁰He, ³⁹Sc, ⁶²As, or ⁶³As. In some cases, the claimed observations of decay modes were rejected when it was found that they were not allowed through simple energetics.

Figure 1 displays the mass accuracy from the main table, as a function of *N* and *Z*.

2.2 Isomers

In the first version of NUBASE [1], a definition for excited isomers was adopted: excited states with a half-life longer than one millisecond. Within this definition, all β -

decaying states were included in this category, since they have a lower half-life limit of one millisecond. However, already at that time, it was noticed that such a definition had several drawbacks, particularly for neutron-deficient alpha- and proton-decaying nuclides, where much shorter-lived states were known to exist. Moreover, several cases are known where isomers with half-lives far below one millisecond survive longer than the ground state itself, e.g. ²¹⁶Fr.

With the publication of NUBASE2003 [2], the definition of isomers was extended to half-lives longer than 100 ns, and such states are now included in NUBASE2016. The main reasons for this change were to include:

a) all proton- and alpha-decaying states observed in many neutron-deficient nuclei,

b) isomers that may be detected in mass-spectrometric experiments performed at accelerator facilities following the immediate detection of the produced nuclei, and

c) all possible isomers that may be detected in such experiments in the future.

In NUBASE2016, isomers are tabulated in order of increasing excitation energy and identified by appending the letters 'm', 'n', 'p', 'q', or 'r' to the nuclide name, e.g. ⁹⁰Nb for the ground state, ${}^{90}Nb^m$ for the first excited isomer, ${}^{90}Nb^n$ for the second one, and ${}^{90}Nb^p$, ${}^{90}Nb^q$, and ${}^{90}Nb^r$ for the third, fourth and fifth ones, respectively. In the cases of 179 Ta and 214 Ra a sixth isomer had to be included, and they were labeled provisionally with the letter 'x'.

Suffix 'x' also applies to mixtures of levels which are used in the atomic mass evaluation. These mixtures occur in spallation reactions or in fission and they appear in mass measurements performed using mass spectrometers. For each mixture, the excitation energy and the relative production rate of isomeric state with respect to ground state are given.

The excitation energy of a given isomer can be determined using different experimental methods, which, in general, belong to the category of either internal or external relations. A typical internal relation is via the γ -ray decay energy, or a combination of such γ -ray energies. The most accurate values for the excitation energies of isomers deduced by this approach can be found in ENSDF, where a least-squares fitting procedure is applied to all γ rays along the decay path of a particular isomer. However, when no such internal relations can be established, then the relation to other nuclides (external relations) can be used to deduce the mass (or energy) difference between excited and ground-state isomers. In all such cases, the most accurate values can only be derived using the AME evaluation procedure and the values are therefore taken from AME2016. The origin (the method used to establish the external relation) of each isomer data element is then indicated by a two-letter code, next to the isomer excitation energy, in the NUBASE2016 table. For internal relations, the origin field is left blank and the numerical values are taken either from ENSDF or from literature updates. In the latter case, a least-squares fit to the measured γ -ray decay energies from complex level schemes was applied, in accordance with the current ENSDF policies.

It also happens that connections between excited and ground state isomers can be obtained by both internal relations and one, or more, external relations with comparable accuracies. All relations are then combined within the AME2016 data by adding an equation that relates the excitation energy obtained from ENSDF (or from literature), so that AME2016 derives the best combination of all data. For example, the AME2016 derives the mass of $^{178}Lu^m$ at 66% from $E_x(IT)=120(3)$ keV [1993Bu02] and at 34% from $^{176}Lu(t,p)^{178}Lu^m=4482(5)$ keV [1981Gi01]. The adjusted excitation energy is thus 123.8(2.6) keV.

In some cases, excitation energies known from internal relations are essential in order to determine the mass of the ground state. Those values are labeled in the NUBASE table with 'IT' in the origin field. They are entered as an equation in AME2016 so that the ground state mass can be derived. For example, the mass of ⁶²Mn was listed as unknown in AME2012, since it was the excited isomer that was measured in a Penning trap experiment [2012Na15]. However, the excitation energy of ⁶²Mn^m was determined recently via γ -ray spectroscopy [2015Ga38], so the mass of the ground state is established experimentally. An interesting case is the mass and excitation energy of ¹⁸⁶Tlⁿ, where its mass is experimentally known from a Penning trap (ISOLTRAP) measurement [2014Bo26]. The well known transition from 186 Tlⁿ to ¹⁸⁶Tl^{*m*} allows to determine not only the mass of the latter, but also the excitation energy of the α -decaying isomers in the parent nuclides ¹⁹⁰Bi^m, ¹⁹⁴At^m and ¹⁹⁸Fr^m.

When the existence of an isomer is ambiguous, it is flagged with 'EU' ("existence uncertain") in the origin field (e.g. ⁷³Znⁿ). A comment is generally added to indicate why this existence is questioned, or where this matter is discussed in more detail. Five isomers, namely ⁷³Znⁿ, ¹³⁸Pmⁿ, ¹⁴¹Tb^m, ¹⁸⁵Biⁿ, ²⁷³Ds^m are treated in this way in the present evaluation and the mass excess and excitation energy values are given for them all except ¹³⁸Pmⁿ, for which the existence is strongly doubted.

When a particular isomer was initially reported as "discovered", but later it was proved to be an error, it is flagged with 'RN' in the origin field, indicating "reported, non existent". Three isomers, namely $^{117}La^m$, $^{156}Tm^n$ and $^{181}Pb^m$ are treated in this way. In these cases, no mass-excess or excitation energy values are given, and, similarly to the 'EU' choice above, a "non existent" label is added.

Note: the use of the two flags, 'EU' and 'RN', was extended to cases where the discovery of a nuclide is questioned (e.g. ²⁶⁰Fm or ²⁸⁹Lv). However, an estimate for the ground state mass, derived from trends in the mass surface (TMS), is always given in AME2016 and NUBASE2016.

In several instances, lower and higher limits for the excitation energy of a particular isomer are presented in ENSDF. The policy of NUBASE2016 is that a uniform distribution of probabilities is assumed, which yields a mid-range value and a 1 σ uncertainty corresponding to 29% of the range (see Appendix B of the AME2016, Part I in this issue for a complete description of this procedure). For example, the excitation energy of the ¹⁶²Tm^m isomer is known from ENSDF to be above the 66.90 keV level. On the other hand, there is also solid experimental evidence that it is below the 192 keV level, and so this information is presented as $E_x = 130(40)$ keV in NUBASE2016. However, if such a value is based on theoretical considerations, or from TNN, the resulting E_x is considered as a non-experimental quantity and the value is consequently flagged with the '#' symbol.

In cases where the uncertainty of the excitation energy, σ , is relatively large as compared to the E_x value, the assignment of the level as a ground or isomeric state is uncertain. If $\sigma > E_x/2$, a '*' flag is added in the NUBASE2016 table.

The ordering of several ground and excited isomeric states were reversed as compared to the recommendations in ENSDF. These cases are flagged with the '&' symbol in the NUBASE2016 table. In several other instances, evidence was found for states located below the adopted ground state in ENSDF. There are also cases where the trends in neighboring nuclides, with the same parities in N and Z, strongly suggest that such a lower state should exist. Such results were added in the NUBASE tables and can be easily located, as they are flagged with the '&' symbol. In a growing number of cases, new experimental information on masses led to a reversal of the ordering between previously assigned ground and excited isomeric states. Thanks to the coupling of the NUBASE2016 and AME2016 evaluations, all changes in the ordering of nuclear levels have been carefully synchronized.

Finally, there are cases where data exist on the ordering in energy of the isomers, e.g. if one of them is known to decay into the other one, or if the Gallagher-Moszkowski rule [9] points strongly to one of the two as being the ground-state. Detailed discussions can be found in Ref. [10].

2.2.1 Isobaric analog states (IAS)

In the previous version of NUBASE [3] we have included the T = 3/2 to T = 3 experimentally observed (IAS). These states are also included in NUBASE2016 and generally labelled with *i* or *j* superscripts, for members of successively higher multiplets. The experimental information about IAS has been evaluated in more detail recently in Ref. [11]. Some nuclides belong simultaneously to several categories, for example, they may be in their ground state but they may also be IAS of some other ground state nucleus, as is the general case for ground state mirror nuclei. Here, the IAS label is not present, since these nuclides are already naturally included in the database. Another exception is the set of N = Z, T = 1odd-odd ground state nuclides which are also already part of the original dataset of ground state masses. They are: ³⁴Cl₁₇, ${}^{42}Sc_{21}$, ${}^{46}V_{23}$, ${}^{50}Mn_{25}$, ${}^{54}Co_{27}$, ${}^{62}Ga_{31}$ and ${}^{70}Br_{35}$. The reader may note that the Z = 29 and Z = 33 nuclides are not included in this series, since their ground states are T = 0, as

expected from theory. Finally, there are eight excited isomers, ${}^{16}N^m$, ${}^{26}Al^m$, ${}^{34}Cl^m$, ${}^{38}K^m$, ${}^{46}V^m$, ${}^{50}Mn^m$, ${}^{54}Co^m$ and ${}^{72}Ga^m$, which are also IAS. In such cases, the isomer labels ('m', 'n',...) are used preferentially over the IAS labels. Here we note with interest that five of them have experimentally determined excitation energies, at least partly, by the JYFLTRAP-Jyväskylä Penning trap.

In NUBASE2016 there are roughly 181 unique IAS masses, of which 113 are evaluated in the AME via external relations, and 68 cases evaluated through internal relations and published in ENSDF. There are five cases where no clear experimental data is available, and although some Isobaric Multiplet Mass Equation (IMME) [12] and Coulomb Displacement Energy (CDE) [13] calculations point to a likely IAS state, their existence cannot yet be certified experimentally (for example ¹⁵O^{*i*}).

The isospin multiplet assignment given in the table is the logical IAS multiplet value, and has not necessarily been deduced experimentally.

2.3 Half-life

Fig. 2 displays the half-lives of nuclides in NUBASE2016. In the light mass region, nuclides beyond the particle driplines can be studied with modern radioactive ion facilities. Most of these unbound nuclides exist for a very short time before they directly decay via particle emission. For some of them, such as ¹⁹Mg and ²⁶O, the half-lives can be determined experimentally with novel experimental methods. For most unbound nuclei, only the total level width (Γ_{cm}) can be measured and therefore the half-life ($T_{1/2}$) can be deduced using the equation $\Gamma_{cm} T_{1/2} \simeq \hbar \times \ln 2$ so that

$$T_{1/2}(s) \simeq 4.562 \, 10^{-22} / \Gamma_{\rm cm} \, ({\rm MeV}).$$

The following units are used for convenient display in NUBASE2016: seconds (s) and its sub-units, minutes (m), hours (h), days (d) and years (y) and its sub-units. Conversion between years and seconds or days could follow various definitions: Julian year, Gregorian year, tropical year 1900, epoch 2000, etc., differing only slightly from each other. A fixed value of:

1 y = 31 556 926 s or 1 y = 365.2422 d

was adopted in NUBASE2016.

Asymmetric uncertainties for half-lives, $T_{1/2}{}^{+a}_{-b}$, are often presented in the literature. However, for these values to be used in practical applications, they need to be symmetrized. A rough symmetrization procedure was used earlier (see AME1995) where the central value was taken as the mid-value between the upper and lower 1σ -equivalent limits, $T_{1/2} + (a - b)/2$, and the uncertainty was defined to be the average of the two uncertainties, (a+b)/2. A strict statistical

derivation (see Appendix A) shows that a better approximation for the central value can be obtained by using

 $T_{1/2} + 0.64 \times (a - b).$

The exact expression for asymmetric uncertainties, adopted in NUBASE2016, is presented in Appendix A.

When two or more independent measurements were reported in the literature, the corresponding values were weighted by their reported precisions and then averaged. While doing this, the NORMALIZED CHI, χ_n (or 'consistency factor' or 'Birge ratio'), as defined in AME2016, is considered. When χ_n is larger than 2.5, departure from the statistical result is allowed and the external uncertainty for the average result is adopted. This follows the same policy that is discussed and adopted in AME2016. Very rarely, when χ_n is so large that all individual uncertainties can be considered as irrelevant, the arithmetic (unweighted) average is adopted and the corresponding uncertainty is based on the dispersion of the values. In such cases, the list of values that were averaged, together with the χ_n value (when relevant) and the reason for this choice, are given in the NUBASE2016 table. When contradictory (conflicting) results were identified in the literature, attention was focused on establishing the reason for such discrepancies, and consequently, any bad data were rejected. The justification for such decisions are given as comments in the NUBASE2016 table.

In experiments where extremely rare events are detected and where the results are very asymmetric (e.g. studies of super-heavy nuclei), the half-life values reported in different publications were not directly averaged. Instead, when the information presented in the literature was sufficient (e.g. ²⁶⁴Hs), the decay times associated with the individual events were combined, as prescribed by Schmidt *et. al.* [1984Sc13].

Some experimental results are reported in the literature as a range of values with a most probable lower and upper limit. These are treated, as in the case of isomer excitation energies (see preceding page), as a uniform distribution of probabilities.

In the NUBASE2016 table, an upper or lower limit on the half-life value is given for nuclides identified using a time-of-flight technique. The following policies were considered:

i) For *observed* nuclides, the lower limit for the half-life is given in place of the uncertainty (e.g. ⁴⁴Si). However, such limits should be used with caution, since they may be far below the actual half-life. In order to avoid confusion, a somewhat more realistic estimate (flagged with #), derived using TNN is also given. ii) For nuclides that were sought, but *not observed*, the upper limit is given in place of the actual half-life uncertainty. Upper limits for a dozen undetected nuclides were evaluated by F. Pougheon [1993Po.A], based on the time-of-flight of the experimental setup and the production yields expected from TNN (e.g. ²¹Al).

When ground-state half-lives for nuclides with the same parities in Z and N are found to vary smoothly, interpolation or extrapolation (TNN) is used to obtain reasonable estimates for unknown cases.

The super-allowed $0^+ \rightarrow 0^+$ nuclear β decays between isospin analog states with isospin T=1 and spin-parity $J^{\pi}=0^+$ are of particular interest due to their pivotal role in the precise determination of V_{ud} to test the unitarity of the Cabibbo – Kobayashi – Maskawa (CKM) Matrix. The evaluation of super-allowed decays, including their half-lives, is a long-standing work carried out by J.C Hardy and I.S. Towner. In the most recent survey [14], experimental data of 20 superallowed transitions have been compiled and carefully evaluated. Half-lives of these nuclides are compared in Fig. 3. It can be seen clearly that the values listed in NUBASE2016 agree well with the values from Ref. [14]. The only significant differences occur for ¹⁸Ne and ⁴²Ti, for which new experimental results were published after the publication of Ref. [14].

Figure 3. Comparison of $T_{1/2}$ for 20 super-allowed β emitters from NUBASE2016 (N16) and Ref. [14] (HT). The error bars at the points display the uncertainties from Ref.[14], and the shaded area displays the uncertainties in NUBASE2016.

2.4 Spin and parity

As for ENSDF, spin and parity values are presented with and without parentheses, based on strong and weak assignment arguments, respectively (see the introductory pages of Ref. [15]). Unfortunately, parentheses in ENSDF are also applied to estimates from theory or from TNN. In NUBASE2016, following our policy of making a clear distinction between experimental and non-experimental information, parentheses are used if the so-called "weak" argument is based on experimental observations, while the symbol '#' is used for the other cases. It should also be noted that despite the well-defined evaluation policies [15], there are a number of inconsistencies in ENSDF regarding the spins and parities for nuclear states. Often, the proposed assignments reflect the interpretation of a particular ENSDF evaluator, rather than that of firm policy rules. As a result, assignments to similar states in neighboring nuclides are put in parenthesis by one evaluator, but not by another, although similar experimental information is available.

We have tried to use a consistent approach in assigning spins and parities to nuclear states, but the survey is still far from complete and the reader may still find inconsistencies. The authors would gratefully appreciate feedback from users for such cases, to improve future versions of NUBASE.

If spins and parities are not determined experimentally, they can be estimated from TNN with the same parities in N and Z. Although, this is frequently the case for odd-A nuclides, such trends are also sometimes valid for odd–odd nuclides, especially in the neighborhood of magic numbers. In all cases, the estimated values are flagged with the '#' symbol.

The review of nuclear radii, moments and spins by Otten [1989Ot.A], as well as the recent compilation by MacDonald [16], were used to check and complete the spin values in NUBASE2016.

The spins and parities of odd-even, even-odd, odd-odd nuclides in their ground states are displayed in Fig. 4, Fig. 5 and Fig. 6, respectively.

2.5 Decay modes and their intensities

Fig. 7 displays the main decay modes of all known nuclides. The most important policy in assembling the information for the decay modes was to establish a clear distinction between a decay mode that is energetically allowed, but not yet experimentally observed (represented by a question mark alone, which refers to the decay mode itself), and a decay mode which is actually observed, but for which the intensity could not be determined (represented by '=?', the question mark referring here to the quantity after the equal sign).

As in ENSDF, no corrections were made to normalize the primary intensities to 100%.

In addition to applying direct updates from the literature, partial evaluations completed by other authors were also considered and properly referenced. Those cases are mentioned below when discussing some particular decay modes.

β^+ decay

In the NUBASE evaluations some definitions and notations for β^+ decay were refined to provide a clearer presentation of the available information. Specifically, β^+ denotes the decay process that includes both electron capture, labeled ε , and decay by positron emission, labeled e⁺. One can then symbolically write: $\beta^+ = \varepsilon + e^+$. It is well known that for an available energy below 1022 keV, only electron capture, ε , is allowed, while above that value the two processes are in competition.

Remark: this notation is **not** the same as the one used implicitly in ENSDF, where the combination of both modes is denoted " $\varepsilon + \beta^+$ ".

When the two modes compete, the separated intensities are not always experimentally available and frequently they are deduced from model calculations, as is the policy in ENSDF. In continuation of one of the general NUBASE policies, in which only experimental information is used whenever possible, it was decided not to retain the separated values calculated in ENSDF (which are scarce and not always updated). Only in a few very specific cases, where the distinction is of importance, such as rare processes (91 Nb, 54 Mn, 119 Te^m), separate values are given.

By the same token, both electron-capture-delayed fission (ε SF) and positron-delayed fission (e^+ SF) are given with the same symbol β^+ SF.

Double- β decay

In the course of this work it was found that half-lives for double- β -decaying nuclides were not always consistently given in ENSDF. Since the two-neutrino gs-gs transition is the dominant decay process (one exception may be ⁹⁸Mo, for which the neutrinoless decay is predicted to be faster, see [2002Tr04]), only those half-life values or their upper-limits were presented in the NUBASE2016 table. No attempt was made to convert the upper limit results given by different authors to the same statistical confidence level (CL).

The excellent compilation of Tretyak and Zdesenko [2002Tr04] was of great help in evaluating such decays.

β -delayed particle decays

For delayed particle decays, intensity relations must be carefully considered. By definition, the intensity of a decay mode is the percentage of decaying parent nuclei in that mode. But traditionally, the intensities of the pure β decay are summed with those of the delayed particles in order to give an intensity that is assigned to the pure β decay. For example, if the (*A*, *Z*) nuclide has a decay described traditionally by ' β^{-} =100; β^{-} n=20', this means that for 100 decays of the parent, 80 (*A*, *Z*+1) and 20 (*A*-1, *Z*+1) daughter nuclei are produced and that 100 electrons and 20 delayed neutrons are emitted. A strict notation in this case, using the definition above, would be ' β^{-} =80; β^{-} n=20'. However, in the present work, it has been decided to follow the above traditional notation.

This also holds for more complex delayed emissions. For example, a decay described by: $\beta^{-}=100$; $\beta^{-}n=30$; $\beta^{-}2n=20$; $\beta^{-}\alpha=10$ ' corresponds to the emission of 100 electrons, (30+2×20=70) delayed-neutrons and 10 delayed- α particles; and in terms of residual nuclides, to 40 (*A*, *Z*+1), 30 (*A*-1, *Z*+1), 20 (*A*-2, *Z*+1) and 10 (*A*-4, *Z*-1). More generally, the number of emitted neutrons per 100 decays, *P*_n, can be written as:

$$P_{\rm n}=\sum_i i\times\beta_{i{\rm n}}^-;$$

and similar expressions can be written for α and proton emis-

sion. The number of residual daughter nuclides (A, Z+1) populated via β^- decay is then:

$$\beta^- - \sum_i \beta^-_{in} - \sum_j \beta^-_{j\alpha} - \dots$$

Another special remark concerns the intensity of a particular β -delayed mode. In general, the primary (parent) β decay populates several excited states in the daughter nuclide, which can further decay by particle emission. However, in a case where the ground state of the daughter nuclide decays also by the same particle emission, some authors included its decay in the value for the corresponding β -delayed intensity. It has been decided to not use such an approach in NUBASE2016 for two main reasons. Firstly, the energies of delayed particles emitted from excited states are generally much higher than those emitted from the ground state, implying different subsequent processes. Secondly, the characteristic decay times from excited states are related to the parent, whereas decays from the daughter's ground state are connected to the daughter nuclide itself. For example, ⁹C decays via β^+ with an intensity of 100% of which 12% and 11% populate two excited proton-emitting states in ⁹B, and 17% goes to an α -emitting state. Thus, $\beta^+ p=23\%$ and $\beta^+ \alpha=17\%$, from which the user of the NUBASE2016 table can derive a 60% direct feeding of the ground state of ⁹B. In a slightly different example, ⁸B decays to only two excited states in ⁸Be, which in turn decay by α - and γ -ray emissions, but not to the ⁸Be ground state. Thus, one may write $\beta^+=100\%$ and $\beta^+\alpha=100\%$, the difference of which leaves 0% for the feeding of the daughter's ground state.

Finally, the users should be aware that the percentages given in the NUBASE2016 table are related to 100 parent decaying nuclei, rather than to the primary beta-decay fraction. An illustrative example is given by the decay of ²²⁸Np, for which the delayed-fission probability is given in the original paper as 0.020(9)% [1994Kr13], but this value is relative to the ε process, which has an intensity of 60(7)%. Thus, the renormalized delayed-fission intensity is 0.020(9)% × 0.60(7) = 0.012(6)% of the total decay intensity.

In compiling the data for β^+ -delayed proton and α activities, the remarkable work of Hardy and Hagberg [1989Ha.A], in which the corresponding physics was reviewed and discussed in detail, was consulted. The review of Honkanen, Äystö and Eskola [17] on delayed proton decays has also been consulted.

Similarly, the review of delayed neutron emission by Hansen and Jonson [18] was carefully examined and used in the NUBASE tables, together with the evaluation of Rudstam, Aleklett and Sihver [1993Ru01].

2.6 Isotopic abundances

Isotopic abundances are taken from the compilation of M. Berglund and M.E. Wieser [2011Be53] and the values are listed in the decay field with the symbol *IS*. These data

are given in the NUBASE tables as presented originally in [2011Be53], and so in this case the rounding policy was not applied.

2.7 Year of discovery

As in NUBASE2012, the present tables include information of the year of discovery for each nuclide in its ground or isomeric state. For the former, recent evaluations performed by a group at Michigan State University [19] were adopted. Similar criteria was used when assigning the year of discovery for isomeric states. The information about the year of discovery is illustrated in Fig. 8.

2.8 References

The year of the archival file for the nuclides evaluated in ENSDF is indicated, otherwise this entry is left blank.

References for all of the experimental updates are given by the NSR keynumber style [7], and are listed at the end of this issue. They are followed by one, two or three one-letter codes which specify the added or modified physical quantities. In cases where more than one reference is needed to describe a particular update, they are given as a remark. No reference is given for estimated values. The initials of the former and present evaluators, AHW, FGK, GAU, HWJ, JBL, MMC, WGM, XUX, are used as reference keys in cases where it may not be precisely clear that the re-interpretation of data were made by the authors.

3 Updating procedure

In general, NUBASE was updated via two routes: from ENSDF after each new A-chain evaluation is published (or from the bi-annual releases), and directly from the literature. Data available in the "eXperimental Unevaluated Nuclear Data List" (XUNDL)[20] database were also regularily consulted.

ENSDF files are retrieved from NNDC using the on-line service [5]. Computer programs, originally developed by O. Bersillon and J. Blachot [21], were used to successively:

• check that each Z in the A-chain has an 'adopted levels' data set; if not, a corresponding data set is generated from the 'de-cay' or 'reaction' data set,

• extract the 'adopted levels' data sets from ENSDF,

• extract the required physical quantities from these data sets, and convert them into the NUBASE format.

The processed data were used to manually update the previous version of NUBASE.

ENSDF is updated generally by A-chains and more recently also by individual nuclides. Its contents are extensive, since it encompasses all of the complex nuclear structure and decay properties. This is a huge effort, and it is not surprising that occasionally some older data (in particular annual reports, conference proceedings, and theses) are missing and that some recent data have not yet been included. When such cases were revealed, they were analyzed and evaluated, as described above, and the NUBASE2016 database was updated accordingly. In principle, these new data will be included in future ENSDF evaluations and the corresponding references can then be removed from future NUBASE distributions. Unfortunately, it has been observed in the past that such a procedure was not always adhered to. In fact, in some newer ENSDF files, quotations to earlier NUBASE publications were found, which leads to an undesirable loop resulting in nontraceable information. For this reason, in such cases the original references are repeated here again.

4 **Distribution and displays of NUBASE2016**

The full contents of the present evaluation is available on-line at the Atomic Mass Data Center (AMDC) website [22], as well as at a mirror website maintained by the International Atomic Energy Agency (IAEA) [23]. An electronic ASCII file for the NUBASE2016 table is also distributed at the AMDC website. Any work that uses those files should make reference to the present publication and not to the electronic files.

The contents of NUBASE2016 can be displayed by the stand-alone PC-program called "NUCLEUS". The charts of nuclides shown in this paper were created by using this program. The program "NUCLEUS" has been updated according to the present NUBASE2016 evaluation and can be downloaded from the AMDC website [22] and the IAEA [23].

5 Conclusions

The 'horizontal' evaluated database, NUBASE2016, which contains the recommended values for the main properties of all known nuclides in their ground and excited isomeric states, has been updated. These data originate from the intersection of two evaluated databases: ENSDF, followed by a critical assessment of the validity and completeness of those data, including new updates from the literature, and AME2016. The main requirement in developing NUBASE2016 was to cover as completely as possible all available experimental data and to provide proper references to them, especially for cases that are not already included in ENSDF. This traceability allows any user to check the recommended data and, if necessary, to undertake a re-evaluation.

As a result of this 'horizontal' work, better homogeneity in handling and presentation of all data was obtained for all known nuclides. Furthermore, isomeric assignments were examined more critically and the data of their excitation energies were improved.

6 Acknowledgments

We wish to thank many colleagues who answered our questions about their experiments and those who sent us preprints of their papers. We appreciate the help provided by J.K. Tuli and B. Singh in solving some of the puzzles we encountered in ENSDF. Continuous interest, discussions, suggestions and encouragements from D. Lunney, Zhang Yuhu and Furong Xu were highly appreciated.

This work is supported in part by the National Key Program for S&T Research and Development (Contract No. 2016YFA0400504) and the Major State Basic Research Development Program of China (Contract No. 2013CB834401). The work at ANL was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. W.J. Huang acknowledges the support from the China Scholarship Council, grant No. 201404910496. S. Naimi acknowledges the support of "RIKEN Pioneering Project Funding" from the Riken project.

Appendix A Symmetrization of asymmetric uncertainties

Experimental data are sometimes given with asymmetric uncertainties, X_{-b}^{+a} . If these data are to be used in some practical applications, their uncertainties may need to be symmetrized. A simple method (Method 1) that was developed earlier, uses the central value to be in the middle between the upper and lower 1 σ -equivalent limits

X + (a-b)/2, with the uncertainty defined to be the average of the two uncertainties

(a+b)/2.

An alternative method (Method 2) considers the random variable *x* associated with the measured quantity. For this random variable, one assumes that the probability density function is an asymmetric normal distribution having a modal (most probable) value of x = X, a standard deviation *b* for x < X, and a standard deviation *a* for x > X (Fig. 9). Then the

average value of this distribution is

$$\langle x \rangle = X + \sqrt{2/\pi} \, (a - b),$$

with variance

$$\sigma^2 = (1 - 2/\pi) (a - b)^2 + ab.$$
(1)

The median value *m* which divides the distribution into two equal areas is given, for a > b, by

$$\operatorname{erf}\left(\frac{m-X}{\sqrt{2}a}\right) = \frac{a-b}{2a},$$
 (2)

and by a similar expression for b > a.

One can then define the equivalent symmetric normal distribution that have a mean value equal to the median value mof the previous distribution with same variance σ .

If the shift m - X of the central value is small compared to *a* or *b*, expression (2) can be written [24]:

$$m - X \simeq \sqrt{\pi/8} (a - b)$$
$$m - X \simeq 0.6267 (a - b).$$

In order to allow for a small non-linearity that appears for higher values of m - X, the relation

$$m - X = 0.64(a - b).$$

was adopted for Method 2. In NUBASE2016, Method 2 is used for the symmetrization of asymmetric half-lives and decay intensities. Table A illustrates the results from both methods.

Figure 9. Simulated asymmetric probability density function (heavy solid line) and the equivalent symmetric one (dashed line).

Nuclide	Original $T_{1/2}$	Method 1	Method 2	
⁸³ Mo	6+30–3 ms	20 ± 17	23 ± 19	
¹⁰⁰ Kr	7+11–3 ms	11 ± 7	12 ± 8	
²⁶⁴ Hs	327+448–120 μs	490 ± 280	540 ± 300	
²⁶⁶ Mt	1.01+0.47–0.24 ms	1.1 ± 0.4	1.2 ± 0.4	

Table A. Examples of two different treatments of asymmetric half-life uncertainties.
Method 1 is the classical method, used previously, as in the AME1995.
Method 2 is the one developed in NUBASE2003, described in this Appendix.

References

References in the text such as [1993Po.A] or [2015Ga38] are listed under "References used in the AME2016 and the NUBASE2016 evaluations", p. 030003-261.

- 1 G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra, Nucl. Phys. A, **624** : 1-124 (1997)
- 2 G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra, Nucl. Phys. A, **729**: 3 (2003)
- 3 G. Audi, F.G. Kondev, M. Wang, B.Pfeiffer, X. Sun, J. Blachot and M. MacCormick, Chin. Phys. C, 36: 12 (2012) http://amdc.impcas.ac.cn/evaluation/data2012/paper/ NUBASE2012.pdf
- 4 Edited by Yu. Litvinov and K. Blaum, Int. J. Mass Spectrom. **349 350**: (2013)
- 5 T.W. Burrows, Nucl. Instrum. Meth. **286**: 595 (1990) http://www.nndc.bnl.gov/ensdf/
- 6 T. Goigoux et al., Phys. Rev. Lett. 117: 162501 (2016)
- 7 B. Pritychenko, E. Běták, M.A. Kellett, B. Singh and J. Totans, Nucl. Instrum. Methods Phys. Res. A, 640: 213 (2011) http://www.nndc.bnl.gov/nsr/
- 8 L. Öhrström and J. Reedijk, Pure Appl. Chem. 88: 1225 (2016)
- 9 C.J. Gallagher, Jr. and S. A. Moszkowski, Phys. Rev. **111**: 1282 (1958)
- 10 G. Audi, "A Lecture on the evaluation of atomic masses", in arXiv:

http://arxiv.org/abs/nucl-ex/0302020

11 M. MacCormick and G. Audi, Nucl. Phys. A, 925: 61 (2014)

- E. P. Wigner, in Proceedings of the Robert A. Welch Foundation Conference on Chemical Research, edited by W. O. Milligan (Houston: Welch Foundation, 1958), Vol. 1, p. 88
- 13 M. S. Antony, J. Britz, J. B. Bueb and A. Pape, At. Data Nucl. Data Tables , 33: 447 (1985)

M. S. Antony, J. Britz and A. Pape, At. Data Nucl. Data Tables , **34**: 279 (1985)

A. Pape and M. S. Antony, At. Data Nucl. Data Tables , **39**: 201 (1988)

M. S. Antony, J. Britz and A. Pape, At. Data Nucl. Data Tables , **40**: 9 (1988)

- 14 J. C. Hardy, I. S. Towner, Phys. Rev. C, 91: 025501 (2015)
- 15 General Policies, Nuclear Data Sheets, **113**: (2012) v
- 16 A. MacDonald, B. Karamy, K. Setoodehnia, B. Singh, Nucl. Data Sheets 114: 397 (2013)
- 17 J. Honkanen, J. Äystö and K. Eskola, Phys. Scr. 34: (1986) 608
- 18 P. G. Hansen and B. Jonson, Particle Emission from Nuclei, Vol.3, p. 157, CRC Press, Florida (1989)
- 19 M. Thoennessen, Rep. Prog. Phys., **76**: 056301 (2013) and references therein
- 20 http://www.nndc.bnl.gov/xundl/
- 21 O. Bersillon and J. Blachot, NEANDC(E) 246/L, INDC(FR) 071/L, September 1991
- 22 The NUBASE2016 files in the electronic distribution format and additional complementary information can be retrieved from the Atomic Mass Data Center (AMDC) at http://amdc.impcas.ac.cn/
- 23 https://www-nds.iaea.org/amdc/
- 24 R. D. Evans, The Atomic Nucleus (New York: McGraw-Hill, 1955) p. 766

Table I. The NUBASE2016 table of nuclear and decay properties

EXPLANATION OF TABLE

Data are presented in groups ordered according to increasing mass number A.

Nuclide	Nuclidic name: mass number $A = N + Z$ and element symbol (for $Z > 109$ see Section 2). Elements with upper suffix 'm', 'n', 'p', 'q', 'r' or 'x' indicate assignments to excited isomeric states (defined as higher states with half-lives greater than 100 ns). Suffixes 'p' and 'q' also indicate non-isomeric levels, but used in the AME2016. Suffix 'r' also indicates a state from a proton resonance occurring in (p, γ) reactions (e.g. ²⁸ Si ^r). Suffix 'x' also applies to mixtures of levels (with relative ratio R, given in the 'Half-life' column), e.g. occurring in spallation reactions (indicated 'spmix' in the 'J ^{π} ' column) or fission ('fsmix').
Mass excess	 Mass excess [<i>M</i>(in u)−<i>A</i>], in keV, and its one standard deviation uncertainty as given in the 'Atomic Mass Evaluation' (AME2016, in the second part of this volume). Rounding-off policy: in cases where the furthest-left significant digit in the error is larger than 3, values and errors are rounded-off, but not to more than tens of keV. (Examples: 2345.67±2.78 → 2345.7±2.8, 2345.67±4.68 → 2346±5, but 2346.7±468.2 → 2350±470). # instead of a decimal point: value and uncertainty are not derived only from experimental data, but at least partly with estimates from TMS (see AME2016).
Excitation energy	For excited isomers only: energy difference, in keV, between levels adopted as higher level isomer and ground state isomer, and its one standard deviation uncertainty, as given in AME2016 when derived from the AME, otherwise as given by ENSDF. The rounding-off policy is the same as for the mass excesses (see above). # instead of a decimal point: value and uncertainty derived from trends in neighboring nuclides. The excitation energy is followed by its origin code when derived from a method other than γ -ray spectrometry: MD mass doublet RQ reaction <i>Q</i> -value AD α energy difference BD β energy difference p, 2p one-, two-proton decay IT combination of AME and γ -ray data Nm estimated value derived using the Nilsson model When the existence of an isomer is questionable the following codes are used: EU existence of isomer is under discussion (e.g. $^{73}\text{Zn}^n$). If existence is strongly doubted, no excitation energy and no mass are given. They are replaced by the mention "non existent" (e.g. $^{138}\text{Pm}^n$). RN isomer has been proven not to exist (e.g. $^{181}\text{Pb}^m$). Excitation energy and mass are replaced by the mention "non existent". Remark: codes EU and RN are also used when the discovery of a nuclide (e.g. ^{260}Fm or ^{289}Lv) is questioned. In this case an estimate derived from trends in the mass surface is always given for the ground state mass. Isomeric assignment: * if the uncertainty σ on the excitation energy <i>E</i> is greater than half the excitation energy ($\sigma > E/2$), these quantities are followed by an asterisk (e.g. $^{130}\text{In}^m$). & when the ordering of the ground state isomer and the excited isomer are reversed as compared to ENSDF, an ampersand sign is added (e.g. ^{102}Y and $^{102}\text{Y}^m$).

Half-life	s = second 1 y = 31 5 STABLE = # valu subunits:	ls; m = 1 56 926 s adopte stable 1 has bee e estima	minutes; P_{s} or d values f nuclide, o en found. ated from 10^{-3}	n = ho 365 for Nt r nucl trend	urs; d = days; y = .2422 d JBASE (see text) ide for which no f s in neighboring m	years; inite half- uclides w	-life v ith th	ralue e same	Z aı 3	nd N	parities.
	11	15 . 15 ·	10^{-6}	s	microsecond	M	y. v.	10	6	y V	megavear
	n p	s :	10^{-9}	s	nanosecond	G	v :	10	9	v	gigavear
	p	s :	10^{-12}	s	picosecond	T	v :	10 ¹	2	v	teravear
	f	s :	10^{-15}	S	femtosecond	P	y :	10^{1}	5	y	petayear
	a	.s :	10^{-18}	S	attosecond	E	y :	10^{1}	8	y	exayear
	Z	s :	10^{-21}	S	zeptosecond	Z	y :	102	21	y	zettayear
	y	s :	10^{-24}	S	yoctosecond	Y	y :	102	24	y	yottayear
	<i>R</i> : For isc state isom	omeric n er.	nixtures o	only, i	t is the productior	n ratio of	the e	xcited i	son	ner st	ate to the ground
Jπ	Spin and p () u # v high h low lo am sa T Is For isome tively).	barity: ncertain alues est igh spin bw spin. bw spin. ame J^{π} a sopin mu	spin and, timated fr as α -deca ultiplet fo tures only	'or pa om tr y pare r isob v: miz	rity. ends in neighborir ent aric analog states x (spmix and fsmi	ng nuclide (IAS). ix if obse	es wit	h the sa	atic	Z and	d <i>N</i> parities. d fission, respec-
Ens	Year of the (in order t	e Ensdi o reduce	F file arch e the widt	ive h of tl	he Table, the two c	century di	gits a	re omit	ted)).	
Reference	Reference (in order t of this vol 10Cr02 12Dr.A AHW Mirror Imme The refere	keys: o reduce ume the updat Data S updat ence, (or FC of NU deduce deduce	e the widt full refer es to ENS Sheets. W es to ENS thesis or a GK, GAU JBASE. ced from I ced from I	h of t ence DF de DF d SDF d annua J, HW mirror sobar are fo	he Table, the two key-number is give erived from a regu not yet available, t erived from an ab l report. /J, JBL, MMC, V nuclide properties ic Multiplet Mass ollowed by one, tw	century d en, ie. 20 ilar journa the style 1 stract, pro VGM), re s. Equation vo or three	ligits 10Cr al. Tl 2Ma eprint -inter e lette	are om 22 as op nese ke 1 is pro , privat pretation r codes	ittec ppos ys a ovis e cc on b wh	d. Ho sed to ire tal ional ommu y one ich sp	owever, at the end o 10Cr02) ken from Nuclear ly adopted. unication, confer- e of the evaluators
	or modifie	d physic	cal quanti	ties:	ation energy					1	
	T J D I	for h for s for d for i	alf-life pin and/o lecay mod dentificat	r pari le and	ty /or intensity						
Year of discovery	for ground	l states [[15] and f	or exc	cited isomers (see	text).					

Decay modes and intensities	Decay modes followed uncertainties. The spe The uncertainties are $\pm 2.3 \%$	d by their intensities (in %), and their one standard deviation cial notation 1.8e–12 stands for 1.8×10^{-12} . given - only in this field - in the ENSDF-style: α =25.9 23 stands for α =25.9
	The ordering is accord	ling to decreasing intensities.
	α ? means α decay	is energetically allowed.
	$\alpha = ?$ means α decay	has been observed but not yet quantified.
	α	α emission
	p 2p	proton emission 2-proton emission
	n 2n	neutron emission 2-neutron emission
	ε	electron capture
	e ⁺	positron emission
	eta^+	β^+ decay $(\beta^+ = \varepsilon + e^+)$
	eta^-	β^- decay
	$2\beta^-$	double β^- decay
	$2eta^+$	double β^+ decay
	$\beta^{-}n$	β^- delayed neutron emission
	β^{-2n}	β^- delayed 2-neutron emission
	β^+ p	β^+ delayed proton emission
	$\beta^+ 2p$	β^+ delayed 2-proton emission
	$\beta^- \alpha$	β^- delayed α emission
	$\beta^+ lpha$	β^+ delayed α emission
	$\beta^{-}d$	β^- delayed deuteron emission
	ĪT	internal transition
	SF	spontaneous fission
	$\beta^+ \mathrm{SF}$	β^+ delayed fission
	β^{-} SF	β^- delayed fission
	²⁴ Ne	heavy cluster emission
		list is continued in a remark, at the end of the A-group
	For long-lived nuclide	s:
	ĨS	Isotopic abundance (from [2011Be53])

* A remark on the corresponding nuclide is given below the block of data corresponding to the same *A*.

Remarks. For nuclides marked with an asterisk at the end of the line, extra comments have been added. They are collected in groups at the end of each block of data corresponding to the same *A*. They start with a letter code, similar the ones following the reference key-number, as given above, indicating to which quantity the remark applies. They give:

- i) Continuation for the list of decays. In this case, the remark starts with three dots.
- ii) Information explaining how a value has been derived.
- iii) Reasons for changing a value or its uncertainty as given by the authors, or for rejecting it.
- iv) Complementary references to updated data.
- v) Separate values used in the adopted average.

TNN : Trends from neighboring nuclides.

 τ : meanlife (or lifetime) $T = \tau \times ln2$

			140			DASE2010			- pranac				1 puge 10		
Nuclide	Mass e (ke	excess V)	Exene	citatior rgy (ke	n √)	Half-	ife		J^{π}]	Ens	Referen	ce	Year of discovery	Decay modes and intensities (%)	
1 n	8071 2171	0.0005				612.0		0.6	1 /2+	04			1022	β ⁻ -100	
1 H	7288 9706	0.0003				STABLE	5	0.0	$\frac{1/2}{1/2^+}$	06	11Be53	D	1932	p = 100 IS=99 9885 70	*
* ¹ n	T : also 15	Ar07=610.1($(0.8) \tau = 880$.2(1.2).	13Yu07=	$615.3(1.5) \tau =$	887	.7(2.2)		00	11Bc55	D	1720	13-77.7003 10	**
* ¹ n	T: 12/	Ar05=611.1(1.5) τ =881.	6(2.1)				()	,						**
$^{2}\mathrm{H}$	13135.7217	0.0001				STABLE			1^{+}	03			1932	IS=0.0115 70	
311	1 40 40 0000	0.0002				12.22		0.02	1 /2+	00			1024	0- 100	
³ Н ³ Но	14949.8099	0.0002				12.32 STARIE	У	0.02	$\frac{1}{2^+}$	00			1934	$\beta = 100$ IS-0.000134.3	
³ Li	28670#	2000#				p-unstable			1/2	98			1969	n ⁹	*
* ³ Li	I : identific	ation in 69W	/i13 not acc	epted, s	ee Ensd	F'98				10			1707	Ъ.	**
4	24/20	100				120		10	2-	00	0214 11	T	1001	100	
⁻ H 411a	24620	100				139	ys	10	2 0 ⁺	98	03Me11	T	1981	n=100	*
⁴ Li	25320	210				91	vs	9	2-	98	65Ce02	т	1908	n=100	
$*^{4}H$	T : width=	3.28(0.23) M	leV; also 91	Go19=4	4.7(1.0) o	utweighed, no	ot us	ed	2	70	050002	1	1905	p=100	**
⁵ H	32890	90				> 910	ys		$(1/2^+)$	02	03Go11	Т	1987	2n=100	*
⁹ He	11231	20				700	ys	30	$3/2^{-}$	02			1937	n=100	
⁵ Li 5Ro	11680	50				370	ys	30	$3/2^{-}$	02			1941	p=100	
⁵ Ве " ⁵ н	3/140# T : from w	2000#	W conflict	ting wit	h 01Ko52	-280(50) ve	widt	h-1 0/	$1/2^{+}$ #	02				p ?	باد باد
* ⁵ H	T: (sa	me authors) l	but with ins	trument	al resolut	ion=1.3 MeV	with	II=1.9((0.4)						**
* ⁵ H	T: oth	ers 91Go19=	=66(25) ys 9	5A131=	110 ys pr	obably for his	gher	state							**
* ⁵ H	J : from an	gular distribu	ution consis	tent wit	h l = 0		-								**
⁶ H	41880	250				290	ys	70	2-#	02	150001		1984	n ?; 3n ?	
⁶ He	17592.10	0.05				806.92	ms	0.24	0	02	15Pf01	D	1936	$\beta = 100; \beta = d = 0.000278 18$	*
⁶ Li ⁱ	14080.8789	0.0014	3562.88	0.10		STABLE 56	as	14	$0^{+}T=1$	02	81Ro02	E	1921	IS=7.594 IT=100	
⁶ Be	18375	5	5502.00	0.10		5.0	ZS	0.3	0+	02	011002	Г	1958	2p=100	
⁶ B	47320#	2000#				p-unstable#			2-#	~-				2p ?	
* ⁶ He	D : other β	⁻ d from 09F	Ra33=1.65(0.10)e-	6 but with	n 525 keV thre	shol	d						•	**
* ⁶ He	T : symme	trized from 1	2Kn01=800	6.89(0.1	1)(+0.23	-0.19)									**
7	401.40%	1000#				500.0			1 /2+ //				2002	2. 0	
′Н 7 _{Не}	49140# 26073	1000#				500#	ys	0.07	$1/2^{+}$ $(3/2)^{-}$	02	120-05	т	2003	2n ? n=100	
7I i	20075	° 0.004				2.31 Starie	zs	0.07	(3/2) $3/2^{-}$	03	12Ca05	1	1907	IS-92 41 4	*
$^{7}Li^{i}$	26150	30	11250	30	RO	STABLE			$3/2^{-}T=3/2$	03			1721	13-72.41 4	
⁷ Be	15769.00	0.07	11200	20		53.22	d	0.06	$3/2^{-}$	03			1938	ε =100	
$^{7}\mathrm{Be}^{i}$	26750	30	10980	30	RQ				$3/2^{-}T=3/2$	03				p ?; 3He ?; α ?	
^{7}B	27677	25				570	ys	14	$(3/2^{-})$	14	11Ch32	Т	1967	p=100	*
* ⁷ He	T : from 12	2Ca05=182(5	5) keV												**
*'He * ⁷ B	T : others (T : from w	9Ak03=190 idth 11Ch32	(30) 08De2 =801(20) ke	9=125(eV 570(+40–15) (14) ys	02Me07=150	(80)	69St02	2=160(30)						** **
⁸ He	31609.68	0.09				119.1	ms	1.2	0^+	05			1965	$\beta^{-}=100; \beta^{-}n=16 1; \beta^{-}t=0.9 1$	
⁸ Li	20945.80	0.05				839.40	ms	0.36	2^{+}	05	10F101	Т	1935	$\beta^{-}=100; \beta^{-}\alpha=100$	*
⁸ Li ⁱ	31768	5	10822	5	RQ			• -	0+T=2	05			10.8-		
⁸ Be	4941.67	0.04	1((2))	2		81.9	as	3.7	0^+	05	0.47510.6	г	1932	$\alpha = 100$	
[°] Be' ⁸ Bc ⁱ	21368	3	10020	3	PO				2 mg.T=1	05	041106	Е	2004	$\alpha \approx 100$	*
⁸ B	32430.0 22921.6	2.0	21494.3	2.0	кŲ	770	me	3	0° 1=2 2+	05			1950	$B^+=100$; $B^+\alpha=100$	· *
8 D i	33546	8	10624	8	RO	770	1115	5	$0^{+}T=2$	05			1950	p = 100, p = a = 100	不
SRX.	35064	18	10027	Ū	~~~~	3.5	zs	1.4	0+	05	11Ch32	Т	1974	2p=100	*
⁸ C		av to first 2+	state in 8B	e, whic	h decavs	100% in 2α	20		-	50		-		1	**
⁸ C * ⁸ Li	$D:\beta^-$ dec	ay to mot 2				100 /0 111 2 00									
⁸ C * ⁸ Li * ⁸ Be ⁱ	$D: \beta^-$ dec E : stronge	st frg; other:	296(3) high	her I(16	626)/I(16	922)=1.22 in	⁶ Li(⁶ Li,α)	l i i i i i i i i i i i i i i i i i i i						**
⁸ C * ⁸ Li * ⁸ Be ⁱ * ⁸ Be ⁱ	$D: \beta^-$ dec E: stronge E: and	st frg; other: 1.15 in ¹⁰ B(296(3) high (d, α) ; see 0	her I(16 4Ti06 p	626)/I(16 .213	922)=1.22 in	⁶ Li(⁶ Li,α)	I						** **
⁸ C * ⁸ Li * ⁸ Be ⁱ * ⁸ Be ^j	$D: \beta^{-} \det C$ E: stronge E: and D:; p=	st frg; other: 1 1.15 in ¹⁰ B(6.9; 3He=6.6	296(3) high (d, α); see 0 5; IT=0.60	her I(16 4Ti06 p	626)/I(16 .213	1922)=1.22 in	⁶ Li(⁶ Li,α)	I						** ** **
⁸ C * ⁸ Li * ⁸ Be ⁱ * ⁸ Be ⁱ * ⁸ Be ^j * ⁸ B	$D: \beta^{-} \det C$ $E: \text{ stronge}$ $E: \text{ and } D: \dots; p=$ $D: \beta^{+} \text{ to } 2$	st frg; other: 1 1.15 in ¹⁰ B(6.9; 3He=6.6 2 excited stat	296(3) high (d, α); see 0 5; IT=0.60 es in ⁸ Be, th	her I(16 4Ti06 p hen α a	626)/I(16 .213 nd γ, but	(922)=1.22 in not to ⁸ Be gro	⁶ Li(ound	⁶ Li,α) -state	1						** ** ** **

 Table I. The NUBASE2016 table (Explanation of Table on page 18)

			Table L	inc ite	JBASE2010		(-p			abic on p	Jage 10)	
Nuclide	e Mass e (ke)	kcess /)	Exener	citation rgy (keV)	Ha	alf-li	fe	J^{π}	Ens	Reference	;	Year of discovery	Decay modes and intensities (%)	
917	100.10							1 (2(+)	01	1/11/01		1007	100	
² He	40940	50			2.5	ZS	2.3	$1/2^{(+)}$	06	16Ub01	l	1987	n=100	*
°Li	24954.90	0.19			178.3	ms	0.4	3/2	06	95Re.A	D	1951	$\beta = 100; \beta = n = 50.82$	
Be	11348.45	0.08	1 4200 2	1.5 5	STABLE		0.10	3/2	06			1921	IS=100.	
⁹ Be ⁴	25738.8	1.7	14390.3	1.7 R	Q 1.25	as	0.10	$3/2^{-1}=3/2$	06			1976	100	
² B	12416.5	0.9			800	ZS	300	3/2-	06			1940	p=100	
⁹ Bx ⁴	27071.0	2.3	14654.5	2.5 R	Q			3/2-1=3/2	06					
°С * ⁹ Не	28911.0 T : derived	2.1 from widt	th 13Δ114-	180(100).	126.5 ther width 99F	ms	0.9 -100(60)	$(3/2^{-})$	06			1964	$\beta^+=100; \beta^+p=61.6; \beta^+\alpha=38.4$	**
* 110	1 . derived	nom wid	ur 15/1114–	100(100), (020-	-100(00)							4.45
¹⁰ He	49200	90			3.1	75	2.0	0^{+}	07			1994	2n=100	*
¹⁰ Li	33053	13			2.0	ZS	0.5	$(1^{-}, 2^{-})$	07	94Yo01	ТJ	1975	n=100	
${}^{10}Li^{m}$	33250	40	200	40 R	0 37	75	15	1+	07	97Zi04	Т	1994	IT=100	*
${}^{10}Li^n$	33530	40	480	40 R	0 135	75	0.24	(2^+)	07	94Yo01	Ť	1993	IT=100	*
¹⁰ Be	12607 49	0.08	100	10 1	1.50	Mv	0.04	0+	07	, 1001	-	1935	$\beta^{-}=100$	
$^{10}\text{Be}^{i}$	33787	21	21179	21 R	0	my	0.01	$(2^{-})T=2$	07			1755	n ?: n ?: 3H ?	
10 B	12050 609	0.015	21177	21 1	STARIE			(2)1-2 3+	07			1920	IS-1997	
${}^{10}B^{i}$	13790.66	0.04	1740.05	0.04	OINDEL			$0^{+}T - 1$	07			1720	IT-100	
¹⁰ C	15698.67	0.07	1740.05	0.04	19 3009	e	0.0017	0+	07	16Du10	т	1040	$\beta^{+} - 100$	*
10 N	38800	400			200	ve	140	(2^{-})	07	02Le16	тı	2002	n?	T
*10He	D · most n	rohably ?	neutron emi	tter from S	= 1440(90)1	ys reV	140	(2)	07	021010	13	2002	Р ·	**
↓101 ;m	T · overea	077i0/_1	120(±100 5	$(0) 04V_{0}01.$	2n = 14 + 0(90) F = 100(70) $1 = 10$									**
* LI 101 ;n	T : average	$0.04 V_{0}01 = 1$	120(+100-3)	0) 941001	=100(70) KeV 70) keV Birge	rotio	P_7 8							**
↓10C	T . average	Du10(2)-1	10 2060/0 0	074) 00P~4	10/ NCV, DIIge	1110	D=2.8 8Ia01=10	310(0.004)						<u>۳</u> .4
* 'C	1 . aiso 10	Du10(2)-1	19.2909(0.0	074) 09Ba	04-19.282(0.01	(1)0	01401-15	9.510(0.004)						**
¹¹ Li	40728.3	0.6			8.75	ms	0.14	$3/2^{-}$	12	12Ke01	D	1966	$\beta^{-}=100; \beta^{-}n=86.39; \beta^{-}2n=4.14; \dots$. *
¹¹ Be	20177.17	0.24			13.76	s	0.07	$1/2^+$	12	81Al03	D	1958	$\beta^{-}=100; \beta^{-}\alpha=2.94;$	*
$^{11}\text{Be}^i$	41336	20	21158	20 R	O 0.93	ZS	0.13	$3/2^{-}T=5/2$		MMC162	J	1997	IT ?	*
${}^{11}B$	8667.707	0.012			STABLE			3/2-	12			1920	IS=80.1 7	
${}^{11}B^{i}$	21228	9	12560	9 R	0		T = 3/2	$1/2^+, (3/2^+)$	12			1963		
${}^{11}\mathbf{B}^{j}$	42230	80	33570	80	2n		1 0/2	$3/2^{-}T=5/2$		MMC146	T	1700		
¹¹ C	10649 40	0.06	55570	00 1	-P 20 364	m	0.014	3/2-	12	initial in the	5	1934	$\beta^{+}=100$	
${}^{11}C^i$	22810	40	12160	40 R	0		0.011	$1/2^+T=3/2$	12	71Wa21	D	1971	p = 100 p = 2	
11 N	24300	50	12100	40 K	550	ve	20	1/2+	12	/1 // 421	D	1974	p=100	*
11 Nm	25040	80	740	60	690	y s ve	80	1/2-	12	964 x 01	FTI	1974	p=100	Ŧ
"11 1 ;	D· · ß-	3n - 102	$B^{-}\alpha - 173$	· B=d=0.0	130 13· B ⁻ t-0	0003	2.8	1/2	12	<i>J0/1</i> X01	LIJ	17/4	p=100	بلد بلد
√ L1 ↓11∎;	D: total B	- delayed	p u=1.7 S	ission Dn-	100.3(1.4)%	.007.	,0							**
≁ Li ull B α	$D \cdot io(a) p$	n=0.0008	$3 0 \cdot \beta^{-} n ?$	1551011 1 11-	100.5(1.4)//									**
* DC	$D \dots, p$	p=0.0008.	3^{-} , p^{-} II :	koV										**
* BC * ¹¹ N	T : from E	NSDF2012	2 : width = 83	0(30) keV										**
¹² Li	49010	30			< 10	ns			00	74Bo05	I	2008	n ?	
¹² Be	25077.8	1.9			21.50	ms	0.04	0^+	00	01Be53	Т	1966	$\beta^{-}=100; \beta^{-}n=0.503$	*
$^{12}\mathrm{Be}^m$	27328.8	2.1	2251	1	229	ns	8	0^+		07Sh34	EJT	2007	IT=100	
^{12}B	13369.4	1.3			20.20	ms	0.02	1^{+}	00	66Sc23	D	1935	$\beta^{-}=100; \beta^{-}\alpha=1.63$	
${}^{12}\mathbf{B}^{i}$	26088	19	12719	19 R	.0			$0^{+}T=2$	00	08Ch28	J		. ,	*
^{12}C	0.0	0.0			STABLE			0+	00		-	1919	IS=98.93 8	· · ·
$^{12}C^{i}$	15108	3	15108	3 R	0			$1^{+}T=1$	00				$IT=?: \alpha$?	
${}^{12}C^{j}$	27595.0	24	27595.0	2.4 R	ò			$0^{+}T=2$	00				,	
12N	17338 1	1.0	2.070.0	2.	11 000	me	0.016	1+	00	66Sc23	D	1949	$\beta^{+}=100: \beta^{+}\alpha=355$	
12 Ni	29534	29	12105	29	2n	1115	0.010	$(0^+)T-2$	00	MMC142	ī	1/7/	p = 100, p = a = 0.000	
120	31015	24	12175	27 1	-r 、 6 ?	70		0+	00	121011	у Т	1079	2n-60.30	J-
12D	D + from 0	24 0Bo52. al-	0.05Po A- (57/0 0000	outwoiched	ZS not	ead	0.	00	12Jal l	1	19/0	2p-00 50	*
* DC ↓12ъi	L. 000520	"engaget-	that the 12	75 May	v outweighted, i	not u	seu	\ S''						**
* b * ¹² 0	T : from w	idth 12Ja1	1 < 72 keV;	others 09S	114 = 600(500)k	eV 9	5Kr03t=	578(205)keV						**
	56980	70			3.3	ZS	1.2	3/2-#		08Ak03	D	2008	2n=100	*
¹³ Li		10			1.0	ZS	0.7	$(1/2^{-})$		10Ko17	TJ	1983	n ?	*
¹³ Li ¹³ Be	33659	10												
¹³ Li ¹³ Be ¹³ Be ^p	33659 35160	50	1500	50 R	Q			$(5/2^+)$				1992		
¹³ Li ¹³ Be ¹³ Be ^p ¹³ B	33659 35160 16561.9	50 1.0	1500	50 R	Q 17.33	ms	0.17	$(5/2^+)$ $3/2^-$	00			1992 1956	$\beta^{-}=100; \beta^{-}n=0.284$	
¹³ Li ¹³ Be ¹³ Be ^p ¹³ B ¹³ C	33659 35160 16561.9 3125.0088	50 1.0 0.0002	1500	50 R	Q 17.33 Stable	ms	0.17	$(5/2^+)$ $3/2^-$ $1/2^-$	00 01			1992 1956 1929	$\beta^{-}=100; \beta^{-}n=0.28 4$ IS=1.07 8	
¹³ Li ¹³ Be ¹³ Be ^p ¹³ B ¹³ C ¹³ C ¹³ C ⁱ	33659 35160 16561.9 3125.0088 18233.8	50 1.0 0.0002 1.1	1500 15108.8	50 R	Q 17.33 Stable	ms	0.17	$(5/2^+)$ $3/2^-$ $1/2^-$ $3/2^-$ T= $3/2$	00 01 00			1992 1956 1929	$\beta^{-}=100; \beta^{-}n=0.28 4$ IS=1.07 8 IT=0.82 7; N ?; α ?	

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

					DASEZ	510 ta		(com	mucu, Exp	Лаг		14	DIC OII P	age 10)	
Nuclide	Mass e	xcess V)	Ex	citation		Hal	t-lite	e	J^{n}	Ens	Reference	e	Year of discovery	Decay modes and intensities (%)	
	(ite	•)	Une	(lie)									anseevery		
A-gro	up continued .														
¹³ N	5345.48	0.27				9.965	m	0.004	1/2-	00			1934	$\beta^+=100$	
¹³ N ¹	20410.59	0.18	15065.1	0.3	RQ	0.50		0.05	$3/2^{-}T=3/2$	00	505.02		10/2	IT=4.9 3; P ?; α ?	
130	23115	10	2 125/60 40	. 1 . 1 . 7		8.58	ms	0.05	$(3/2^{-})$	00	70Es03	D	1963	$\beta^{+}=100; \beta^{+}p=10.920$	
* ¹³ L1	1 : from w	idth 13Kou	$J_{3}=125(60-40)$) Ke V	5D-12 2	00/2001									**
* ¹³ Be	1: from w	idin IUKOI	/=450(50) Ke	olThO1 or	3Pe12=3	00(200)	ke v	d := 10	Va17						**
*13Be	J: 1/2 · ass	discussion	in AME2012	Dort I Sec	tion 6.3	n 1313	ione	a in 10	K 017						**
* DC * ¹³ Be	J. see	14Ra07=1	/2+	, 1 alt 1, 5cc		, p.1515									**
* De	J. und	1 11007-1	/2												
1410	20050	120				4.25		0.17					1070		
¹⁴ Be	39950	130	1.500	1.50	DO	4.35	ms	0.17	0^+	01	02Je11	D	19/3	$\beta^{-}=100; \beta^{-}n=982; \beta^{-}2n=0.808;$. *
¹⁴ Be ^p	41470	60	1520	150	RQ	10.5		0.5	(2+)	01	95B010	I	1995	P = 100, P = -(04.22, P = 2-2)	
14 D <i>i</i>	23004	21	17065	20	DO	12.5	ms	0.5	$^{\perp}$	01	95Ke.A	D T	1900	p = 100; p = 0.04 23; p = 2n?	
¹⁴ C	40726	20	17005	29	ĸŲ	4.13	ZS Izv	1.9	0-1=5	01	MINIC 102	J	1026	$\beta^{-} = 100$	*
$^{14}C^{i}$	25120	100	22100	100		5.70	ку	0.05	$(2^{-})T-2$	01			1950	p = 100 IT-100	
¹⁴ N	2863 4167	0.0001	22100	100	,	STABLE			(2)1=2	01			1939	IS=99 636 20	
$^{14}N^{i}$	5176.007	0.0001	2312 590	0.010		JIADLL			$0^{+}T=1$	01	01Ba06	Е	1963	IT=100	
¹⁴ O	8007.781	0.025	20121090	0.010		70.620	s	0.013	0^{+}	01	13La23	Т	1949	$\beta^{+}=100$	*
¹⁴ F	31960	40				500	ys	60	$\tilde{2}^{-}$	14	10Go16	TJ	2010	p?	*
* ¹⁴ Be	$D:\ldots;\beta^{-}$	3n=0.2 2;	$\beta^{-}t=0.021;$	$\beta^{-}\alpha < 0.00$	4		2							1	**
* ¹⁴ Be	D : superse	edes 99Be5	3, same grou	р											**
$*^{14}B^i$	T : from w	idth 01Ta2	3=110(50) ke	V											**
* ¹⁴ O	T : average	e 13La23(b	eta)=70.610(0	0.030), 04B	3a78=70.	.641(0.02	20),								**
* ¹⁴ O	T: 78V	Wi04=70.6	13(0.025) and	173C112=7	0.590(0.	030);									**
* ¹⁴ O	T: oth	ers outweig	ghed : 13La23	$3(\gamma) = 70.63$	2(0.094)	, 06Bu12	2=70	.696(0	.052)						**
* ¹⁴ O	T: and	101Ga59='	70.560(0.049))											**
*14F	T : from w	idth 10Gol	16=910(100)1	κeV											**
¹⁵ Be ¹⁵ B ¹⁵ C ¹⁵ N ¹⁵ O ⁱ ¹⁵ O ⁱ ¹⁵ F ¹⁵ Ne * ¹⁵ Be * ¹⁵ B	49830 28958 9873.1 101.4387 11717 2855.6 14020# 16567 40220 T : from w D : $β^-$ 2n i	170 21 0.8 0.0006 4 0.5 40# 14 70 idth 13Sn0 ntensity is	11615 11165# 2=575(200) k from 89Re.A	4 35# æV J:2	RQ 2p given in	790 9.93 2.449 STABLE 122.24 1.1 770 91Aj01	ys ms s zs ys	270 0.07 0.005 0.16 0.3 300	$\begin{array}{c} (5/2^+)\\ 3/2^-\\ 1/2^+\\ 1/2^-\\ 1/2^+T=3/2\\ 1/2^-\\ (1/2^+)T=3/2\\ 1/2^+\\ (3/2^-) \end{array}$	15 02 02 02 02 02 02 02 02 14	13Sn02 95Re.A Imme 04Go15 14Wa09	TD D E J JD	2013 1966 1950 1929 1934 1978 2014	n=100 $\beta^{-}=100; \beta^{-}n=93.6 \ 12; \beta^{-}2n=0.4 \ 2$ $\beta^{-}=100$ IS=0.364 20 n ?; p ?; IT=0.00523 \ 19 $\beta^{+}=100$ p=100 p=100 2p=100	* * * * * * * *
$*^{15}B$	T : also 03	Ye02=9.86	(+0.15-0.19)		-	5									**
* ¹⁵ F	T : from 16	6De15=370	(70)(+200-0)) keV											**
* ¹⁵ Ne	T : from w	idth 590(2	30) keV												**
¹⁶ Be ¹⁶ B ¹⁶ C ¹⁶ N ¹⁶ N ^m ¹⁶ O ⁱ ¹⁶ O ⁱ	57450 37113 13694 5683.9 5804.3 15613 -4737.0013 8059 17984	170 25 4 2.3 2.3 7 0.0001 4 4	120.42 9929 12796 22721	0.12 7 4 4	RQ RQ RQ	650 > 4.6 747 7.13 5.25 STABLE	ys zs ms s μs	130 8 0.02 0.06	0^+ 0^- # 0^+ 2^- 0^- T=1 0^+ T=2 0^+ 0^- T=1 0^+ T=2	15 16 99 99 99 99 99 99	12Sp02 89Re.A 16Re01 14Si.A	TD D D D	2012 2000 1961 1933 1957 1919	2n=100 n? $\beta^{-}=100; \beta^{-}n=97.9 23$ $\beta^{-}=100; \beta^{-}\alpha=0.00145 8$ IT \approx 100; $\beta^{-}=0.00040 4$ IS=99.757 16 IT=100	* *
¹⁶ F	10680	8				11	ZS	6	0-	99			1964	p=100	
¹⁶ Ne	23987	20				> 5.7	zs		0^+	99	14Br19	Т	1977	2p=100	*
* ¹⁶ Be	T : from de	ecay width	0.8(+0.1-0.2)) MeV					0.00100 -						**
* ¹⁰ N	D : symme	trized fron	1 16Re01=0.0	0149(5stat)(+0-10s)	sys); othe	er 74	Ne10=	0.00100 7						**
***IN‴ 16N1~	D: from B	.singh, ave	rage 5 results	6 631V112U 8	5Ga18 (a	aiso 82G	a05)	/JPat	/1						**
* ''Ne	1:14Br19	v ∟<80 ke V	(5 o upper l	mit)											**

			Table I.	The	NUBA	ASE2016	table	(continued	, Ey	xplanati	ion o	of Table	on page 18)	
Nuclide	Mass e: (keV	xcess √)	Exe	citatior gy (keV	ı V)	Hal	f-life	J^{π}	Ens	Referenc	e	Year of discovery	Decay modes and intensities (%)	
^{17}B	43720	200				5.08	ms 0.05	$(3/2^{-})$	99	88Du09	D	1973	$\beta^{-}=100; \beta^{-}n=63 1; \beta^{-}2n=11 7;$	*
¹⁷ C	21032	17				193	ms 5	$(3/2^+)$	99	01Ma08	J	1968	$\beta^{-}=100; \beta^{-}=28.4 \ 13; \beta^{-}2n \ ?$	*
¹⁷ N	7870	15				4.173	s 0.004	4 1/2-	99	94Do08	D	1949	$\beta^{-}=100; \beta^{-}n=95 1; \beta^{-}\alpha=0.0025 4$	
¹⁷ O	-808.7635	0.0007				STABLE		$5/2^+$	- 99			1925	IS=0.038 1	
$^{17}O^i$	10270.02	0.17	11078.78	0.17	RQ			1/2 ⁻ T=3/2	99				β^{-} ?; N ?; IT=0.42 14	
¹⁷ F	1951.70	0.25				64.370	s 0.02	7 5/2+	99	16Br01	Т	1934	$\beta^{+}=100$	*
${}^{17}F^{i}$	13144.7	1.9	11193.0	1.9	RQ			1/2 ⁻ T=3/2	99					
¹⁷ Ne	16500.4	0.4				109.2	ms 0.6	$1/2^{-}$	99	88Bo39	D	1963	$\beta^{+}=100; \beta^{+}p=96.09; \beta^{+}\alpha=2.79$	
¹⁷ Na	35170	1000						$3/2^{+}$ #					p ?	
* ¹⁷ B	$D:\ldots;\beta^{-1}$	3n=3.5 7; f	$3^{-}4n=0.43$											**
* ¹⁷ C	T : average	95Sc03=19	93(6) 95Re.	A=188	(10) 86	Cu01=202	2(17)							**
*"/C	D: p n int	ensity is fro	om 95Re.A	150	14 64	247(0.025)								**
*''F	1 : average	16Br01=64	1.402(0.042) 15Gr	14=64.	347(0.035)								**
^{18}B	51790	200				< 26	ns	(2^{-})	16			2010	n ?	
¹⁸ C	24920	30				92	ms 2	0+	96			1969	$\beta^{-}=100; \beta^{-}n=31.5 15; \beta^{-}2n?$	
¹⁸ N	13113	19				619.2	ms 1.9	1^{-}	96	05Li60	TD	1964	$\beta^{-}=100; \beta^{-}n=7.0 15; \beta^{-}\alpha=12.2 6; \beta^{-}2n^{-}$? *
¹⁸ O	-782.8156	0.0007				STABLE		0^+	96			1929	IS=0.205 14	
$^{18}O^i$	15495	20	16278	20				$1^{-}T=2$		AHW	Е			*
¹⁸ F	873.1	0.5				109.739	m 0.009	9 1+	96	14Un01	Т	1937	$\beta^{+}=100$	*
${}^{18}F^{m}$	1994.5	0.5	1121.36	0.15		162	ns 7	5^{+}	96				IT=100	
${}^{18}F^{i}$	1914.7	0.5	1041.55	0.08				$0^{+}T=1$	96				IT=100	
¹⁸ Ne	5317.6	0.4				1664.20	ms 0.47	0^+	96	15La19	Т	1954	$\beta^{+}=100$	*
¹⁸ Na	25040	90				1.3	zs 0.4	1-#	15	04Ze05	TD	2004	p=?	
* ¹⁸ N	D: $\beta^{-}\alpha$ in	tensity fron	n 89Zh04											**
* ¹⁰ N	D : other β	⁻ n 94Sc01:	=2.2(0.4)%	95Re.	A=10.9	(0.9) 91Re	02=14.3(2)	2.0)(same grou	ıp)					**
* ¹⁰ N	T : average	05L160=61	.9(2) 99Og(3=620	(14) 82	20101=624	(12) 64Cl	h19=630(30)						**
* ¹⁸ 0	E : assumin	lg 16399(5)	, 17025(10)	levels	to be I	AS'S OF 11	4.90(0.18	5), 747(10)						**
* ¹⁸ E	E: leve	14Up01-1	ee 951107	8) 100	2004-1	00 722/0 (12) 0450	04-100 748(0	021)	`				**
* F * ¹⁸ No	T : average	140101=1	09.770(0.01 564.00(±0.5	7 0 49	1304=1	09.722(0.0	(1.1) 0450	04=109.748(0	.021))				**
* INC * 18 No	T · average	rO3 supers	odes 07Gr19	2-1665	5 6(1 0	03 = 1004.c	(1.1)							**
¹⁹ B ¹⁹ C ¹⁹ N ¹⁹ O ¹⁹ F ¹⁹ F ^{<i>i</i>} Ne ¹⁹ Na ¹⁹ Mg * ¹⁹ O * ¹⁹ O * ¹⁹ Ne * ¹⁹ Ne * ¹⁹ Ne * ¹⁹ Ne * ¹⁹ Ne * ¹⁹ Ne * ¹⁹ Ne	59770 32410 15856 3332.9 -1487.4442 6052.2 1752.05 9253 12929 31830 D : symmet T : average J : from 011 T : average T : unweigh T : 12T T : 92Ge08 J : if this is T : from yr	530 100 16 2.6 0.0009 0.9 0.16 9 11 50 trized from 88Du09=4 Ma08, 99NX 13Uj01=20 ned average r06=17.262 =18.5(0.6) the IAS of per limit of rized from	7539.6 7501 71.8(+8.3- 9(4) 95Re.4 a27 and 95R 5.476(0.009 c of 14Br06 2(0.007) and for q=10 ⁺ (1 ⁹ O ground ⁴ 40 keV, do: 6(+2-4); su	0.9 9 9.1)% A=44(4 3a28) 94IL.4 17.28 1 94Ko bare ici -state 5 minate persed	RQ 16.0(+3 9 950z A=26.4 3(0.003 .A=17. on) 5/2 ⁺ ; n d by re es 07M	2.92 46.2 336 26.470 STABLE 17.274 > 1 5 5.6-4.8)% 02=45.5(4 64(0.009) 3), 13Uj01= 296(0.005) ot yet confisolution: < solution:	ms 0.13 ms 2.3 ms 3 s 0.000 s 0.010 as ps 3 .0) =17.254(() irrmed :1 eV sug .5) ps	$\begin{array}{c} 3/2^{-\#}\\ (1/2^{+})\\ 1/2^{-}\\ 5\\ 5/2^{+}\\ 1/2^{+}\\ 5/2^{+}T=3/2\\ 0\\ 1/2^{+}\\ (5/2)^{+}T=3/\\ (5/2^{+})\\ 1/2^{-\#}\\ 0.005),\\ \\ \text{gested} \end{array}$	96 96 96 96 96 96 96 296 15 14	03Yo02 88Du09 06Su12 13Uj01 14Br06 MMC127 10Mu12 09Mu17	TD TD TJI T T T TD	 1984 1974 1968 1936 1920 1939 1969 2007 	$\beta^{-}=100; \beta^{-}n=71 9; \beta^{-}2n=17 5; \beta^{-}3n<9.$ $\beta^{-}=100; \beta^{-}n=47 3; \beta^{-}2n=7 3$ $\beta^{-}=100; \beta^{-}n=41.8 9$ $\beta^{-}=100$ IS=100. IT=100 $\beta^{+}=100$ p=100 2p=100	** * **********************************
$^{20}\mathbf{B}$	68450#	800#											n ?: β ⁻ n ?: β ⁻ 2n ?	
20 C	37500	230				16	ms 3	0^+	98	90Mu06	TD	1981	$\beta^{-}=100; \beta^{-}n=70 11; \beta^{-}2n<18.6$	*
²⁰ N	21770	80				136	ms 3		98	06Su12	TD	1969	$\beta^{-}=100; \beta^{-}n=42.9 14; \beta^{-}2n ?$	
²⁰ O	3796.2	0.9				13.51	s 0.05	0^+	98			1959	$\beta^{-}=100$	
²⁰ F	-17.463	0.030				11.163	s 0.00	$8 2^+$	98	98Ti06	Т	1935	$\beta^{-}=100$	
${}^{20}F^{i}$	6503	3	6521	3	RQ			$0^{+}T=2$	98					
²⁰ Ne	-7041.9305	0.0016				STABLE		0+	98			1913	IS=90.48 3	
²⁰ Ne ¹	3230.5	2.0	10272.5	2.0	RQ			2+T=1	98				IT=100	
²⁰ Ne ^J	9690.9	2.8	16732.8	2.8	RQ			0+T=2	98	00000	-	1050		
²⁰ Na	6850.6	1.1	C100 ·	o -		447.9	ms 2.3	2+	98	89Cl02	D	1950	$\beta = 100; \beta = \alpha = 25.04$	
²⁰ Na'	13349.0	1.2	6498.4	0.5	р	0.2	-	0 °T=2	98			1979	p=100	
²⁰ Mg	17477.7	1.9	00 (5/ 10	10.00	001.	93	ms 5	0^{+}	16			1974	p = 100; p = 30.3 12	
* ⁻ °C	D : average	p n 03Yo	02=65(+19-	-18)%	90Mu(b = 72(14)	6 7 00 01	04.15.0 5.0						**
*~~C	1 : average	90Mu06=1	.4(+0–5) 95	ke.A l	o./(3.); aiso 03	1002=21.3	8(+15.0-7.4)						**

NJ1' 1	M	10005	Table I. I	ation	BA	SE2010 table (c			1011	Veer of	Decourandes and
Nuclide	Mass ex (keV	(cess 7)	Excit energy	(keV)		Hait-life	J^n	ans Referen	ice	tear of discovery	intensities (%)
²¹ B ²¹ C ²¹ N ²¹ O ²¹ F ²¹ Ne ²¹ Ne ²¹ Na ²¹ Na ²¹ Na ²¹ Na ²¹ Na	77330# 45640# 25230 8062 -47.6 -5731.78 3127.4 -2184.63 6790 10903.8 26990#	900# 600# 130 12 1.8 0.04 1.4 0.10 4 0.8 600#	8859.2 8975	1.4 4	р	<pre><260 ns <30 ns 84 ms 7 3.42 s 0.10 4.158 s 0.020 STABLE T=3/2 22.422 s 0.010 118.6 ms 0.5 <35 ns</pre>	$\begin{array}{c} 3/2^{-\#}\\ 1/2^{+\#}\\ (1/2^{-})\\ (5/2^{+})\\ 5/2^{+}\\ 3/2^{+}\\ (3/2,5/2)^{+}\\ 3/2^{+}\\ 5/2^{+}\text{T}=3/2\\ 5/2^{+}\\ 5/2^{+\#}\end{array}$	04 03Oz01 04 93Po.A 15 04 04 04 04 04 04 15Gr05 04 04 15Lu13 04 93Po A	I I T J	1970 1968 1955 1928 1940 1963	n? n? $\beta^{-}=100; \beta^{-}n=90.5 \ 42; \beta^{-}2n?$ $\beta^{-}=100; \beta^{-}n=0\#$ $\beta^{-}=100$ IS=0.27 1 $\beta^{+}=100; \beta^{+}p=32.6 \ 10; \beta^{+}\alpha=?; \beta^{+}p\alpha=0.016 \ 3$ n?
									-		F ·
²² C ²² N ²² O ²² F ²² Ne ²² Ne ²² Na ^a ²² Na ^a ²² Mg ²² Mg ²² Mg ²² Mg ²² Al ²² Si * ²² C	53610 31760 9280 2793 -8024.719 5855 -5181.51 -4598.46 -4524.51 -399.9 13645 18200# 33340# T: symmetr	230 210 60 12 0.018 10 0.17 0.20 0.22 0.3 6 400# 500# ized from 0	13880 583.05 657.00 14044 5.1(+1.4–1.2)	10 0.10 0.14 6 D	p : s	$\begin{array}{c} 6.2 \text{ ms } 1.3 \\ 2.3 \text{ ms } 3 \\ 2.25 \text{ s } 0.09 \\ 4.23 \text{ s } 0.04 \\ \text{STABLE} \\ \hline \\ 2.6018 \text{ y } 0.0022 \\ 243 \text{ ns } 2 \\ 19.6 \text{ ps } 0.7 \\ 3.8755 \text{ s } 0.0012 \\ \hline \\ 91.1 \text{ ms } 0.5 \\ 29 \text{ ms } 2 \\ \text{ymmetrized from } \beta^- r \end{array}$	0^+ 0^- # 0^+ (4^+) 0^+ $4^+T=2$ 3^+ 1^+ $0^+T=1$ 0^+ $(4)^+T=2$ $(4)^+$ 0^+ 0^+ 0^+ (4^+) (4^+) 0^+ (4^+) 0^+ (4^+) (4^+) 0^+ (4^+) $(4^$	15 15 15 15 15 15 15 15 15 15 15 15 15 1	E 2 J	1986 1979 1969 1965 1913 1935 1935 1961 1982 1987	$ \begin{array}{l} \beta^{-}=100; \ \beta^{-}n=61 \ 14; \ \beta^{-}2n<37 \\ \beta^{-}=100; \ \beta^{-}n=34 \ 3; \ \beta^{-}2n=12 \ 3 \\ \beta^{-}=100; \ \beta^{-}n<22 \\ \beta^{-}=100; \ \beta^{-}n<11 \\ \text{IS}=9.25 \ 3 \\ \end{array} \\ \begin{array}{l} \beta^{+}=100 \\ \text{IT}=100 \\ \text{IT}=100 \\ \beta^{+}=100 \\ \beta^{+}=100 \\ \beta^{+}=100 \\ \beta^{+}=100; \ \beta^{+}p=55 \ 3; \ \beta^{+}2p=1.10 \ 11; \dots \\ \beta^{+}=100; \ \beta^{+}p=32 \ 4 \\ \end{array} $
$*^{22}Ne^{i}$ $*^{22}Ma^{i}$	E : 16Ma.A:	=13880(10)) is preferred a	us IAS bu	t n	ot proven; 90En08=14	4060(20)				
* Mg * ²² Al	$D:\ldots;\beta^+\alpha$	$x = 0.038 \ 17$	ground-state								
²³ C ²³ N ²³ O ²³ F ²³ Na ²³ Na ⁱ ²³ Na ⁱ ²³ Na ^j ²³ Mg ⁱ ²³ Mg ⁱ ²³ Al ⁱ ²³ Al ⁱ ²³ Ni * ²³ Ni * ²³ Ni * ²³ Ni * ²³ Ni	64170# 36720 14620 3290 -5154.05 -9529.8525 -1638.66 10060.6 -5473.51 2328.7 6748.1 18530 23700# T : symmetr D : symmetr T : average T : from wite	1000# 420 120 30 0.10 0.0018 0.15 2.0 0.16 1.4 0.3 60 500# ized from ized from 15La19=37 tht=1.9(0.8	7891.19 19590.4 7802.2 11780 14.1(+1.2–1.5) 42.2(+6.3–6.5 .148(0.032) 0) keV	0.15 2.0 1.4 60)% 8.0(+ 7Gr18=3	р 3.8 7.1	13.9 ms 1.4 97 ms 8 2.23 s 0.14 37.140 s 0.028 STABLE 240 zs 120 11.317 s 0.011 470 ms 30 42.3 ms 0.4 -3.4)% 1(0.06); other 74A103	$3/2^+ #$ $1/2^- #$ $1/2^+$ $5/2^+$ $5/2^+$ $3/2^+$ $5/2^+ T=3/2$ $3/2^+$ $5/2^+ T=3/2$ $5/2^+$ $(5/2)^+ T=5/2$ $3/2^+ #$ $3/2^+ #$ $3/2^+ = 37.24(0.12)$	07 03Yo02 07 07Su05 07 95Re.A 07 15La19 07 07 85Ev01 07 07 00Pe28 07 07 97B104	TD D T T D TD	1985 1970 1970 1936 1921 1939 1981 1969 1997 1986	n? $\beta^{-}=100; \beta^{-}n=42.6; \beta^{-}2n=8.4; \beta^{-}3n<3.4$ $\beta^{-}=100; \beta^{-}n=7.2$ $\beta^{-}=100; \beta^{-}n<14$ $\beta^{-}=100$ IS=100. IT=100 $\beta^{+}=100$ $\beta^{+}=100; p=0.17.8$ $\beta^{+}=100; \beta^{+}p=0.46.23$ p=0.10.5; 2p=3.6.4 $\beta^{+}=100; \beta^{+}p\approx88; \beta^{+}2p=3.6.3$
24 N 24 O 24 F 24 Ne 24 Na 24 Na ^a 24 Ma ^a 24 Ma ^a 24 Mg ⁱ 24 Mg ⁱ 24 Al 24 Al 24 Al ^{ia} 24 Si 24	46940# 18500 7540 -5951.6 -8417.901 -7945.694 -2450.53 -13933.569 -4417.29 1502.8 -48.86 376.94 5900 10745 33320# T : average J : 15Ca09=	400# 160 100 0.5 0.017 0.13 0.04 0.6 0.23 0.25 3 19 500# 15Ca09=80 3 ⁺	472.2074 5967.37 9516.28 15436.4 425.8 5949	0.0008 0.13 0.04 0.6 0.1 3 7(10)	p	<52 ns 77.4 ms 4.5 384 ms 16 3.38 m 0.02 14.957 h 0.004 20.18 ms 0.10 STABLE 2.053 s 0.004 130 ms 3 140 ms 8	0^+ 3^+ 0^+ 4^+ 1^+ $0^+T=2$ 0^+ $(4^+)T=1$ $0^+T=2$ 4^+ 1^+ $0^+T=2$ 0^+ 1^+ 1^+	07 93Po.A 07 15Ca09 07 07Su05 07 07 14Un01 07 07 07 07 07 07 07 07 07 07 07 07 07	I TD T T	1970 1970 1956 1934 1961 1920 1953 1968 1979	n? $\beta^{-}=100; \beta^{-}n=43.4$ $\beta^{-}=100; \beta^{-}n<5.9$ $\beta^{-}=100$ $\beta^{-}=100$ $\Pi^{-}\approx100; \beta^{-}=0.05$ IS=78.994 $\beta^{+}=100; \beta^{+}\alpha=0.035.6; \beta^{+}p=0.0016.3$ $\Pi^{-}=82.5.30; \beta^{+}=17.5.30; \beta^{+}\alpha=0.028.6$ $\beta^{+}=100; \beta^{+}p=37.6.25$ $p?; \beta^{+}?; \beta^{+}p?$

*

*

*

** ** **

*

*

*

** ** ** **

* *

** ** ** **

Chinese	Physics C	Vol. 41,	No. 3	(2017)) 030001
				· · · ·	

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Notified Mass cases Esclution HeIFife J^{2} Eas Reference Vent V Error Decay modes and the end of end of the end of									(0011		-P-				- puge 10)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Nuclide	Mass ex	icess	Ex	citation		Ha	alf-l	ife	J^{π}	Ens	Referenc	e	Year of	Decay modes and	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(keV	')	ener	gy (keV)									discovery	intensities (%)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁵ N	55980#	500#						<260 ns	$1/2^{-}$ #	09	99Sa06	ID		n ?; 2n ?; β ⁻ ?	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁵ O	27330	170				5.18	ZS	0.35	$3/2^{+}$ #	09	16Ko11	Т	2008	n=100	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁵ F	11330	100				80	ms	9	$(5/2^+)$	09			1970	$\beta^{-}=100; \beta^{-}n=23.1 45; \beta^{-}2n=0#$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁵ Ne	-2036	29				602	ms	8	$1/2^{+}$	09			1970	$\beta^{-}=100$	
$ \begin{array}{c} \frac{1}{2} \mathrm{Ng} & -1392.78 & 0.05 & \mathrm{STADE} & 5/21^{-2} 0.9 & 1920 & \mathrm{IS-10.001} \\ \frac{1}{2} \mathrm{AI} & -301.53 & 0.07 & 1.8 & 0.012 & 5/21^{-2} 0.9 & 1953 & \beta^{+-100} \\ \frac{1}{2} \mathrm{AI} & -391.53 & 901.1 & 1.8 & R2 & 20 & -30 & -31 &$	²⁵ Na	-9357.8	1.2				59.1	s	0.6	$5/2^{+}$	09			1943	$\beta^{-}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁵ Mg	-13192.78	0.05				STABLE			$5/2^{+}$	09			1920	IS=10.00 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{25}Mg^{i}$	-5405.8	0.3	7787.0	0.3					$5/2^{+}T=3/2$	09					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁵ A1	-8915 97	0.06				7 183	s	0.012	5/2+	09			1953	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁵ A1 ⁱ	-1014.9	1.8	7901.1	18	RO				$5/2^{+}T=3/2$	09				F	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25 Si	3827	10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110		220	me	3	5/2+	00			1963	$\beta^+ - 100; \beta^+ - 352$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25 p	107/0#	400#				220	111.5	<30 pc	$1/2^{+}$ #	00	03Po A	T	1705	p = 100, p = 55.2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		D : in 00Sol	$+00\pi$	opt 240 25 N	avante a	vnaatad	l nona ab	an	< JUIIS	$1/2 \pi$	09	931 U.A	1		þ :	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* 1	D . 111 995a	10 experime	(K-11) = 0.000	CVCIIIS C.	Apeciec	7 - 10 - 20(20) 1 1/							**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*0	1 : from dec	ay width I	oKo11=88(0	(\mathbf{b}) kev; of	ner 130	_a18=20(-	+00-	-20) ke v							**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	260	24660	1(0				4.2		2.2	0^+	16	1212-10	т	2012	2- 100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	34000	160				4.2	ps	3.3	0.	10	13K010	1	2012	2n=100	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁰ F	18650	110				8.2	ms	0.9	1	16			1979	$\beta = 100; \beta = n=13.5 \ 40; \beta = 2n=0.4\#$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁰ F ^m	19290	110	643.4	0.1		2.2	ms	0.1	(4^{+})	16			2013	IT=82 11; $\beta^{-}=?; \beta^{-}n=12.8$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁶ Ne	481	18				197	ms	2	0^{+}	16			1970	$\beta^{-}=100; \beta^{-}n=0.133$	
	²⁶ Na	-6861	4				1071.28	ms	0.25	3+	16			1958	$\beta^{-}=100$	
	²⁶ Na ^m	-6779	4	82.5	0.6		9	μs	2	1+	16			1987	IT=100	
	²⁶ Mg	-16214.542	0.030				STABLE			0^{+}	16			1920	IS=11.01 3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁶ Al	-12210.15	0.07				717	kv	24	5+	16			1934	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁶ A1 ^m	-11981.85	0.07	228.306	0.013	MD	6346.0	ms	0.8	$0^{+}T=1$	16			1934	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁶ Si	-7141.02	0.11				2 2453	\$	0.0007	0+	16			1960	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26 Sii	5926	11	13068	11	n	2.2100	5	0.0007	$(3^{+})T-2$	16			1700	<i>p</i> =100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26p	10070#	200#	15008	11	Р	12 7	ma	0.6	$(3)^{+}$	16			1082	β^{+}_{-100} ; β^{+}_{-100} ; β^{-}_{-100}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26 Dm	11120#	200#	164.4	0.1		45.7	ma	0.0	(3)	16			1965	$p = 100, p = 50.820, \dots$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26 C	27090#	200#	104.4	0.1		120	ns	9	0+	10			2014	11=100	
0 **0 **0 * *** *** *** ***	208	27080#	600#						$$	0	16				2p ?	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ²⁰ O	T : symmeti	ized from	13Ko10=4.5	(+1.1-1.5	5 stat)(:	3 systemat	ics)								**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ²⁰ P	$D:\ldots;\beta^+$	2p=2.16 24	D : [$\beta^+ p + \beta^+$	2p=39	(2)									**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 O	44670#	500#						<260 ns	$3/2^{+}$ #		99Sa06	Ι		n ?; 2n ?	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁷ F	25450	390				4.9	ms	0.2	$5/2^{+}$ #	11	98No.A	Т	1981	$\beta^{-}=100; \beta^{-}n=77 21; \beta^{-}2n=5\#$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁷ Ne	7050	90				31.5	ms	1.3	$(3/2^+)$	11			1977	$\beta^{-}=100; \beta^{-}n=2.05; \beta^{-}2n=0\#$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁷ Na	-5518	4				301	ms	6	$5/2^{+}$	11			1968	$\beta^{-}=100; \beta^{-}n=0.134$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁷ Mg	-14586.61	0.05				9.435	m	0.027	$1/2^{+}$	11	15ZaZY	Т	1934	$\beta^{-}=100$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27A1	-17196.86	0.05				STABLE			$5/2^+$	11			1922	IS=100.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 A1 ⁱ	-10383.1	0.7	6813.8	07					$1/2^{+}T=3/2$	11				IT=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁷ Si	-12384 50	0.11	001010	017		4 1 5	s	0.04	5/2+	11			1939	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 Sii	-5759.5	23	6625.0	23	PO	4.15	3	0.04	$1/2^{+}T - 3/2$	11			1077	р =100 IT 2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 p	-5759.5	2.5	0025.0	2.5	κų	260		80	1/2 1=5/2	11			1077	$\beta_{\pm}^{+} = 100, \ \beta_{\pm}^{+} = -0.07$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 pi	-722	20	10720	10		200	ms	80	1/2·	11			1977	p = 100; p = p = 0.07	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 P.	12010	30	12/30	40	р				$5/2 \cdot 1 = 5/2$				1991		
*** + 1: others not used: 99Re16=5.(1.1) 971a22=5.3(0.9) outweighed; and *** * ²⁷ F T: 99D101=5.2(0.3) same data as in 99Re16 *** * ²⁸ Mg T: average 15ZaZY=9.408 (0.012) 70Re13=9.462 (0.012); Birge ratio=3.18 *** 28 Re 11300 130 C 20 ms 1 0 ⁺ 13 98Po.A I n ? 28 Ne 11300 130 20 ms 1 0 ⁺ 13 1979 β^{-} =100; β^{-} n=12 1; β^{-} 2n=3.7 5 28 Ne 11300 130 20 ms 1 0 ⁺ 13 1969 β^{-} =100; β^{-} n=12 1; β^{-} 2n=3.7 5 28 Ng -15018.8 2.0 20.915 h 0.009 0 ⁺ 13 1953 β^{-} =100 28 Al -16850.64 0.08 2.245 m 0.005 3 ⁺ 13 1934 β^{-} =100 28 Al -16850.64 0.08 2.245 m 0.005 3 ⁺ 13 1934 β^{-} =100 28 Al -16850.64 0.005 STABLE 0 ⁺ 13 1920 IS=92.223 19 28 Si -21492.7943 0.0005 STABLE 0 ⁺ 13 1920 IS=92.223 19 28 Si -21492.7943 0.10 9315.92 0.10 1.5 fs 0.6 3 ⁺ T=1 13 28 Si -21492.7943 0.10 9315.92 0.10 1.5 fs 0.6 3 ⁺ T=1 13 28 Si -21492.7943 0.10 9315.92 0.10 1.5 fs 0.6 3 ⁺ T=1 13 28 Si -2147.7 1.2 270.3 ms 0.5 3 ⁺ 13 79H027 D 1953 β^{+} =100; β^{+} p=0.0013 4; $\beta^{+}\alpha$ =0.00086 25 28 Pi -1261 20 5887 20 p 0 ⁺ T=2 13 28 Si 4070 160 125 ms 10 0 ⁺ T=2 13 2		1/030#	400#				15.5	ms	1.5	$(5/2^{+})$	11			1986	$p = 100; p = 2.39; \beta = 2p=1.15$	
** F T: 9DI01=5.2(0.3) same data as in 99Re16 *** * ²⁷ Mg T: average 15ZaZY=9.408 (0.012) 70Re13=9.462 (0.012); Birge ratio=3.18 ** ²⁸ O 52080# 700# <ii 2n="" <math="" ?;="" n="">\beta^{-}=0 * ** ²⁸F 33740 390 46 zs 13 n ? ²⁸Ne 11300 130 20 ms 1 0⁺ 13 1979 $\beta^{-}=100; \beta^{-}=121; \beta^{-}2n=3.75$ ²⁸Na -988 10 20.015 h 0.009 0⁺ 13 1953 $\beta^{-}=100; \beta^{-}=0.5812$ ²⁸Na -988 10 20.015 h 0.009 0⁺ 13 1953 $\beta^{-}=100; \beta^{-}=0.5812$ ²⁸AI -16850.64 0.08 2.245 m 0.005 3⁺ 13 1934 $\beta^{-}=100$ ²⁸AI -10858.06 0.13 5992.58 0.10 0⁺T=2 13 ²⁸Si -21492.7943 0.0005 STABLE 0⁺ 13 1920 IS=92.223 19 ²⁸Si' -21492.7943 0.0005 STABLE 0⁺ 13 1920 IS=92.223 19 ²⁸Si' -21492.7943 0.10 9315.92 0.10 1.5 fs 0.6 3⁺T=1 13 ²⁸Si' -6265.8 1.0 15227 1 (0⁺)T=2 13 68Mc12 D 1968 α=90 11; p=10 11 ²⁸Si' -6265.8 1.0 15227 1 (0⁺)T=2 13 68Mc12 D 1968 α=90 11; p=10 11 ²⁸Si' -6265.8 1.0 15227 1 (0⁺)T=2 13 68Mc12 D 1968 $\beta^{+}=100; \beta^{+}p=0.00134; \beta^{+}\alpha=0.00086 25$ ²⁸Pi' -1261 20 5887 20 p 0⁺T=2 13 ²⁸Si 4070 160 125 ms 10 0⁺ 13 1982 $\beta^{+}=100; \beta^{+}p=0.0134; \beta^{+}\alpha=0.00086 25$ ²⁸Pi' -1261 20 5887 20 p 0⁺T=2 13 ²⁸Si 4070 160 125 ms 10 0⁺ 13 1982 $\beta^{+}=100; \beta^{+}p=20.7 19$ ²⁸CI 27520# 600# 1⁺m 4750 499Sa06, 11 and 37 ²⁸O events expected, none observed **</ii>	* ²⁷ F	T : others no	ot used: 99	Re16=6.5(1)	1) 97 Ta2	2=5.3(0	J.9) outwe	eigh	ed; and							**
** *** ** ** ** ** ** **	* ²⁷ F	T: 99D	101=5.2(0.3)	same data	as in 99F	Re16										**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ²⁷ Mg	T : average	15ZaZY=9	.408 (0.012)	70Re13	=9.462	(0.012); E	Birge	e ratio=3.	18						**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁸ O	52080#	700#						< 100 ns	0^+	13	98Po.A	I		n ?; 2n ?; $\beta^{-}=0$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁸ F	33740	390				46	zs			13				n ?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁸ Ne	11300	130				20	ms	1	0^{+}	13			1979	$\beta^{-}=100; \beta^{-}n=12 1; \beta^{-}2n=3.7 5$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁸ Na	-988	10				30.5	ms	04	1+	13			1969	$\beta^{-}=100; \beta^{-}=0.5812$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁸ Mo	-15018.8	2.0				20.915		0.009	0+	13			1953	$\beta^{-}=100$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 A 1	-16850.64	0.08				20.915	m	0.005	2+	12			103/	$\beta^{-}-100$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28 A 1i	10050.04	0.00	5002 50	0.10		2.243	ш	0.005	0+T_2	12			1754	p = 100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 C :	-10638.00	0.13	3992.38	0.10		CTARS-			0.1=2	13			1020	18-02 222 10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-~ S1 28 cm	-21492.7943	0.0005	10541.04	0.05	DC	STABLE			0 · (2+)	13			1920	15=92.225 19	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁰ S1'	-8951.75	0.05	12541.04	0.05	кQ				(37)	13					
	²⁰ Si ¹	-12176.87	0.10	9315.92	0.10		1.5	fs	0.6	3+T=1	13		_			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁸ Si ^j	-6265.8	1.0	15227	1					$(0^+)T=2$	13	68Mc12	D	1968	$\alpha = 90.11; p = 10.11$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁸ P	-7147.7	1.2				270.3	ms	0.5	3+	13	79Ho27	D	1953	$\beta^+=100; \beta^+p=0.00134; \beta^+\alpha=0.000862$	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{28}P^i$	-1261	20	5887	20	р				$0^{+}T=2$	13					
²⁸ Cl 27520# 600# 1 ⁺ # p? * ²⁸ O D : in 97Ta22 and 99Sa06, 11 and 37 ²⁸ O events expected, none observed **	²⁸ S	4070	160				125	ms	10	0^+	13			1982	$\beta^+=100; \beta^+=20.7 19$	
* ²⁸ O D : in 97Ta22 and 99Sa06, 11 and 37 ²⁸ O events expected, none observed **	²⁸ C1	27520#	600#							1^{+} #					p?	
	* ²⁸ O	D : in 97Ta2	22 and 99Sa	06, 11 and 3	37 ²⁸ O ev	ents ex	pected, no	one	observed						-	**

Chinese Physics C Vol. 41, No. 3 (2017) 030001

			Table I. '	The N	UBAS	SE2016	tab	le (conti	nued, Exp	olai	nation	of T	able on p	page 18)	
Nuclide	Mass ex (keV	(cess ()	Ex ener	citation gy (keV	/)	H	lalf-	life	J^{π} B	Ens	Referen	ce	Year of discovery	Decay modes and intensities (%)	
29 F	40150	530				2.5	me	03	5/2+#	12	00D101	р	1080	$\beta^{-} = 100; \beta^{-} = -60.40; \beta^{-} = 2 = -5 \#$	<u>ب</u> د
²⁹ Ne	18400	150				14.7	ms	0.3	$(3/2^{-})$	12	05Tr13	т	1985	$\beta^{-}=100; \beta^{-}=100; 40; \beta^{-}=20; \beta^{-}=20$	*
²⁹ Na	2680	7				44.1	ms	0.9	$3/2^{(+\#)}$	12	95Re A	D	1969	$\beta^{-}=100; \beta^{-}=25, 9, 23; \beta^{-}=2n=0#$	*
²⁹ Mø	-10603	11				1 30	s	0.12	$3/2^+$	12	<i>)</i> 51(0.11	D	1971	$\beta^{-100}, \beta^{-125.525}, \beta^{-21-00}$	
²⁹ A1	-18207.8	03				6 56	m	0.06	$5/2^+$	12			1939	$\beta^{-}=100$	
²⁹ Si	-21895 0784	0.0006				STABLE	m	0.00	$1/2^+$	12			1920	IS=4 685 8	
²⁹ Si ⁱ	-13605	5	8290	5		OINDEL			$5/2^{+}T=3/2$	12			1720	IT=100	
²⁹ P	-16952.8	04	0200	5		4 142	s	0.015	$1/2^+$	12			1941	$\beta^{+}=100$	
$^{29}P^i$	-8571.0	2.5	8381.8	2.4	RO		0	0.010	$5/2^{+}T=3/2$	12			1969	IT=100	
²⁹ S	-3160	50			~~~	188	ms	4	5/2+#	12	79Vi01	D	1964	$\beta^+=100; \beta^+p=46.4 \ 10$	
²⁹ Cl	13160	190						<10ps	$(1/2^+)$	16	15Mu13	Ī		p=100	
* ²⁹ F	$D: \beta^- n$ from	m 99Dl01=	100(80)%					v	(-/-)					F 100	**
* ²⁹ Ne	T : average	05Tr13=13.	.8(0.5) 97N	o.A=15	6.6(0.5)	; others ou	twei	ghed, not u	sed:						**
* ²⁹ Ne	T: 06Tr	02=15.1(2.	6) 16.4(1.3) 99D10	1=15(4) 99Re16=	-19(9	9) 97Ta22=	15(3)						**
* ²⁹ Ne	J:16Ko05=	(3/2-)													**
* ²⁹ Na	$D:\beta^-n:av$	erage 95Re	.A=27.1(1.	6)% 841	La03=2	21.5(3.0)%									**
³⁰ F	48110#	600#						<260 ns		10	99Sa06	Ι		n ?	
³⁰ Ne	23280	250				7.22	ms	0.18	0^{+}	10	15St14	Т	1985	$\beta^{-}=100; \beta^{-}n=134; \beta^{-}2n=8.923$	*
³⁰ Na	8475	5				48.4	ms	1.7	2^{+}	10	99D101	Т	1969	$\beta^{-}=100; \beta^{-}n=304; \dots$	*
³⁰ Mg	-8884	3				313	ms	4	0^{+}	10	84La03	D	1971	$\beta^{-}=100; \beta^{-}n<0.06$	*
³⁰ A1	-15864.8	2.9				3.62	S	0.06	3+	10			1961	$\beta^{-}=100$	
³⁰ Si	-24432.960	0.022				STABLE			0+	10			1924	IS=3.092 11	
³⁰ P	-20200.85	0.07				2.498	m	0.004	$1^{+}T=0$	10			1934	$\beta^{+}=100$	*
³⁰ P ⁱ	-19523.84	0.08	677.01	0.03					$0^{+}T=1$	10					
³⁰ S	-14059.25	0.21				1.1759	S	0.0017	0^{+}	10	11So11	Т	1961	$\beta^{+}=100$	
³⁰ Cl	4440#	200#						<30 ns	3+#	10	93Po.A	I		p?	
⁵⁰ Ar	20930	210						<10ps	0^+	16			2015	2p=100	
* ⁵⁰ Ne	T : average	15St14=7.1	8(0.22) 07	Ir08=7.	3(0.3)										**
* ⁵⁰ Na	$D:\ldots; \beta^{-2}$	2n=1.15 25;	$\beta^-\alpha=5.5e$	≻5 2											**
* ³⁰ Na	T : average	99DI01=50	(4) 97 Ta22:	=48(5)	84La02	=48(2)									**
* ³⁰ Mg	T : average	08H105=31	4(5) and 31	2(7)											**
*20 P	D : first obse	erved radio	nuclide, in	1934											**
31 F	56140#	550#				1#	me	(>260 ns)	5/2+#	13			1000	$\beta^{-} 2 \beta^{-} \beta^{-} \eta^{-} 10 \# \beta^{-} 2 \eta^{-} 0 \#$	
31 Ne	31180	270				3.4	me	(>200 hs)	$(3/2^{-})$	13			1996	$\beta^{-} = -100; \beta^{-} = n - 10\#; \beta^{-} = 2n - 4\#$	
31 No	12246	14				17 35	me	0.0	(3/2) 3/2(+#)	13	038102	т	1060	$\beta^{-100}, \beta^{-n-100}, \beta^{-2n-40}$	
31 Ma	2122	2				226	ms	0.40	$\frac{3}{2^{(+)}}$	12	93KI02	J	1909	$p = 100, p = 1-57.554, \dots$	*
31 A 1	-3122	3				230	ms	20	$1/2^{(+)}$	13			1977	$\beta = 100; \beta = 100; \beta$	*
31 C	-14950.7	2.2				157.26	ms	25	$5/2^{(+)}$	13			19/1	$\beta = 100; \beta n < 1.6$	
31 D	-22949.04	0.04				157.36	m	0.26	$3/2^+$	13			1934	$\beta = 100$	
31 pi	-24440.5410	0.0007	(200.0	2.0		STABLE			1/2	13			1920	IS=100.	
31 P	-18059.7	2.0	6380.8	2.0		0.5524		0.0010	$3/2 \cdot 1 = 3/2$	13			10.40	11=100	
31 ci	-19042.52	0.23	(200 (0	0.00		2.5554	s	0.0018	1/2	13			1940	$\beta = 100$	
3101	-12/01.9	0.0	6280.60	0.60		100		1	$3/2^{-1}=3/2$	13			1077	R^{\pm} 100; R^{\pm} ; 2.4.2	
31 Cli	- 7035	3	12201	E	DO	190	ms	1	3/2" 2/2+T 5/2	13			1977	p = 100; p = 2.42	
31 A	5256	3	12291	5	ĸQ	15.1		0.2	3/2 1=5/2	10	1 417 17	T	1007		
31N	11330# D	200#	0-2 .0.0			15.1	ms	0.3	5/21	13	14K01/	1	1986	β =100; β · p=68.3 3; β · 2p=9.0 2;	. *
* ³¹ Na	D:; p 2	2n=0.8/24;	p 3n < 0.0		02 1 74	0.0)0									**
***Mg	D : strongly	conflicting	with earlie $+2$	r 84La)3=1.7((0.3)%									**
* ³¹ Ar	$D:\ldots;\beta'$	5α<0.38; β	- 3p=0.07	2; β ' α	<0.03;	2p<0.000	6								**
32.5.1	27000#	500.0				2.5		0.0	o+	11			1000	0- 100 0- 201 0-2 71	
32 NL	37000#	300# 40				3.5	ms	0.9	(2-)	11	087-04	тт	1990	p = 100; p = n = 30#; p = 2n = /# $\beta = -100; \beta = n = 24.7; \beta = 2n = 9.2$	
32 M -	18040	40				12.9	ms	0.5	(3) 0 ⁺	11	081r04	1 J	1972	p = 100; p = 124 /; p = 2n = 8.2	*
32 A 1	-829	37				86	ms	5	U' 1+	11			1977	$\mu = 100; p = 0.55$	
32 A 1m	-11099	7	056.6	0.5		33.0	ins	0.2 20	1.	11			19/1	$\mu = 100; \mu = 0.75$	
32 c:	-10142	0.20	930.0	0.5		200	IIS	20 10	(4 ⁺) 0 ⁺	11			1990	$B^{-}=100$	
32 D	-240/7.09	0.30				14 269	y d	19	1+	11			1933	$\mu = 100$ $\beta^{-} = 100$	
32 p ⁱ	-24504.87	0.04	5072 44	0.07		14.268	a	0.005	1' 0+m 2	11			1954	$\mu = 100$	*
32 c	-19232.43	0.07	5072.44	0.06		Cmint -			0.1=2	11			1020	11=100	
32 01	-20015.5336	0.0013	7001 4	0.4		STABLE			U' 1+m 1	11			1920	13=94.99 20 IT-100	
32 g i	-19014.1	0.4	/001.4	0.4					1 + 1 = 1 0 + T = 2	11				11=100 IT-100	
32 C1	-13967.57	0.28	12047.96	0.28		200		1	0 T=2	11			1052	$P_{+}^{+} = 100$	
32 C1i	-13334./	0.6	5046.2	0.2		298	ms	1	1' 0+m 2	11			1955	$p = 100; p : \alpha = 0.054 \text{ s}; p : p = 0.026 \text{ s}$	
32 A	-0200.4	0.7	3040.5	0.5		0.0	-	2	0+1=2	11			1077	B^+_{-100}	
Ar A ~~~~	-2200.4	1.ð	10			98	ins	2	0.	11			19//	μ =100, μ p=35.58 0.22	
A-gro	up is continued	on next pag	50												

Fahla I	The NUP	ASE2016 table	(continued)	Evolution	of Table on	naga 18)
гате г.	пе выв	ASEZULO PADIE	ccommmea.	гхогананон	OF LADIE OF	паре тат

Nuclida	Maga	¥ 0000		aitation	DAS	Half life		Enc. Reference	Voor of	Decey modes and	
Nuclide	(ke	Xcess V)	ene	rgy (keV)		Hair-nie	<i>J</i> ^{<i>n</i>}	Ens Reference	discovery	intensities (%)	
		,									
A-gro	oup continued .	400#					1+#			- ²	
32 K m	22050#	400#	950#	100#			1 · # 4+#	Mirror I		p : p ?	
* ³² Na	T · average	08Tr04=1	3 1(0 5) and	11.5(1.2)	98No	A=11 5(0 8) 84La03=13	2(0.4)	WIIITON 1		p :	**
* ³² P	T : also 14	Un01=14.2	63(0.035)	11.0(112)	01101		2(011)				**
			()								
³³ Ne	46000#	600#				~260 ps	7/2-#	11.02No11_I		n ?	*
³³ Na	23780	450				8 2 ms 0 4	$(3/2^+)$	11 021011 1	1972	$\beta^{-}=100^{\circ}\beta^{-}n=47.6^{\circ}\beta^{-}2n=13.3^{\circ}$	Ť
³³ Mg	4962.3	2.9				90.5 ms 1.6	$3/2^{-}$	11	1979	$\beta^{-}=100; \beta^{-}n=142; \beta^{-}2n=3\#$	
³³ Al	-8497	7				41.7 ms 0.2	$5/2^{+}$	11 06Hi18 J	1971	$\beta^{-}=100; \beta^{-}n=8.57$	
³³ Si	-20514.3	0.7				6.18 s 0.18	$3/2^+$	11	1971	$\beta^{-}=100$	
³³ P	-26337.3	1.1				25.35 d 0.11	$1/2^{+}$	11	1951	$\beta^{-}=100$	
³³ S	-26585.8543	3 0.0014				STABLE	3/2+	11	1926	IS=0.75 2	
³³ S ¹	-21106.06	0.13	5479.79	0.13			$1/2^{+}T=3/2$	11		IT=100	
³³ Cl	-21003.3	0.4	5540.4	0.4	DO	2.5038 s 0.0022	3/2+	11 15Gr14 T	1940	$\beta^+=100$	
33 A	-15454.9	0.5	5548.4	0.4	кQ	172.0 ma 2.0	$1/2 \cdot 1=3/2$	11	1064	$\Pi = 100$ $B^{+}_{-100}, B^{+}_{-28} = 28.7.10$	
33 K	-9384.5	200#				175.0 IIIS 2.0	$\frac{1}{2}$	11 03Po A I	1904	$p^{2} = 100; p^{2} p = 58.7 10$	
* ³³ Ne	T · estimate	200 n ed half-life	1#ms for B	- decay	I	$\sim also 0.021 \text{ e A} < 1.5 \mu \text{s}$	3/2 #	11 951 O.A 1		þ:	**
* 110	I . commun		1 minis tor p	accuy	1	. uiso ozele < 1.5 µs					
34 NT-	52810#	510#				1# ma (> 1 5 ···)	0+	12.021 ~ 4 1	2002	β^{-} 9: β^{-} 2n = 40#: β^{-} = -1#	
³⁴ No	52840 # 21680	510# 600				$1 \# ms (> 1.5 \mu s)$	0 · 1 +	12 02Le.A I	2002	p ?; p 2n=40#; p n=1# $\beta^{-}=100; \beta^{-}=2n\approx50; \beta^{-}=n\approx15$	
³⁴ Mg	8323	29				20 ms 10	0+	12 GAU05 D	1985	$\beta = 100; \beta = 21 \approx 30; \beta = 1 \approx 13$ $\beta^{-} = 100; \beta^{-} = n = 30 \#; \beta^{-} = 2n = 0.4 \#$	*
³⁴ A1	-3000	3				56 3 ms 0 5	(4^{-})	12	1977	$\beta^{-}=100; \beta^{-}=264; \beta^{-}=2n=0.4$	
${}^{34}A1^{m}$	-2450#	100#	550#	100#		26 ms 1	(1^+)	12Ro25 T	2012	$\beta^{-} \approx 100; \beta^{-} n=30\#; \beta^{-} 2n=0.4\#$	
³⁴ Si	-19957	14				2.77 s 0.20	0+	12	1971	$\beta^{-}=100$	
³⁴ Si ^m	-15701	14	4256.1	0.4		< 210 ns	(3 ⁻)	12	1989	IT=100	
³⁴ P	-24548.7	0.8				12.43 s 0.10	1+	12	1945	$\beta^{-}=100$	
³⁴ S	-29931.69	0.04				STABLE	0^{+}	12	1926	IS=4.25 24	
³⁴ Cl	-24440.08	0.05				1.5266 s 0.0004	$0^{+}T=1$	12	1934	$\beta^{+}=100$	
³⁴ Cl ^m	-24293.72	0.05	146.360	0.027	MD	31.99 m 0.03	3+T=0	12	1965	β^+ =55.4 6; IT=44.6 6	
³⁴ Ar	-18378.29	0.08	7024	~	DO	843.8 ms 0.4	0 ⁺	12	1966	$\beta^+ = 100$	
34 V	-10444	200#	/934	5	кQ	<10 mg	1 + #1 = 2 1 + #	12 12 02Do A J	1969	p ' ?; 11 ?	
³⁴ Ca	-1220#	200#				<40 lls	0+	12 93P0.A I		p ? 2p ?	
* ³⁴ Na	$D \cdot \beta^- n \approx 1$	$5\% \ \beta^{-}2n$	$\approx 50\%$ estim	ated from	$P_{n} = I$	$\beta^{-}n + 2 \times \beta^{-}2n = 115(20)$	% in 84La03	12 9510.71		2p :	**
* ³⁴ Na	D: ass	uming β^- n	$\beta^{-}2n=0.3$	from trend	s in th	e ³⁰ Na- ³³ Na series: 26 4	134				**
³⁵ Na	38230#	670#				1.5 ms 0.5	$3/2^+$ #	11	1983	$\beta^{-}=100^{\circ}\beta^{-}n=60\#$	*
³⁵ Mg	15640	270				70 ms 40	$7/2^{-}$ #	11	1989	$\beta^{-}=100; \beta^{-}n=52.46; \beta^{-}2n=20\#$	
³⁵ Al	-224	7				37.2 ms 0.8	5/2+#	11	1979	$\beta^{-}=100; \beta^{-}n=382; \beta^{-}2n=0.2\#$	
³⁵ Si	-14390	40				780 ms 120	7/2-#	15 95Re.A D	1971	$\beta^{-}=100; \beta^{-}n<5$	
³⁵ P	-24857.8	1.9				47.3 s 0.8	$1/2^{+}$	11	1971	$\beta^{-}=100$	
³⁵ S	-28846.21	0.04				87.37 d 0.04	$3/2^+$	11	1936	$\beta^{-}=100$	
35 S ¹	-19691	10	9155	10	RQ	T=5/2	$(1/2:9/2)^+$	11	1975		
³⁵ Cl	-29013.53	0.04	5654.40	0.00		STABLE	3/2+	11	1919	IS=75.76 10	
35 A	-23359.05	0.22	5654.48	0.22		1.7757 0.0010	$3/2^+1=3/2$	11	10.10	11=100	
35 Ar	-23047.3	0.7	5577 66	0.15		1.//56 s 0.0010	3/2' 2/2+T-2/2	11	1940	$\beta' = 100$	
35 K	-1/4/4.0 -11172.0	0.7	5572.00	0.15		178 mc 8	3/2 1= $3/23/2^+$	11 11.06Me0/1_I	1076	$\beta^+ = 100; \beta^+ = 0.37.15$	
35Ki	-2110	40	9060	40	2n	170 113 0	3/2+T=5/2	11 0000004 3	1770	p =100, p p=0.57 15	
³⁵ Ca	4790#	200#	2000	10	-p	25.7 ms 0.2	$1/2^+ \#$	11	1985	$\beta^+=100; \beta^+p=95.9 14; \beta^+2p=4.1 6$	
* ³⁵ Na	$D:\beta^-n$ ha	s been obse	erved by 83L	.a12 but n	ot qua	ntified	-/			F	**
³⁶ Na	46300#	680#				<180 ns		12		n ?	
³⁶ Mg	20380	690				3.9 ms 1.3	0^+	12	1989	$\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=3\#$	
36 Al	5950	150				90 ms 40	~ I	12	1979	$\beta^{-}=100; \beta^{-}n<30; \beta^{-}2n=7\#$	
- ³⁶ Si	-12440	70				450 ms 60	0+	12 95Re.A D	1971	$\beta = 100; \beta = n = 12.5$	
36 c	-20251	13				5.6 S 0.3	4 ⁻ 0 ⁺	12 ISCh56 J	19/1	p = 100; p = n = 0 #	
36C1	- 30004.13	0.19				301 3 by 1 5	2+	12	1938	$B^{-}-0.01$ 1 $B^{-}-0.02$ 1 1 $B^{+}-1.0$ 1	
36C1i	-29322.01	0.04	4200 667	0.014		зот.э ку 1.э	$(0)^{+}T_{-2}$	12	1941	p = -96.11; p = 1.91 IT-100	
³⁶ Ar	-30231 540	0.04	+277.00/	0.014		STABLE	0+	12	1920	$IS=0.3336.21 \cdot 2\beta^{+}.2$	
³⁶ Ar ⁱ	-23620.5	0.3	6611.0	0.3		SINDED	2+T=1	12	1720	IT=100	
³⁶ Ar ^j	-19379.4	1.2	10852.2	1.2	RO		$0^{+}T=2$	12		IT=100	
³⁶ K	-17417.1	0.3				341 ms 3	2+	12	1967	$\beta^+=100; \beta^+p=0.048 \ 14; \beta^+\alpha=0.0034$	13
³⁶ K ⁱ	-13134.5	2.4	4282.6	2.4	р		$0^{+}T=2$	12		p=100	*
A-gro	oup is continue	d on next p	age								

Table I	The NUB	SE2016 tabl	e (continued	Evolonation	of Table on page	18)
тариет.	INCINUBA			. галиананон	or radie on daye	

Nuclide	e Mass e (kev	xcess /)	ene	xcitation ergy (keV)		На	ulf-l	ife	J^{π}	Ens	Reference	e (Year of discovery	Decay modes and intensities (%)	
A-gro	oup continued														
³⁶ Ca	-6450	40				101.2 r	ns	1.5	0^{+}	12	07Do17	Т	1977	$\beta^+=100; \beta^+p=51.2 \ 10$	*
³⁶ Sc	15350#	300#												p ?	
* ³⁶ K ⁱ	E : Ensdf	2012 finds	s 4281.9(0.8)	as IAS of	³⁶ Ca gr	ound-state									**
* ³⁰ Ca	T : average	e 07Do17=	=100.1(2.3) 9	5'1r02=102	2(2)										**
³⁷ Na	53530#	690#				1# r	ms	$(>15 \mu s)$	3/2+#	12	02Le A	I	2002	$\beta^{-} ? \beta^{-} n = 100 \# \beta^{-} 2n = 50 \#$	
³⁷ Mg	28210	700				8 1	ns	4	$(3/2^{-})$	12	14Ko14	J	1996	β^{-} ?: β^{-} n=80#: β^{-} 2n=20#	
³⁷ Al	9810	180				11.5 r	ns	0.4	5/2+#	12	15St14	TD	1979	$\beta^{-}=100; \beta^{-}n>29 3; \beta^{-}2n>1 1$	
³⁷ Si	-6570	110				90 r	ns	60	7/2-#	15			1979	$\beta^{-}=100; \beta^{-}n=17 13; \beta^{-}2n=0.2;$	#
³⁷ P	-19000	40				2.31	s	0.13	$(1/2^+)$	12	15Ch56	J	1971	$\beta^{-}=100; \beta^{-}n=0.02\#$	
³⁷ S	-26896.42	0.20				5.05	m	0.02	$7/2^{-}$	12			1945	$\beta^{-}=100$	
³⁷ Cl	-31761.54	0.05				STABLE			3/2+	12			1919	IS=24.24 10	
³⁷ Cl ⁱ	-21539.7	0.3	10221.8	0.3	RQ	25.011		0.010	$7/2^{-}T=5/2$	12			1984	IT=100	
37 A.	-30947.66	0.21	4002	(DO	35.011	d	0.019	3/2	12	1412-04	т	1941	<i>ε</i> =100	
37 K	-23930	0 00	4992	0	ĸŲ	1 2265	0	0.0000	$3/2^{-1}=3/2$	12	14Kr04 14Sh25	ј Т	1973	$\beta^{\pm}-100$	
37 K ⁱ	-19749.9	0.09	5050.3	0.8	RO	1.2303	5	0.0009	3/2 3/2+T-3/2	12	1431123	1	1958	p = 100	*
³⁷ Ca	-13136.1	0.6	5050.5	0.0	πų	181.1 r	ns	1.0	$3/2^+ \#$	12			1964	$\beta^+=100; \beta^+=82.17$	*
³⁷ Sc	3520#	300#				10111 1		110	$7/2^{-}$ #				1901	p?	
* ³⁷ K	T : more p	recisely 14	4Sh25=1.236	51(0.0009	4)				., =					* ·	**
* ³⁷ Ca	TD : also ()7Do17=1	81.7(3.6) ms;	72.2(4.3)	%; also	β^+ p=74.5(0	.7)	% from 957	Tr03						**
³⁸ Mg	34070#	500#				1# r	ms	(>260 ns)	0^{+}	13			2002	$\beta^{-}=100\#; \beta^{-}n=80\#; \beta^{-}2n=7\#$	
³⁸ Al	16210	370				9.0 r	ns	0.7		08	15St14	Т	1989	$\beta^{-}=100; \beta^{-}n=0\#; \beta^{-}2n=10\#$	*
³⁸ Si	-4170	100				90# r	ns	$(>1 \mu s)$	0^{+}	08			1979	$\beta^{-}=100\#; \beta^{-}n=30\#$	
³⁸ P	-14620	70				640 r	ns	140	(2^{-})	08	15Ch56	J	1971	$\beta^{-}=100; \beta^{-}n=125$	
³⁸ S	-26861	7				170.3	m	0.7	0^{+}	08			1958	$\beta^{-}=100$	
³⁸ C1	-29798.10	0.10				37.24	m	0.05	2^{-}	08			1940	$\beta^{-}=100$	
³⁸ Cl ^m	-29126.73	0.10	671.365	0.008		715 r	ns	3	5-	08			1954	IT=100	
38 A	-21590	24	8208	24	RQ	Country			$0^{+}T=3$	08			1024	15 0 0 20 7	
38 A r ⁱ	-34/14.82	0.19	10620.0	0.0		STABLE			$(2^{-})T = 2$	08			1934	18=0.0629 /	
38 A r i	-24085.9	30	10050.9	30	PO				(2) I=2 0+T=3	08					
³⁸ K	-28800.75	0.20	10/00	50	πų	7.636	m	0.018	3+T=0	08	14Kr04	J	1937	$\beta^{+}=100$	
³⁸ K ^m	-28670.61	0.20	130.15	0.04	MD	924.46 r	ns	0.14	$0^{+}T=1$	08	10Ba43	Ť	1953	$\beta^{+}=100$	
38 K ⁿ	-25342.61	0.26	3458.14	0.17		21.95 J	us	0.11	(7)+	08			1971	IT=100	
³⁸ Ca	-22058.50	0.19				443.70 r	ns	0.25	0+	08	15Bl02	Т	1966	$\beta^{+}=100$	*
³⁸ Sc	-4250#	200#						<300 ns	2-#	08	94B110	Ι		p ?	
³⁸ Sc ^m	-3580#	220#	670#	100#					5-#		Mirror	I		IT ?; p ?	
³⁸ Ti	10870#	300#	~~~				~ ~	<120 ns	0^{+}	08	96B121	I		2p ?	
* ³⁸ Al	T : other 0	4Gr20=7.6	5(0.6) withou	t γ -correla	tion	I : 89Gu	03:	>200ns							**
* ⁵⁸ Ca	1 : average	e 15BI02=	443.63(0.35)	11Pa38=4	43.77(0).36)									**
³⁹ Mg	42280#	510#						<180 ns	7/2-#	07				n ?	*
³⁹ Al	20650#	400#				7.6 r	ns	1.6	5/2+#	11			1989	$\beta^{-}=100; \beta^{-}n=90\#; \beta^{-}2n=1\#$	
39D	2320	140				4/.5 1	ns	2.0	5/2-#	15	040-20	т	1979	$\beta^{-}=100; \beta^{-}n=25\#; \beta^{-}2n=2\#$	
39 c	-12//0 -23160	50				282 I 11 5	11S 6	24 0.5	$\frac{1}{2} + \frac{\pi}{7}$	06	040f20	1	1977	$\mu = 100; \mu = 120.8$ $\beta^{-} = 100$	*
³⁹ C1	-23100	17				56.2	s m	0.5	$\frac{(1/2)}{3/2+}$	06			19/1	β^{-100} $\beta^{-}=100$	
³⁹ Ar	-33242	5				269	v	3	$\frac{3}{2}$	06			1950	$\beta^{-}=100$	
³⁹ Ar ⁱ	-24161	7	9081	9	RO	207	,	T=5/2	$3/2^+$	06	MMC149	J		F 100	*
³⁹ K	-33807.190	0.005	-		~	STABLE			3/2+	06	14Kr04	J	1921	IS=93.2581 44	
³⁹ K ⁱ	-27261.2	2.0	6546	2					7/2 ⁻ T=3/2	06				IT=100	
³⁹ Ca	-27282.7	0.6				860.3 r	ns	0.8	$3/2^{+}$	06	10B109	Т	1943	$\beta^{+}=100$	*
³⁹ Ca ⁱ	-20917#	9#	6366#	9#					$3/2^{+}T=3/2$		Imme	Е			
³⁹ Sc	-14173	24				< 300 i	ns		7/2-#	06	GAu128	D	1988	p=100	*
³⁹ Sc ¹	-5050	40	9120	50	2p	.			$(3/2^+)T=5/2$	06			1000		
³⁹ Ti	2200#	200#	. 1.11	- 1		28.5 r	ns	0.9	$3/2^{+}$ #	06	07Do17	TD	1990	$\beta^{+}=100; \beta^{+}p=93.7\ 28; \dots$	*
* ' Mg	1 : estimat	ed half-lif	e 1# ms for β	decay	0) 075	a A_100/70									**
	1 : average	× 04Gr20=	230(80) 98W	$(3/2 5/2)^+$	in Exc.	e.A=190(50) de2006)								**
* ³⁹ P * ³⁹ A*i	I + duta to 1	a a annarn	CHARLE: Was I	1.114.1141	III LINS.	1717/14/10									**
* ³⁹ P * ³⁹ Ar ⁱ * ³⁹ C ²	J : due to I	10B100-	860 7(1 0) 77	A 701-850	94(16)	734111-860	140	3.0)							**
* ³⁹ P * ³⁹ Ar ⁱ * ³⁹ Ca * ³⁹ Sc	J : due to I T : average D : most p	e 10Bl09=	860.7(1.0) 77	Az01=859	9.4(1.6) 597(24	73A111=860) keV).4((3.0)							**

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I The N	JUBASE2016	table (continued E	volumention of	f Table on nage	· 18)
		Lante	continucu. D	\mathbf{A}	\mathbf{I}	- 10/

			Table I.	i ne Nu	BAS	E2010 table (conti	nueu, Exp	anation of 1	able on	page 18)	
Nuclide	Mass ex	cess	Exe	citation		Half-life	J^{π} I	Ens Reference	Year of	Decay modes and	
	(keV	/)	energ	gy (keV)					discovery	intensities (%)	
40 .	40250#	5001				1// (- 170)	0+	07 146 02 1	2007	0-0.0- 100# 0-0 50#	
¹⁰ Mg 40 A 1	48350#	500#				1# ms (>1/0 ns)	0	07 14Cr02 1	2007	p ?; p n=100#; p 2n=50#	*
40 G	27390#	400#				10# ms (>200 ns)	0^+	04 06.04C-20. TD	2002	p :; p n=0#; p 2n=90#	
¹⁰ S1 40p	5430	350				33.0 ms 1.0	(2-2-)	06 04Gr20 1D	1989	$\beta = 100; \beta = n=40\#; \beta = 2n=60\#$	
¹⁰ P	-8110	150				150 ms 8	(2,3)	04	1979	p = 100; ; p = 15.8 21; p = 2n=2#	
¹⁰ S	-22838	4				8.8 s 2.2	0	04	19/1	$\beta = 100$	
40 cl	-27560	30				1.35 m 0.02	2	04	1956	$\beta = 100$	
40 Ar	-35039.8946	0.0022				STABLE	0+	04	1920	IS=99.6035 25	
40 K	-33535.49	0.06				1.248 Gy 0.003	4-	04 14Kr04 J	1935	IS=0.0117 1; β^{-} =89.28 13; β^{+} =10.72 13	
40 Km	-31891.85	0.06	1643.639	0.011		336 ns 12	0+	04	1968	IT=100	
⁴⁰ K ⁱ	-29151.5	0.3	4384.0	0.3			$0^{+}T=2$	04		IT=100	
40Ca	-34846.384	0.021				STABLE (>5.9 Zy)	0^+	04 99Be64 T	1922	IS=96.94 16; $2\beta^+$?	
$^{40}Ca^{\prime}$	-27188.20	0.05	7658.18	0.05			$4^{-}T=1$	04 AHW E		IT=100	*
⁴⁰ Ca ^j	-22858.4	1.0	11988	1			$0^{+}T=2$	04		IT=100	
⁴⁰ Sc	-20523.3	2.8				182.3 ms 0.7	4-	04	1955	$\beta^+=100; \beta^+p=0.447; \beta^+\alpha=0.0175$	
40 Sc ⁱ	-16164	6	4359	6	RQ		$0^{+}T=2$	04		IT=100	
⁴⁰ Ti	-8850	160				52.4 ms 0.3	0^+	04 07Do17 TD	1982	$\beta^+=100; \beta^+p=95.8 \ 13$	
^{40}V	12170#	300#					2-#			p ?	
$*^{40}Mg$	I:14Cr025	events obs	erved in dire	ect two-pi	oton r	emoval from 42Si					**
$*^{40}Ca^i$	E : Original	7658.23(0.	.05) recalibra	ated -0.05	keV f	or ²⁷ Al+p resonances					**
⁴¹ A1	33420#	500#				2# ms (>260 ns)	$5/2^{+}$ #	16	2002	β^{-} ?; β^{-} n=50#; β^{-} 2n=10#	
⁴¹ Si	12120	550				20.0 ms 2.5	$7/2^{-}$ #	16	1989	$\beta^{-}=100; \beta^{-}n=45\#; \beta^{-}2n=10\#$	
⁴¹ P	-4980	120				101 ms 5	$1/2^{+}$ #	16	1979	$\beta^{-}=100; \beta^{-}n=30\ 10; \beta^{-}2n=0.2\#$	
⁴¹ S	-19009	4				1.99 s 0.05	7/2-#	16	1979	$\beta^{-}=100; \beta^{-}n=0.1\#$	
^{41}Cl	-27310	70				38.4 s 0.8	$(1/2^+)$	16	1971	$\beta^{-}=100$	
⁴¹ Ar	-33067.5	0.3				109.61 m 0.04	7/2-	16	1936	$\beta^{-}=100$	
41 K	-35559 543	0.004				STARIE	$3/2^+$	16 14Kr04 I	1921	IS-6 7302 44	
41 K i	-27210	15	83/10	15	PO	JIABLE	$\frac{3}{2}$	16 75Me10 I	1921	13=0.7302 44	<u>ب</u>
41 Co	-27210	0.14	0.349	15	кų	00.4.1	7/2 1=5/2	10 / Jivie 10 J	1975	2-100	*
41 Ca	-55157.89	0.14	5017 1	0.5		99.4 Ky 1.5	2/2+7 2/2	10	1959	E=100	
41 C	-29320.8	0.5	5817.1	0.5		< 28 IS	3/2 1=3/2	10	10.11	11=100	
⁴¹ Sc	-28642.41	0.08			-	596.3 ms 1.7	7/2	16	1941	$\beta = 100$	
41 Sc/	-25760.09	0.09	2882.32	0.05	RQ		7/2+	16		P=59 2; IT=41 2	
⁴¹ Sc ¹	-22704	3	5939	3	RQ		$3/2^{+}T=3/2$	16		p=100	
⁴¹ Ti	-15698	28				81.9 ms 0.5	$3/2^{+}$	16 07Do17 D	1964	$\beta^+=100; \beta^+p=91.16$	
^{41}V	320#	200#					$7/2^{-}$ #			p ?	
$*^{41}K^{i}$	I : Ensdf=:	5/2 ⁻ ,7/2 ⁻ a	and $T=3/2$; 1	NUBASE	adopts	this level as IAS of 41 Ar	ground-state				**
⁴² A1	40100#	600#				1# ms (>170 ns)		16	2007	β^{-} ?; β^{-} n=30#; β^{-} 2n=40#	
⁴² Si	16470#	500#				12.5 ms 3.5	0^{+}	16	1990	$\beta^{-}=100; \beta^{-}n=40\#; \beta^{-}2n=60\#$	
^{42}P	1010	310				48.5 ms 1.5		16	1979	$\beta^{-}=100; \beta^{-}n=50\ 20; \beta^{-}2n=20\#$	
⁴² S	-17637.7	2.8				1.016 s 0.015	0^{+}	16	1979	$\beta^{-}=100; \beta^{-}n<4$	
⁴² C1	-24830	60				6.8 s 0.3	(2^{-})	16	1971	$\beta^{-}=100; \beta^{-}n=0\#$	
⁴² Ar	-34423	6				32.9 v 1.1	0^{+}	16	1952	$\beta^{-}=100$	
⁴² K	-35022.03	0.11				12.355 h 0.007	2-	16 14Kr04 I	1935	$\beta^{-}=100$	
$^{42}K^{i}$	-28570	100	6450	100		121000 11 01007	$(0^{+})T=3$	16	1900	p 100	
$^{42}C_{2}$	_38547.24	0.15	0150	100		STARLE	0+	16	1934	18-0 647 23	
$^{42}Ca^{i}$	-28797	10	9750	10		UNDEL	$(2^{-})T-2$	16	1751	15-0.017 25	
42 S a	20101 15	0.17	9750	10		680 70 mc 0 28	$(2^{+})^{1=2}$	16	1055	$\beta^{\pm}-100$	
42 S am	21504.82	0.17	616 22	0.06	MD	61.7 0.04	7+	16	1955	$\beta = 100$ $\beta^{\pm} = 100$	
42 S ar	-31304.83	0.18	6076.32	0.00	DO	01.7 8 0.4	$(2^+ 2^+ 4^+)$	16	1903	p = 100	*
42m	-26044.89	0.17	6076.26	0.07	ĸQ	200 (5	$(2^+, 3^+, 4^+)$	10	1074	R^{\pm}_{100}	
42 11	-25104.67	0.28				208.65 ms 0.80	0	16	1964	p = 100	
42 V	- /620#	200#				<55 ns	2 #	16 92Bo37 1	1005	p?	
⁴² Cr	6730#	400#				13.3 ms 1.0	0^+	16	1996	$\beta^+ \approx 100; \beta^+ p = 94.4 \ 50; 2p ?$	
$*^{42}$ Sc ^m	$J:5^+,6^+,7^+$	from β^+	decay to 6 ⁺	level; 7 ⁺	is mos	t likely from shell model					**
42											
43Al	47020#	800#				$1 \# ms \ (>170 ns)$	5/2+#	15	2007	β^{-} ?; β^{-} n=100#; β^{-} 2n=50#	
43Si	23100#	600#				15# ms (>260 ns)	$3/2^{-}$ #	15 02No11 I	2002	β^- ?; β^- n=40#; β^- 2n=30#	
⁴³ P	4680	550				35.8 ms 1.3	$(1/2^+)$	15 04Gr20 T	1989	$\beta^{-}=100; \beta^{-}n=100; \beta^{-}2n=10\#$	*
⁴³ S	-12195	5				265 ms 13	$3/2^{-}#$	15	1979	$\beta^{-}=100; \beta^{-}n=40 \ 10$	
$^{43}S^m$	-11874	5	320.7	0.5		415.0 ns 2.6	$(7/2^{-})$	15 09Ga05 J	2000	IT=100	*
43Cl	-24160	60				3.13 s 0.09	$(3/2^+)$	15 06Wi10 J	1976	$\beta^{-}=100; \beta^{-}n=2\#$	
⁴³ Ar	-32010	5				5.37 m 0.06	$5/2^{(-)}$	15	1969	$\beta^{-}=100$	
⁴³ K	-36575.4	0.4				22.3 h 0.1	$3/2^+$	01 14Kr04 J	1949	$\dot{\beta}^{-}=100$	
${}^{43}K^{m}$	-35837.1	0.4	738.30	0.06		200 ns 5	$7/2^{-}$	15	1978	IT=100	
43Ca	-38408 82	0.23		2100		STABLE	$\frac{1}{7}/2^{-}$	15	1934	IS=0.135 10	
43 Cai	-30414	14	7995	14	RO		$(3/2)^{+}T-5/2$	15		01100 10	
43 Sc	_36188 1	10	000		μų	3 801 h 0.012	7/2-	15	1035	$\beta^{+}-100$	
43 c.m	_36026.2	1.9	151 70	0.00		A38 H 5	$\frac{1}{2}$	15 77M:10 T	1955	p = 100	
43 c _n	22064 4	1.9	2122 72	0.08		430 µ8 3	5/2" 10/2=	15 //WIIIU I	1904	II-100 IT-100	*
43 C /	-33004.4	1.9	3123.73	0.15	no	4/2 ns 3	19/2	15 U8FeU2 I	1978	11=100	*
···Sc·	-31956	5 1 on nowt	4232	4	кQ		//2 1=3/2	15			

... A-group is continued on next page ...

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

								I			1.8.
Nuclide	e Mass er	cess		Excitation		Half-life	J^{π}	Ens	Reference	Year of	Decay modes and
	(keV	/)	e	nergy (keV)						discovery	intensities (%)
										-	
A-gro	oup continue	ed									
⁴³ Ti	-29321	7				509 ms 5	$7/2^{-}$	15		1948	$\beta^{+}=100; \beta^{+}p?$
⁴³ Ti ^m	-29008	7	313.0	1.0		11.9 µs 0.3	$(3/2^+)$	15		1978	IT=100
⁴³ Ti ⁿ	-26255	7	3066.4	1.0		556 ns 6	$(19/2^{-})$	15		1978	IT=100
⁴³ Ti ⁱ	-24610#	50#	4710#	50#			7/2-#T=3/	2			
^{43}V	-17920	40				79.3 ms 2.4	7/2-#	15	07Do17 D	1987	$\beta^{+}=100; \beta^{+}p<2.5$
$^{43}V^{i}$	-9705	15	8210	50	RQ		$3/2^{+}T=5/2$	2			
⁴³ Cr	-1970#	400#				21.1 ms 0.3	$(3/2^+)$	15	11Po01 T	1992	$\beta^+=100; \beta^+p=79.3 \ 30; \beta^+2p=11.6 \ 10; \dots *$
* ⁴³ P	T : avera	ige 04Gr	20=36.5(1.	.5) 95So03=	33(3)						**
$*^{43}S^{m}$	T : avera	ge 12Ch	16=415(3)	09Ga05=4	15(5)						**
$*^{43}Sc^m$	T : avera	ge 77M	i10=438(7)	65De15=47	70(20) 64	Ho14=435(7)					**
$*^{43}Sc^n$	T : avera	ige 08Fe	02=481(9)	81Da06=46	9(4) 78H	a07=473(5)					**
*43Cr	D:;	β+3p=0.	13 +18-8;	$\beta^+ \alpha$?							**
*43Cr	T : avera	ige 11Po	01=20.6(0	.9) 07Do17=	=21.1(0.4) 01Gi01=21.6(0.7)					**

⁴⁴ Si	28510#	600#				10# ms (>360 ns)) 0+	11	2007	β^{-} ?; β^{-} n=100#; β^{-} 2n=50#	
⁴⁴ P	10450#	500#				18.5 ms 2.5		11	1989	$\beta^{-}=100; \beta^{-}n=20\#; \beta^{-}2n=70\#$	
⁴⁴ S	-9204	5				100 ms 1	0^{+}	11	1979	$\beta^{-}=100; \beta^{-}n=18.3$	
$^{44}S^m$	-7839	5	1365.0	0.8		2.619 µs 0.026	0^{+}	11	2005	IT=100	
44C1	-20380	140				560 ms 110	(2^{-})	11	1979	$\beta^{-}=100; \beta^{-}n<8$	
⁴⁴ Ar	-32673.3	1.6				11.87 m 0.05	0^+	11	1969	$\beta^{-}=100$	
⁴⁴ K	-35781.5	0.4				22.13 m 0.19	2^{-}	11 14Kr04 J	1954	$\beta^{-}=100$	
⁴⁴ Ca	-41468.7	0.3				STABLE	0^{+}	11	1922	IS=2.09 11	
⁴⁴ Ca ⁱ	-29619	10	11850	10			2-T=3	11			*
⁴⁴ Sc	-37816.0	1.8				4.0420 h 0.0025	2^{+}	11 16Ga24 T	1937	$\beta^{+}=100$	*
44 Sc ^m	-37748.1	1.8	67.8679	0.0014		154.8 ns 0.8	1^{-}	11	1967	IT=100	
44 Sc ⁿ	-37669.8	1.8	146.1914	0.0020		51.0 µs 0.3	0^{-}	11	1963	IT=100	
44 Sc ^p	-37544.8	1.8	271.240	0.010		58.61 h 0.10	6^{+}	11	1940	IT=98.80 7; β^+ =1.20 7	
⁴⁴ Sc ⁱ	-35038.2	2.5	2778	3	RQ		$0^{+}T=2$	11			
⁴⁴ Ti	-37548.6	0.7				59.1 y 0.3	0^{+}	11	1954	€=100	
⁴⁴ Ti ⁱ	-30942.2	0.9	6606.4	0.5			$2^{+}T=1$	11		IT=100	
⁴⁴ Ti ^j	-28210.6	2.1	9338	2			0^+ frg.T=2	11		IT=100	*
⁴⁴ V	-24120	180			*	111 ms 7	$(2)^{+}$	11	1971	$\beta^{+}=100; \beta^{+}\alpha=?; \beta^{+}p?$	
$^{44}V^m$	-23850#	210#	270#	100#	*	150 ms 3	$(6)^+$	11	1997	$\beta^{+}=100$	
$^{44}V^n$	-23970#	210#	150#	100#			0-#	Mirror I			
$^{44}V^{i}$	-21124	13	2990	180	р		0^{+} #T=2	92Bo37 D	1992	p=100	
⁴⁴ Cr	-13360#	300#				42.8 ms 0.6	0^{+}	11 07Do17 D	1987	$\beta^+=100; \beta^+p=14.09$	
⁴⁴ Mn	7030#	500#				<105 ns	2-#	11		p ?	
$*^{44}Ca^{i}$	J : Ensd	F no J^{π}	; data from (e	,e') scatteri	ng 84R	a04; IAS candidate					**
* ⁴⁴ Sc	T : 16Ga	24=242	2.52(0.15) min	i, but the au	thors q	uote in error 4.042(0.02)	5)h				**
* ⁴⁴ Ti ^j	E : strong	gest frag	gment 9338(2)); other 40(2) lowe 	r					**

T : 16Ga24=242.52(0.15) min, but the authors quote in error 4.042(0.025) h E : strongest fragment 9338(2); other 40(2) lower $*^{44}Sc$ $*^{44}Ti^{j}$

⁴⁵ Si	37490#	700#				1# ms	$3/2^{-}$ #			β^{-} ?; β^{-} n=100#; β^{-} 2n=50#	
⁴⁵ P	15600#	500#				8# ms (>200 ns)	$1/2^{+}$ #	08	1990	β^{-} ?; β^{-} n=30#; β^{-} 2n=30#	
⁴⁵ S	-3990	1040				68 ms 2	3/2-#	08	1989	$\beta^{-}=100; \beta^{-}n=54; \beta^{-}2n=4\#$	
45Cl	-18260	140				413 ms 25	$(3/2^+)$	08 12Ri08 J	1979	$\beta^{-}=100; \beta^{-}n=24.4$	
⁴⁵ Ar	-29770.8	0.5				21.48 s 0.15	$(5/2^{-}, 7/2^{-})$	08	1974	$\beta^{-}=100$	
⁴⁵ K	-36615.6	0.5				17.8 m 0.6	3/2+	08 14Kr04 J	1964	$\beta^{-}=100$	
⁴⁵ Ca	-40812.2	0.4				162.61 d 0.09	$7/2^{-}$	08	1940	$\beta^{-}=100$	
⁴⁵ Sc	-41071.9	0.7				STABLE	$7/2^{-}$	08	1923	IS=100.	
$^{45}Sc^m$	-41059.5	0.7	12.40	0.05		318 ms 7	$3/2^{+}$	08	1964	IT=100	
⁴⁵ Sc ⁱ	-34373	15	6699	15			$7/2^{-}T=5/2$	08			
⁴⁵ Ti	-39009.8	0.8				184.8 m 0.5	7/2-	08	1941	$\beta^{+}=100$	
⁴⁵ Ti ^m	-38973.3	0.8	36.53	0.15		3.0 µs 0.2	$3/2^{-}$	08	2006	IT=100	
⁴⁵ Ti ⁱ	-34291	3	4719	3	RQ		$7/2^{-}T=3/2$	08			
⁴⁵ V	-31886.0	0.9				547 ms 6	$7/2^{-}$	08	1975	$\beta^{+}=100$	
$^{45}V^m$	-31829.2	1.1	56.8	0.6		512 ns 13	$(3/2^{-})$	08 11Ho02 T	1980	IT=100	*
$^{45}V^{i}$	-27090	9	4796	9	RQ		$7/2^{-}T=3/2$	08		p=100	
⁴⁵ Cr	-19510	40			*	60.9 ms 0.4	7/2-#	08	1974	$\beta^+=100; \beta^+=34.48$	
⁴⁵ Cr ^m	-19400	40	107	1	*	$> 80 \ \mu s$	(3/2)	11 11Ho02 ETJ	2011	IT=100	
⁴⁵ Mn	-5250#	400#				<70 ns	$7/2^{-}$ #	08 92Bo37 I		p ?	
⁴⁵ Fe	13760#	400#				2.2 ms 0.3	$3/2^{+}$ #	08 05Do20 T	1996	2p=57 10; $\beta^+ < 43$; $\beta^+ p < 43$; $\beta^+ p = 25 5$	*
$*^{45}V^{m}$	T : avera	ge 11Ho	02=468(23)	87Ha.B=4	30(80) 8	2Ho11=539(18) 82A1.C	=610(80) and				**
$*^{45}V^{m}$	T: 8	0Gr.A=5	510(50)								**

*⁴⁵Fe T : average 05Do20=1.6(+0.5-0.3) 02Gi09=4.7(+3.4-1.4) 02Pf02=3.2(+2.6-1.0)

**

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I. The NUBASE2016 table	(continued, Explanation of	Table on page 18)
-------------------------------	----------------------------	-------------------

									,	I		-		1.8	
Nuclide	Mass ex	cess	E	xcitation		H	alf-	life	J^{π}	Ens	Referen	ce	Year of	Decay modes and	
	(keV	')	ene	ergy (keV)									discovery	intensities (%)	
46-												_			
40 P	22970#	700#				4#	ms	(>200 ns)	<u>.</u>	00	90Le03	I	1990	β^{-} ?; β^{-} n=0#; β^{-} 2n=90#	
40S	340#	500#				50	ms	8	0^+	10			1989	$\beta^{-}=100; \beta^{-}n=70\#; \beta^{-}2n=3\#$	
⁴⁶ Cl	-13860	210				232	ms	2	2-#	12			1989	$\beta^{-}=100; \beta^{-}n=60.9; \beta^{-}2n=0.3\#$	
40Ar	-29772.9	1.1				8.4	s	0.6	0^{+}	00		_	1974	$\beta^{-}=100$	
40K	-35413.9	0.7				105	s	10	2-	00	14Pa45	J	1965	$\beta^{-}=100$	
⁴⁰ Ca	-43139.4	2.2				STABLE			0^{+}	00		_	1938	IS=0.004 3; $2\beta^{-}$?	*
40Sc	-41761.2	0.7				83.80	d	0.03	4+	00	14Un01	Т	1936	$\beta^{-}=100$	*
40 Sc ^m	-41709.2	0.7	52.011	0.001		9.4	μs	0.8	6+	00			1966	IT=100	
46 Sc ⁿ	-41618.7	0.7	142.528	0.007		18.75	s	0.04	1-	00			1948	IT=100	
⁴⁶ Sc ⁱ	-36748	4	5013	4	RQ				$0^{+}T=3$	00					
⁴⁶ Ti	-44127.80	0.16				STABLE			0+	00			1934	IS=8.25 3	
46Ti ¹	-34962	7	9166	7	RQ				$4^{+}T=2$	00					
⁴⁶ Ti ^J	-29977	6	14151	6	RQ				$0^{+}T=3$	00					
46V	-37075.35	0.20				422.64	ms	0.05	$0^{+}T=1$	00	12Pa07	Т	1952	$\beta^{+}=100$	*
$^{46}V^m$	-36273.89	0.22	801.46	0.10		1.02	ms	0.07	$3^{+}T=0$	00			1962	IT=100	
⁴⁶ Cr	-29472	11				224.3	ms	1.3	0^+	10	15Mo01	Т	1972	$\beta^{+}=100$	
⁴⁶ Cr ⁱ	-20328	13	9144	17	RQ				$(4^+)T=2$	10				p=?	
⁴⁶ Mn	-12570#	400#			*	36.2	ms	0.4	(4^{+})	10			1987	$\beta^+=100; \beta^+p=57.0.8; \beta^+2p\approx 18; \beta^+\alpha$?	*
$^{46}Mn^m$	-12420#	410#	150#	100#	*	1#	ms		1^{-} #					eta^+ ?	
$^{46}Mn^i$	-7390	50	5180#	400#	р				T=3						
⁴⁶ Fe	910#	500#				13.0	ms	2.0	0^{+}	10	07Do17	TD	1992	$\beta^+=100; \beta^+p=78.7 \ 38; \beta^+2p=?$	*
* ⁴⁶ Ca	T : 99Be6	$54:0v-\beta$	$\beta > 100 \text{Ey}$												**
$*^{46}Sc$	T : averag	ge 14Un0	1=83.84(0.0	08) 83Wa2	6=83.73	3(0.11) 80H	Ho17	7=83.819(0.	080);						**
$*^{46}Sc$	T: al	l values a	re from star	dard labs											**
$*^{46}Sc$	T: or	iginal un	c of 80Ho17	7=0.006 in	creased	to 0.1% by	eva	aluator							**
$*^{46}V$	T : averag	ge 12Pa0	7=422.66(0.	06) 97Ko6	5=422.	57(0.13)									**
* ⁴⁶ Mn	T : others	92Bo37	=41(+7-6)0	1Gi01=34	.0(+4.5	-3.5)									**
* ⁴⁶ Mn	$D:\beta^+2p$	≈18% es	stimated from	$n P_p = \beta^+$	$p + 2 \times$	$\beta^{+}2p=57($	1)%								**
* ⁴⁶ Fe	T : averag	ge 14Po0	5=16.4(+4.2	-2.8) 07D	017=13	0(2.0) 010	3i01	=9.7(+3.5-	4.3)						**
* ⁴⁶ Fe	D : other	β^+ p 14P	005=66(4)%	6 01Gi01=	36(20)	$\%; \beta^+ 2p, 1$	eve	nt in 14Po0	5						**
^{47}P	29710#	800#				2#	ms		$1/2^{+}$ #					β^{-} ?; β^{-} n=0.4#; β^{-} 2n=0.03#	
⁴⁷ S	7370#	500#				20#	ms	(>200 ns)	$3/2^{-}$ #	07	89Gu03	Ι	1989	β^{-} ?; β^{-} n=10#; β^{-} 2n=10#	
47Cl	-9780#	400#				101	ms	5	3/2+#	07			1989	$\beta^{-}=100; \beta^{-}n<3; \beta^{-}2n=0.3\#$	
⁴⁷ Ar	-25366.3	1.1				1.23	s	0.03	$(3/2)^{-}$	07			1985	$\beta^{-}=100; \beta^{-}n<0.2$	
⁴⁷ K	-35712.0	1.4				17.50	s	0.24	$1/2^{+}$	07	14Kr04	J	1964	$\beta^{-}=100$	
⁴⁷ Ca	-42344.4	2.2				4.536	d	0.003	$7/2^{-}$	07			1951	$\beta^{-}=100$	
⁴⁷ Sc	-44336.6	1.9				3.3492	d	0.0006	$7/2^{-}$	07			1945	$\beta^{-}=100$	
47 Sc ^m	-43569.8	1.9	766.83	0.09		272	ns	8	$(3/2)^+$	07			1968	IT=100	
⁴⁷ Ti	-44937.36	0.12				STABLE			$5/2^{-}$	07			1934	IS=7.44 2	
⁴⁷ Ti ⁱ	-37588.4	0.7	7349.0	0.7					$7/2^{-}T=5/2$	07					
^{47}V	-42006.62	0.17				32.6	m	0.3	$3/2^{-}$	07			1942	$\beta^{+}=100$	
$^{47}V^i$	-37856.27	0.20	4150.35	0.11					$5/2^{(-)}T=3/2$	2 07				IT=100	
⁴⁷ Cr	-34563	6				500	ms	15	3/2-	07			1972	$\beta^{+}=100$	
⁴⁷ Cr ^j	-29803#	21#	4760#	20#					5/2 ⁻ #T=5/2	2					
⁴⁷ Mn	-22570	30				88.0	ms	1.3	$5/2^{-}$ #	07	07Do17	TD	1987	$\beta^{+}=100; \beta^{+}p<1.7$	
$^{47}Mn^i$	-15191	17	7380	40	RQ				7/2 ⁻ #T=5/2	2 07			2001	p=100	
⁴⁷ Fe	-6870#	500#				21.9	ms	0.2	7/2-#	07	07Do17	TD	1992	$\beta^+=100; \beta^+=88.49$	
47 Fe ^m	-6100#	510#	770#	100#					$3/2^{+}$ #		Mirror	Ι		IT ?	
⁴⁷ Co	10370#	600#							$7/2^{-}$ #	07	Mirror	Ι		p?	
									.,						
⁴⁸ S	12760#	600#				10#	ms	(>200 ns)	0^+	06			1990	β^{-} ?; β^{-} n=80#; β^{-} 2n=10#	
48Cl	-4280#	500#				100#	ms	(>200 ns)		06	89Gu03	Ι	1989	β^- ?; β^- n=60#; β^- 2n=40#	
⁴⁸ Ar	-22280	310				415	ms	15	0^+	10	12We08	TD	2004	$\beta^{-}=100; \beta^{-}n=38.6$	*
⁴⁸ K	-32284.5	0.8				6.8	s	0.2	1-	06	14Pa45	J	1972	$\beta^{-}=100; \beta^{-}n=1.14 15$	
⁴⁸ Ca	-44224.63	0.10				45	Ev	6	0+	06	15Ba11	Т	1938	IS=0.187 21: $2\beta^{-}=75 + 25 - 38: \beta^{-}?$	*
48Sc	-44504	5				43 67	h	0.09	6^+	06		•	1937	$\beta^{-}=100$	
⁴⁸ Ti	-48492 71	0 11				STARIE		0.07	0^{+}	06			1923	IS=73 72 3	
48 T ii	_37767	6	10726	6		SINDLE			(6 ⁺)T-3	06			1/20	10 101120	
48 V	-44477 7	10	10720	0		15 0735	đ	0.0025	4+	06			1037	$\beta^{+}-100$	
v	777//./	1.0				13.7133	u	0.0020	-	00			1751	P = 100	

v	-41430.04	0.24	3010.9	0.9	кų	
⁴⁸ Cr	-42822	7				21.56 h 0.03
⁴⁸ Cr ⁱ	-37029	7	5792.77	0.24		
⁴⁸ Cr ^j	-34062	15	8760	17	RQ	
⁴⁸ Mn	-29296	7				158.1 ms 2.2
⁴⁸ Mn ⁱ	-26260	7	3036.7	0.9		
⁴⁸ Fe	-18000#	400#				45.3 ms 0.6

0.9 RQ

... A-group is continued on next page ...

-41458.84 0.24 3018.9

 $^{48}V^i$

06

06

 $(0)^+$ T=2 06

 0^+ $4^+T=1$

1952

1987

 $\beta^{+}=100$ IT=100 IT=100 IT=100

 $\beta^+=100; \beta^+p=0.284; \beta^+\alpha=6e-4$

 $\beta^{+} = 100; \beta^{+} p = 15.3 5$ $\beta^{+} = 100; \beta^{+} p = 15.3 5$

*

Table I. The NUBASE2016 table (continued. I	Explanation of Table on pa	ge 18
---	----------------------------	-------

			Table 1	I. The N	UBAS	E2016 t a	ıble	e (contin	ued, Expla	nati	ion of T	able	on page	e 18)	
Nuclide	Mass ex (keV	kcess 7)	E	ergy (keV)		ł	Ialf-	life	J^{π}	Ens	Reference	æ	Year of discovery	Decay modes and intensities (%)	
													-		
A-gro	up continued	500#							<u> </u>	06				- 2	
48Ni	16790#	500#				28	me	0.8	0+	06	11Po09	тр	2000	p: 2p-70 20: β^+ -30 20: β^+ p 2	¥
* ⁴⁸ Ar	T · averag	ze 12We0	8=381(35)4	12(19) 040	Tr20=47	5(40)	ms	0.0	0	00	111 007	10	2000	2p=70 20, p =50 20, p p :	**
* ⁴⁸ Ca	T : symm	etrized fr	15Ba11 =	44(+6-5)	5120-17	5(10)									**
* ⁴⁸ Cr ^j	E : strong	est frg: o	ther: $10(15)k$	eV lower											**
* ⁴⁸ Fe	D : average	ge 07Do1	7=15.9(6)%	16Or03=1	4.4(7)%	: other 96F	a09>	>3.6(1.1)%							**
* ⁴⁸ Fe	T : other	16Or03=	51(3) 96Fa09	=44(7)	. ,	,		. ,							**
* ⁴⁸ Ni	T : averag	ge 05Do2	0=2.1(+2.1-0	0.7) 14Po0	5=11Po	09=2.1(+1.	4–0.	4)							**
⁴⁹ S	21090#	670#						<200 ns	$3/2^{-}$ #	08	90Le03	I		n ?; β^- ?; β^- n=4#; β^- 2n=30#	*
49Cl	940#	600#				50#	ms	(>200 ns)	$3/2^{+}$ #	08	89Gu03	Ι	1989	β^{-} ?; β^{-} n=70#; β^{-} 2n=20#	
49Ar	-17190#	400#				236	ms	8	3/2-#	08	12We08	TD	1989	$\beta^{-}=100; \beta^{-}n=29.6; \beta^{-}2n=0.3\#$	
49K	-29611.5	0.8				1.26	s	0.05	$1/2^+$	11	14Pa45	J	1972	$\beta^{-}=100; \beta^{-}n=86.9$	
⁴⁹ Ca	-41299.77	0.20				8.718	m	0.006	3/2-	08			1950	$\beta^{-}=100$	
49T:	-46561.3	2.7				57.18	m	0.13	7/2	08			1940	$\beta = 100$	
49 11	-48303.79	0.11				STABLE	4	15	7/2	08			1934	15=5.41 2	
49 V	-4/901.9	0.8	6422	4	PO	550	a	15	7/2-T-5/2	08			1940	8=100	
49 Cr	-41330	4	0432	4	ĸŲ	12.3	m	0.1	5/2-	08			1042	B ⁺ -100	
49 Cr ⁱ	-40569	5	4764	5		42.5	ш	0.1	$(7/2)^{-}T-3/2$	08	85Eu03	F	1942	p = 100 IT-100	¥
⁴⁹ Mn	-37620.6	23	7/04	5		382	m¢	7	5/2-	. 08 08	551 u05	г	1970	$\beta^{+}=100$	*
⁴⁹ Mn ⁱ	-32804	18	4817	18	n	502	1115	,	$(7/2^{-})T=3/2$	08			1770	p = 100	
⁴⁹ Fe	-24751	24	1017	10	Р	64.7	ms	0.3	$(7/2^{-})^{-1}$	08	96Fa09	J	1970	$\beta^{+}=100; \beta^{+}=56.74$	
⁴⁹ Co	-9880#	500#						<35 ns	$7/2^{-}$ #	08	94B110	Ī		p?	
⁴⁹ Ni	8200#	600#				7.5	ms	1.0	$7/2^{-}$ #	08			1996	$\beta^{+}=100; \beta^{+}=83 13$	
$*^{49}S$	I : statisti	cs preclu	des any concl	lusion, say	authors				,						**
*49Cri	E : strong	est comp	onent surrou	nded by se	veral we	eak 1=3 line	s								**
$*^{49}Cr^{i}$	E : 85Fu0)3 cannot	confirm IAS	identity a	nd frgs										**
⁵⁰ C1	7740#	600#				20#	ms	(>620 ns)		10	09Ta24	I	2009	β^{-} ?; β^{-} n=70#; β^{-} 2n=30#	
⁵⁰ Ar	-13330#	500#				106	ms	6	0^{+}	15			1989	$\beta^{-}=100; \beta^{-}n=377; \beta^{-}2n=0.1\#$	
⁵⁰ K	-25728	8				472	ms	4	0-	10	14Pa45	J	1972	$\beta^{-}=100; \beta^{-}n=29 3; \beta^{-}2n=10\#$	
⁵⁰ K ^m	-25557	8	171.4	0.4		125	ns	40	(2^{-})	10	FGK127	J	1999	IT=100	*
⁵⁰ Ca	-39589.2	1.6				13.9	s	0.6	0+	10			1964	$\beta^{-}=100$	
⁵⁰ Sc	-44547	15	254 005	0.010		102.5	s	0.5	5	10			1959	$\beta^{-}=100$	
50 SCm	-44290	15	256.895	0.010		350	ms	40	$(2^+, 3^+)$	10			1963	$11 > 97.5; \beta < 2.5$	
50 I I	-51431.66	0.12				STABLE	D	40	0	10			1934	1S=5.182	
50 v i	-49224.0	0.4	10126	0.5	PO	150	Ру	40	$0^{+}T_{-2}$	10			1949	13=0.2504; p = 8311; p = 1711	. *
50 Cr	-44410.42	0.29	4815.0	0.5	ĸŲ	STADLE		$(> 1.2 E_{\rm V})$	0-1=5	10			1020	18-4 245 12: 28+ 2	
50 Cri	-30202.1	0.4 7	8426	7	PO	STABLE		(>1.5 Ey)	6+T-2	10			1930	13=4.343 13, 2p	*
50 Crj	-41050	6	13223	6	RQ				$0^{+}T-3$	10					
⁵⁰ Mn	-37039	04	13443	0	NŲ	283 10	me	0.10	$0^{+}T = 1$	10			1952	$\beta^{+}=100$	÷
50 Mp ^m	-42027.0	0.4	225 31	0.07	MD	205.19	m	0.03	5 ⁺ T-0	10			1962	$\beta^{-100} = 100$	*
⁵⁰ Fe	-34476	8		0.07		152.1	ms	0.6	0+	10	15Mo01	Т	1977	$\beta^+=100; \beta^+p\approx 0$	
⁵⁰ Fe ⁱ	-26000	10	8477	13	RO	102.1		5.0	$(6^+)T=2$	10	1011001	•		F 100, P P.30	
⁵⁰ Co	-17630#	400#	~		~	38.8	ms	0.2	(6^+)	10	96Fa09	J	1987	$\beta^+=100; \beta^+p=70.5.7; \beta^+2p.2$	
⁵⁰ Co ⁱ	-12746	15	4880#	400#	2p	50.0			$(0)^{+}T=3$	10	07Do17	D		p=100	
⁵⁰ Ni	-4120#	500#			г	18.5	ms	1.2	0+	10	07Do17	TD	1994	$\beta^+=100; \beta^+=86.7 39; \beta^+=2p?$	*
$*^{50}K^{m}$	E: also 1	2Ka36=1	72.4(0.5)	J : E2	to groun	id-state									**
$*^{50}K^{m}$	T : others	recent 12	2Ka36=138(-	+50-41) 09) Cr03<5	500 ns; disc	over	ed in 99Le6	58						**
$*^{50}V$	T : symm	etrized fr	om 140(+40-	-30)											**
* ⁵⁰ Cr	T : 03Bi0	5>1.3Ey	85No03>0.	18Ey											**
* ⁵⁰ Mn	T : also 1	3Su07=2	88(7)												**
* ⁵⁰ Ni	T: other	03Ma34=	=12(+3-2)	D : of	her 03M	a34=70(20)%								**
⁵¹ Cl	14290#	700#				2#	ms	(>200 ns)	3/2+#	06			1990	β^{-} ?; β^{-} n=40#; β^{-} 2n=20#	
⁵¹ Ar	-6690#	600#				60#	ms	(>200 ns)	$3/2^{-}$ #	06	89Gu03	Ι	1989	β^{-} ?: β^{-} n=40#: β^{-} 2n=10#	
⁵¹ K	-22516	13				365	ms	5	$3/2^+$	06	14Pa45	Ĵ	1983	$\beta^{-}=100; \beta^{-}n=65.6; \beta^{-}2n=4#$	*
⁵¹ Ca	-36332.3	0.5				10.0	s	0.8	$(3/2^{-})$	06	06Pe16	Ĵ	1980	$\beta^{-}=100; \beta^{-}n=3\#$	
⁵¹ Sc	-43229	20				12.4	s	0.1	$(7/2)^{-}$	06	501010		1966	$\beta^{-}=100; \beta^{-}n=0#$	
⁵¹ Ti	-49732.8	0.5				5.76	m	0.01	3/2-	06			1947	$\beta^{-}=100$	
⁵¹ V	-52203.8	0.4				STABLE			$7/2^{-}$	06			1924	IS=99.750 4	
⁵¹ Cr	-51451.4	0.4				27.7010	d	0.0011	$7'/2^{-}$	06			1940	ε=100	
⁵¹ Cr ⁱ	-44838	5	6613	5	RQ				$7/2^{-}T=5/2$	06					
A-gro	up is continu	ed on nex	at page		-										

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I	The	NUBASE	2016 tah l	(continued	Evolanation	of Table on	nage 18)
таріст.		INUDASE	2010 Ladi		. באטומוומנוטו	гог таріс он	Dayc IOI

Nuclide	Mass ex	cess	E	Excitation			Half-	life	$\frac{J^{\pi}}{J^{\pi}}$	Ens	Referen	ce	Year of	Decay modes and interprities (%)	
	(Ke v	()	en	ergy (kev)								discovery	Intensities (%)	
A-gro	up continued	1										_		0 · · · · ·	
⁵¹ Mn	-48243.9	0.5	1150 C	1.5	DO	46.2	m	0.1	5/2-	06	15Ba49	J	1938	$\beta^{+}=100$	
51 Fe	-43/93.3 -40203	1.0	4450.0	1.5	ĸQ	305.4	me	23	5/2-	06	15Sh16	т	1972	$\beta^{+} = 100$ $\beta^{+} = 100$	*
⁵¹ Co	-27340	50				68.8	ms	1.9	$7/2^{-}$ #	06	07Do17	TD	1987	$\beta^{+}=100; \beta^{+}p<3.8$	T.
⁵¹ Co ⁱ	-20674	18	6670	50	р				7/2 ⁻ #T=5/2		07Do17	D		p=100	
⁵¹ Ni	-11900#	500#			•	23.8	ms	0.2	7/2-#	06	07Do17	TD	1987	$\hat{\beta}^+=100; \beta^+p=87.2.8; \beta^+2p=0.5.2$	2 *
* ⁵¹ K	D : avera	age 06Pe	e16=63(8)%	83La23=0	58(10)%	; other 82C	a04=	47(5)%							**
* ⁵¹ Mn'	E : NDS	916 give	es 4450.0(0.0	5) may be	based of	n mis-interp	oretat	ion of 86Di(01						**
***Fe * ⁵¹ Ni	$D \cdot \beta + 2i$	ige 155n p from 1	$2\Delta n 08$	135007=3	01(4) 87	на.в=305(5) 84	Ay01=310(3))						**
* 141	D.p 2	p nom i	2/1000												**
52 .	1200.0	600 H				10.0		((20))	0+				2000	0-0.0-00" 0-0.5"	
⁵² Ar 5212	-1280#	600#				10#	ms	(>620 ns)	0^+	15	0(D-1(т	2009	β^{-} ?; β^{-} n=30#; β^{-} 2n=7#	
52Ca	-1/140	30 0.7				110	ms	4	2 # 0 ⁺	15	83L 223	I D	1985	$\beta = 100; \beta = n = 74.9; \beta = 2n = 2.5.5$ $\beta^{-} = 100; \beta^{-} = n < 2$	*
52Sc	-40440	80				8.2	s	0.2	3 (+)	15	0512425	D	1980	$\beta^{-}=100; \beta^{-}n=4\#$	
⁵² Ti	-49470	7				1.7	m	0.1	0+	15			1966	$\beta^{-100}, \beta^{-100}$	
⁵² V	-51443.8	0.4				3.743	m	0.005	3+	15			1934	$\beta^{-}=100$	
⁵² Cr	-55419.2	0.3				STABLE			0^{+}	15			1923	IS=83.789 18	
⁵² Cr ⁱ	-44154.3	0.5	11264.9	0.4					3+T=3	15				IT=100	
⁵² Mn	-50707.3	1.8	277 740	0.005		5.591	d	0.003	6^+ 2+	15			1938	$\beta^+=100$	
52 Mn ^m	-50329.6	1.8	377.749	0.005	PO	21.1	m	0.2	2 ⁺	15			1937	$\beta = 98.225; 11=1.785$	*
⁵² Fe	-47783 -48330	5	2922	3	ĸŲ	8 275	h	0.008	0+1=2	15			1948	$\beta^{+}=100$	*
⁵² Fe ^m	-41372	5	6958.0	0.4		45.9	s	0.6	12+	15			1979	$\beta^{+} \approx 100$; IT=0.021 5	T.
⁵² Fe ⁱ	-42676	5	5654.5	0.4					6+T=1	15				IT=100	
⁵² Fe ^j	-39776	6	8555	8	RQ				0^+ frg.T=2	15					*
⁵² Co	-34361	8				111.1	ms	2.3	(6^{+})	15	16Or08	Т	1987	$\beta^{+}=100; \beta^{+}p?$	*
⁵² Co ^m	-33974	10	387	13	MD	102	ms	6	2 ⁺ #		16Or08	Т	2016	$\beta^+=100; \text{ IT } ?; \beta^+ p ?$	
52 CO'	-31426	10	2935	13		41.0		1.0	$0^{+}1=2$	15	16Or03	D	2016	$\Pi = 75 \ 23; p=?$ $B^+ = 100; B^+ = 21.1.5$	
52Cu	-22550# -2280#	400# 600#				41.0	ms	1.0	3+#	15	Mirror	T	1987	$p^{2} = 100; p^{2} p = 51.15$	*
* ⁵² K	T : avera	ige 06Pe	16=118(6) 8	35Hu03=1	10(30) 8	83La23=105	5(5)		5 11		WIIITOI	1		p.	**
$*^{52}Mn^m$	T : other	: 95Ir01	=22.7(3.0) f	for $q=25^+$	(bare io	n)	(0)								**
* ⁵² Fe	T : other	: 95Ir01	=12.5(+1.5-	-1.2) for q	=26 ⁺ (b	are ion)									**
* ⁵² Fe ^j	E : proba	ably frag	mented, unr	esolved d	oublet se	eparated by	$\approx 4 \text{ k}$	eV							**
* ⁵² Co	T : avera	ige 16Or	08=112(3)	15Sh16=1	12(4) 13	Su07=103(7) otl	ner: 97Ha04	=104(11)						**
* ⁵² Ni	T : avera	ige 16Or	03=42.8(3)	07Do17 = 0	40.8(2);	other 94Fa0)6=38	3(5)							**
***IN1	D : other	07D01	/=31.4(15) \$	94Fa06=1	/.0(14)										**
5 2															
⁵³ Ar	6790#	700#				3#	ms	(>620 ns)	5/2-#	11	09Ta24	I	2009	β^{-} ?; β^{-} n=20#; β^{-} 2n=30#	
⁵³ K	-12300	110				30	ms	5	$(3/2^+)$	09	06Pe16	JD	1983	$\beta^{-}=100; \beta^{-}n=64 11; \beta^{-}2n\approx 105$	
53 Ca	-29390	40				461	ms	90	3/2 # $(7/2^{-})$	14	100-02	ті	1983	$\beta = 100; \beta = n=40.10$ $\beta^{-} = 100; \beta^{-} = n=0.24$	
⁵³ Ti	-36910 -46830	100				2.4	s	0.0	$(1/2)^{-}$	09	10C102	15	1980	$\beta = 100; \beta = 100, \beta = 0.2 \#$ $\beta^{-} = 100$	
⁵³ V	-51851	3				1.543	m	0.014	$7/2^{-}$	09			1960	β^{-100} $\beta^{-}=100$	
⁵³ Cr	-55287.0	0.3				STABLE			3/2-	09			1930	IS=9.501 17	
⁵³ Mn	-54690.1	0.5				3.7	My	0.4	$7/2^{-}$	09	15Ba49	J	1955	ε=100	*
⁵³ Mn ⁱ	-47717	4	6974	4	RQ				$3/2^{-}T=5/2$	09			1976		
⁵³ Fe	-50947.5	1.7				8.51	m	0.02	7/2-	09			1938	$\beta^{+}=100$	*
⁵³ Fe ^m	-47907.1	1.7	3040.4	0.3		2.54	m	0.02	19/2-	09			1967	IT=100	
53 C-	-46698	3	4250	3		242		0	//2 ⁻ T=3/2	09	021 - 12	т	1070	<i>R</i> ⁺ -100	
53 Com	-42659.4	1.7	3174.2	0.0	MD	242	ms	8 12	$\frac{1}{2} \#$	09	02L013	Ľ	1970	$p^{+}=100$ $\beta^{+}\sim 98.5$ · $p\sim 1.5$	*
53Co ⁱ	-38334.4	2.6	4325.0	2.0	MD	247	1115	12	$(7/2^{-})T=3/2$	09	16Su10	ED	1976	$p \sim 90.3, p \sim 1.3$ IT $\approx 100: p < 0.93$	不
⁵³ Ni	-29631	25	1525.0	2.0		55.2	ms	0.7	$(7/2^{-})T=3/2$	13	16Su10	D	1976	$\beta^+=100; \beta^+=22.77$	*
⁵³ Cu	-13270#	500#					,	<130 ns	3/2-#	13				p?	
* ⁵³ Mn	T: 3.74(0.04) M	y as given ir	n Ensdf2	009 is ty	/po								-	**
* ⁵³ Fe	T: other	: 95Ir01	=8.5(0.3) fo	r q=26 ⁺ (bare ion)									**
* ⁵⁵ Co	T : avera	ige 02Lo	013=240(9) 8	89Ho13=2	240(20)	73Ko10=26	2(25))							**
* ⁵³ Co	T : 13Su	0/=230($(1/)$ for which $\nabla x = 2^{2}$	cn state ?											**
****C0‴ * ⁵³ Ni	D:p≈I. D:aver	J ITOM I	ENSDF 90 110=22(1) 0'	7Do17-23	3 4(1 m·	other: 76Vi	i02~	45							**
~ 111	D. avela	150 IUSU			/.+(1.0),	Junei. 70 VI	04~								ጥጥ

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I. The	NUBASE2016 f	table (continued.]	Explanation of 7	[able on nage 18]
1000 1010				

Nuclide	Mass ex	cess	E	xcitation	0	Н	lalf-	life	$\frac{J^{\pi}}{J^{\pi}}$	Ens	Referenc	e	Year of	Decay modes and	
	(Ke V)	ene	igy (kev)								discovery	Intensities (%)	
⁵⁴ K	-5000#	600#				10	ms	5	2-#	14			1983	$\beta^{-}=100; \beta^{-}n=1\#; \beta^{-}2n=30\#$	
⁵⁴ Ca	-25160	50				90	ms	6	0+	14	08Ma01	TD	1997	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$	*
⁵⁴ Sc 54 S - m	-33890	270	110.5	0.2		526	ms	15	$(3)^+$	14	100-02	T	1990	$\beta^{-}=100; \beta^{-}n=16.9$	
54Ti	-33780 -45620	270	110.5	0.3		2.77	μs	0.02	$(5^+, 4^+)$	14	10Cr02	J	1998	$\beta^{-} = 100$	
⁵⁴ V	-49893	15				49.8	s	0.5	3+	14			1930	β^{-100} $\beta^{-}=100$	
$^{54}V^m$	-49785	15	108.0	1.0		900	ns	500	(5)+	14			1998	IT=100	
⁵⁴ Cr	-56934.8	0.4				STABLE			0+	14			1930	IS=2.365 7	
⁵⁴ Mn	-55557.6	1.1				312.20	d	0.20	3+	14			1938	ε =100; β ⁻ =0.93e-4; e ⁺ =1.28e-7 25	*
⁵⁴ Mn ¹	-49411.5	2.8	6146.2	3.0	RQ				0+T=3				1000	X0 5 0 45 05 0 0 0	
54 Fe	-56254.5	0.4	6527 1	1 1		STABLE 264		7	0+ 10+	14			1923	$18=5.845\ 35;\ 2\beta^{+}?$	
⁵⁴ Fe ^j	-49727.4	20	14868	20	RO	504	115	/	$0^{+}T=3$	14			1965	11-100	
⁵⁴ Co	-48010.0	0.4	11000	20		193.28	ms	0.07	0 ⁺ T=1	14			1952	$\beta^{+}=100$	
$^{54}Co^m$	-47812.4	0.4	197.57	0.10	MD	1.48	m	0.02	$7^{+}T=0$	14			1962	$\beta^{+}=100$	
⁵⁴ Ni	-39278	5				114.2	ms	0.3	0^{+}	14			1977	$\beta^{+}=100; \beta^{+}p?$	
⁵⁴ Ni ^m	-32821	5	6457.4	0.9		152	ns	4	10+	14	08Ru09	JD	2008	IT=64 2; p=36 2	
⁵⁴ Cu 547	-21410#	400#				1.0		<75 ns	3 ⁺ #	14	114-00	TD	2005	p?	
* ⁵⁴ Ca	-0270# T:avera	400# ge 10Cr	02 - 107(14)	08Ma01	-86(7)	1.8	ms	0.5	0	14	TTASU8	ID	2005	2p=877	*
* Ca * ⁵⁴ Mn	$D \cdot e^+$ av	ge roer /erage 9	$8W_{10}(1+)$	$(0.26)e^{-1}$	-7% 97 7 :	0.07 = 2.2(0.9)))e_^	7%							**
* ⁵⁴ Zn	T : symn	netrized	from 11As0	8=1.59(-	+0.60-0.3	(01) (01) (01) (01) (01) (01) (01)	5B11	5=3.2(+1.8	3-0.8)						**
* ⁵⁴ Zn	D : avera	ged from	n 11As08=9	2(+6-13)% 05B1	15=87(+10	-17)	%	,						**
⁵⁵ K	710#	700#				3#	ms	(>620 ns)	$3/2^{+}$ #	09	09Ta24	I	2009	β^{-} ?; β^{-} n=40#; β^{-} 2n=1#	
⁵⁵ Ca	-18350#	300#				22	ms	2	5/2-#	09			1997	$\beta^{-}=100; \beta^{-}n=1#; \beta^{-}2n=0.4#$	
⁵⁵ Sc	-30160	450				96	ms	2	$(7/2)^{-}$	08	10Cr02	TJD	1990	$\beta^{-}=100; \beta^{-}n=17; \beta^{-}2n=0\#$	*
⁵⁵ Ti	-41670	160				1.3	s	0.1	$(1/2)^{-}$	10			1980	$\beta^{-}=100; \beta^{-}n=0\#$	
55 V	-49140	100				6.54 3.407	s	0.15	2/2 #	08			1977	$\beta = 100$ $\beta^{-} = 100$	
⁵⁵ Mn	-57712.4	0.4				STABLE	ш	0.003	5/2-	08	15Ba49	I	1932	p = 100 IS=100	
⁵⁵ Fe	-57481.3	0.3				2.744	y	0.009	$3/2^{-}$	09	102415	0	1939	$\varepsilon = 100$	
⁵⁵ Fe ⁱ	-49848	6	7633	6	RQ		5		$5/2^{-}T=5/2$	09					
⁵⁵ Co	-54029.9	0.4				17.53	h	0.03	$7/2^{-}$	09			1938	$\beta^{+}=100$	
⁵⁵ Co ⁱ	-49308.5	0.4	4721.44	0.10					$3/2^{-}$ frg.T= $3/2$	2 09		-	1981	IT=100	*
55 N1	-45335.8	0.7	4500	1		204.7	ms	1.7	$7/2^{-}$, 08	02Lo13	Т	1972	$\beta^{+}=100$	*
55 Cu	-40/30.8 -31640	1.2	4599	1		57	me	3	1/2 Irg. $1=3/23/2=#$	2 08	131r09 13Tr09	E T	1987	$\beta^+ - 100$; $\beta^+ - 15043$	*
⁵⁵ Zn	-14570#	400#				19.8	ms	1.3	$5/2^{-}$ #	08	07Do17	TD	2001	$\beta^{+}=100; \beta^{+}p=91.051$	
* ⁵⁵ Sc	T : other	s 04Li75	5=115(15) 0	2Sh43=1	03(7) 98	So03=120(40)							F	**
* ⁵⁵ Co ⁱ	E : stron	gest frg	(spectr. facto	or 0.45);	other 26.	69(0.15) hi	ghei	(sf=0.37)							**
* ⁵⁵ Ni	T : avera	ge 02Lo	13=196(5)	99Re06=	204(3) 87	7Ha.A=212	.1(3	.8) 84Ay01	=208(5)						**
* ³³ Ni	T: a	nd 77Ho	25=189(5)	76Ed.A=	219(6); 9	7Wo06=20)4(3)	supersede	1 by 99Re06						**
* ⁵⁵ N1 * ⁵⁵ Ni ⁱ	J : spectr	oscopy :	factor inform	$\frac{1}{100}$	148a46 ther 20kg	V lower (t	ot et	- 0.8)							**
* 181 * ⁵⁵ Cu	T : 07Do	17 27(8	ms poor sta	tistics	D :	from 07Do	01.SL 17	0.8)							**
· · · · ·	1.0720	17 27(0	,ino poor su	libuos	2.1		.,								
⁵⁶ K	7930#	800#				1#	ms	(>620 ns)	2-#	11	09Ta24	I	2009	β^{-} ?: β^{-} n=50#: β^{-} 2n=40#	
⁵⁶ Ca	-13900#	400#				11	ms	2	0+	11	57 Id2 4		1997	$\beta^{-}=100; \beta^{-}n=5\#; \beta^{-}2n=0.2\#$	
⁵⁶ Sc	-24850	590			*	26	ms	6	(1+)	11	10Cr02	J	1997	$\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.5\#$	
⁵⁶ Sc ^m	-24850 #	600#	0#	100#	*	75	ms	6	$(6^+, 5^+)$	11	10Cr02	J	2004	$\beta^{-}=100; \beta^{-}n>142; \beta^{-}2n=0.5\#$	
⁵⁶ Sc ⁿ	-24080	590	774.9	0.3		290	ns	30	(4+)	11		-	2004	IT=100	*
⁵⁶ Ti	-39320	120				200	ms	5	0^+	11	98Am04	D	1980	$\beta^{-}=100; \beta^{-}n=0.1\#$	
56 C-	-40150	180				216	ms	4	(1^{+})	11	98Am04	D D	1980	p = 100; p = n = 0 = 0	
⁵⁶ Mn	-33283.0 -56911.5	0.0				2 5789	n h	0.10	0 · 3+	11	00Dr03	D	1900	β^{-100} $\beta^{-}=100$	
⁵⁶ Fe	-60607.1	0.3				STABLE	.1	0.0001	0^{+}	11			1923	IS=91.754 36	
⁵⁶ Fe ⁱ	-49103.4	0.4	11503.7	0.3					3+T=3	11			. ==		
⁵⁶ Co	-56040.4	0.5				77.236	d	0.026	4^{+}	11			1941	$\beta^{+}=100$	
⁵⁶ Co ⁱ	-52448	9	3593	9	RQ				(0^+) frg.T=2	11					*
⁵⁶ Ni	-53907.5	0.4	(101.0	0.7		6.075	d	0.010	0^+	11			1952	$\beta^{+}=100$	
56 NI	-47475.6	0.8	6431.9 0044	0.7	PO				$4^{+}T=1$	11					
56Cu	-45904 -38643	4 15	9944	4	ĸŲ	93	ms	3	(4^+)	11	01Bo54	тю	1987	$\beta^+=100: \beta^+=0.40.12$	*
⁵⁶ Cu ⁱ	-35099	10	3544	18	р	25		5	T=2	11	16Or03	D	2007	IT=566; p=466	
A-grou	up is continu	ied on n	ext page	-	Ľ				-				/	- · · I	

Table I The	NUBASE2016	table (continued	Explanation	of Table on nage	· 18
тарист. тис		TADIE (COMUNICIE)		OF LADIE OF DAYE	: IO

			Table			1322010	1.10							<i>y</i>	
Nuclide	Mass ex	cess	1	Excitatio	n N	1	Half-	life	J^{n}	Ens	Reference	•	Year of	Decay modes and	
	(kev	()	er	iergy (ke	V)								discovery	intensities (%)	
A grou	in continued														
567n	_25390#	400#				32.0	me	0.8	0^+	11	14 0r 04	тр	2001	$\beta^+ - 100 \cdot \beta^+ - 88023$	¥
567ni	21520#	400#	2860#	510#		52.9	ms	0.8	2+#T_2	11	140104	10	2001	p = 100, p = 0.025	*
56Ga	-21550#	500#	3800#	510#					3 #1=3					p : p 2	
56 Scn	T: other	12Ko36-	-350(+260	120)					5 11					p:	يلد يلد
* SC * ⁵⁶ Co ⁱ	F : strong	12Ka50=	ross section	120)	ther 70(0) keV lower (ve-5	5)							**
	E : strong	sest fro o	$\frac{1088}{1088}$ section	and 98(f	(1) keV hi	gher	<u></u>	5)							**
* 101 * ⁵⁶ 7n	T : other	07Do17-	-30.0(1.7))) KC V IIIg	gnei									**
[∞] Zn * ⁵⁶ Zn	D : avera	ge 14Or0	4-885(26)	07Do17	-86 0(49	n									**
* Zli	D. avera	ge 14010	H=00.5(20)	0/001/	-00.0(+)	.)									άr
⁵⁷ Ca	-6870#	400#				5#	ms	(>620 ns)	$5/2^{-}$ #	10	09Ta24	Ι	2009	β^{-} ?; β^{-} n=20#; β^{-} 2n=2#	
⁵⁷ Sc	-21000	1300				22	ms	2	7/2-#	10	10Cr02	Т	1997	$\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=1\#$	*
⁵⁷ Ti	-33920	260				95	ms	8	5/2-#	10	99So20	Т	1985	$\beta^{-}=100; \beta^{-}n=0.04\#$	*
⁵⁷ V	-44410	80				350	ms	10	$(7/2^{-})$	10	03Ma02	Т	1980	$\beta^{-}=100; \beta^{-}n=0.4\#$	*
⁵⁷ Cr	-52524.7	1.1				21.1	s	1.0	$(3/2)^{-}$	10			1978	$\beta^{-}=100$	
⁵⁷ Mn	-57486.3	1.5				85.4	s	1.8	5/2-	98	15Ba49	J	1954	$\beta^{-}=100$	
⁵⁷ Fe	-60181.8	0.3				STABLE			$1/2^{-}$	98			1935	IS=2.119 10	
⁵⁷ Co	-59345.6	0.5				271.70	d	0.10	7/2-	98	14Un01	Т	1941	ε=100	*
⁵⁷ Co ⁱ	-52092.3	0.4	7253.3	0.6	RO				$1/2^{-}T=5/2$		MMC120	J			
⁵⁷ Ni	-56083.8	0.6				35.60	h	0.06	3/2-	98			1938	$\beta^{+}=100$	
⁵⁷ Ni ⁱ	-50845.0	0.9	5238.8	0.7					$7/2^{-}$ frg.T= $3/2$	2 98				1	*
⁵⁷ Cu	-47308.9	0.5				196.3	ms	0.7	3/2-	98			1976	$\beta^{+}=100$	
⁵⁷ Cu ⁱ	-42010	25	5299	25	р				$7/2^{-}$ T=3/2					,	
⁵⁷ Zn	-32550#	200#				38	ms	4	7/2-#	98	02Lo13	Т	1976	$\beta^+=100; \beta^+p\approx 65$	*
⁵⁷ Ga	-15010#	400#							1/2-#					p?	
* ⁵⁷ Sc	T : other	03So21=	13(4)						,					1	**
* ⁵⁷ Ti	T : avera	ge 05Li53	3=98(5) 998	So20=67	(25) 96D	023=56(20)									**
* ⁵⁷ Ti	T : 98An	n04=180(30) conflict	ing, not	used										**
* ⁵⁷ V	J : 98So0	3 propos	ed 3/2 ⁻ , su	pported i	n 03Ma0	2; same grou	p 051	Li53 favors	7/2-						**
* ⁵⁷ Co	T : avera	ge 14Un0)1=271.87(0).44) (suj	persedes 9	92Un01=272	.11(().26)),							**
* ⁵⁷ Co	T: 1	2Da06=2	71.82(0.17)	97Ma75	5=271.68	(0.27) 83Wa2	26=2	71.84(0.27)							**
* ⁵⁷ Co	T: 8	1Va11=2	70.90(0.27)	80Ho17	=271.77(0.27) 72La14	1=27	1.23(0.21)							**
* ⁵⁷ Co	T: 6	5An07=2	71.65(0.13)); origina	l unc of 9	97Ma75=0.09	83	Va26=0.04							**
* ⁵⁷ Co	T: 8	1Va11=0.	.09 80Ho17	=0.05 in	creased to	o 0.1% by ev	aluat	or							**
* ⁵⁷ Ni ⁱ	E : strong	gest frg; 7	9Ik04 othe	rs 98(7)k	eV lower	r(5.5%) 128(7)keV	/ higher(10.	0%)						**
* ⁵⁷ Ni ⁱ	E : strong	gest frg; 7	8Na11 oth	ers 104(5)keV low	ver, 129(5)ke	V hig	gher							**
* ⁵⁷ Zn	T : avera	ge 02Lo1	3=37(5) 76	Vi02=40	(10)										**
£9															
²⁸ Ca	-1920#	500#				3#	ms	(>620 ns)	0+	10			2009	β^{-} ?; β^{-} n=2#; β^{-} 2n=4#	
^{3°} Sc	-14880#	400#				12	ms	5	3+#	10	115	-	1997	$\beta^{-}=100; \beta^{-}n=20\#; \beta^{-}2n=1\#$	
³⁰ Ti	-31110#	200#				55	ms	6	0+	14	11Da08	T	1992	$\beta^{-}=100; \beta^{-}n=1\#$	*
20 V	-40400	90				191	ms	10	(1^{+})	10			1980	$\beta^{-}=100; \beta^{-}n=0.8\#$	

⁵⁸Cr 1980 -51991.81.5 7.0 s 0.3 0^+ 10 $\beta^{-}=100$ ⁵⁸Mn 1^+ 4^+ 0^+ -55827.62.7 3.0 s 0.1 10 1961 $\beta^{-}=100$ ⁵⁸Mn^m -55755.8 2.7 71.77 0.05 65.4 s 1961 $\beta^{-}=?;$ IT=20# 0.5 10 ⁵⁸Fe IS=0.282 4 -62155.10.3 1935 STABLE 10 ⁵⁸Co ⁵⁸Co^m ⁵⁸Coⁿ ⁵⁸Coⁱ 2+ 5+ $\beta^+=100$ IT=100 70.86 d 0.06 -59847.21.2 10 1941 24.95 53.15 5752 9.10 h 0.09 -59822.31.2 0.06 10 1950 4⁺ -59794.1 1.2 0.07 10.5 µs 0.3 10 1964 IT=100 0^+ frg.T=3 0^+ -54095 RQ 8 10 8 * ⁵⁸Ni -60228.70.4 (>700 Ey) 1921 IS=68.077 19; $2\beta^+$? 10 STABLE * ⁵⁸Niⁱ -51400 $2^{+}T=2$ 8830 40 RQ 40 10 ⁵⁸Ni^j 7 $0^{+}T=3$ -4569010 MMC12 J 14539 7 RQ ⁵⁸Cu 1952 -51667.7 0.6 3.204 s 0.007 $1^{+}T=0$ 10 $\beta^{+}=100$ 58Cuⁱ 0.6 $0^{+}T=1$ -51464.7202.99 0.24 10 ⁵⁸Zn -42300 50 0^+ 1986 $\beta^{+}=100; \beta^{+}p<3$ 86.7 ms 2.4 14 2⁺# 5⁺# p? p? p? 2p? ⁵⁸Ga -23540# 300# Mirror I * ⁵⁸Ga^m -23510# 320# 100# 30# * Mirror I ⁵⁸Ge -7080# 500# 0^+ Mirror I *⁵⁸Ti *⁵⁸Coⁱ T : average 11Da08=57(10) 03So21=59(9) 99So20=47(10) **

**

**

T : strongest fragment (cross section 98); other 20(8) keV lower (xs=90) T : >400 Ey to 2^+ level of 58 Fe, >700 Ey to ground-state *⁵⁸Ni
	Chinese Physics C	Vol. 41, No.	3 (2017) 030001
--	-------------------	--------------	---------	----------

Table I. The NUBASE2016 table	(continued, Explanation of Table on page 1	18)

	Mass ex (keV	(cess ()	E	Excitation ergy (keV	/)	ł	Half-I	life	J^{π}	Ens	Reference	e	Year of discovery	Decay modes and intensities (%)	
⁵⁹ Sc	-10300#	400#				10#	ms	(>620 ns)	7/2=#	09	09Ta24	I	2009	β^{-} ?: β^{-} n=50#: β^{-} 2n=1#	
⁵⁹ Ti	-25510#	200#				28.5	ms	(>020 lls) 1 9	5/2-#	02	11Da08	т	1997	β^{-1} , β^{-1} = 30 ^m , β^{-2} = 100 ^m , β^{-1} = 0.3 ^m , β^{-2} = 0.01 ^m	*
⁵⁹ Ti ^m	-25400#	200#	109.0	0.5		590	ns	50	$(1/2^{-})$	02	12Ka36	ETJ	2012	F = 100, P	*
⁵⁹ V	-37830	160	10,10	010		95	ms	6	$(5/2^{-})$	02	05Li53	TJ	1985	$\beta^{-}=100; \beta^{-}n=6\#$	*
⁵⁹ Cr	-48090	220				1050	ms	90	$(1/2^{-})$	02	05Li53	TJ	1980	$\beta^{-}=100$	*
⁵⁹ Cr ^m	-47590	220	503.0	1.7		96	μs	20	$(9/2^+)$	02			1998	IT=100	
⁵⁹ Mn	-55525.3	2.3				4.59	s	0.05	5/2-	02	15Ba49	J	1976	$\beta^{-}=100$	
⁵⁹ Fe	-60664.8	0.4				44,495	d	0.009	$3/2^{-}$	02			1938	$\beta^{-}=100$	
⁵⁹ Co	-62229.7	0.4				STABLE			7/2-	02			1923	IS=100.	
⁵⁹ Ni	-61156.7	0.4				81	kv	5	$3/2^{-}$	02	94Ru19	Т	1951	$\beta^{+}=100$	*
⁵⁹ Ni ⁱ	-53814.8	2.1	7341.9	2.1	RO		,		$7/2^{-}$ frg. T=5/2		,	-		F	*
⁵⁹ Cu	-56358.3	0.5				81.5	s	0.5	3/2-	02			1947	$\beta^{+}=100$	
⁵⁹ Cu ⁱ	-52472.8	2.2	3885 5	2.1		0110	0	0.0	$3/2^{-}$ fro T=3/2	02			17.17	IT=100	*
⁵⁹ Zn	-47215.6	0.8				182.0	ms	1.8	3/2-	15			1981	$\beta^+=100; \beta^+=0.103$	
⁵⁹ Ga	-33760#	170#						<43 ns	3/2-#	15				n?	
⁵⁹ Ge	-15870#	400#				8#	ms	(>620 ns)	7/2-#	15	15Ci06	IT	2015	β^{+}	
* ⁵⁹ Ti	T · avera	ore 11Da	08=27 5(2	5) 03502	21 = 30(3)	other 99S	$n^{2}0=$	(2020 h3) 58(17)	1/2 11	15	150100		2015	Ρ.	**
√ 11 √59 Tim	T · evmr	netrized	from 587(2)	-57-51)	.1=30(3),	outer 995	020-	50(17)							**
59V	T · overs	neurizeu	53-07(2) 0	05.20-7	5(7) (sup	arcadae 08	5003	-70(40))							**
[∞] ⁵⁹ V	T · 0	$8 \Delta m 0.4$ -	-130(20) co	onflicting	not used	1	5005	=/0(40))							**
* ⁵⁹ Cr	T: other	~ 96D~?	3-460(50)	88Ro06	=600(30))) 85Ra40	=100	0(400)							**
* ⁵⁹ Ni	T · over	0/D02	19=108(12) 94Rn1	-000(300 9(meteori	$t_{e} = 120(2)$	2100	Ni08-76(5)							~~ **
	F etrop	ige 74KU aest fre(100%).3 ~	there 40	1(0 3)1-01	w)=120(22 / higher (0	1400	70(3) 777(03)	NkeV						**
	E. SUON	gest fig(100%); 3 0	ulci \$ 40.	1(0.5)KeV	(0.110)	.140° ‰	<i>w</i>), 17.7(0.3	JAC V						**
*** INI* 	E: 1	ugner (0	.122%) and	1.30.3(0.2)	otor 0 C	ef (0.110%	୭) ର (-୧	0 4) 1:-1							**
***Cu	E : /00a	119 stron	igest fragme	ent (sp.1a	ctor 0.6);	other 21(c	5) (SI	0.4) nigher							**
⁶⁰ Sc	-4050#	500#				3#	ms	(>620 ns)	3+#		09Ta24	I	2009	β^{-} ?: β^{-} n=0 4#: β^{-} 2n=50#	
⁶⁰ Ti	_22330#	300#				22.2	me	1.6	0+	14	11Da08	т	1997	$\beta^{-} = -100; \beta^{-} = n - 2\#; \beta^{-} = 2n - 0\#$	÷
60 V	22230#	220				122	ma	1.0	0 2+#	14	11Da06	1	1997	$\beta = 100, \beta = 100, \beta$	*
60 Vm	-33240	220	0#	150#	*	122	ma	10	3 # 1+#	12			1965	$\beta = 100, \beta = 100, \beta$	
v 60 v m	22040	270#	202.7	0.7	*	220	mo	24	1 # (4+)	12	128.26	БŢ	1999	p = 2, 11, 2, p = 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	
60 C	- 55040	100	205.7	0.7		230	ns	24	(4 ·) 0 ⁺	13	12Ka50	EI	1999	R = 100, R = 0.04	*
60 M	-466/0	190				490	ms	10	0	13			1980	$\beta = 100; \beta = n = 0 \#$	
60 Mn	-52967.9	2.3	071.00	0.10		280	ms	20	1'	13			1978	$\beta = 100$	
60 m	-52696.0	2.3	2/1.90	0.10		1.//	s	0.02	4	13			1978	$\beta = 88.58; 11 = 11.58$	*
60 C	-61413	3				2.62	му	0.04	0' 5+	13			1957	$\beta = 100$	*
⁶⁰ Co	-61650.3	0.4				5.2712	У	0.0004	5+	13			1941	$\beta^{-}=100$	
60 X	-61591.7	0.4	58.59	0.01		10.467	m	0.006	2+	13			1963	$TT \approx 100; \beta^{-} = 0.25 3$	
⁰⁰ Ni	-64473.1	0.4				STABLE			0+	13			1921	IS=26.223 15	
⁶⁰ Ni ¹	-53347	4	11126	4	RQ				5+T=3					0	
⁰⁰ Cu	-58345.1	1.6		_		23.7	m	0.4	2+	13			1947	$\beta^{+}=100$	
60Cu ¹	-55804	5	2541	5	RQ				$(0^+)T=2$	13				IT=100	
⁶⁰ Zn	-54174.3	0.6				2.38	m	0.05	0^{+}	13			1955	$\beta^{+}=100$	
60 Zn ⁱ	-49322.1	0.9	4852.2	0.7					$(2^+)T=1$	13				IT=100	
60 Zn ^j	-46807	24	7367	24	RQ				$0^{+}T=2$	13					
⁶⁰ Ga	-39590#	200#				70	ms	10	(2^{+})	13	01Ma96	TJ	1995	$\beta^+=100; \beta^+p=1.67; \beta^+\alpha < 0.02320$	*
60Gai	-37050#	210#	2540#	50#											
⁶⁰ Ge	-27090#	300#				30#	ms	(>110 ns)	0^{+}	13			2005	β^{+} ?; β^{+} p ?	
⁶⁰ As	-5470#	400#						. ,	5+#		Mirror	Ι		p?	
$^{60}As^m$	-5410#	400#	60#	20#					2+#		Mirror	I		p ?	
* ⁶⁰ Ti	T : avera	ige 11Da	08=22.4(2.	.5) 03So2	21=22(2)									-	**
$*^{60}V^{n}$	E:12K:	36=997	7(0.5) and 1	04.0(0.5)γravs ir	a cascade to	o gro	und-state							**
$*^{60}V^{n}$	T · symr	netrized	from 12Ka	36=2290	+25-23)	others 10F)a06:	=320(90) 99	Da A=320(90)						**
$*^{60}$ Mn ^m	Lealson	n isome	T=10(+0)	3_0 2) 11	s decay b	v 114 keV	v-ray	vs to group	1-state or ${}^{60}Mn^m$	1					**
* ⁶⁰ Fe	T · 15W	a06=2.5(1(0.12) con	firms 091	3 uccuy 6 ₹1108=2 6	2(0.04) m	les o	nt 84Kn28=	-1 49(27)						**
* ⁶⁰ Fe	T ·	nd 57R	54=0.3			=(0.0+), iu		a. 0 11xu20-							**
~ 1 C	1. a T.cua	ana 021 -	13_70(12)	01Mc04	-70(15)										**
* Ga	1 : avera	ige U2L0	13=70(13)	01101096	-70(15)										**
⁶¹ Sc	930#	600#				2#	ms	(>620 ns)	7/2-#	15			2009	β^{-} ?; β^{-} n=60#; β^{-} 2n=1#	
61 Ti	-16350#	400#				15	ms	4	1/2-#	15			1997	$\beta^{-}=100; \beta^{-}n=1#; \beta^{-}2n=1#$	
61 V	_30510	890				48 2	me	0.8	$(3/2^{-}5/2^{-})$	15			1992	$\beta^{-}=100; \beta^{-}n > 10; \beta^{-}2n = 0.01 \#$	
61 Cr	_42480	100				7/2	me	9	$(5/2^{-}, 5/2^{-})$	15	090+02	т	1985	$\beta^{-100}, \beta^{-1}, \beta^$	
61 Mr	-517/0 1	2 2 2				243	1115 mc	8	5/2	15	15Ro40	ī	1080	$\beta^{-100}, \beta^{-100}, \beta^{-100}$	÷
61Eo	-59020 5	2.3				5.09		0.06	(2/2-)	15	150449	J	1900	$\beta = 100, \beta = 1-0.0$	*
61 r.m	- 30920.3	2.0	061 67	0.11		3.98	111	5.00	(3/2)	15			1737	p = 100	
"Fe"	-58058.8	2.6	861.67	0.11		238	ns	5	9/2*	15			1998	11 = 100	
⁶¹ C0	-62898.1	0.8				1.649	h	0.005	7/2-	15			1947	p = 100	
^{o1} Ni	-64221.9	0.4				STABLE			$3/2^{-}$	15		_	1934	IS=1.1399 13	
⁶¹ Cu	-61984.1	1.0				3.339	h	0.008	3/2-	15	10Vi07	J	1937	$\beta^{+}=100$	*
C1 .	-55610	7	6374	7	RQ				3/2 ⁻ frg.T=5/2	2					*
⁶¹ Cu ⁱ						89.1	s	0.2	$3/2^{-}$	15			1955	$\beta^{+}=100$	
$^{61}Cu^i$ ^{61}Zn	-56349	16												•	
⁶¹ Cu ⁱ ⁶¹ Zn ⁶¹ Zn ⁱ	-56349 -53190#	16 100#	3160#	100#					$3/2^{-}$ #T=3/2						
61 Cu ⁱ 61 Zn 61 Zn ⁱ 61 Zn ^j	-56349 -53190# -46360	16 100# 70	3160# 9990	100# 70					3/2 ⁻ #T=3/2 3/2 ⁻ T=5/2	15					

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nuclide	(keV	()	Excitation energy (keV)]	Half-	life	J^{π}	Ens	Referen	ce	Year of discovery	Decay modes and intensities (%)
$ \begin{array}{c} 1 \\ n \\$	A_oro	in continued												-	
$ \begin{array}{c} 1 & -1000 & 100 & 900 & 1000 & 1/2 & 0 & Mirror & 1 & 1000 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	51Ga	-47130	40				167	ms	3	$3/2^{-}$	15			1987	$\beta^+=100; \beta^+p<0.25$
	51 Ga ^m	-47040#	110#	90#	100#					$1/2^{-}$ #		Mirror	I		r in r
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹ Ga ⁱ	-43780	30	3360	50	р				$(3/2^{-})T=3/2$	15			1987	p=100
	¹ Ge	-33360#	300#			1	44	ms	6	3/2-#	15			1987	$\beta^{+}=100; \beta^{+}p>62$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	lAs	-16900#	300#							3/2-#		Mirror	Ι		p?
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹ Mn	$D:\beta^{-}n$	has beer	observed	l by 99Ha	05; 13Ra	17 quotes β^{-1}	n=0.6	6(0.1)% unpu	ubl.					•
Existence of the set	¹ Cu	J : direct	ly measu	red in 10	Vi07										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹ Cu ^{<i>i</i>}	E : stron	gest frg ((xs=55); o	ther 18(7)	keV hig	her (xs=35)								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ti	-12500#	400#				10#	ms	(>620 ns)	0+	12			2009	β^{-} ?; β^{-} n=4#; β^{-} 2n=0.1#
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŽV Ž	-25480#	300#				33.6	ms	2.3	3+#	12			1997	$\beta^{-}=100; \beta^{-}n=20\#; \beta^{-}2n=0.5\#$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cr	-40890	150				206	ms	12	0^{+}	12		_	1985	$\beta^{-}=100; \beta^{-}n=1\#$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mn	-48524	7			2	* <u>92</u>	ms	13	1+	12	15He28	J	1983	$\beta^{-}=100; \beta^{-}n=0.03\#$
φ - 8878.0 2.8 6.68 s 2 0 ⁻¹ 12 1949 β ⁻ =100 C^{or} -61402 20 22 5 13.86 m. 0.09 (5) ⁺ 12 1949 β ⁻ =100 C^{or} -61402 0.4 STALE 0 ⁻¹ 12 1949 β ⁻ =100 C^{or} -6168.0 0.6 9.67 m. 0.03 1 ⁻¹ 12 1948 β ⁺ =100 C^{or} -6168.0 0.6 9.133 h.0015 0 ⁻¹ 12 1978 β ⁺ =100 C^{or} -51186.9 0.6 57.1.2 0.1 11 ⁻¹ 12 1978 β ⁺ =100 β ⁺ =100 1 ⁺¹ 12 1978 β ⁺ =100 1 ⁺¹ 12 1978 β ⁺ =100 1 ⁺¹ 12 1978 β ⁺ =100 1 ⁺¹ 1	$^2Mn^m$	-48181.0	2.6	343	6	2	⊧ 671	ms	5	4+	12	15He28	J	1983	$\beta^{-}=100; \beta^{-}n=0.03\#; \text{IT }?$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe	-58878.0	2.8				68	s	2	0^{+}	12			1975	$\beta^{-}=100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Co	-61424	19				1.54	m	0.10	$(2)^{+}$	12			1949	$\beta^{-}=100$
Ni −67246.3 0.4 STABLE 0 ⁺ 12 0'74 12 0'74 12 0'74 12 0'74 12 0'74 12 0'74 12 0'74 12 0'74 12 0'74 12 0'74 12 0'74 12 1978 β ⁺ =100 2u ⁺ -51415.7 0.6 0.6 161.21 m<0.021	Co^m	-61402	20	22	5		13.86	m	0.09	$(5)^{+}$	12			1957	$\beta^{-}>99$; IT<1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni	-66746.3	0.4				STABLE			0^+	12			1934	IS=3.6346 40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu	-62787.4	0.6				9.67	m	0.03	1+	12	10Vi07	J	1936	$\beta^{+}=100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu ⁱ	-58174	6	4614	6	RQ				$(0)^{+}T=3$	12				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn	-61168.0	0.6				9.193	h	0.015	0^+	12			1948	$\beta^{+}=100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ga	-51986.9	0.6				116.121	ms	0.021	$0^{+}T=1$	12			1978	$\beta^{+}=100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ga ^j	-51415.7	0.6	571.2	0.1					$1^{(+)}T=2$	12	98Vi06	EJ	1998	IT=100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ge	-41740#	140#				129	ms	35	0^+	12			1991	$\beta^{+}=100; \beta^{+}p?$
	As	-24320#	300#							1+#					p=100#
2.1. J: directly measured in 10Vi07 4.1. E: ESND=4628(10) 3a T: also 13Da16=116.15(0.13) no weight 3b D: most probably p-unstable from estimated S _p =-1860#(420#) keV Fi -5750# 500# 3# ms (>620 ns) 1/2 # 09 09Ta24 1 2009 β = ?; β = n=7#; β = 2n=4# 7.1 21890# 400# 19.6 ms 0.9 (3/2 - 5/2 -) 09 14807 T1 1997 β = =100; β = n=1# 7.1 36010 360 129 ms 2 1/2 # 09 1992 β = =100; β = n=0.2# 7.1 46887 4 275 ms 5/2 - 09 1890 β = =100; β = n=0.2# 7.2 56536 -61851 19 26.9 s 0.4 7/2 - 09 941LA T 1960 β ==100 7.1 65512.8 0.4 87.15 0.11 1.67 µs 0.3 3/2 - 09 10971 J =123 IS=69.15 15 7.1 65212.4 1.6 38.4 r 0.03 5/2 - 09 1991 1977 F =100 7.1 65723 6 5490 <td< td=""><td>Mn</td><td>$D:\beta^{-}n$</td><td>99So20</td><td>≈0 99Ha0</td><td>5>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Mn	$D:\beta^{-}n$	99So20	≈0 99Ha0	5>0										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu	J : direct	ly measu	red in 10	Vi07										
The set of the term of term o	Cu ⁱ	E : Ensi	F=4628	(10)											
As D: most probably p-unstable from estimated S _p =-160#(420#) keV Fin -5750# 500# 360 1/2 ms 2 1/2 # 09 09Ta24 I 2009 β^- ; β^- n=7#; β^- 2n=4# γ^- -21890# 400# 196 ms 0.9 (3/2 ⁻ , 5/2 ⁻) 09 14Su07 TJ 1997 β^- =100; β^- n>25; β^- 2n=0.2# β^- =100; β^- n>25; β^- 2n=0.2# β^- =100; β^- n>25; β^- 2n=0.2# β^- =100; β^- n=0.2# β^- =100 β^- =100 β^+ =100 β^+ =100 β^+ =100 β^+ =100 β^+ =100 β^+ =100 β^+ =100 β^+ =100; β^+ p. ? β^- =100; β^- n=30#; β^- 2.2.4 β^- =100; β^- n=30; β^- =100; β^- n=33.2 β^- =100 β^- =100 β	Ga	T : also 1	3Da16=	116.15(0.	13) no we	eight									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		D · most			. 1. £		a 10.00 m/ 1	a a m	1 17						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	As	D. most	probabl	y p-unstat	ble from e	stimated	$S_p = -1860 \# (4$	20#)	ke v						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	As	D . most	probabl	y p-unstat	ole from e	stimated	$S_p = -1860 \# (4$	20#)	ĸev						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti	-5750#	500#	y p-unstat	ble from e	stimated	S _p =-1860#(4 3#	20#) ms	(>620 ns)	1/2-#	09	09Ta24	I	2009	β^{-} ?; β^{-} n=7#; β^{-} 2n=4#
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ti V	-5750# -21890#	500# 400#	y p-unstat	ble from e	stimated	S _p =-1860#(4 3# 19.6	20#) ms ms	(>620 ns) 0.9	$1/2^{-}#$ (3/2 ⁻ ,5/2 ⁻)	09 09	09Ta24 14Su07	I TJ	2009 1997	β^- ?; β^- n=7#; β^- 2n=4# β^- =100; β^- n>35; β^- 2n=0.2#
c_{0} -55636 4 6.1 s 0.6 (5/2 ⁻¹) 09 1980 β^{-100} Ni -65811 19 26.9 s 0.4 7/2 ⁻ 09 941.A T 1960 β^{-100} Ni -65425.7 0.4 87.15 0.11 1.67 μ_{s} 0.03 5/2 ⁻ 09 1978 IT=100 Con -6527.98 0.4 87.15 0.11 1.67 μ_{s} 0.03 5/2 ⁻ 09 1937 B ⁻ =100 Can -6527.98 0.4 STALE 3/2 ⁻ 09 10Vi07 J 1923 IS=69.15 15 Can -62213.4 1.6 38.47 m 0.05 3/2 ⁻¹⁰ 09 12Pr11 J 1965 $\beta^{+}=100$ 3a -3500# 200# 24.0 32.4 8 3/2 ^{-#} 09 02Lo13 TD 1991 $\beta^{+}=100; \beta^{+}p$ As -33300# 200# 22.4 03S002=17(3) S3 3/2 ^{-#} 09 02Lo13 TD 1991 </td <td>As Ti V Cr</td> <td>-5750# -21890# -36010</td> <td>500# 400# 360</td> <td>y p-unstat</td> <td>ble from e</td> <td>stimated</td> <td>S_p=-1860#(4 3# 19.6 129</td> <td>ms ms ms</td> <td>(>620 ns) 0.9 2</td> <td>$1/2^{-}#$ $(3/2^{-},5/2^{-})$ $1/2^{-}#$</td> <td>09 09 09</td> <td>09Ta24 14Su07</td> <td>I TJ</td> <td>2009 1997 1992</td> <td>β^-?; β^-n=7#; β^-2n=4# β^-=100; β^-n>35; β^-2n=0.2# β^-=100; β^-n=1#</td>	As Ti V Cr	-5750# -21890# -36010	500# 400# 360	y p-unstat	ble from e	stimated	S _p =-1860#(4 3# 19.6 129	ms ms ms	(>620 ns) 0.9 2	$1/2^{-}#$ $(3/2^{-},5/2^{-})$ $1/2^{-}#$	09 09 09	09Ta24 14Su07	I TJ	2009 1997 1992	β^- ?; β^- n=7#; β^- 2n=4# β^- =100; β^- n>35; β^- 2n=0.2# β^- =100; β^- n=1#
$ \begin{split} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} -61851 & 19 \end{array} \\ \hline \\$	As Ti V Cr Mn	-5750# -21890# -36010 -46887	500# 400# 360 4	y p-unstat	ble from e	stimated	S _p =-1860#(4 3# 19.6 129 275	ms ms ms ms	(>620 ns) 0.9 2 4	$1/2^{-\#}$ $(3/2^{-},5/2^{-})$ $1/2^{-\#}$ $5/2^{-}$	09 09 09 09	09Ta24 14Su07 15Ba49	I TJ J	2009 1997 1992 1985	β^{-} ?; β^{-} n=7#; β^{-} 2n=4# β^{-} =100; β^{-} n>35; β^{-} 2n=0.2# β^{-} =100; β^{-} n=1# β^{-} =100; β^{-} n=0.2#
Ni −65512.8 0.4 101.2 y 1.5 1/2 ⁻ 09 1951 β ⁻ =100 Ni ^m −6542.5 0.4 87.15 0.11 1.67 μ s 0.03 5/2 ⁻ 09 1978 IT=100 TT=100 Label{eq:constraint} TT=100 Label{eq:constraint} TT=100 La	As Ti V Cr Mn Fe	-5750# -21890# -36010 -46887 -55636	500# 400# 360 4 4	y p-unstat	ne from e	stimated	$S_p = -1860 #(4)$ 3# 19.6 129 275 6.1	ms ms ms ms s	(>620 ns) 0.9 2 4 0.6	$\begin{array}{c} 1/2^{-} \# \\ (3/2^{-}, 5/2^{-}) \\ 1/2^{-} \# \\ 5/2^{-} \\ (5/2^{-}) \end{array}$	09 09 09 09 09	09Ta24 14Su07 15Ba49	I TJ J	2009 1997 1992 1985 1980	$\begin{array}{l} \beta^{-} ?; \ \beta^{-} n=7\#; \ \beta^{-} 2n=4\# \\ \beta^{-} =100; \ \beta^{-} n>35; \ \beta^{-} 2n=0.2\# \\ \beta^{-} =100; \ \beta^{-} n=1\# \\ \beta^{-} =100; \ \beta^{-} n=0.2\# \\ \beta^{-} =100 \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co	-5750# -21890# -36010 -46887 -55636 -61851	500# 400# 360 4 4 19	y p-unstat	ne from e	stimated	$S_p = -1860 #(4)$ 3 # 19.6 129 275 6.1 26.9	ms ms ms ms s s	(>620 ns) 0.9 2 4 0.6 0.4	$1/2^{-} #$ $(3/2^{-}, 5/2^{-})$ $1/2^{-} #$ $5/2^{-}$ $(5/2^{-})$ $7/2^{-}$	09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A	I TJ J T	2009 1997 1992 1985 1980 1960	$\begin{array}{l} \beta^{-} ?; \ \beta^{-} n=7\#; \ \beta^{-} 2n=4\# \\ \beta^{-}=100; \ \beta^{-} n>35; \ \beta^{-} 2n=0.2\# \\ \beta^{-}=100; \ \beta^{-} n=1\# \\ \beta^{-}=100; \ \beta^{-} n=0.2\# \\ \beta^{-}=100 \\ \beta^{-}=100 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni	-5750# -21890# -36010 -46887 -55636 -61851 -65512.8	500# 400# 360 4 19 0.4	y p-unstat	sie from e	stimated	$S_p = -1860#(4)$ 3# 19.6 129 275 6.1 26.9 101.2	ms ms ms ms s s y	(>620 ns) 0.9 2 4 0.6 0.4 1.5	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-} \end{array}$	09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A	I TJ J T	2009 1997 1992 1985 1980 1960 1951	β^{-} ?; β^{-} n=7#; β^{-} 2n=4# β^{-} =100; β^{-} n>35; β^{-} 2n=0.2# β^{-} =100; β^{-} n=1# β^{-} =100; β^{-} n=0.2# β^{-} =100 β^{-} =100 β^{-} =100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni Ni ^m	-5750# -21890# -36010 -46887 -55636 -61851 -65512.8 -65425.7	500# 400# 360 4 19 0.4 0.4	y p-unstat 87.15	0.11	stimated	$S_p=-1860#(4$ 3# 19.6 129 275 6.1 26.9 101.2 1.67	ms ms ms s s y µs	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03	$\begin{array}{c} 1/2^{-} \# \\ (3/2^{-}, 5/2^{-}) \\ 1/2^{-} \# \\ 5/2^{-} \\ (5/2^{-}) \\ 7/2^{-} \\ 1/2^{-} \\ 5/2^{-} \end{array}$	09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A	I TJ J T	2009 1997 1992 1985 1980 1960 1951 1978	$\beta^- ?; \beta^- n=7\#; \beta^- 2n=4\#$ $\beta^- =100; \beta^- n>35; \beta^- 2n=0.2\#$ $\beta^- =100; \beta^- n=1\#$ $\beta^- =100; \beta^- n=0.2\#$ $\beta^- =100$ $\beta^- =100$ $\beta^- =100$ $\Gamma=100$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni Ni ^m Cu	-5750# -21890# -36010 -46887 -55636 -61851 -65512.8 -65425.7 -65579.8	500# 400# 360 4 19 0.4 0.4 0.4	y p-unstat 87.15	0.11	stimated	S _p =-1860#(4 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE	ms ms ms s s y µs	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-} \end{array}$	09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07	I TJ J T	2009 1997 1992 1985 1980 1960 1951 1978 1923	β^- ?; β^- n=7#; β^- 2n=4# β^- =100; β^- n>35; β^- 2n=0.2# β^- =100; β^- n=1# β^- =100; β^- n=0.2# β^- =100 β^- =100 β^- =100 IT=100 IS=69.15 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni Ni ^m Cu Zn	-5750# -21890# -36010 -46887 -55636 -61851 -65512.8 -65512.8 -65579.8 -62213.4	500# 400# 360 4 4 19 0.4 0.4 0.4 1.6	9 p-unstat 87.15	0.11	stimated	$S_p=-1860#(4$ 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47	ms ms ms s s y us m	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-} \end{array}$	09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07	I TJ J T	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937	$\beta^{-}?; \beta^{-}n=7\#; \beta^{-}2n=4\#$ $\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\#$ $\beta^{-}=100; \beta^{-}n=1\#$ $\beta^{-}=100; \beta^{-}n=0.2\#$ $\beta^{-}=100$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni Ni ^m Cu Zn Zn ⁱ	-5750# -21890# -36010 -46887 -55636 -61851 -65512.8 -65425.7 -65579.8 -62213.4 -56723	500# 400# 360 4 4 19 0.4 0.4 0.4 1.6 6	87.15 5490	0.11 6	RO	3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47	ms ms ms s s y µs m	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05	1/2 ⁻ # (3/2 ⁻ ,5/2 ⁻) 1/2 ⁻ # 5/2 ⁻ (5/2 ⁻) 7/2 ⁻ 1/2 ⁻ 5/2 ⁻ 3/2 ⁻ 3/2 ⁻ 3/2 ⁻ 3/2 ⁻ T=5/2	09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07	I TJ J T J	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937	$\begin{array}{l} \beta^{-} ?; \ \beta^{-} n=7\#; \ \beta^{-} 2n=4\#\\ \beta^{-}=100; \ \beta^{-} n>35; \ \beta^{-} 2n=0.2\#\\ \beta^{-}=100; \ \beta^{-} n=1\#\\ \beta^{-}=100; \ \beta^{-} n=0.2\#\\ \beta^{-}=100\\ \beta^{-}=100\\ \beta^{-}=100\\ IT=100\\ IS=69.15 \ 15\\ \beta^{+}=100 \end{array}$
As $-33500\# 200\#$ $(-43 \text{ ns})^{7}/2^{-1}$ $(0.21)^{7}/2^{-1}/2^{-1}$ $(0.21)^{7}/2^{-1}/2^$	As Ti V Cr Mn Fe Co Ni Ni ^m Cu Zn Zn Ga	-5750# -21890# -36010 -46887 -55636 -61851 -65512.8 -65425.7 -65579.8 -62213.4 -56723 -56547.1	500# 400# 360 4 19 0.4 0.4 0.4 0.4 1.6 6 1.3	87.15 5490	0.11 6	RQ	3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4	ms ms ms s s y µs m s	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 5/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 5/2^{-}\\ $	09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11	I TJ T J J	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965	$\beta^{-} ?; \beta^{-}n=7\#; \beta^{-}2n=4\#$ $\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\#$ $\beta^{-}=100; \beta^{-}n=1\#$ $\beta^{-}=100; \beta^{-}n=0.2\#$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IT=100 IS=69.15 15 $\beta^{+}=100$ $\beta^{+}=100$
T : average 14Su07=20(1) 11Da08=19.2(2.4) 03So02=17(3) T : other 11Da08=128(8) Mn D : β n has been observed by 99Ha05 but not quantified Co T : average 94It.A=26.41(0.27) 72Jo08=27.5(0.3) 69Wa15=26(1) J: directly measured in 10Vi07 Ge T : average 02Lo13=150(9) 93Wi03=95(+23-20) As D : most probably p-unstable from estimated S _p =-980#(240#) keV Fi -1030# 600# 4# ms (>620 ns) 0 ⁺ 13 2013 β^- ?; β^- n=90#; β^- 2n=2# $\sqrt{-16320\#}$ 400# 15 ms 2 (1,2) 14 1997 β^- =100; β^- n=30#; β^- 2n=2# $\sqrt{-16320\#}$ 400# 81.0 0.7 <1 μ s 14 2014 IT ≈ 100 Cr -33480 440 43 ms 1 0 ⁺ 14 1992 β^- =100; β^- n=30#; β^- 2n=2# An -42989 4 88.8 ms 2.4 1 ⁺ 07 11Da08 T 1985 β^- =100; β^- n=33 2 An ^m -42815 4 174.1 0.5 439 μ s 31 (4 ⁺) 07 10Da06 E 1998 IT=100 ϵ^{-} -54970 5 2.0 s 0.2 0 ⁺ 07 1980 β^- =100 Co -59792 20 300 ms 30 1 ⁺ 07 1969 β^- =100 Co -59792 20 300 ms 30 1 ⁺ 07 1980 β^- =100 Co -59792 20 S TABLE 0 ⁺ 07 1935 IS=0.9255 19 λ_{1} -6708.9 0.5 S TABLE 0 ⁺ 07 718e29 E	As Ti V Cr Mn Fe Co Ni Ni ^m Cu Zn Zn Ga Ge	-5750# -21890# -36010 -46887 -55636 -61851 -65512.8 -65425.7 -65579.8 -62213.4 -56723 -56547.1 -46920	500# 400# 360 4 19 0.4 0.4 0.4 0.4 1.6 6 1.3 40	87.15 5490	0.11 6	RQ	$S_p=-1860#(4$ 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142	ms ms ms ms ms s s y µs m	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 8	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\end{array}$	09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J J J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991	$\beta^- ?; \beta^- n=7\#; \beta^- 2n=4\#$ $\beta^- =100; \beta^- n>35; \beta^- 2n=0.2\#$ $\beta^- =100; \beta^- n=1\#$ $\beta^- =100; \beta^- n=0.2\#$ $\beta^- =100$ $\beta^- =100$ IT=100 IS=69.15 15 $\beta^+ =100$ $\beta^+ =100; \beta^+ p ?$
T: other 11Da08=128(8) Mn D: β n has been observed by 99Ha05 but not quantified T: average 94It.A=26.41(0.27) 72Jo08=27.5(0.3) 69Wa15=26(1) U J: directly measured in 10Vi07 T: average 02Lo13=15(0) 93Wi03=95(+23=20) As D: most probably p-unstable from estimated S _p =-980#(240#) keV Ti -1030# 600# 4# ms (>620 ns) 0 ⁺ 13 2013 β^- ?; β^- n=90#; β^- 2n=2# $\sqrt{-16320# 400#}$ 15 ms 2 (1,2) 14 1997 β^- =100; β^- n=30#; β^- 2n=2# $\sqrt{-16320# 400#}$ 81.0 0.7 <1 μ s 14 2014 IT \approx 100 Tr -33480 440 43 ms 1 0 ⁺ 14 1992 β^- =100; β^- n=2# An -42989 4 88.8 ms 2.4 1 ⁺ 07 11Da08 T 1985 β^- =100; β^- n=33 2 An ^m -42815 4 174.1 0.5 439 μ s 31 (4 ⁺) 07 10Da06 E 1998 IT=100 γe^- -54970 5 2.0 s 0.2 0 ⁺ 07 1980 β^- =100 γe^- -59792 20 300 ms 30 1 ⁺ 07 1969 β^- =100 γe^- -59792 5 5.5 STABLE 0 ⁺ 07 1980 β^- =100 γe^- 59792 5.5 STABLE 0 ⁺ 07 1980 β^- =100 γe^- 59686 4 107 20 MD 300# ms 5 ⁺ # 08B105 E 2008 β^- ?; Tr ? $\gamma i_1 -67098.9$ 0.5 STABLE 0 ⁺ 07 12Be04 TD 1936 β^+ =61.52 26; β^- =38.48 26 $\gamma i_1 -57092$ 6 6826 6 0 ⁺ frg.T=4 07 71Be29 E	As Ti V Cr Mn Fe Co Ni ^m Cu Zn Cu Zn Ga Ga As	5750# -21890# -36010 -46887 -55636 -61851 -65512.8 -65425.7 -65579.8 -62213.4 -56723 -56547.1 -46920 -33500#	500# 400# 360 4 19 0.4 0.4 0.4 0.4 1.6 6 1.3 40 200#	87.15 5490	0.11 6	RQ	$S_p=-1860#(4$ 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142	ms ms ms ms s s y μs ms ms	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns	1/2 ^{-#} (3/2 ⁻ ,5/2 ⁻) 1/2 ^{-#} 5/2 ⁻ (5/2 ⁻) 7/2 ⁻ 1/2 ⁻ 5/2 ⁻ 3/2 ⁻ 3/2 ⁻ 3/2 ⁻ 3/2 ⁻ 3/2 ^{-#} 3/2 ^{-#}	09 09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J J J J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991	$\beta^{-}?; \beta^{-}n=7\#; \beta^{-}2n=4\# \\\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\# \\\beta^{-}=100; \beta^{-}n=1.4\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\IT=100 \\IT=100 \\IS=69.15 15 \\\beta^{+}=100 \\\beta^{+}=100 \\\beta^{+}=100; \beta^{+}p? \\p=100\# \\$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni ^m Cu Zn Cu Zn Ga Ga Se V	5750# 21890# 36010 46887 55636 61851 65512.8 65512.8 65579.8 65213.4 56723 56547.1 46920 33500# T: avera	500# 400# 360 4 19 0.4 0.4 0.4 0.4 1.6 6 1.3 40 200# ge 14Su	87.15 5490 07=20(1)	0.11 6 11Da08=	RQ 19.2(2.4)	$S_p = -1860 #(4$ 3 # 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03Sso02=17(3)	ms ms ms ms s s y μs ms	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns	$\begin{array}{c} 1/2^{-\#}\\ (3/2^-,5/2^-)\\ 1/2^{-\#}\\ 5/2^-\\ (5/2^-)\\ 7/2^-\\ 1/2^-\\ 5/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-T=5/2\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J J J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991	$ \begin{array}{l} \beta^{-} ?; \ \beta^{-} n=7\#; \ \beta^{-} 2n=4\# \\ \beta^{-} =100; \ \beta^{-} n>35; \ \beta^{-} 2n=0.2\# \\ \beta^{-} =100; \ \beta^{-} n=1\# \\ \beta^{-} =100; \ \beta^{-} n=0.2\# \\ \beta^{-} =100 \\ \beta^{+} =100 \\ \beta^{+} =100 \\ \beta^{+} =100; \ \beta^{+} p ? \\ p=100\# \end{array} $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni ^m Cu Zn Zn Ga Ge As V Cr	-5750# -21890# -36010 -46887 -55636 -61851 -65512.8 -65512.8 -65512.8 -65579.8 -62213.4 -56723 -56547.1 -46920 -33500# T: avera T: other	500# 400# 360 4 19 0.4 0.4 1.6 6 1.3 40 200# ge 14Su 11Da08	87.15 5490 07=20(1) =128(8)	0.11 6 11Da08=	RQ 19.2(2.4)	$S_p = -1860 #(4$ 3 # 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02 = 17(3)	ms ms ms ms s s y μs ms ms 3)	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991	$ \begin{array}{l} \beta^{-} ?; \ \beta^{-} n=7\#; \ \beta^{-} 2n=4\# \\ \beta^{-}=100; \ \beta^{-} n>35; \ \beta^{-} 2n=0.2\# \\ \beta^{-}=100; \ \beta^{-} n=1\# \\ \beta^{-}=100; \ \beta^{-} n=0.2\# \\ \beta^{-}=100 \\ \beta^{-}=100 \\ \beta^{-}=100 \\ IT=100 \\ IS=69.15 \\ IS \\ \beta^{+}=100 \\ \beta^{+}=100 \\ \beta^{+}=100; \ \beta^{+} p ? \\ p=100\# \end{array} $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni ^m Cu Zn Zn ⁱ Ga Ga S V Cr Mn	-5750# -21890# -36010 -46887 -55636 -61851 -65512.8 -65425.7 -65579.8 -62213.4 -56723 -56547.1 -46920 -33500# T: avera T: avera T: other D: <i>A</i> ⁻ n	500# 400# 360 4 19 0.4 0.4 0.4 0.4 0.4 1.3 40 200# ge 14Su 11Da08 has beer	87.15 5490 07=20(1) =128(8) 0 observed	0.11 6 11Da08=	RQ 19.2(2.4) 05 but pc	$S_p = -1860 \# (4$ 3 # 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3) 412	ms ms ms ms ms s s y μs m s ms 3)	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J T J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991	$\beta^{-} ?; \beta^{-}n=7\#; \beta^{-}2n=4\# \\\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\# \\\beta^{-}=100; \beta^{-}n=1\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\IT=100 \\IS=69.15 \\IS \\\beta^{+}=100 \\\beta^{+}=100; \beta^{+}p ? \\p=100\# $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni ^m Cu Zn ⁱ Ga Ge S V Cr Mn Co	-5750# -21890# -36010 -46887 -55636 -61851 -65512.8 -65512.8 -654723 -65579.8 -62213.4 -56723 -56547.1 -46920 -33500# T : avera T : other D : β ⁻ n T : avera	500# 400# 360 4 19 0.4 0.4 0.4 1.6 6 1.3 40 200# ge 14Su 11Da08 has beer ge 94It 5	87.15 5490 07=20(1) =128(8) n observed a=26.41″	0.11 6 11Da08= 1 by 99Had	RQ 19.2(2.4) 05 but nc 08=27 5/	$S_p = -1860 \# (4$ 3 # 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3 t quantified 0.3) 60Wa15	20#) ms ms ms s s y μs m s ms 3)	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J T J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991	$\beta^{-} ?; \beta^{-}n=7\#; \beta^{-}2n=4\#$ $\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\#$ $\beta^{-}=100; \beta^{-}n=0.2\#$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IT=100 IS=69.15 15 $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100; \beta^{+}p ?$ p=100#
As D: most probably p-unstable from estimated S_p =-980#(240#) keV Fi -1030# 600# 400# 15 ms 2 (1,2) 14 1997 β^- : β^- n=90#; β^- 2n=2# $\sqrt{-16320# 400# 15 ms 2}$ (1,2) 14 1997 β^- =100; β^- n=30#; β^- 2n=2# $\sqrt{-16240# 400# 81.0 0.7 <1 \mu s}$ 14 2014 IT ≈ 100 Tr -33480 440 43 ms 1 0 ⁺ 14 1992 β^- =100; β^- n=2# $\sqrt{n} -42989 4$ 88.8 ms 2.4 1 ⁺ 07 11Da08 T 1985 β^- =100; β^- n=33 2 $4n^m -42815 4 174.1 0.5 439 \ \mu s 31$ (4 ⁺) 07 10Da06 E 1998 IT=100 ϵ^- -54970 5 2.0 s 0.2 0 ⁺ 07 1980 β^- =100 ϵ^- -59792 20 300 ms 30 1 ⁺ 07 1969 β^- =100 ϵ^- -59686 4 107 20 MD 300# ms 5 ⁺ # 08B105 E 2008 β^- ?; IT ? $\sqrt{1} -67098.9 0.5$ STABLE 0 ⁺ 07 1935 IS=0.9255 19 ϵ^- -5424.5 0.4 12.7004 h 0.0020 1 ⁺ 07 112B04 TD 1936 β^+ =61.52 26; β^- =38.48 26 ϵ^- -5424.5 0.4 12.7004 h 0.0020 1 ⁺ 07 71Bc29 E	As Ti V Cr Mn Fe Co Ni ^m Ga Ge As V Cr Mn Co Co	$\begin{array}{c} -5750 \# \\ -21890 \# \\ -36010 \\ -46887 \\ -55636 \\ -61851 \\ -65512.8 \\ -65512.8 \\ -65425.7 \\ -65579.8 \\ -62213.4 \\ -56723 \\ -56547.1 \\ -46920 \\ -33500 \# \\ T: avera \\ T: other \\ D: \beta^-n \\ T: avera \\ I: direct \\ direc$	500# 400# 360 4 4 19 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	87.15 5490 07=20(1) =128(8) 1 observed A=26.41((ured in 10 ²)	0.11 6 11Da08= 1 by 99Hat 0.27) 72Jo Vi07	RQ 19.2(2.4) 05 but nc 08=27.5($S_p=-1860#(4$ 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3) t quantified 0.3) 69Wa15:	ms ms ms ms ms s s y μs m s ms 3)	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991	$ \begin{array}{l} \beta^{-} ?; \beta^{-} n=7\#; \beta^{-} 2n=4\# \\ \beta^{-} =100; \beta^{-} n>35; \beta^{-} 2n=0.2\# \\ \beta^{-} =100; \beta^{-} n=1\# \\ \beta^{-} =100; \beta^{-} n=0.2\# \\ \beta^{-} =100 \\ \beta^{-} =100 \\ \beta^{-} =100 \\ \beta^{-} =100 \\ \beta^{+} =100 \\ \beta^{+} =100 \\ \beta^{+} =100 \\ \beta^{+} =100; \beta^{+} p ? \\ p=100\# \end{array} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni ^m Cu Zn ⁱ Ga Ga SV Cr Mn Co u Ge	-5750# -21890# -36010 -46887 -55636 -61851 -65512.8 -65512.8 -65512.8 -652537 -65579.8 -62213.4 -56723 -56547.1 -46920 -33500# T : avera T : other D : β-n T : avera J : direct T : avera	500# 400# 360 4 19 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	87.15 5490 07=20(1) =128(8) 1 observed A=26.41((ured in 10' 13=150(°)	0.11 6 11Da08= 1 by 99Hat).27) 72Jo Vi07) 93Wi03-	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23-	$S_p = -1860 #(4$ 3 # 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3) t quantified 0.3) 69Wa15= -20)	20#) ms ms ms s s y μs m s ms 3) =26(1	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991	$\beta^{-}?; \beta^{-}n=7\#; \beta^{-}2n=4\# \\\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{+}=100 \\\beta^{+}=100 \\\beta^{+}=100 \\\beta^{+}=100 \\\beta^{+}=100; \beta^{+}p? \\p=100\# $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni ^m Cu Zn ⁱ Ga Ge As V Cr Mn Co Cu Ge As	-5750# -21890# -36010 -46887 -55636 -61851 -65512.8 -65425.7 -65579.8 -62213.4 -56723 -56547.11 -46920 -33500# T : avera T : other D : β-n T : avera J : direct T : avera D : most	500# 400# 360 4 4 19 0.4 0.4 0.4 0.4 0.4 1.6 6 1.3 40 200# ge 14Su 11Da08 has beer ge 94It./ ly meass ge 02Lo probabl	87.15 5490 07=20(1) =128(8) a observed A=26.41((tred in 10') 13=150(9) y p-unstab	0.11 6 11Da08= 1 by 99Hat 0.27) 72Jo Vi07) 93Wi03: ole from e:	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23- stimated	$S_p=-1860 \#(4$ 3 # 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3 t quantified 0.3) 69Wa15: -20) $S_p=-980 \#(24)$	20#) ms ms ms s y μ s m s ms 3) =26(1 0#) k	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991	$\beta^{-}?; \beta^{-}n=7\#; \beta^{-}2n=4\# \\\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\IT=100 \\IS=69.15 \\IS=69.15 \\\beta^{+}=100 \\\beta^{+}=100 \\\beta^{+}=100; \beta^{+}p? \\p=100\# $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn FCo Ni ^m Cu Zn ⁱ Ga Ge Sas V Cr Mn Co Cu Ge Sas	-5750# -21890# -36010 -46887 -55636 -61851 -65512.88 -65425.7 -65579.88 -62213.44 -567233 -56547.11 -469200 -33500# T : averation T : averat	500# 400# 360 4 19 0.4 0.4 0.4 0.4 0.4 1.3 40 200# ge 14Su 11Da08 has beer ge 94IL.2 ly measu ge 02Lo probabl	87.15 5490 07=20(1) 128(8) 1 observed A=26.41((ured in 10' 13=150(9 y p-unstat	0.11 6 11Da08= 1 by 99Hat 0.27) 72Jo Vi07) 93Wi03: ole from e:	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23- stimated	$S_p=-1860\#(4$ 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3) t quantified 0.3) 69Wa15= -20) $S_p=-980\#(24)$	$ms ms ms ms s s y \mu s ms$ $ms = 26(1)$	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991	β^{-} ?; β^{-} n=7#; β^{-} 2n=4# β^{-} =100; β^{-} n>35; β^{-} 2n=0.2# β^{-} =100; β^{-} n=0.2# β^{-} =100 β^{-} =100 β^{-} =100 IT=100 IS=69.15 15 β^{+} =100 β^{+} =100; β^{+} p ? p=100#
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn FeCo Ni ^m Cu ZZn ⁱ Gae sV CMn Co Cu Ge s Ti V	-5750# -21890# -36010 -46887 -55636 -61851 -65512.8 -65512.8 -65425.7 -65579.8 -62213.4 -56723 -56547.1 -46920 -33500# T: avera J: direct T: avera D: most -1030#	500# 400# 360 4 19 0.4 0.4 1.6 6 1.3 40 200# ge 14Su 11Da08 has beer ge 94It./ ly measu ge 02Lo probabl	87.15 5490 07=20(1) =128(8) 0 observed A=26.41((rred in 10' 13=150(9 y p-unstat	0.11 6 11Da08= 1 by 99Hat).27) 72Jo Vi07) 93Wi03: ole from e:	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23- stimated	S_p =-1860#(4 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3 4t quantified 0.3) 69Wa15: -20) S_p =-980#(24 4#	20#) ms ms ms ms s s μs m s ms 3) =26(1 0#) k ms	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns () eV (>620 ns)	$1/2^{-\#}$ $(3/2^{-},5/2^{-})$ $1/2^{-\#}$ $5/2^{-}$ $(5/2^{-})$ $7/2^{-}$ $1/2^{-}$ $3/2^{-}$ $3/2^{-}$ $3/2^{-}$ $3/2^{-}$ $3/2^{-\#}$ $3/2^{-\#}$ $3/2^{-\#}$	09 09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991	$\beta^{-}?; \beta^{-}n=7\#; \beta^{-}2n=4\# \\\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{+}=100 \\\beta^{+}=100 \\\beta^{+}=100 \\\beta^{+}=100; \beta^{+}p? \\p=100\# \\\beta^{-}?; \beta^{-}n=90\#; \beta^{-}2n=2\# \\\beta^{-}=100; \beta^{-}p? \\p=100\# \\\beta^{-}=100; \beta^{-}p? \\p=10\# \\\beta^{-}=100; \beta^{-}p? \\p=10\# \\\beta^{-}=10; \beta^{-}p? \\p=10\# \\\beta^{-}p? \\p=$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn FCo Ni ^m Cu Zn ⁱ Ga Ge Sas V Cr MCo Cu Ge Sas Ti V	-5750# $-21890#$ -36010 -46887 -55636 -61851 -65512.8 -65512.8 -62213.4 -56723 -65577.8 -62213.4 -56547.1 -46920 $-33500#$ T: avera T: other D: β ⁻ n T: avera D: β ⁻ n t: avera D: most $-1030\#$ $-16320\#$	500# 400# 360 4 4 19 0.4 0.4 1.6 6 1.3 40 200# ge 14Su 11Da08 has beer ge 94It./ ly meass ge 92Lo probabl	87.15 5490 07=20(1) 128(8) 1 observed A=26.41((ured in 10' 13=150(9 y p-unstat	0.11 6 11Da08= 1 by 99Hat).27) 72Jo Vi07) 93Wi03: ole from e:	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23- stimated	S_p =-1860#(4 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3 t quantified 0.3) 69Wa15= -20) S_p =-980#(24 4#	20#) ms ms ms ms s y μs m s ms 3) =26(1 0#) k ms ms	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns () eV (>620 ns) 2	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 0^{+}\\ (1,2) \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991	$\beta^{-}?; \beta^{-}n=7\#; \beta^{-}2n=4\# \\\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100 \\\beta^{-}=100 \\\Gamma^{-}=100 \\\Gamma^{-}=100 \\\Gamma^{-}=100 \\\beta^{+}=100 \\\beta^{+}=100 \\\beta^{+}=100 \\\beta^{+}=100; \beta^{+}p? \\p=100\# \\\beta^{-}?; \beta^{-}n=90\#; \beta^{-}2n=2\# \\\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=4\# \\\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Coo Ni ^m Zn ⁱ Gae Gas V Cr Mn Cou Ge As Ti V W To	-5750# $-21890#$ -36010 -46887 -55636 -61851 -65512.8 -65425.7 -65579.8 -62213.4 -56723 -56547.1 -46920 $-33500#$ T: avera T: other D: β ⁻ n T: avera J: direct T: avera D: most -1030# $-16320#$ $-16240#$	500# 400# 360 4 4 19 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	87.15 5490 07=20(1) =128(8) a observed A=26.41((tred in 10) 13=150(9) y p-unstab 81.0	0.11 6 11Da08= 1 by 99Hat 0.27) 72Jo Vi07 93Wi03: ole from e: 0.7	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23- stimated	S_p =-1860#(4 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3 t quantified 0.3) 69Wa15s -20) S_p =-980#(24 4# 15 < 1	ms ms ms ms s s y μ s ms ms 3) =226(1 0#) k ms ms μ s	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns ()) eV (>620 ns) 2	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I J J J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991 2013 1997 2014	$\beta^{-}?; \beta^{-}n=7\#; \beta^{-}2n=4\# \\\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\IT=100 \\IS=69.15 15 \\\beta^{+}=100 \\\beta^{+}=100 \\\beta^{+}=100; \beta^{+}p ? \\p=100\# \\\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=2\# \\\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=4\# \\IT\approx100 \\IT\approx 00 \\IT\approx 0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni ^m Cu Zn ⁱ Ga Ge Sav Cr Mn Co Cu Ge Sav Ti V V ^m	-5750# $-21890#$ -36010 -46887 -55636 -61851 -65512.8 -65512.8 -65425.7 -65579.8 -62213.4 -56723 -56547.1 -46920 $-33500#$ T: avera T: other D: β ⁻ n T: avera J: direct T: avera D: most -1030# $-16320#$ $-16240#$ -33480	500# 400# 360 4 19 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	87.15 5490 07=20(1) =128(8) n observed A=26.41((ured in 10' 13=150(9) y p-unstat 81.0	0.11 6 11Da08= 1 by 99Hat 1.27) 72Jo Vi07 9 3Wi03: 3le from e: 0.7	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23- stimated	$S_p = -1860 #(4$ 3 # 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3) ct quantified 0.3) 69Wa15: -20) $S_p = -980 #(24)$ 4 # 15 < 1 43	ms ms ms ms s s y μ s ms ms 3) =26(1 0#) k ms ms ms ms s s s ms ms ms ms ms ms ms	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns ()) eV (>620 ns) 2 1	$1/2^{-\#}$ $(3/2^{-},5/2^{-})$ $1/2^{-\#}$ $5/2^{-}$ $(5/2^{-})$ $7/2^{-}$ $1/2^{-}$ $3/2^{-}$ $3/2^{-}$ $3/2^{-}$ $3/2^{-}$ $3/2^{-\#}$ $3/2^{-\#}$ $3/2^{-\#}$	09 09 09 09 09 09 09 09 09 09 09 09 09 0	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991 2013 1997 2014 1992	$\beta^{-}?; \beta^{-}n=7\#; \beta^{-}2n=4\# \\\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{+}=100 \\\beta^{+}=100 \\\beta^{+}=100 \\\beta^{+}=100; \beta^{+}p? \\p=100\# \\\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=2\# \\\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=4\# \\IT\approx100 \\\beta^{-}=100; \beta^{-}n=2\# \\\beta^{-}=100; \beta^{-}n=10; \beta^{-}n=10;$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni ^m Cu Zn ⁱ Ga Ge Sv V Cr Mn Co Cu Ge S Ti V V ^m Cr Mn Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu	-5750# $-21890#$ -36010 -46887 -55636 -61851 -65512.8 -65425.77 -65579.8 -62213.4 -56723 -56547.1 -46920 $-33500#$ T: avera D: β ⁻ n T: avera J: direct T: avera D: most $-1030\#$ $-16320\#$ $-16240\#$ -33480 -42989	500# 400# 360 4 19 0.4 0.4 1.6 6 1.3 40 200# ge 14Suu 11Da08 has beer ge 94It./ ly measu ge 02Lo probabl 600# 400# 440 4	87.15 5490 07=20(1) =128(8) n observed A=26.41((rred in 10' 13=150(9 y p-unstab 81.0	0.11 6 11Da08= 1 by 99Hat 0.27) 72Jo Vi07) 93Wi03: ole from e: 0.7	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23- stimated	S_p =-1860#(4 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(2 (14) (14) (14) (14) (15) (15) (15) (15) (15) (16) (16) (17) (16) (17) (16) (17) (16) (17) (1	ms ms ms ms ms ms ms s s y μ s ms	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns 1) eV (>620 ns) 2 1 2.4	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 0^{+}\\ (1,2)\\ 0^{+}\\ 1^{+}\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991 2013 1997 2014 1992 1985	$\begin{split} \beta^{-} ?; \beta^{-} n=7\#; \beta^{-} 2n=4\# \\ \beta^{-} =100; \beta^{-} n>35; \beta^{-} 2n=0.2\# \\ \beta^{-} =100; \beta^{-} n=0.2\# \\ \beta^{-} =100 \\ \beta^{+} =100 \\ \beta^{+} =100 \\ \beta^{+} =100; \beta^{+} p ? \\ p=100\# \end{split}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn FeCo Ni ^m Cu Zn ⁱ Ga Ge As V Cr Mn Co Cu Ge Sa V V ^m Cr Mn Mn ^m	$-5750\#$ $-21890\#$ -36010 -46887 -55636 -61851 -65512.88 -65213.4 -56723 -65579.8 -62213.4 -56773 -65577.4 -36507.4 $T: avera$ $T: other$ $D: β^{-n}$ $T: avera$ $D: most$ $-1030\#$ $-16320\#$ $-16240\#$ -33480 -42989 -42815	500# 400# 360 4 4 19 0.4 0.4 1.6 6 1.3 40 200# ge 14Su 11Da08 has beer ge 94It./ ly meass ge 94It./ ly meass ge 02Lo probabl	87.15 5490 07=20(1) =128(8) 0 observed A=26.41((ured in 10' 13=150(9) y p-unstat 81.0 174.1	0.11 6 11Da08= 1 by 99Hat 0.27) 72Jo Vi07) 93Wi03: ole from e: 0.7 0.5	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23- stimated	S_p =-1860#(4 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3 t quantified 0.3) 69Wa15s -20) S_p =-980#(24 4# 15 < 1 43 88.8 439	ms ms ms ms ms ms ms s s y μ s ms ms ms ms ms ms ms ms μ s ms ms ms μ s ms ms μ s ms μ s ms ms μ s ms ms μ s ms ms μ s ms ms ms μ s ms ms ms ms μ s ms	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns () eV (>620 ns) 2 1 2.4 31	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}T=5/2\\ 3/2^{-}T=5/2\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 0^{+}\\ (1,2)\\ 0^{+}\\ 1^{+}\\ (4^{+}) \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09 09	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I T J T D T D	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991 2013 1997 2014 1992 1985 1998	$\begin{split} \beta^{-}?; \beta^{-}n=7\#; \beta^{-}2n=4\#\\ \beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\#\\ \beta^{-}=100; \beta^{-}n=0.2\#\\ \beta^{-}=100\\ \beta^{-}=100\\ \beta^{-}=100\\ 1T=100\\ 1S=69.15 15\\ \beta^{+}=100\\ \beta^{+}=100\\ \beta^{+}=100; \beta^{+}p?\\ p=100\# \end{split}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	As Ti V Cr Mn Fe Co Ni ^m Zn ⁱ Zn ⁱ Ga Ga S V Cr Mn Co Cu Ge As Ti V V ^m Cr Mn Fe	-5750# $-21890#$ -36010 -46887 -55636 -61851 -65512.88 -65425.77 -65579.8 -62213.4 -56723 -56547.11 -46920 $-33500#$ T: avera T: other D: β ⁻ n T: avera J: direct T: avera D: most $-1030\#$ $-16320\#$ $-16240\#$ -33480 -42989 -42815 -54970	500# 400# 360 4 4 19 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	87.15 5490 07=20(1) =128(8) a observed A=26.41((tred in 10) 13=150(9) y p-unstat 81.0 174.1	0.11 6 11Da08= 1 by 99Hat 0.27) 72Jo Vi07 93Wi03: ole from e: 0.7 0.7	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23- stimated	S_p =-1860#(4 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3 t quantified 0.3) 69Wa15: -20) S_p =-980#(24) 4# 15 < 1 43 88.8 439 2.0	ms ms ms ms ms s s y μ s ms ms s) =226(100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns () eV (>620 ns) 2 1 2.4 31 0.2	$\begin{array}{c} 1/2^{-\#}\\ (3/2^-,5/2^-)\\ 1/2^{-\#}\\ 5/2^-\\ (5/2^-)\\ 7/2^-\\ 1/2^-\\ 5/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-\\ \\ 3/2^-\\ \\ 3/2^-\\ \\ 1^+\\ (4^+)\\ 0^+\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09 09 0	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I J J J TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991 2013 1997 2014 1992 1985 1998	$\begin{split} \beta^{-} ?; \beta^{-} n=7\#; \beta^{-} 2n=4\# \\ \beta^{-} =100; \beta^{-} n>35; \beta^{-} 2n=0.2\# \\ \beta^{-} =100; \beta^{-} n=0.2\# \\ \beta^{-} =100 \\ \beta^{+} =100 \\ \beta^{+} =100 \\ \beta^{+} =100 \\ \beta^{+} =100; \beta^{+} p? \\ p=100\# \end{split}$
Ni -67098.9 0.5 STABLE 0 ⁺ 07 1935 IS=0.9255 19 Cu -65424.5 0.4 12.7004 h 0.0020 1 ⁺ 07 128e04 TD 1936 β^+ =61.52 26; β^- =38.48 26 Lu ⁱ -58599 6 6 0 ⁺ 07 71Be29 E 1000 1	As Ti V Cr Mn Fe Co Ni ^m Cu Zn ⁱ Ga Ge As Cr Mn Co Cu Ga S V Cr Mn Mn ^m Fe Co	-5750# $-21890#$ -36010 -46887 -55636 -61851 -65512.8 -65512.8 -65213.4 -56723 -56547.1 -46920 $-33500#$ T: avera T: other D: β ⁻ n T: avera J: direct T: avera D: most -1030# $-16320#$ $-16240#$ -33480 -42989 -42815 -54970 -59792	500# 400# 360 4 19 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	87.15 5490 07=20(1) =128(8) n observed A=26.41((ured in 10' 13=150(9 y p-unstat 81.0 174.1	0.11 6 11Da08= 1 by 99Hat 0.27) 72Jo Vi07 93Wi03: ole from e: 0.7 0.7	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23 stimated	S_p =-1860#(4 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3 t quantified 0.3) 69Wa15= -20) S_p =-980#(24 4# 15 < 1 43 88.8 439 2.0 300	$ms ms ms ms ms s s y \mu s ms$ $ms ms ms s s y \mu s ms$ $ms ms ms \mu s ms ms \mu s ms s ms ms s ms $	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns ()) eV (>620 ns) 2 1 2.4 31 0.2 30	$\begin{array}{c} 1/2^{-\#}\\ (3/2^-,5/2^-)\\ 1/2^{-\#}\\ 5/2^-\\ (5/2^-)\\ 7/2^-\\ 1/2^-\\ 5/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-\\ 3/2^-\\ \\ 3/2^-\\ \\ 3/2^-\\ \\ 3/2^-\\ \\ 1^+\\ (4^+)\\ 0^+\\ 1^+\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09 09 0	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I TJ J TD TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991 2013 1997 2014 1997 2014 1992 1985 1998 1980 1969	$\beta^{-} ?; \beta^{-}n=7\#; \beta^{-}2n=4\# \\\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\IS=69.15 15 \\\beta^{+}=100 \\\beta^{+}=100 \\\beta^{+}=100; \beta^{+}p ? \\p=100\# \\\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=2\# \\\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=4\# \\IT\approx100 \\\beta^{-}=100; \beta^{-}n=32 \\IT=100 \\\beta^{-}=100 \\\beta^{-}=10 $
Cu -65424.5 0.4 12.7004 h 0.0020 1 ⁺ 07 12Be04 TD 1936 $\beta^+=61.5226; \beta^-=38.4826$ Cu ⁱ -58599 6 6826 6 0 ⁺ frg.T=4 07 71Be29 E	As Ti V Cr Mn Fe Co Ni ^m Cu Zn ⁱ Ga Ges V Cr Mn Co Cu Ges Ti V V ^m Cr Mn ^m Fe Co Mn ^m Fe Co Co ^m	-5750 # $-21890 #$ -36010 -46887 -55636 -61851 -65512.8 -65425.7 -65579.8 -62213.4 -56723 -56547.1 -46920 $-33500 #$ $T : avera$ $J : direct$ $T : avera$ $J : direct$ $T : avera$ $D : most$ $-1030 #$ $-16320 #$ $-16320 #$ $-16240 #$ -33480 -42989 -42815 -59792 -59686	500# 400# 360 4 19 0.4 1.6 6 1.3 40 200# 60 1.3 40 200# 11Da08 has beer ge 14Su 11Da08 has beer ge 02Lo probabl 400# 400# 400# 400 40 40 40 40 40 40 40 40 40 40 40 40	87.15 5490 07=20(1) =128(8) n observed A=26.41((rred in 10' 13=150(9 y p-unstab 81.0 174.1 107	0.11 6 11Da08= 1 by 99Had).27) 72Jo Vi07) 93Wi03: 5le from e: 0.7 0.5 20	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23- stimated	S_p =-1860#(4 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3 t quantified 0.3) 69Wa15: -20) S_p =-980#(24 4# 15 < 1 43 88.8 439 2.00 3000 3000	$ms ms ms ms s s y \mu s ms ms$ $ms ms ms$ $ms ms$ $\mu s ms ms \mu s ms ms ms ms ms ms ms ms$	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 $<43 ns$ $()$ eV $(>620 ns)$ 2 1 2.4 31 0.2 30	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 0^{+}\\ (1,2)\\ 0^{+}\\ 1^{+}\\ (4^{+})\\ 0^{+}\\ 1^{+}\\ 5^{+\#}\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09 09 0	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13 11Da08 10Da06 08B105	I T J T T T T T T T T E E	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991 2013 1997 2014 1992 1985 1998 1980 1969 2008	$\beta^{-}?; \beta^{-}n=7\#; \beta^{-}2n=4\# \\\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\IS=69.15 15 \\\beta^{+}=100 \\\beta^{+}=100; \beta^{+}p? \\p=100; \beta^{+}p? \\p=100; \beta^{-}n=30\#; \beta^{-}2n=2\# \\\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=4\# \\IT\approx100 \\\beta^{-}=100; \beta^{-}n=33 2 \\IT=100 \\\beta^{-}=100 \\\beta^{-}$
$Cu^i - 58599 = 6 = 6826 = 6 = 0^+ \text{frg}. T = 4 = 07 = 71 \text{Be}29 = 1002 = 10002 = 10002 = 10002 = 10002 = 10002 = 10002 = 100$	As Ti V Cr Mn FeCo Ni ^m Cu ZZn ⁱ Gaes V CMn Co Cu Ges Ti V W ^m Cr Mn ^m Fe Co ^{com}	-5750# $-21890#$ -36010 -46887 -55636 -61851 -65512.88 -65425.7 -65579.8 -62213.4 -56723 -56547.11 -46920 $-33500#$ T: averation of the term of the term of	500# 400# 360 4 19 0.4 0.4 1.6 6 1.3 40 200# ge 14Su 11Da08 has beer ge 94It./ ly measu ge 02Lo probabl 400# 400# 440 4 4 5 20 4 0.5	87.15 5490 07=20(1) =128(8) n observed A=26.41((rred in 10' 13=150(9 y p-unstab 81.0 174.1 107	0.11 6 11Da08= 1 by 99Hat 0.27) 72Jo Vi07) 93Wi03: ole from e: 0.7 0.5 20	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23- stimated	S_p =-1860#(4 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3 (4 (4) (4) (25) (24) (24) (24) (25) (26)	ms ms ms ms ms s s y μ s m s ms ms ms s s s y μ s m s ms ms ms μ s ms μ s ms μ s ms ms ms μ s ms	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns () eV (>620 ns) 2 1 2.4 31 0.2 30 (>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 (>620 ns) 2 1 2.4 3.5 (>620 ns) 2 1 2.4 3.5 (>620 ns) 2 1 2 3 (>620 ns) 2 (>620 ns) 3 (>70 - 2 (>620 ns) 3 (>70 - 2	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 0^{+}\\ (1,2)\\ 0^{+}\\ 1^{+}\\ (4^{+})\\ 0^{+}\\ 1^{+}\\ 5^{+\#}\\ 0^{+}\\ 0^{+}\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09 09 0	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13	I T J T T T T T T T T T E E	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991 2013 1997 2014 1992 1985 1998 1980 1969 2008 1935	$\beta^{-}?; \beta^{-}n=7\#; \beta^{-}2n=4\# \\\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\# \\\beta^{-}=100; \beta^{-}n=0.2\# \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{-}=100 \\\beta^{+}=100 \\\beta^{+}=100; \beta^{+}p? \\p=100\# \\\beta^{+}=100; \beta^{+}p? \\p=100\# \\\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=2\# \\\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=4\# \\I^{-}\approx100; \beta^{-}n=30\#; \beta^{-}2n=4\# \\I^{-}\approx100; \beta^{-}n=33 2 \\I^{-}=100 \\\beta^{-}=100 \\\beta^{-}=10$
	As Ti V Cr Mn Fe Co Ni Zn Zn Cr Gae Co Ni Cr Cr Mn Fe Co Ni Cr Cr Mn Fe Co Ni Cr Cr Mn Fe Co Ni Ni Cr Cr Cr Mn Fe Co Co Ni Ni Cu Cr Co Ni Cu Cr Co Ni Cu Co Co Ni Cu Co Co Ni Cu Co Co Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu	-5750# $-21890#$ -36010 -46887 -55636 -61851 -65512.88 -65425.7 -65579.8 -62213.4 -56723 -56547.11 -46920 $-33500#$ T: avera T: other D: β ⁻ n T: avera J: direct T: avera D: most $-1030\#$ $-16320\#$ $-16240\#$ -33480 -42989 -42815 -54970 -59792 -59686 -67098.9 -65424.5	500# 400# 360 4 4 19 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	87.15 5490 07=20(1) =128(8) observed A=26.41((tred in 10) 13=150(9) y p-unstab 81.0 174.1 107	0.11 6 11Da08= 1 by 99Hat) 93Wi03: 0le from e: 0.7 0.5 20	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23- stimated	S_p =-1860#(4 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3 t quantified 0.3) 69Wa15: -20) S_p =-980#(24 4# 15 < 1 43 88.88 439 2.0 300# STABLE 12.7004	$\begin{array}{c} \text{ms} \\ \text{ms} \\ \text{ms} \\ \text{ms} \\ \text{s} \\ \text{s} \\ \text{s} \\ \text{ms} \\ \text{ms} \\ \text{ms} \\ \text{ms} \\ \text{ms} \\ \mu \\ \text{s} \\ \text{ms} \\ \text{ms} \\ \text{ms} \\ \mu \\ \text{s} \\ \text{ms} \\$	<pre>(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns 1) eV (>620 ns) 2 1 2.4 31 0.2 30 0.0020</pre>	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 0^{+}\\ (1,2)\\ 0^{+}\\ 1^{+}\\ (4^{+})\\ 0^{+}\\ 1^{+}\\ 5^{+\#}\\ 0^{+}\\ 1^{+}\\ \end{array}$	09 09 09 09 09 09 09 09 09 09 09 09 09 0	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13 11Da08 10Da06 08B105 12Be04	I TJ J TD TD TE E TD	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991 2014 1997 2014 1992 1985 1998 1980 1969 2008 1935 1936	$\begin{split} \beta^{-}?; \beta^{-}n=7\#; \beta^{-}2n=4\#\\ \beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\#\\ \beta^{-}=100; \beta^{-}n=0.2\#\\ \beta^{-}=100\\ \beta^{-}=100\\ \beta^{-}=100\\ \beta^{-}=100\\ \beta^{+}=100\\ \beta^{+}=100\\ \beta^{+}=100\\ \beta^{+}=100; \beta^{+}p?\\ p=100\# \end{split}$ $\begin{split} \beta^{+}&=100\\ \beta^{+}&=100; \beta^{-}p=30\#; \beta^{-}2n=2\#\\ \beta^{-}&=100; \beta^{-}n=30\#; \beta^{-}2n=4\#\\ 1T\approx100\\ \beta^{-}&=100; \beta^{-}n=2\#\\ \beta^{-}&=100; \beta^{-}n=2\#\\ \beta^{-}&=100\\ \beta^{-}&=102\\ \beta^{-}&=100\\ \beta^{-}&=10\\ \beta^{-}&=$
$2n = 00004.0 0.0 STABLE (>8.9 EV) 0^{+} 07 1922 1S=49.17 75 2B^{+} 9$	As Ti V Cr Mn Fe Co Ni ^m Cu Zn ⁱ Za ⁱ Ga Ge As Cr Mn Co Cu Ge As Ti V V ^m Cr Mn ^m Fe Co Ni ^m Cu Zn ⁱ Ga Ge As Cr Mn Co Cu Fe Co Ni ^m Cu Cu Cu Mn ^m Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu	$-5750 #$ $-21890 #$ -36010 -46887 -55636 -61851 -65512.8 -65512.8 -62213.4 -56723 -65579.8 -62213.4 -56723 -56547.1 -46920 $-33500 #$ $T: avera$ $T: other$ $D: \beta^-n$ $T: avera$ $J: direct$ $T: avera$ $D: most$ $-1030 #$ $-16320 #$ $-16320 #$ $-16240 #$ -33480 -42989 -42815 -54970 -59792 -59686 -67098.99 -65424.5 -58599	500# 400# 360 4 19 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	87.15 5490 07=20(1) =128(8) t observed A=26.41((ured in 10' 13=150(9) y p-unstat 81.0 174.1 107 6826	0.11 6 11Da08= 1 by 99Hat 0.27) 72Jo Vi07 93Wi03: ole from e: 0.7 0.5 20 6	RQ 19.2(2.4) 05 but nc 08=27.5(=95(+23- stimated MD	S_p =-1860#(4 3# 19.6 129 275 6.1 26.9 101.2 1.67 STABLE 38.47 32.4 142 03So02=17(3 t quantified 0.3) 69Wa15= -20) S_p =-980#(24) 4# 15 < 1 43 88.8 439 2.0 300# STABLE 12.7004	$ms ms ms ms ms s s y \mu s ms$ $ms ms ms us s s y \mu s ms$ $ms ms ms \mu s ms ms \mu s ms ms ms h$	(>620 ns) 0.9 2 4 0.6 0.4 1.5 0.03 0.05 0.5 8 <43 ns () eV (>620 ns) 2 1 2.4 31 0.2 30 0.0020	$\begin{array}{c} 1/2^{-\#}\\ (3/2^{-},5/2^{-})\\ 1/2^{-\#}\\ 5/2^{-}\\ (5/2^{-})\\ 7/2^{-}\\ 1/2^{-}\\ 5/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 3/2^{-\#}\\ 0^{+}\\ (1,2)\\ 0^{+}\\ 1^{+}\\ 0^{+}\\ 1^{+}\\ 5^{+\#}\\ 0^{+}\\ 1^{+}\\ 0^{+}\\ 0^{+}\\ 1^{+}\\ 0^{+}\\ 1^{+}\\ 0^{+}\\ 0^{+}\\ 1^{+}\\ 0^{+}\\ 0^{+}\\ 1^{+}\\ 0^{+}\\$	09 09 09 09 09 09 09 09 09 09 09 09 09 0	09Ta24 14Su07 15Ba49 94It.A 10Vi07 12Pr11 02Lo13 12Pr13 02Lo13 11Da08 10Da06 08B105 12Be04 71Be29	I TJ J TD TD TE E TD E	2009 1997 1992 1985 1980 1960 1951 1978 1923 1937 1965 1991 2013 1997 2014 1992 1985 1998 1980 1969 2008 1935 1936	$\begin{split} \beta^{-} ?; \beta^{-}n=7\#; \beta^{-}2n=4\# \\ \beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=0.2\# \\ \beta^{-}=100; \beta^{-}n=0.2\# \\ \beta^{-}=100 \\ \beta^{-}=100 \\ \beta^{-}=100 \\ \beta^{-}=100 \\ \beta^{+}=100 \\ \beta^{+}=100 \\ \beta^{+}=100 \\ \beta^{+}=100; \beta^{+}p ? \\ p=100\# \end{split}$

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Nuclide	Mass ex	Half-life				Ens	Reference	•	Year of	Decay modes and					
ruende	(keV)	en	ergy (keV)		Iun	ine	5	Liis	Reference	·	discovery	intensities (%)	
		/		07	,										
A-gro	up continued	۱													
⁶⁴ Ga	-58832.8	1.4				2.627	m	0.012	0(+#)	07			1953	$\beta^{+}=100$	
$^{64}Ga^m$	-58790.0	1.4	42.85	0.08		21.9	μs	0.7	(2^{+})	07			1999	IT=100	
⁶⁴ Ga ⁱ	-56925.8	2.5	1907.0	2.2	RQ				$(0^+)T=2$	07					
⁶⁴ Ge	-54315	4				63.7	s	2.5	0^{+}	07			1972	$\beta^+=100$	
⁶⁴ As	-39530#	200#				40	ms	30	0+#	07			1995	$\beta^{+}=100; \beta^{+}p?$	*
64Se	-26700#	500#				30#	ms	(>180 ns)	0^+	07			2005	β^+ ?; β^+ p ?	
* ⁶⁴ Mn	T : avera	ge 11Da	a08=90(9) 0	2So.A=91	(4) 99S	o20=85(5) 9	99Ha	05 = 89(4)							**
* ⁶⁴ Mn	J : 15He2	28=1+	50 400/40	050 D											**
* ⁶⁴ C	T : avera	ge IILi	50=400(40)	05Ga.B=	500(50)										**
* ⁶⁴ Cu	J : direct	ly meas	ured in 10V	107	161 17	1 ()									**
*°*Cu	E : strong	gest frag	$f_{\text{ment}} = 10(1.4)$	(00); other	10 Ke V	lower (xs=:	()								**
* AS	1 : synn	letrized	110111 18(+4	15-7)											**
⁶⁵ V	-11780#	500#				10#	ms	(>620 ns)	$5/2^{-}$ #	10	09Ta24	Ι	2009	β^{-} ?: β^{-} n=40#: β^{-} 2n=1#	
⁶⁵ Cr	-28220#	300#				27.5	ms	2.1	$1/2^{-}$ #	10	11Da08	Т	1997	$\beta^{-}=100; \beta^{-}n=5\#; \beta^{-}2n=0.3\#$	*
⁶⁵ Mn	-40967	4				91.9	ms	0.7	$(5/2^{-})$	10	130106	TJ	1985	$\beta^{-}=100; \beta^{-}n=7\#$	*
⁶⁵ Fe	-51218	5				810	ms	50	$(1/2^{-})$	10	130106	D	1980	$\beta^{-}=100; \beta^{-}n=7.9 12$	*
⁶⁵ Fe ^m	-50824	5	393.7	0.2		1.12	s	0.15	$(9/2^+)$	10	130106	Е	2008	β^- ?	
⁶⁵ Fe ⁿ	-50820	5	397.6	0.2		420	ns	13	$(5/2^+)$	10	130106	EJ	1998	IT=100	*
⁶⁵ Co	-59185.2	2.1				1.16	s	0.03	$(7/2)^{-}$	10			1978	$\beta^{-}=100$	
⁶⁵ Ni	-65125.7	0.5				2.5175	h	0.0005	$5/2^{-}$	10			1946	$\beta^{-}=100$	
⁶⁵ Ni ^m	-65062.3	0.5	63.37	0.05		69	μs	3	$1/2^{-}$	10			1978	IT=100	
⁶⁵ Cu	-67263.7	0.6				STABLE			$3/2^{-}$	10	10Vi07	J	1923	IS=30.85 15	*
⁶⁵ Zn	-65912.0	0.6				243.93	d	0.09	$5/2^{-}$	10			1939	$\beta^{+}=100$	
$^{65}Zn^m$	-65858.1	0.6	53.928	0.010		1.6	μs	0.6	$1/2^{-}$	10	FGK149	J		IT=100	*
⁶⁵ Ga	-62657.5	0.8				15.2	m	0.2	3/2-	10			1938	$\beta^+=100$	
⁶⁵ Ge	-56478.2	2.2				30.9	s	0.5	3/2-	10		-	1972	$\beta^+=100; \beta^+p=0.0113$	
⁶⁵ As	-46940	80	2400	00		170	ms	30	3/2=#	10	02Lo13	T	1991	$\beta^{+}=100; \beta^{+}p?$	*
65 AS	-43451	1/	3490	90	р	22			(3/2) 1=3/2	2 10	11R04/	J	1993	p=100	*
65 Cr	-33020#	300#	00-20(2) 0	25-21-22	$\tau(2)$	33	ms	4	3/2 #	10	11R04/	1	1993	p = 100; p = ?	
* Cr	T : avera		06 = 28(3) 0	0.025 - 21	-02(1)										**
* ⁶⁵ Mn	T : avera	recent 1	100=91.9(0.5)	(8) outree	=92(1) ighed n	at used									**
* Mn ∗ ⁶⁵ Mn	$D \cdot \beta^{-} n$	has been	n observed l	(0), 00Ho04	5 but not	quantified									**
* WIII * ⁶⁵ Ee	$I \cdot 00P_{2}1$	$6-(1/2^{-1})$	-)	0y 9911a0.) but not	quantineu									**
$*^{65}Fe^{n}$	F : also 1	0=(1/2 0Da06=) =396.8 unce	ertainty no	t given	$T \cdot 10$)Da(l	6 = 420(13)							**
* ⁶⁵ Cu	L direct	lv measi	ured in 10V	i07	t given	1.10	/Du0	0=120(13)							**
$*^{65}Zn^m$	J : E2 to	ground-	state $(5/2^{-})$	and M1 f	rom 3/2	-									**
* ⁶⁵ As	T : avera	ge 02Lc	13=126(16) 95Mo26	=190(11) with Birge	e rati	o B=3.3							**
*65Asi	J : IAS st	tudied in	1 93Ba12 ar	nd 11Ro47	ì	, 0									**
66 V	-5610#	500#				5#	ms	(>620 ns)		10	09Ta24	I	2009	β^{-} ?; β^{-} n=20#; β^{-} 2n=40#	
⁶⁶ Cr	-24720#	400#				23.8	ms	1.8	0+	15	11Li50	Т	1997	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$	*
⁶⁶ Mn	-36750	11	161.5			64.2	ms	0.8	(1^{+})	10	11Pa.A	TD	1992	$\beta^{-}=100; \beta^{-}n=8.49; \beta^{-}2n=0.2\#$	*
66 F	-36286	11	464.5	0.4		780	μs	40	(5)	10	11Li50	EIJ	2005	$11 \approx 100; \beta$?	*
⁶⁶ Fe	-50068	4				351	ms	0	(1^+)	10	12L102	1	1985	$\beta = 100; \beta = n=0$	
60 Co	-56409	14	175 1	0.2		194	ms	1/	(1^+)	10	12Li02	J	1985	p = 100; p = n = 0 #	
66 Con	-30234	14	1/5.1 642	0.5		1.21	μs	0.01	(3^{-})	10	12L102	EJ	1998	II=100 IT-100	
66 NI;	-55707	1.3	042	5		> 100	µs b	0.3	(°) 0+	10	200114	Б	1998	$\beta^{-}=100$	
66Cu	-66258.3	0.7				5 120	m	0.5	0 1+	10	101/07	т	1940	$\beta = 100$ $\beta^{-} = 100$	-
66Cum	-65104.1	1.6	1154.2	1.4		600	me	17	(6)-	10	111.001	т	1937	p = 100	*
667n	-68800 2	0.7	1154.2	1.4		STARIE	115	1/	0+	10	112001	1	1972	IS=27 73 98	不
66Ga	-63723 7	1.1				9 304	h	0.008	0^{+}	10	10Se16	т	1937	$\beta^{+}=100$	*
⁶⁶ Ga ⁱ	-59874	6	3850	6	RO	2.501		0.000	$0^{+}T=3$	10	100010	•	1757	p =100	
⁶⁶ Ge	-61607.0	2.4	5050	0	πų	2.26	h	0.05	0+	10			1950	$\beta^{+}=100$	
⁶⁶ As	-52025	6				95.77	ms	0.23	$0^{+}T=1$	10	MMC156	J	1978	$\beta^{+}=100$	*
⁶⁶ As ^m	-50668	6	1356.63	0.17		1.14	μs	0.04	5+	10	13Ru10	ΤJ	1995	IT=100	*
⁶⁶ As ⁿ	-49001	6	3023.8	0.3		7.98	μs	0.26	9+	10	13Ru10	TJ	1998	IT=100	*
⁶⁶ Se	-41660#	200#				33	ms	12	0+	10	02Lo13	TD	1993	$\beta^{+}=100; \beta^{+}p?$	
* ⁶⁶ Cr	T : avera	ge 11Li	50=24(2) 1	1Da08=23	(4); othe	r 05Ga01=	10(6) outweighed	1						**
* ⁶⁶ Mn	J : 11Li5	0=(1+)	due to large	ground-s	tate feed	ing from 66	Cr	0							**
$*^{66}Mn^m$	E : other	05Ga.B	=294 + 170) keV	T: ot	her 05Ga.B	=750	(250)							**
* ⁶⁶ Cu	J : direct	ly meas	ured in 10V	i07											**
$*^{66}Cu^m$	T : avera	ge 11Lc	01=601(30) 72B116=	600(20)										**
* ⁶⁶ Ga	T : other	12Gy01	1=9.312(0.0	32) not us	ed; Ens	DF=9.49(0.	03)								**
* ⁶⁶ As	$J:0^+$ sin	ice supe	r-allowed β	decay; s	ee also 9	8Gr12									**
$*^{00}As^{m}$	T : avera	ge 13Rı	10=1.15(0.	04) 01Gr0	07=1.1(0	.1)									**
* ³⁰ As ⁿ	1 : avera	ge 13Ri	110=7.9(0.3) 01Gr07=	=8.2(0.5)										**

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Nuclide	Mass ex	cess	F	Excitation]	- Half	ife	J^{π}	Ens	Referen	ce	Year of	Decay modes and	
	(keV	') (Y	ene	ergy (keV)								discovery	intensities (%)	
⁶⁷ V	-650#	600#			2#	ms	(>620 ns)	5/2-#	13			2013	β^{-} ?; β^{-} n=60#; β^{-} 2n=3#	
⁶⁷ Cr	-18680#	400#			10#	ms	(>300 ns)	$1/2^{-}$ #	05	97Be70	I	1997	β^{-} ?; β^{-} n=10#; β^{-} 2n=1#	
⁶⁷ Mn	-33460#	300#			46.7	ms	2.3	5/2-#	05	11Da08	TD	1997	$\beta^{-}=100; \beta^{-}n=105; \beta^{-}2n=0.01\#$	*
⁶⁷ Fe	-45610	270			394	ms	9	$(1/2^{-})$	05	02So.A	TD	1985	$\beta^{-}=100; \beta^{-}n=1\#$	*
⁶⁷ Fe ^m	-45210	270	402	9	64	μs	17	$(5/2^+, 7/2^+)$	05	11Da08	EJ	1998	IT=100	*
⁶⁷ Fe ⁿ	-45160#	290#	450#	100#	75	μs	21	$(9/2^+)$		08B105	TJ	2008	IT=100	
⁶⁷ Co	-55322	6			329	ms	28	$(7/2^{-})$	05	08Pa33	TJ	1985	$\beta^{-}=100; \beta^{-}n=0.04\#$	
⁶⁷ Co ^m	-54830	6	491.6	1.0	496	ms	33	$(1/2^{-})$		09Pa16	Е	2008	$T > 80; \beta^-$?	*
⁶⁷ Ni	-63742.7	2.9			21	s	1	$1/2^{-1}$	05	00Ri14	J	1978	$\beta^{-}=100$	
⁶⁷ Ni ^m	-62736.1	2.9	1006.6	0.2	13.34	μs	0.19	$9/2^+$	05	14Di08	ETJ	1998	IT=100	*
⁶⁷ Cu	-67319.5	0.9			61.83	h	0.12	$3/2^{-}$	05			1948	$\beta^{-}=100$	
⁶⁷ Zn	-67880.3	0.8			STABLE			$5/2^{-}$	05			1928	IS=4.04 16	
$^{67}Zn^m$	-67787.0	0.8	93.312	0.005	9.19	μs	0.06	$1/2^{-}$	05	15Ch57	Т	1972	IT=100	*
$^{67}Zn^n$	-67275.8	0.8	604.48	0.05	333	ns	14	$9/2^{+}$	05			1973	IT=100	
⁶⁷ Ga	-66879.0	1.2			3.2617	d	0.0005	$3/2^{-}$	05			1938	ε =100	
⁶⁷ Ge	-62658	5			18.9	m	0.3	$1/2^{-}$	05			1950	$\beta^{+}=100$	
$^{67}\text{Ge}^m$	-62640	5	18.20	0.05	13.7	μs	0.9	$5/2^{-}$	05			1978	IT=100	
⁶⁷ Ge ⁿ	-61906	5	751.70	0.06	109.1	ns	3.8	$9/2^{+}$	05	00Ch07	Т	1973	IT=100	*
⁶⁷ As	-56587.2	0.4			42.5	s	1.2	$(5/2^{-})$	05			1980	$\beta^{+}=100$	
⁶⁷ Se	-46580	70			133	ms	11	5/2-#	05	95B123	Т	1991	$\beta^+=100; \beta^+p=0.5 1$	*
⁶⁷ Br	-32790#	400#						$1/2^{-}$ #					p ?	
* ⁶⁷ Mn	T : avera	ge 11Da	08=51(4)0	3So21=47(4)	99Ha05=42(4)									**
* ⁶⁷ Fe	T : other	s recent	11Da08=30	04(81) 08Pa33	3=416(29), outw	eigh	ed, not used							**
$*^{67}$ Fe ^m	T : avera	ge 03Sa	02=75(21) 9	98Gr14=43(3	0), same authors	s, difi	erent experi	ment						**
* ⁶⁷ Fe ^m	E : less tl	han 30 k	eV above 3	87.7 level										**
* ⁶⁷ Co ^m	E : 09Pa	16=491.	55(0.11) γr	ay; 08Pa33=4	491.6(1.0)	D :	from 08Pa3	3						**
* ⁶ /Ni ^m	T : avera	ge 14Di	08=13.7(0.6	5) 98Gr14=13	3.3(0.2); other 02	2Ge1	6=13(1)							**
$*^{6}Zn^{m}$	T : unweighed average 15Ch57=9.37(0.04) 98At04=9.34(0.20) 96Hw03=9.01(0.03)												**	
$*^{6}/Zn^{m}$	T: 7	5Ro25=	9.1(0.4) 73I	Le18=9.20(0.	07) 72Le37=9.1	5(0.0	15)							**
* ⁶ /Ge ⁿ	T : avera	ge 00Ch	07 = 101(3)	79A104=110.	9(1.4); Birge ra	io B:	=2.99							**
* ⁶⁷ Se	T : avera	ge 02Lo	13=136(12)	94Ba50=10	7(35)									**
*°'Se	T : value	s from 9	5B123 for 6	'Se=60(+17-	(11) and 71 Kr qu	estio	ned in 970i	01						**

⁶⁸ Cr	-14800#	500#				5#	ms	(>620 ns)	0^{+}	12	09Ta24	I	2009	β^{-} ?; β^{-} n=10#; β^{-} 2n=0.1#	
⁶⁸ Mn	-28380#	400#				33.7	ms	1.5	> 3	12	15Be32	Т	1995	$\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=2\#$	*
⁶⁸ Fe	-43490	370				188	ms	4	0^{+}	12			1985	$\beta^{-}=100; \beta^{-}n>0$	
⁶⁸ Co	-51930	190			*	200	ms	20	(7^{-})	12			1985	$\beta^{-}=100; \beta^{-}n=1\#$	
⁶⁸ Co ^m	-51780#	240#	150#	150#	*	1.6	s	0.3	(1^+)	12			1998	$\beta^{-}=100$	
⁶⁸ Co ⁿ	-51740#	240#	195#	150#	*	101	ns	10	(0, 1)	12	10Da06	Т	2010	IT=100	*
⁶⁸ Ni	-63463.8	3.0				29	s	2	0^{+}	12			1977	$\beta^{-}=100$	
⁶⁸ Ni ^m	-61860	3	1603.52	0.27		270	ns	5	0^{+}	12	15F101	E		4.IT=100	*
⁶⁸ Ni ⁿ	-60615	3	2849.1	0.3		850	μs	30	5-	12	15Wi02	Т	1995	IT=100	*
⁶⁸ Cu	-65567.0	1.6				30.9	s	0.6	1^{+}	12	10Vi07	J	1953	$\beta^{-}=100$	*
⁶⁸ Cu ^m	-64845.7	1.6	721.26	0.08		3.75	m	0.05	6-	12	10Vi07	J	1969	IT=86 2; $\beta^{-}=14$ 2	*
⁶⁸ Zn	-70007.1	0.8				STABLE			0^{+}	12			1922	IS=18.45 63	
⁶⁸ Ga	-67086.0	1.4				67.845	m	0.018	1^{+}	12	14Ga09	Т	1937	$\beta^{+}=100$	*
⁶⁸ Ge	-66978.8	1.9				270.93	d	0.13	0^{+}	12			1948	ε=100	
⁶⁸ As	-58894.5	1.8				151.6	s	0.8	3+	12			1971	$\beta^{+}=100$	
⁶⁸ As ^m	-58469.4	1.8	425.1	0.2		111	ns	20	1^{+}	12			1994	IT=100	*
⁶⁸ Se	-54189.4	0.5				35.5	s	0.7	0^{+}	12			1990	$\beta^{+}=100$	
⁶⁸ Br	-38790#	260#						$< 1.5 \mu s$	3+#	12	95B106	Ι		p?	
* ⁶⁸ Mn	T : avera	ge 15Be	32=38.3(3.0	5) 35.2(2.0)	11Da08	8=29(4) 03	3So2	1=28(8) 99H	a05=28(4)						**
* ⁶⁸ Mn	$D:\beta^{-}n$	has beer	1 observed b	oy 99Ha05 t	out not c	uantified									**
* ⁶⁸ Co ⁿ	J : 12Li0	2 strong	feeding in	$\dot{\beta}^-$ of ⁶⁸ Fe	(0+)										**
* ⁶⁸ Ni ^m	E : avera	ge 15Fl	01=1603.6(0).6) 13Re18	=1603.5	5(0.3)									**
* ⁶⁸ Ni ⁿ	T : avera	ge 15Wi	i02=840(40) 95Br10=8	60(50)										**
* ⁶⁸ Cu	J : direct	ly measu	ured in 10Vi	07											**
$*^{68}Cu^m$	J : direct	ly measu	ured in 10Vi	07											**
* ⁶⁸ Ga	T : also 1	2Lu14=	67.87(0.10)	; discrepant	t 83Iw0	2=67.629(0.24)							**
$*^{68}$ As ^m	T : symn	netrized	from 94Ba5	50=107(+23	-16)										**
	-														

Chinese Physics C Vol. 41, No. 3 (2017) 030001

			Tabl	le I. The	NUBAS	SE2016	tab	le (conti	nued, Expl	anat	tion of "	Fabl	e on pag	e 18)	
Nuclide	Mass ex (keV	(cess ()	e	Excitation nergy (keV)	Ι	Half-	life	J^{π}	Ens	Referen	ce	Year of discovery	Decay modes and intensities (%)	
⁶⁹ Cr	-8580#	500#				2#	ms	(>620 ns)	7/2+#	14			2013	β^{-} ?; β^{-} n=20#; β^{-} 2n=6#	
⁶⁹ Mn	-24770#	400#				22.1	ms	1.6	5/2-#	14	15Be32	TD	1995	$\beta^{-}=100; \beta^{-}n=50\ 20; \beta^{-}2n=0.4\#$	*
69 C -	-39030#	400#				108.2	ms	4.5	1/2-#	14	13Ma87	Т	1992	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$	*
⁶⁹ Co ^m	-50280	140	500#	200#		180	ms	20	1/2 #	14	15L133	1 TD	1985	$\beta = 100; \beta = n = 1 \#$ $\beta^{-} = 100$	
⁶⁹ Ni	-49780# -59979	240# 4	500#	200#		11.4	ins c	230	$(9/2^+)$	14	152155	ID	1984	$\beta = 100$ $\beta^{-} = 100$	
⁶⁹ Ni ^m	-59658	4	321	2		35	s	0.5	$(1/2^{-})$	14			1998	$\beta^{-} \approx 100^{\circ} \text{ IT} < 0.01$	*
⁶⁹ Ni ⁿ	-57279	4	2700.0	1.0		439	ns	3	$(17/2^{-})$	14			1998	IT=100	
⁶⁹ Cu	-65736.2	1.4				2.85	m	0.15	3/2-	14	10Vi07	J	1966	$\beta^{-}=100$	*
⁶⁹ Cu ^m	-62994.2	1.6	2742.0	0.7		357	ns	2	$(13/2^+)$	14			1997	IT=100	
⁶⁹ Zn	-68417.8	0.8				56.4	m	0.9	1/2-	14			1937	$\beta^{-}=100$	
$^{69}Zn^m$	-67979.2	0.8	438.636	0.018		13.756	h	0.018	$9/2^+$	14			1970	IT \approx 100; $\beta^{-}=0.033$ 3	
⁶⁹ Ga	-69327.8	1.2				STABLE			3/2-	14			1923	IS=60.108 9	
⁶⁹ Ge	-67100.7	1.3				39.05	h	0.10	5/2-	14			1938	$\beta^{+}=100$	
⁶⁹ Ge ^m	-67013.9	1.3	86.76	0.02		5.1	μs	0.2	$1/2^{-}$	14			1978	IT=100	
69 A -	-66/02.8	1.3	397.94	0.02		2.81	μs	0.05	9/2 · 5/2=	14			1978	11=100 e^{\pm} 100	
69 S o	-03110	30				15.2	m	0.2	5/2	14			1955	$\beta^+ = 100$ $\beta^+ = 100; \beta^+ = -0.045, 10$	
69 Sem	-56395.9	1.5	38.85	0.22		27.4	5	0.2	$\frac{1}{2}$	14			1974	p = 100, p = 0.045 10 IT-100	
⁶⁹ Se ⁿ	-55860.7	1.5	574.0	0.22		955	ns	16	$\frac{3}{2}^{+}$	14	00Ch07	т	1988	IT=100	*
⁶⁹ Br	-46260	40	571.0	0.1	*	< 24	ns	10	$(5/2^{-})$	15	000007	•	1988	p=100	
⁶⁹ Br ^m	-46220#	110#	40#	100#	*				5/2-#		Mirror	Ι		F	
⁶⁹ Br ⁿ	-45690#	110#	570#	100#					9/2+#		Mirror	Ι			
$^{69}\mathrm{Br}^{i}$	-42771	19	3490	50	р				$(5/2^{-})T=3/2$	2 14	11Ro47	Ι	2011	p=100	
⁶⁹ Kr	-32440#	400#				28	ms	1	$(5/2^{-})$	15	14De41	D	1995	$\beta^+=100; \beta^+p=557$	*
* ⁶⁹ Mn	T : avera	ige 15B	$e^{32=24.1(2.)}$	6) 25.8(2.8) 11Da08=	=18(4) 99H	Ha05	=14(4)							**
* ⁰⁹ Fe	T : avera	ige 13M	a87=102(10))) 11Da $08=$	110(6) 03	So21=109	(9)								**
* ⁶⁹ N1 ^m	E:9/2'	level in	isotones:	Ge=-66	Zn=15/(1	$) \sim N_1 = -3.$	21(2)	exhibits							**
* NI * ⁶⁹ Cu	L: direct	lusuan	y strong var.	auons 507											**
$*^{69}$ Se ⁿ	T : avera	ige 00Cl	h07=950(21) 95Po01=9	960(23)										**
* ⁶⁹ Kr	T : 14De	41=28(1) 11Ro47=	27(3) 97Xu	01=32(10)) E):β	⁺ p=52.5(6.5	5) + 2.4(0.5)						**
 ⁷⁰ Cr ⁷⁰ Mn ⁷⁰ Fe ⁷⁰ Co ⁷⁰ Co ⁷⁰ Ni^m ⁷⁰ Cu^m ⁷⁰ Cu^m ⁷⁰ Cu^m ⁷⁰ Cu^m ⁷⁰ Ga ⁷⁰ Cn ⁷⁰ Ga ⁷	-4480# -19500# -36510# -46630# -59213.9 -56353.9 -62976.4 -62875.3 -62733.8 -62733.8 -62753.8 -62564.7 -68910.1 -70561.9 -64340 -64310 -61929.9 -51426 -49134 -41100# T: averaa L: direct	600# 500# 400# 300# 2.1 2.9 1.1 1.1 1.2 0.8 50 50 1.6 15 15 200# Mge 13M by measure	200# 2860 101.1 242.6 32.008 2292.3 [a87=61(5)] i ured in 10V	200# 2 0.3 0.5 0.002 0.8 11Da08=71	* * (10); othe	1# 19.9 63.0 112 4700 6.0 232 44.5 33 6.6 STABLE 21.14 STABLE 52.6 96 41.1 79.1 2.2 52 cr 03So21=	ms ms ms ms ms ms s ns s s s s m m μ s m ms s ms s ms s 994(1)	(>620 ns) 1.7 4.5 7 50 0.3 1 0.2 2 0.2 0.2 0.3 3 0.3 0.3 0.3 0.3 0.3 0.3	0^+ $(6^-, 7^-)$ $3^+ \#$ 0^+ (8^+) 6^- 3^- 1^+ 0^+ 1^+ 0^+ 4^+ 2^+ 0^+ 0^+ T=1 9^+ 0^+	$\begin{array}{c} 13\\ 09\\ 04\\ 16\\ 16\\ 04\\ 04\\ 04\\ 04\\ 04\\ 04\\ 04\\ 04\\ 04\\ 04$	15Be32 13Ma87 10Vi07 10Vi07 10Vi07	TD T J J J	2013 2009 1997 1985 1998 1987 1997 1971 2002 1971 1922 1937 1923 1950 1979 1950 1978 1981 1995	$ \begin{split} \beta^-?; \beta^-n=40\#; \beta^-2n=2\# \\ \beta^-=100; \beta^-n=20\#; \beta^-2n=7\# \\ \beta^-=100; \beta^-n=3\#; \beta^-2n=0\# \\ \beta^-=100; \beta^-n=3\#; \beta^-2n=0\# \\ \beta^-=100; T?; \beta^-n=3\#; \beta^-2n=0\# \\ \beta^-=100 \\ TT=100 \\ \beta^-=52; 9; TT=48; 9 \\ \beta^-=93, 2; 9; TT=68; 9 \\ IS=0.61; 10; 2\beta^-? \\ \beta^-=100; \varepsilon=0.41; 6 \\ IS=20.57; 27 \\ \beta^+=100 \\ TT=100 \\ \beta^+=100 \\ \beta^+=100 \\ \beta^+=100; \beta^+p; \\ \beta^+=2; IT; 2; \beta^+p; \\ \beta^+=100; \beta^+p<1.3 \end{split} $	* * * * *
* ⁷⁰ Cu ^m * ⁷⁰ Cu ⁿ * ⁷⁰ Zn ⁷¹ Mn ⁷¹ Fe ⁷¹ Co ⁷¹ Ni ^m ⁷¹ Cu ⁷¹ Cu ^m ⁷¹ Cu ^m	J : direct J : direct T : 03Ki -15570# -31430# -44370 -55406.2 -55406.0 -62711.1 -59955.4 -67328.8	ly meas ly meas 08 : 0v- 500# 400# 470 2.2 2.3 1.5 1.6 2.7	ured in 10V ured in 10V ββ>13 Py 499 2755.7	5 0.6		5# 33.7 80 2.56 2.3 19.4 271 2.45	ms ms s s s ns ms	(>400 ns) 3.8 3 0.03 0.3 1.4 13 0.10	$5/2^{-} #$ $7/2^{+} #$ $(7/2^{-})$ $(9/2^{+})$ $(1/2^{-})$ $3/2^{-}$ $(19/2^{-})$ $1/2^{-}$	10 10 10 10 10 10 10	10Oh02 13Ma87 12Ra10 10Vi07 98Gr14	I T TJD J TJ	2010 1997 1992 1987 2009 1983 1998 1955	β^{-} ?; β^{-} n=30#; β^{-} 2n=3# β^{-} =100; β^{-} n=10#; β^{-} 2n=0.3# β^{-} =100; β^{-} n=3 1 β^{-} =100 β^{-} =100 β^{-} =100 β^{-} =100 β^{-} =100	** ** * * *
⁷¹ Zn ^m ⁷¹ Ga	-67171.1 -70139.1	2.4 0.8	157.7	1.3	MD	4.125 Stable	h	0.007	$\frac{9/2^+}{3/2^-}$	10 10	12Re05	Т	1958 1923	$\beta^{-} \approx 100; \text{IT} \le 0.05$ IS=39.892 9	

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

			Table	I. The NU	BASEZ	010 tab	ie (continue	u, Explai	au	JII 01 12	ible	on page	10)	
Nuclide	Mass ex (keV	(cess ()	e	Excitation nergy (keV)		ł	Half-	life	J^{π}	Ens	Referen	ce	Year of discovery	Decay modes and intensities (%)	
A-grou	in continued														
⁷¹ Ge	-69906 5	0.8				11 43	đ	0.03	$1/2^{-}$	10			1941	ε=100	
$^{71}\text{Ge}^m$	-69708.1	0.8	198.354	0.014		20.41	ms	0.18	$9/2^+$	10			1959	IT=100	
71 As	-67893	4	1901001	0.011		65.30	h	0.07	$5/2^{-}$	10			1939	$\beta^{+}=100$	
⁷¹ Se	-63146.5	2.8				4.74	m	0.05	$(5/2^{-})$	10			1957	$\beta^{+}=100$	
⁷¹ Se ^m	-63097.7	2.8	48.79	0.05		5.6	us	0.7	$(1/2^{-})$	10			1982	IT=100	
71 Se ⁿ	-62886.0	2.8	260.48	0.10		19.0	115	0.5	$(9/2^+)$	10			1982	IT=100	
⁷¹ Br	-56502	5	2001.0	0110		21.4	s	0.6	$(5/2)^{-}$	10			1981	$\beta^{+}=100$	
⁷¹ Kr	-46330	130				100	ms	3	$(5/2)^{-}$	10			1981	$\beta^{+}=100; \beta^{+}=2, 1, 7$	
⁷¹ Rb	-32060#	400#			*	100		5	$5/2^{-}$ #	10			1701	p ² 100, p ² p ² 11,	
71 Rb ^m	-32010#	410#	50#	100#	*				$1/2^{-}$ #		Mirror	T		P ·	
71 Rb ⁿ	-31800#	410#	260#	100#					$9/2^+$ #		Mirror	Ť			
* ⁷¹ Fe	T · averag	re 13Ma8	7=42(6) 11F	2008 = 28(5)					/2						**
* ⁷¹ Co	D · taking	into acco	$\frac{12}{0}$ $\frac{12}{12}$ $\frac{12}$	< 2.7(0.9)%	and 05M	a95>3(1)9	6 of	same groun							**
* ⁷¹ Cu	T · averag	e 99Pr10	$=19(3) 83R_1$	0.06 = 19.5(1.6)	5)	u))/ (1)/	0.01	sume group							**
* ⁷¹ Cu	I · directl	v measure	ed in 10Vi07	1	-)										**
$*^{71}Cu^{m}$	T : averag	e 98Is11:	=250(30)98	Gr14=275(1	4)										**
· cu	1	,0 >01011	200(00) 90	0111 270(1	.,										
72 M m	0000#	600#				2#		(> 620 mg)		12			2012	$\beta = 2, \beta = n - 50 \#, \beta = 2n - 10 \#$	
72 E 2	-9900#	500#				2#	ma	(>020 lls)	0+	10	12Mo97	тр	2015	β^{-} (β^{-} $\beta^{$	
72Ca	-26450#	300# 400#				52.5	ms	4	(6 - 7 -)	10	15W1a67	T	1997	p = ?; p = 100; p = 100; p = 2100; p = 2100; p = 200; p	
$72Ce^{m}$	-40200#	400#	200#	200#		32.3	ms	0.5	(0, 7)	10	16Me07	I TI	1992	p = 100; p = 1>02; p = 21=0.2#	*
72 NI:	-40000#	450#	200#	200#	*	4/.8	ms	0.5	$(0^+, 1^+)$	10	101/1007	IJ	2010	$\beta = 100$ $\beta^{-} = 100$, $\beta^{-} = -00$	
72 Cu	-34220.1	2.2				1.37	s	0.03	0 · 2-	10	101/:07	т	1967	p = 100; p = 100; p = 0#	
72 Cum	-39785.0	1.4	270.2	1.0		0.05	s	0.05	(6-)	10	10107	J	1965	p = 100	*
72 .7 .	- 39312.7	1.7	270.5	1.0		1.70	μs	0.05	(0)	10			1998	R = -100	*
72 C -	-08145.5	2.1				40.5	n 1.	0.1	0	10	1012-07	т	1951	$\beta = 100$	
72 Ga	-08388.3	0.8	110.66	0.05		14.025	n	0.010	$(0^{+})T_{-1}$	10	12Kr07	1	1959	$\beta = 100$	
72 Gam	-08408.0	0.8	119.00	0.05		39.08	ms	0.13	$(0^{+})^{1=1}$	10			1968	11=100	
72 G em	- 72585.90	0.08	(01.42	0.04		STABLE		0.0	0+	10			1923	IS=27.45 32	
72 A -	-/1894.4/	0.09	691.43	0.04		444.2	ns 1	0.8	0	10			1984	R^+ 100	
72 AS	-08230	4				20.0	n	0.1	2 0+	10			1939	$\beta = 100$	
72 D	-0/808.2	2.0				8.40	a	0.08	0	10			1948	$\mathcal{E} = 100$ $\mathcal{R} + 100$	
72 Br	-59061.7	1.0	100.76	0.15		/8.6	s	2.4	(2-)	10			1970	$\beta^+ = 100$	
72 K	-58960.9	1.0	100.76	0.15		10.0	s	0.5	(3)	10	020:02	T	1980	$11 \approx 100; p'=?$	
72 Kr	-53941	8				17.16	s	0.18	0	10	03P103	I T	1973	$\beta = 100$	*
72 RD	-38330#	500#	100//	100//	*			<1.5 µs	1'#		92B100	1		p ?	
72 C -	-38230#	510# 14X07	100#	100# 4D-20_55(4)	*	50(2) 020	1- 40	(2(2))	3 #					p ?	
*720-	I : others	14Au0/=	$= 52.8(1.0) 1^{2}$	4Ka20=55(4) 0514139	=39(2) 033	Sa40	=02(3)							**
*720	J : reeding	g of the 6	· level in ·-1		model	D : 05	May	5 p n>62							**
* ⁷² Cu ^m	J: directi	y measure	a in 10 vi0/	Th A											**
* ⁻ Cu	D: no p	decay of	-17 1(0.2) 7	2D-22-17 4	(0, 4)										**
* N	1 : averag	ge 05P105	=17.1(0.2)7	5Da22=17.4	(0.4)										**
72															
⁷³ Fe	-22900#	500#				12.9	ms	1.6	$7/2^{+}$ #	16			2010	β^{-} ?; β^{-} n=20#; β^{-} 2n=4#	
/3Co	-37420#	400#				40.7	ms	1.3	7/2-#	16	12Ra10	D	1995	$\beta^{-}=100; \beta^{-}n=94; \beta^{-}2n=0.01\#$	*
⁷³ Ni	-50108.2	2.4				840	ms	30	$(9/2^+)$	16			1987	$\beta^{-}=100; \beta^{-}n=0.3\#$	
⁷³ Cu	-58987.4	1.9				4.2	s	0.3	$3/2^{-}$	04	10Vi07	J	1983	$\beta^{-}=100; \beta^{-}n=0#$	*
^{73}Zn	-65593.4	1.9				23.5	s	1.0	$(1/2)^{-}$	04			1972	$\beta^{-}=100$	
73 Zn ^m	-65397.9	1.9	195.5	0.2		13.0	ms	0.2	$(5/2^+)$	04			1985	IT=100	
73 Zn ⁿ	-65355.8	2.8	237.6	2.0	EU	5.8	s	0.8	$(9/2^+)$	04			1998	IT=?; β^{-} =?	*
⁷³ Ga	-69699.3	1.7				4.86	h	0.03	$1/2^{-}$	04	11Ch16	J	1949	$\beta^{-}=100$	
⁷³ Ge	-71297.52	0.06				STABLE			$9/2^{+}$	04			1933	IS=7.75 12	
$^{73}\text{Ge}^m$	-71284.24	0.06	13.2845	0.0015		2.92	μs	0.03	$5/2^{+}$	04			1975	IT=100	
$^{73}\text{Ge}^n$	-71230.79	0.06	66.726	0.009		499	ms	11	$1/2^{-}$	04			1957	IT=100	
⁷³ As	-70953	4				80.30	d	0.06	$3/2^{-}$	04			1948	<i>ε</i> =100	
$^{73}As^m$	-70525	4	427.906	0.021		5.7	μs	0.2	$9/2^{+}$	04			1956	IT=100	
⁷³ Se	-68227	7				7.15	h	0.08	$9/2^{+}$	04			1948	$\beta^{+}=100$	
73 Se ^m	-68201	7	25.71	0.04		39.8	m	1.3	$3/2^{-}$	04			1960	IT=72.6 3; β^+ =27.4 3	
⁷³ Br	-63647	7				3.4	m	0.2	$1/2^{-}$	04			1970	$\beta^{+}=100$	
⁷³ Kr	-56552	7				27.3	s	1.0	$3/2^{-}$	04			1972	$\beta^+=100; \beta^+p=0.25 3$	
73 Kr ^m	-56118	7	433.66	0.12		107	ns	10	$(9/2^+)$	04			1993	IT=100	
⁷³ Rb	-46080#	200#						<30 ns	3/2-#	04	96Pf01	Ι		p ?	
73 Rb ^m	-45650#	220#	430#	100#					9/2+#		Mirror	Ι		-	
⁷³ Rb ⁱ	-42850	40	3230#	200#	р				$1/2^{-}T=3/2$		93Ba61	JD	1993	p=100	
⁷³ Sr	-31950#	400#			-	> 25	ms		1/2-#	04			1993	$\beta^{+}=100; \beta^{+}p=?$	
* ⁷³ Co	D : taking	g into acco	ount 12Ra10	0<22(8)% 10	Ho12<7.	9% 05Ma	95>9	9(4)%							**
* ⁷³ Cu	J : directl	v measure	ed in 10Vi07	,											**

 $*^{73}Zn^n$ E : if 42.1 keV γ feeds ⁷³Zn^{*m*}, EU: see discussion in ENSDF'04

Chinese Physics C Vol. 41, No. 3 (2017) 030001

			Table I.	The NUBA	ASE20)16 tab	le (continue	d, Explana	atior	i of Tat	ole o	n page 18	8)	
Nuclide	Mass ex (keV	cess ')	E	xcitation ergy (keV)		ŀ	Ialf-1	life	J^{π}	Ens	Referen	ce	Year of discovery	Decay modes and intensities (%)	
⁷⁴ Fe	-19590#	600#				2#	ms	(>400 ns)	0^{+}	10	10Ob02	T	2010	$\beta^{-} ? \beta^{-} n = 30 \# \beta^{-} 2 n = 2 \#$	
⁷⁴ Co	-32820#	500#				31.3	ms	1.3	0	06	05Ma95	TD	1995	$\beta^{-1}=100; \beta^{-n}>26.9; \beta^{-2n}=1\#$	*
⁷⁴ Ni	-48460#	200#				507.7	ms	4.6	0^+	06	14Xu07	Т	1987	$\beta^{-}=100; \beta^{-}n=5\#$	
⁷⁴ Cu	-56006	6				1.63	s	0.05	2^{-}	06	10Vi07	J	1987	$\beta^{-}=100; \beta^{-}n=40\#$	*
⁷⁴ Zn	-65756.7	2.5				95.6	s	1.2	0+	06			1972	$\beta^{-}=100$	
⁷⁴ Ga	-68049.6	3.0				8.12	m	0.12	(3^{-})	06	13Ma15	J	1956	$\beta^{-}=100$	
74Gam	-67990	3	59.571	0.014		9.5	s	1.0	$(0)^{(+\pi)}$	06			1974	$\Pi = 75\ 25;\ \beta^{-1}?$	
74 A s	-70860 1	0.013				17 77	đ	0.02	2-	06			1925	$B^+ = 66.2$; $B^- = 34.2$	
⁷⁴ Se	-72213201	0.015				STABLE	u	(>15 Ev)	0+	06	15Je02	т	1922	p = -562, p = -542 IS=0.89.4 · 2 β + 2	
⁷⁴ Br	-65288	6				25.4	m	0.3	(0-)	06	100002		1952	$\beta^{+}=100$	
$^{74}\mathrm{Br}^m$	-65274	6	13.58	0.21		46	m	2	4 ^(+#)	06			1953	$\beta^{+}=100$	
⁷⁴ Kr	-62331.8	2.0				11.50	m	0.11	0^{+}	06			1960	$\beta^{+}=100$	
⁷⁴ Kr ⁱ	-61790	30	540	30							98Gr.A	Е	1998	IT=100	*
⁷⁴ Rb	-51916	3				64.776	ms	0.030	$0^{+}T=1$	06			1977	$\beta^+=100; \beta^+p?$	
⁷⁴ Co	-40830#	100# 14 X p07=	21 6(1 5) 051	4.05-20(2)		27	ms	8	0	15			1995	p = 100; p + p?	
* C0 * ⁷⁴ Co	T : average	= 14Au07=. ecent 11D	31.0(1.3)031 308-19(7)1($H_012 = 30(3)$	6_9)	D·ß	- n-	18(15)% in	10Ho12						**
* ⁷⁴ Cu	$D: \beta^- n$ ha	s been obs	served by 91	Kr15 but not	quantifi	ied D. p		10(15)/0 11	1011012						**
$*^{74}$ Kr ⁱ	E: E(g) < 8	5 to 2^+ lev	vel at 455.61	(0.10) keV	1										**
⁷⁵ Fe	-13640#	600#				2#	ms	(>620 ns)	$9/2^{+}$ #	13			2013	β^{-} ?; β^{-} n=80#; β^{-} 2n=20#	
⁷⁵ Co	-29650#	500#				26.5	ms	1.2	7/2-#	13	14Xu07	Т	1995	$\beta^{-}=100; \beta^{-}n<16; \beta^{-}2n=0.5\#$	
⁷⁵ Ni	-44030#	300#				331.6	ms	3.2	7/2+#	13	14Xu07	Т	1992	$\beta^{-}=100; \beta^{-}n=10.028$	
⁷⁵ Cu	-54471.3	2.3	(1.7	0.4		1.224	s	0.003	5/2-	13	10Vi07	J	1985	$\beta^{-}=100; \beta^{-}n=3.56$	
75Cu ^m 75Cu ⁿ	-54409.6	2.3	61.7	0.4		310	ns	8	(1/2, 3/2)) 13	16Da14	БІТ	2010	II=100 IT-100	
⁷⁵ 7n	-54405.1	2.5	00.2	0.4		149	ns ¢	5 0.2	(3/2, 1/2)	13	10Pe14	EJI	1974	$B^{-}=100$	
$^{75}Zn^m$	-62432.0	2.0	126.94	0.09		5#	s	0.2	$(1/2^{-})$	13			2011	β^{-} ?: IT ?	
⁷⁵ Ga	-68464.6	2.4	120171	0107		126	s	2	$3/2^{-1}$	13			1960	$\beta^{-}=100$	
⁷⁵ Ge	-71856.96	0.05				82.78	m	0.04	$1/2^{-}$	13			1939	$\beta^{-}=100$	
$^{75}\text{Ge}^m$	-71717.27	0.06	139.69	0.03		47.7	s	0.5	$7/2^+$	13			1952	$T \approx 100; \beta^{-} = 0.0306$	
75 Ge ⁿ	-71664.77	0.08	192.19	0.06		216	ns	5	$5/2^+$	13			1982	IT=100	
⁷⁵ As	-73034.2	0.9				STABLE			3/2-	13			1920	IS=100.	
⁷⁵ As ^m	-72730.3	0.9	303.9243	0.0008		17.62	ms	0.23	9/2+ 5/2+	13			1957	TT=100	
⁷⁵ Br	-/2109.48	0.07				06.7	a	0.05	3/2-	13			1947	$\mathcal{E} = 100$ $\mathcal{B}^+ = 100$	
⁷⁵ Kr	-64324	8				4 60	m	0.07	$\frac{3/2}{5/2^+}$	13			1946	$\beta^{+}=100$ $\beta^{+}=100$	
⁷⁵ Rb	-57218.7	1.2				19.0	s	1.2	$3/2^{(-)}$	13			1975	$\beta^{+}=100$	
⁷⁵ Sr	-46620	220				88	ms	3	$(3/2^{-})$	13			1991	$\beta^{+}=100; \beta^{+}=5.2.9$	
⁷⁵ Y	-31820#	300#				100#	μs		$5/2^+$ #					β^+ ?; β^+ p ?; p ?	
									·						
⁷⁶ Co	-24510#	600#			&	23	ms	6	(8^{-})	14	14Xu07	TD	2010	$\beta^{-}=100; \beta^{-}n=4#; \beta^{-}2n=6#$	*
^{/6} Co ^m	-24410#	610#	100#	100#	&	16	ms	4	(1-)		15So23	TJE	2015	$\beta^{-}=100$	
^{/0} Co ⁿ	-23770#	610#	740#	100#		2.99	μs	0.27	(3^+)	07	15So23	TJE	2015	IT=100 0= 100 0= 110 f	*
76 N1 76 NI:m	-41630#	400#	2418 7	1.0		234.6	ms	2.1	(9+)	07	14Xu07	T T	1995	p = 100; p = 14.3.6	
⁷⁶ Cu	-59210#	-100#	<u>∠</u> +10./	1.0	*	637.7	me	5.5	(3 4)	95	09Wi03	D	1987	$\beta^{-}=100$ $\beta^{-}n=7.25$	*
⁷⁶ Cu ^m	-50980#	200#	0#	200#	*	1.27	s	0.30	(1.3)	95	90Wi12	Ĵ	1990	$\beta^{-}=100$	
⁷⁶ Zn	-62303.0	1.5				5.7	s	0.3	0+	95			1974	$\beta^{-}=100$	
⁷⁶ Ga	-66296.6	2.0				32.6	s	0.6	2^{-}	95	11Ma45	J	1961	$\beta^{-}=100$	
⁷⁶ Ge	-73212.889	0.018				1.66	Zy	0.13	0^+	95	15Ba11	Т	1933	IS=7.73 12; $2\beta^{-}=100$	*
⁷⁶ As	-72291.4	0.9				1.0778	d	0.0020	2-	95			1934	$\beta^-\approx 100; \varepsilon < 0.02$	
⁷⁰ As ^m	-72247.0	0.9	44.425	0.001		1.84	μs	0.06	$(1)^+$	95			1966	IT=100 IS_0.27.20	
76 Se	-75251.950	0.016				STABLE	1.	0.2	0+ 1-	95			1922	18=9.3729 $\theta^{\pm}=100$	
76 p. m	- 70289 - 70186	9	102 58	0.03		10.2	n c	0.2	$(A)^+$	95			1952	$p^{+}=100$ IT > 99.4. $\beta^{+} < 0.6$	
⁷⁶ Kr	-69014	4	102.30	0.05		1.51	b b	0.02	0+	95			1954	$\beta^{+}=100$	
⁷⁶ Rb	-60479.1	0.9				36.5	s	0.6	1(-)	95			1969	$\beta^+=100; \beta^+\alpha=3.8e-7.10$	
$^{76}\text{Rb}^m$	-60162.2	0.9	316.93	0.08		3.050	μs	0.007	(4^{+})	95	00Ch07	Т	1986	IT=100	

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

							.,				ie on pue	,• 10)	
Nuclide	Mass exe	cess Exc	citation	Ha	lf-life		J^{π}	Ens	Reference	ce	Year of	Decay modes and	
	(keV)) energ	gy (keV)								discovery	intensities (%)	
A-grou	up continued .												
⁷⁶ Sr	-54250	30		7.89	s 0.	07	0^+	11			1990	$\beta^+=100; \beta^+p=3.4e-5.8$	
⁷⁶ Y	-38480#	300#		120#	μs ()	>200 ns)	1^{-} #	07	01Ki13	Ι	2001	β^+ ?; p ?; β^+ p ?	*
* ⁷⁶ Co	T : symme	trized from 14Xu07=2	21.7(+6.5-4.9)	J : 15So	23=(8-)							**
* ⁷⁶ Co ⁿ	E: 15So23	=638.4(0.8) above (1	-) 76Com										**
* ⁷⁶ Co ⁿ	T : symme	trized from 15So23=2	2.96(+0.29-0.25)										**
$*^{76}Ni^m$	E : 12Ka36	6=142.7(0.5), 355.5(0.	.5), 929.9(0.5) and 9	990.6(0.5)	γrays i	n							**
$*^{76}Ni^m$	E: cas	cade to ground-state =	=2418.7(1.0); other	05Ma59=2	420(4)								**
$*^{76}Ni^m$	T: others	14Ra20=636(90) 12Ka	a36=409(+58-50))	05Ma59=5	90(+18	0–110)							**
* ⁷⁶ Cu	T : average	e 10Ho12=599(18) 05	Va19=653(24) 91K	15=641(6)									**
* ⁷⁶ Cu	J : from 05	Va19 and 90Wi12											**
* ⁷⁶ Ge	T : symme	trized from 15Ba11=1	.65(+0.14-0.12)										**
* ⁷⁶ Ge	T:13Ag1	$1:0\nu-\beta\beta>30$ Yy (90	%C.L.) combined (GERDA+H	DM+IC	JEX results	s;						**
* ⁷⁶ Ge	T: cla	im for 0 <i>ν</i> -ββ 01K113	=15 Yy 04K103=11	.2 Yy not t	rusted.	See also							**
* ⁷⁶ Ge	T: 024	Aa.A and 02Zd02	-	•									**
* ⁷⁶ Y	I : also 00V	We.A>170 ns same gr	oup										**
		0	•										

⁷⁷ Co	-21020#	600#			15	ms	6	$7/2^{-}$ #	14			2014	$\beta^{-}=100; \beta^{-}n=90\#; \beta^{-}2n=5\#$	*
⁷⁷ Ni	-36800#	500#			158.9	ms	4.2	$9/2^{+}$ #	12	14Xu07	Т	1995	$\beta^{-}=100; \beta^{-}n=30\ 24; \beta^{-}2n=0\#$	*
⁷⁷ Cu	-48620 #	150#			467.9	ms	2.1	$5/2^{-}$	12			1987	$\beta^{-}=100; \beta^{-}n=30.3 20$	
⁷⁷ Zn	-58789.2	2.0			2.08	s	0.05	$(7/2^+)$	12			1977	$\beta^{-}=100$	
77 Zn ^m	-58016.8	2.0	772.440	0.015	1.05	s	0.10	$(1/2^{-})$	12	09Pa35	J	1986	$\beta^{-}=667$; IT=347	
⁷⁷ Ga	-65992.3	2.4			13.2	s	0.2	$3/2^{(-)}$	12			1968	$\beta^{-}=100$	
⁷⁷ Ge	-71212.86	0.05			11.211	h	0.003	$7/2^+$	12			1939	$\beta^{-}=100$	
$^{77}\text{Ge}^m$	-71053.15	0.08	159.71	0.06	53.7	s	0.6	$1/2^{-}$	12			1947	$\beta^{-}=81$ 2; IT=19 2	
⁷⁷ As	-73916.3	1.7			38.79	h	0.05	$3'/2^{-}$	12			1951	$\beta^{-}=100$	
$^{77}As^m$	-73440.8	1.7	475.48	0.04	114.0	μs	2.5	$9'/2^+$	12			1957	IT=100	
⁷⁷ Se	-74599.49	0.06			STABLE			$1/2^{-}$	12			1922	IS=7.63 16	
77 Se ^m	-74437.57	0.06	161.9223	0.0010	17.36	s	0.05	$7/2^+$	12			1947	IT=100	
⁷⁷ Br	-73234.8	2.8			57.04	h	0.12	$3/2^{-}$	12			1948	$\beta^{+}=100$	
$^{77}\mathrm{Br}^m$	-73128.9	2.8	105.86	0.08	4.28	m	0.10	$9/2^+$	12			1961	IT=100	
⁷⁷ Kr	-70169.4	2.0			74.4	m	0.6	$5/2^+$	12			1948	$\beta^{+}=100$	
⁷⁷ Kr ^m	-70102.9	2.0	66.50	0.05	118	ns	12	$3/2^{-}$	12			1975	IT=100	
⁷⁷ Rb	-64830.5	1.3			3.78	m	0.04	$3/2^{-}$	12			1972	$\beta^{+}=100$	
⁷⁷ Sr	-57803	8			9.0	s	0.2	$5/2^+$	12	13Ma15	J	1976	$\beta^+=100; \beta^+=0.083$	
⁷⁷ Y	-46440#	200#			63	ms	17	$5/2^+$ #	12	00We.A	D	1999	$\beta^{+}=?; \beta^{+}p?; p<10$	*
⁷⁷ Zr	-32040#	400#			100#	μs		3/2-#					β^{+} ?; β^{+} p ?; p ?	
* ⁷⁷ Co	T : symme	etrized from	m 14Xu07=1	3.0(+7.2-4.3)				,					, ,	**
* ⁷⁷ Ni	D : from 1	10Ho12												**
* ⁷⁷ Y	D : limit f	or p is from	m 00We.A	T : symmetri	zed from 0	1Ki1:	3=57(+22	2–12)						**
		-												

⁷⁸ Ni	-33890#	600#			122.2	ms	5.1	0^{+}	09	14Xu07	Т	1995	$\beta^{-}=100; \beta^{-}n=50\#; \beta^{-}2n=0\#$	
⁷⁸ Cu	-44500	500			330.7	ms	2.0	(5^{-})	09	14Xu07	Т	1991	$\beta^{-}=100; \beta^{-}n=50.645; \beta^{-}2n=0.2\#$	*
⁷⁸ Zn	-57483.2	1.9			1.47	s	0.15	0+	09			1977	$\beta^{-}=100; \beta^{-}n=0\#$	
$^{78}Zn^m$	-54807.9	2.1	2675.3	1.0	320	ns	6	(8^+)	09	12Ka36	ET	1998	IT=100	*
⁷⁸ Ga	-63706.0	1.9			5.09	s	0.05	2^{-}	09	11Ma45	J	1972	$\beta^{-}=100$	
$^{78}\text{Ga}^m$	-63207.1	2.0	498.9	0.5	110	ns	3		09	10Da06	ET	2010	IT=100	*
⁷⁸ Ge	-71862	4			88.0	m	1.0	0^{+}	09			1953	$\beta^{-}=100$	
⁷⁸ As	-72817	10			90.7	m	0.2	2^{-}	09			1937	$\beta^{-}=100$	
⁷⁸ Se	-77025.94	0.18			STABLE			0^{+}	09			1922	IS=23.77 28	
⁷⁸ Br	-73452	4			6.45	m	0.04	1^{+}	09			1937	$eta^+ \approx$ 100; $eta^- <$ 0.01	
$^{78}\mathrm{Br}^m$	-73271	4	180.89	0.13	119.4	μs	1.0	(4^{+})	09			1958	IT=100	
⁷⁸ Kr	-74178.3	0.3			STABLE		(>110 Ey)	0^{+}	09	94Sa31	Т	1920	IS=0.355 3; $2\beta^+$?	*
⁷⁸ Rb	-66935	3			17.66	m	0.03	$0^{(+)}$	09			1968	$\beta^{+}=100$	
$^{78}\text{Rb}^m$	-66888	3	46.84	0.14	910	ns	40	(1^{-})	09			1996	IT=100	
78 Rb ⁿ	-66824	3	111.19	0.22	5.74	m	0.03	$4^{(-)}$	09			1968	$\beta^+=91$ 2; IT=9 2	
78 Rb ^x	-66861	12	74	12	$R = 2.0 \ 0.5$			spmix						
⁷⁸ Sr	-63174	7			156.1	s	2.7	0^+	09	11Pe29	Т	1982	$\beta^{+}=100$	*
A-gro	up is continue	d on next	t page											

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

			Table I.		DASE	2010 tai		continue	u, Expi	ana 			e on page	10)	
Nuclide	Mass e: (keV	xcess /)	ene	ergy (keV)		1	Half-	life	J^{n}	Ens	Referen	ce	Year of discovery	Decay modes and intensities (%)	
A-grou	up continued														
⁷⁸ Y	-52170#	300#			*	54	ms	5	(0^+)	09	01Ga24	TJ	1992	$\beta^{+}=100; \beta^{+}p?$	*
$^{78}Y^m$	-52170#	580#	0#	500#	*	5.8	s	0.6	(5^+)	09			1998	$\beta^{+}=100; \beta^{+}p?$	
⁷⁸ Zr	-40850#	400#				50#	ms	(>200 ns)	0^+	09	01Ki13	Ι	2001	β^+ ?; β^+ p ?	*
* ⁷⁸ Cu	$D:\beta^{-}na$	verage 1	0Ho12=44.0(5.4)% 09Wi	03=65	(8)%									**
* ⁷⁸ Cu	J: from 1	2Ko29 ; (other 11Ko36	(6 ⁻)	5) 1	000 1/0 5									**
* ⁷⁸ Zn ^m	E : 12Ka:	6=145.70	(0.5), 730.0(0)).5), 890.5(0. -2675 2(1.0)	(5) and	909.1(0.5)	γ ray	's in							**
* ⁷⁸ Zn ^m	E: Ca	scale to $\frac{12K_{0}}{2}$	$6-320(\pm 0, 8)$	-2075.5(1.0)) 0(0)										**
* Zn * ⁷⁸ Ga ^m	E this is	level 559	0=320(+9=0) 0 6(0 7) < 500	Ins in ENSD	F'09										**
* ⁷⁸ Kr	T : limit s	riven here	e is for the K-	e ⁺ decay (th	eoretic	cally faster)									**
* ⁷⁸ Sr	T : averag	e 11Pe29	9=155(3) 97N	1u02=168(12	2) 92G	r09=159(8)									**
$*^{78}Y$	T : averag	ge 01Ga24	4=50(8) 01Ki	13=55(+9-6	5)										**
* ⁷⁸ Zr	I : also 00	We.A>1	70 ns same gr	roup											**
79 N I:	27570#	600#				4.4		0	5/2+#	16			2010	R^{-}_{-100} , $R^{-}_{$	
⁷⁹ Cu	-27370# -41740#	300#				241 0	ms	32	$5/2^{-}\#$ $5/2^{-}\#$	16			1991	$\beta = 100, \beta = 1=00\%, \beta = 21=40\%$ $\beta^{-}=100, \beta^{-}=n=66, 12, \beta^{-}=2n=0\%$	
⁷⁹ Zn	-53432.3	2.2				746	ms	42	$9/2^{+}$	16			1981	$\beta^{-}=100; \beta^{-}=1.75$	
$^{79}Zn^m$	-52330	150	1100	150		> 200	ms		$1/2^+$	16			2015	$TT=?; \beta^-?$	
⁷⁹ Ga	-62547.7	1.9				2.848	s	0.003	$3/2^{(-)}$	16			1974	$\beta^{-}=100; \beta^{-}n=0.089 19$	
⁷⁹ Ge	-69530	40				18.98	s	0.03	$(1/2)^{-}$	16			1970	$\beta^{-}=100$	
⁷⁹ Ge ^m	-69340	40	185.95	0.04		39.0	s	1.0	$7/2^+#$	16			1970	$\beta^{-}=96$ 1; IT=4 1	
⁷⁹ As	-73636	5				9.01	m	0.15	$3/2^{-}$	16			1950	$\beta^{-}=100$	
⁷⁹ As ^m	-72863	5	772.81	0.06		1.21	μs	0.01	$(9/2)^+$	16	98Gr14	Т	1998	IT=100	
⁷⁹ Se	-75917.46	0.22	05 77	0.02		327	ky	28	7/2+	16			1950	$\beta^{-}=100$	
⁷⁹ Se ^m	-75821.69	0.22	95.77	0.03		3.92 STADLE	m	0.01	$1/2^{-}$	16			1950	$11 \approx 100; \beta^{-}=0.056 11$	
79Brm	-75860.4	1.0	207.61	0.09		A 85	e	0.04	3/2 9/2+	16			1920	IS=50.097 IT=100	
⁷⁹ Kr	-73800.4 -74442	3	207.01	0.09		35.04	h	0.04	$\frac{3}{2}$	16			1934	$\beta^{+}=100$	
⁷⁹ Kr ^m	-74312	3	129.77	0.05		50	s	3	$\frac{1}{2^{+}}$	16			1940	IT=100	
⁷⁹ Rb	-70803.0	2.1				22.9	m	0.5	$5/2^+$	16			1957	$\beta^{+}=100$	
⁷⁹ Sr	-65477	8				2.25	m	0.10	$3/2^{(-)}$	16			1972	$\beta^{+}=100$	
⁷⁹ Y	-57820	80				14.8	s	0.6	5/2+#	16			1992	$\beta^{+}=100$	
⁷⁹ Zr	-46770#	300#				56	ms	30	$5/2^+$ #	16			1999	$\beta^{+}=100; \beta^{+}p?$	
⁷⁹ Nb	-31650#	500#							9/2+#					p?; β^{+} ?; β^{+} p?	
⁸⁰ Ni	-22630#	700#				30	ms	22	0^{+}	14			2014	$\beta^{-}=100: \beta^{-}n=60#: \beta^{-}2n=40#$	*
⁸⁰ Cu	-36200#	400#				113.3	ms	6.4	0	14	14Xu07	т	1995	β^{-} ?: β^{-} n=40#: β^{-} 2n=20#	
⁸⁰ Zn	-51648.6	2.6				562.2	ms	3.0	0^{+}	14	14Xu07	Т	1981	$\beta^{-}=100; \beta^{-}n=1.05$	
⁸⁰ Ga	-59223.7	2.9			*	1.9	s	0.1	$6^{(-)}$	14	13Ve03	TJ	1974	$\beta^{-}=100; \beta^{-}n=0.867$	
$^{80}Ga^m$	-59201.3	2.9	22.45	0.10	*	1.3	s	0.2	3(-)	14	13Ve03	TJ	2011	β^{-} ?; β^{-} n=1#; IT ?	
⁸⁰ Ge	-69535.3	2.1				29.5	s	0.4	0^{+}	05			1972	$\beta^{-}=100$	
⁸⁰ As	-72214	3				15.2	s	0.2	1+	05			1954	$\beta^{-}=100$	
⁸⁰ Se	-77759.5	1.0				STABLE			0+	05			1922	IS=49.61 41; $2\beta^{-2}$?	
⁸⁰ Br	-75889.0	1.0	05 042	0.004		17.68	m	0.02	1'	05			1937	$\beta = 91.72; \beta = 8.32$	
⁸⁰ Kr	-75803.2	1.0	85.845	0.004		4.4205 STARLE	n	0.0008	5 0+	05			1937	II=100 IS=2 286 10	
⁸⁰ Rb	-77895.5 -72175.5	1.9				31ABLE 33.4	s	07	1+	05	934103	т	1920	$\beta^{+}=100$	
80 Rb ^m	-71681.6	2.0	493.9	0.5		1.63	цs	0.04	(6^+)	05	92Do10	Ē	1980	F = 100 IT=100	
⁸⁰ Sr	-70311	3				106.3	m	1.5	0+	05			1961	$\beta^{+}=100$	
⁸⁰ Y	-61148	6				30.1	s	0.5	4^{-}	05			1981	$\beta^{+}=100$	
${}^{80}Y^{m}$	-60920	6	228.5	0.1		4.8	s	0.3	1-	05	01No07	J	1998	IT=81 2; β^+ =19 2	*
80 Y ⁿ	-60835	6	312.6	0.9		4.7	μs	0.3	(2^+)	05			1997	IT=100	
⁸⁰ Zr	-54360#	300#				4.6	s	0.6	0+	05	01Ki13	Т	1987	$\beta^+=100$	*
⁸⁰ Nb	-38420#	400#	1432 07	22.04.26.0	17.0				4-#					p ?; β^+ ?; β^+ p ?	
* ⁰⁰ N1 .80xm	T : symm	etrized fr	om $14Xu0/=$	23.9(+26.0-	17.2)										**
* ⁸⁰ Zr	T : averag	vi 5 γ ray	3=5.3(+1.1-0.1)	.9) 00Re03=	4.1(+0	.8-0.6)									**
		,		.,,		,									
⁸¹ Cu	-31420#	500#				73.2	ms	6.8	5/2-#	10	14Xu07	TD	2010	$\beta^{-}=100; \beta^{-}n=70\#; \beta^{-}2n=30\#$	
⁸¹ Zn	-46200	5				303.2	ms	2.6	$(5/2^+)$	08	14Xu07	Т	1991	$\beta^{-}=100; \beta^{-}n=9.1 24; \beta^{-}2n=0\#$	*
⁸¹ Ga	-57628	3				1.217	s	0.005	5/2-	08	11Ch16	J	1976	$\beta^{-}=100; \beta^{-}n=11.97$	
⁸¹ Ge	-66291.7	2.1	(B C	0.01		8	s	2	9/2+#	08			1972	$\beta^{-}=100$	*
⁸¹ Ge ^m	-65612.6	2.1	679.14	0.04		8	s	2	$(1/2^+)$	08			1981	$\beta^{-} \approx 100; \text{ IT} < 1$	
81 S -	- /2533.3	2.6				33.3	S	0.12	$3/2^{-1}$	08			1960	p = 100 $\beta^{-} - 100$	
81 c.m	- 76389.0	1.0	102.00	0.06		18.45	m	0.12	$\frac{1}{2}$	08			1948	$\mu = 100$ IT ~ 100: $\beta^{-} = 0.051.14$	
A-oroi	-70280.0	d on nevi	nage	0.00		51.28	111	0.02	1/2	00			19/1	$11 \sim 100, \mu = 0.031.14$	
A-grou	ap is commute	a on next	Page												

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

				He HOBI	522010 ta		(continu	eu, Esp			14.01	e on puge	. 10)	
Nuclide	Mass ex	cess	Exc	citation	1	Half-	life	J^{π}	Ens	Reference	e	Year of	Decay modes and	
	(kev	()	energ	gy (keV)								discovery	intensities (%)	
A grou	up continued													
⁸¹ Br	_77977 0	. 1.0			STARLE			3/2-	08			1920	18-49 31 7	
$^{81}Br^m$	-77440.8	1.0	536.20	0.09	34.6	115	2.8	$9/2^+$	08			1967	IT=100	
⁸¹ Kr	-77696 2	1.0	550.20	0.07	229	kv	11	$\frac{7}{2}$	08			1950	$\epsilon = 100$	
⁸¹ Kr ^m	-77505.6	1.1	190 64	0.04	13.10	s	0.03	$1/2^{-}$	08			1940	$T \approx 100^{\circ} \epsilon = 0.0025.4$	
⁸¹ Rb	-75457	5	170.01	0.01	4 572	h	0.004	$\frac{1}{2}$	08			1949	$\beta^+=100$	
⁸¹ Rb ^m	-75371	5	86 31	0.07	30.5	m	03	$9/2^+$	08			1956	$T = 97.66; \beta^+ = 2.4.6$	
⁸¹ Sr	-71528	3	00101	0.07	22.3	m	0.2	$1/2^{-}$	08			1952	$\beta^{+}=100$	
⁸¹ Sr ^m	-71449	3	79.23	0.04	390	ns	50	$(5/2)^{-}$	08			1983	T = 100	
⁸¹ Sr ⁿ	-71439	3	89.05	0.07	64	115	0.5	$(7/2^+)$	08			1989	IT ?	
81 Y	-65713	5	07.05	0.07	70.4	μ5 8	1.0	$(5/2^+)$	08			1981	$\beta^{+}=100$	
⁸¹ 7r	-57460	90			55	6	0.4	$(3/2^{-})$	08			1997	$\beta^{+}=100$ $\beta^{+}=100$; $\beta^{+}=0.12.2$	
81 Nb	-46360#	400#			< 14	ne	0.1	$0/2^+ #$	08	00We A	т	1777	$p^{-100}, p^{-100}, p^{-100}$	<u>ب</u>
⁸¹ Mo	-31750#	400 #			1#	me	(>400 pc)	5/2 #	15	135123	T	2013	$\beta^{+}, \beta^{-}, \beta^{+}, \beta^{-}, \beta^{+}, \beta^{-}$	*
* ⁸¹ 7n	$D:\beta^- p$ av	araga 12M	a37-12(4) 01	Kr15-7 5(3	1π 0)%: other 10	Hol	(2400 IIS) (2400 IIS)	$J/2 \pi$	15	155025	1	2015	<i>p</i> :, <i>p p</i> :	يلد بلد
* Zli * ⁸¹ Ge	$D \cdot p$ if av	from 7 6($(a_3) = 12(4) $	$1 \times 15 = 7.5(5)$	t state and iso	mary	vith almost	some holf	lifa					**
* ⁸¹ Nb	I salso 901	302 < 80.01	$K_{113} < 200 \text{ m}$		estimated half.	life f	For B^+ 100	# me	me					**
* 10	1. anso 775	102 < 00 01	K115 < 200 h	, 1.0	stimated nan-	ine i	οι <i>μ</i> . 100	// 1113						~~
⁸² Cu	-25320#	600#			50#	ms	(>400 ns)		10	10Oh02	Ι	2010	β^{-} ?; β^{-} n=30#; β^{-} 2n=60#	
⁸² Zn	-42314	3			177 9	ms	2.5	0^{+}	12	16A110	D	1997	$\beta^{-}=100; \beta^{-}n=69.7; \beta^{-}2n=0#$	*
⁸² Ga	-52930.7	2.4			599	ms	2	(2)	03	12Ch51	J	1976	$\beta^{-}=100; \beta^{-}n=21.3 \ 13; \beta^{-}2n=0#$	*
$^{82}Ga^m$	-52789 7	2.5	141.0	0.5	93.5	ns	67	(4^{-})	00	16A110	ΤI	2009	F = 100, p = 1210, 10, p = 21, 0, m IT=100	*
⁸² Ge	-65415.1	2.2	11110	010	4 56	s	0.26	0+	11	1011110	10	1972	$\beta^{-}=100$	
⁸² As	-70105	4			19.1	s	0.5	(2^{-})	03	04Ga44	T	1968	$\beta^{-}=100$	
82 A sm	-69973	4	132.1	0.2	13.6	s	0.5	(2^{-})	03	14Mi16	F	1970	$\beta^{-}=100$	*
82Se	-77593.9	0.5	152.1	0.2	92	Ev	7	0+	03	15Ba11	т	1922	$IS=8.73.22 \cdot 2B^{-}=100$	
82Br	_77498 7	1.0			35 282	h	0.007	5-	03	150011	1	1922	$\beta^{-}=100$	
⁸² Br ^m	_77452.8	1.0	45 9492	0.0010	6.13	m	0.007	2-	03			1965	β^{-100} IT-97.63: β^{-} -2.43	
⁸² Kr	_80591 785	0.005	+3.7+72	0.0010	STABLE	m	0.05	0+	03			1920	$II = 97.003, p^{-2.403}$ IS=11 593 31	
82Ph	-76188	3			1 273	m	0.002	1+	03			1920	$\beta^{+}=100$	
82pbm	-76118.8	26	60.0	15	6.472	h	0.002	5-	03			1949	$\beta^{+} \sim 100$: IT < 0.33	
82 Sr	-76010	6	09.0	1.5	25.36	d II	0.000	0+	03	87Ho06	т	1957	$p \sim 100, 11 < 0.55$	<u>ب</u>
82 V	-70010	5			23.30	u	0.03	1+	03	8/11000	1	1952	$\beta^{\pm} = 100$	*
82 Vm	-08004	5	402.63	0.14	259	5	0.20	4-	03	04Mp02	т	1980	p^{-100}	
82 Vn	-07001	5	402.03	0.14	230	115	7	4 4	03	941v1u02	1	1994	II=100 IT=100	*
82-7 ··	-0/55/	5	507.50	0.13	147	ns	/	0+	03			1994	R^{+} 100	
82 NIL	-03031	200#			52	s	5	(0^+)	03			1982	$p^{+}=100$ $p^{+}=100$, $p^{+}=2$	
*=IND 82.NIL m	-52090#	300# 200#	1100	1	50	ms	3	(0^{+})	08	000-04	ETI	1992	p = 100; p = p?	
82 M -	-50910#	300# 400#	1180	1	92	ns	1/	(5)	15	08Ga04	EIJ	2008	11=100 0^+ 2, 0^+ 2	
82.7 m	-403/0# T : 14¥-:07	400#	5), ath and 100	110 155/00	30#	ms	(>400 ns)	0.	15	13Su23	1	2015	<i>p</i> · <i>i</i> ; <i>p</i> · <i>p i</i>	
**-Zn	1:14Au07	=1//.9(2	5); others $16F$	110=155(20)	(1.7) (1.7) (1.80 $I = 22$	8(10)) 1(2.2)(7							**
**-Ga	D : average	16×110^{-9}	51.1(4.4)% 80	5 wal /=19.8	(1.7)% 80Lu0	4=21								**
* Ga	T average	-1216(15	(9(9) 12 Kaso	=98(+10-9);	ouler 09F003	< 301	JIIS							**
* AS	E : IJEIUI:	9711-0(1.3) 14 M 10 = 13	2.1(0.2) 71:02-25.27	2(0.052)									**
* 51 .82 Vm	T : average	$0.4 M_{\odot} 0.02 = 0.02$	23.30(0.03) 8 220(50) 02W	7Ju02=23.32	12(0.055)									**
** - 1 ···	1 : average	94Mu02=	220(50) 93 W	004=208(25)									**
⁸³ 7n	-36290#	300#			110	me	16	3/2+#	15	164110	т	1997	$\beta^{-}=100: \beta^{-}n=10#: \beta^{-}2n=3#$	*
83Ga	_49257 1	26			308.1	me	10	5/2 #	15	10/1110		1976	$\beta^{-100}, \beta^{-1-10\pi}, \beta^{-21-3\pi}$ $\beta^{-}=100, \beta^{-}n=62.8.25, \beta^{-}2n=0\#$	*
83Gam	_49059.8	2.0	197 3	0.5	120	ne	5	5/2 #	15	164110	FTT	2016	$F = 100, p = 1 = 02.0, 20, p = 211 = 0\pi$ IT=100	
⁸³ Ge	-60976.4	2.0	177.5	0.5	1.85	6	0.06	$(5/2^+)$	15	10/11/0	DIL	1972	$\beta^{-}=100; \beta^{-}=0.1#$	
83 A s	-69669 3	2.4			13.4	6	0.00	5/2-#	15			1968	$\beta^{-}=100, \beta^{-}=100$	
8350	-75341	3			22.25	m	0.4	0/2+	15	15K+02	т	1037	$\beta^{-}=100$ $\beta^{-}=100$	
83 Sem	-75112	3	228.02	0.07	70.1		0.04	$\frac{1}{2}$	15	1511102	1	1960	$\beta^{-}=100$ $\beta^{-}=100$	
83Br	-79014	1	220.92	0.07	2 374	b b	0.4	$\frac{1}{2}$	15			1909	$\beta = 100$ $\beta = -100$	
83 Brm	-75045	1	3060.2	0.4	720	ne	77	$(10/2^{-})$	15	11 P 11 A	т	1080	F = 100	<u>ب</u>
83 Kr	-70000 633	0.000	5009.2	0.4	STADLE	115	11	$0/2^+$	15	TIKU.A	1	1939	II=100 IS=11 500 10	*
83 V.m	-79990.033	0.009	0 4052	0.0008	3 IABLE		0.5	7/2+	15			1920	IS=11.500 19 IT=100	
83 KF	- /9981.228	0.009	9.4055	0.0008	150.8	ns	0.5	1/2	15	101.10	T	1963	11=100	
83 D1	- /9949.0/6	0.009	41.33/3	0.0007	1.830	n 1	0.015	1/2	15	10L113	1	19/1	11=100	*
83D1 m	- /90/0.6	2.5	10.0700	0.0020	86.2	a	0.1	$\frac{5}{2}$	15	(00.01	т	1950	ε=100 IT 100	
⁸³ C	- /9028.5	2.3	42.0780	0.0020	/.8	ms	0.7	9/2	15	68Et01	Ľ	1968	11 = 100 8^+ 100	
⁸³ C "	-76798	7	250.15	0.00	32.41	h	0.03	1/2	15			1952	p = 100	
⁸³ Sr ^m	- 76539	1	259.15	0.09	4.95	s	0.12	1/2-	15	0.00		19/2	11=100	
°.5 Y	-72206	19	(2.5.1	0.10	7.08	m	0.08	$(9/2^+)$	15	92Bu10	J	1962	$\beta' = 100$	
^{0.5} Y ^m	-72144	19	62.04	0.10	2.85	m	0.02	$(3/2^{-})$	15			1972	$\beta' = 60.5; TT = 40.5$	
° Zr	-65912	6			42	s	2	1/2-#	15			1974	$\beta^{+}=100; \beta^{-}p=?$	
° ³ Zr ^m	-65859	6	52.72	0.05	530	ns	120	$(5/2^{-})$	15			1988	IT=100	
° ³ Zr ⁿ	-65835	6	77.04	0.07	1.8	μs	0.1	$(7/2^+)$	15	~ ·	r	1988	TT=100	
°'Nb	-57560	150			3.9	s	0.2	$(9/2^+)$	15	GAu15b	J	1988	$\beta^{+}=100$	*
A-grou	up is continued	on next pa	age											

Table I. The NUBASE2016 table (continued, Explanation of Table on bage	Table	e I. The Nubase	2016 table ((continued. Ex	planation of	' Table on r	bage 18
--	-------	-----------------	--------------	----------------	--------------	--------------	---------

			Table I.	The NU	JBASE2	016 tab	le (continu	ed, Explan	atio	on of Ta	able	on page	18)	
Nuclide	Mass ex (keV	(cess ()	l er	Excitation ergy (keV))	ŀ	Ialf-	life	J^{π}]	Ens	Referen	ice	Year of discovery	Decay modes and intensities (%)	
4	un continued														
A-gro	46340#	400#				22	ma	10	2/2-#	15	011:12	тр	1000	β_{+}^{+} 100: β_{+}^{+} 2	
83Tc	-40340#	400# 500#				23	ms	19	$\frac{3}{2}$ #	15	01K115	ID	1999	$p^{+} = 100, p^{+} p^{-}$	*
* ⁸³ Zn	T : average	• 16A110=	122(28) 12N	[a37=1170	20)				1/2 11					p.,,p.,,p.p.	**
* ⁸³ Br ^m	T : average	$\sim 11R_{11} A =$	862(148) 97	Is13=700(100) 89W	7i01=600(2	00)								**
* ⁸³ Kr ⁿ	T : average	= 10Li13=	1.82(0.02)0	0Ka30=1.8	5(0.03)7	1Rn17=1 8	3(0	02)							**
* ⁸³ Nb	J : ENSDE	$=(5/2^+,7/2)$	(102(0102))	N trends in	1 N=41 is	otopes sug	gest	$(9/2^+)$							**
* ⁸³ Mo	T : symme	trized from	n 01Ki13=6	+30-3)			8	~ (,,=)							**
	2														
⁸⁴ Zn	-31930#	400#				50#	ms	(>400 ns)	0^+	10	10Oh02	Ι	2010	β^{-} ?; β^{-} n=40#; β^{-} 2n=4#	
⁸⁴ Ga	-44090#	200#				85	ms	10	0-#	09	16Ma50	D	1991	$\beta^{-}=100; \beta^{-}n=407; \beta^{-}2n=2\#$	*
84 Ge	-58148	3				951	ms	9	0+	09	13Ma22	T	1972	$\beta^{-}=100; \beta^{-}n=10.76$	*
⁸⁴ AS	-65854	3	0.11	100//	*	4.02	s	0.03	(3)	09	93Ru01	TD	1968	$\beta = 100; \beta = 0.284$	*
84 G	-65850#	100#	0#	100#	*	650	ms	150	0+	09			1974	$\beta = 100$	*
⁸⁴ D	-/594/./	2.0				3.26	m	0.10	0	09			1960	$\beta = 100$	
⁸⁴ D. <i>m</i>	-///83	26	210	100	DD	31.76	m	0.08	$\frac{2}{(6)}$ =	09			1943	$\beta = 100$	
⁸⁴ D. <i>n</i>	-//4/0	100	310	100	BD	6.0	m	0.2	(6)	09			1957	$\beta = 100$	
84 K	-//5/5	20	408.2	0.4		< 140	ns		0+	09			1970	11=100	
84 IZm	-82439.333	0.004	2226.07	0.10		STABLE		0.04	0 ' 0+	09			1920	IS=50.987 IS	
84DL	- /9203.27	0.18	3236.07	0.18		1.83	μs	0.04	8 · 2-	09			1982	$R^{+}_{-06} = 0.000 R^{-}_{-2} = 0.200$	
84 D L m	- 79739.0	2.2	462 50	0.09		20.26	a	0.07	2 6-	09			1947	$p^{+}=90.120; p^{-}=5.920$	
84 Sr	- 19293.4	1.2	405.59	0.08		20.20	ш	0.04	0+	09			1940	$11 \approx 100; p^{-1} < 0.0012$ IS=0.56.1; 28 ⁺ 2	
84 V	-73804	1.2				31ABLE 30.5	m	0.8	(6 ⁺)	09			1950	B^{\pm}_{-100}	
84 v m	-73827	4	67.0	0.2		39.5	ш с	0.8	(0))	09			1902	$\beta^{+}=100$ $\beta^{+}=100$	
84 V n	-73684	4	210.42	0.2		202	5	10	(A^{-})	09			2005	p = 100	
84 7 r	-71422	5	210.42	0.10		25.8	m	0.5	(+) 0+	09			1977	$\beta^{+}-100$	
⁸⁴ Nb	-61219	13				23.8	e m	0.5	(1+)	09	09St04	T	1977	$\beta^{+}=100$ $\beta^{+}=100$	
84Nbm	-61171	13	48	1		176	ne	46	(1) (3+)	0)	09Ga40	FTI	2009	F = 100	
⁸⁴ Nb ⁿ	-60881	13	337 7	04		92	ns	5	(5^{-})	09	09Ga40	T	2009	IT=100	
⁸⁴ Mo	-54170#	300#	551.1	0.4		23	5	03	0+	09	070440	1	1991	$\beta^{+}=100; \beta^{+}p^{2}$	
⁸⁴ Tc	-37700#	400#				2.5	5	0.5	1+#	07			1771	$p^{2} = 100, p^{2} p^{2}$ $p^{2} \cdot \beta^{+} \gamma \cdot \beta^{+} p^{2}$	
* ⁸⁴ Ga	$D \cdot \beta^- n$ of	hers 10Wi	03 = 74(14)%	91Kr15=	70(15)%				1 //					P., P., P. P.	**
* ⁸⁴ Ga	$I \cdot a \beta^- dec$	aving ison	ner was ider	tified in 09)Le26 and	l adonted i	n Et	NSDF'2009							**
* ⁸⁴ Ga	I · me	stioned in	10Wi03	inica in o	2020 un	. uuopteu i									**
* ⁸⁴ Ge	T · average	- 13Ma22=	=942(17) 931	Ru01=947(11) 91Kr	15 = 984(23)	6								**
* ⁸⁴ Ge	D : average	e 93Ru01=	=10.8(0.6)%	91Kr15=9	5(2.0)%		<i>′</i>								**
* ⁸⁴ As	J : 16Ko24	proposed	(2^{-})												**
$*^{84}As^m$	I : identific	ation disc	ussed in ENS	DF2009											**
95 -												÷		0 0 0 000 0 0 0	
⁸⁵ Zn	-25230#	500#				50#	ms	(>400 ns)	5/2+#	14	10Oh02	I	2010	β^{-} ?; β^{-} n=30#; β^{-} 2n=7#	
° ³ Ga	-39850#	300#				92.2	ms	3.5	$(5/2^{-})$	14	13Mi19	Т	1997	$\beta^{-}=100; \beta^{-}n>35; \beta^{-}2n=6\#$	*
⁸⁵ Ge	-53123	4				494	ms	8	$(3/2^+, 5/2^+)$	14	13Ma22	T	1991	$\beta^{-}=100; \beta^{-}n=16.5 23; \beta^{-}2n=0$ #	· *
⁸⁵ As	-63189	3				2.021	s	0.012	$(5/2^{-})$	14	12Ku06	J	1967	$\beta^{-}=100; \beta^{-}n=62.920$	
⁸⁵ Se	-72413.6	2.6				32.9	s	0.3	$(5/2)^{+}$	14			1960	$\beta^{-}=100$	
85 Br	- /85/5	3				2.90	m	0.06	3/2-	14			1943	$\beta^{-}=100$	
⁸⁵ Kr	-81480.3	2.0	204.071	0.000		10.739	у	0.014	9/2+	14			1940	$\beta^{-}=100$	
⁸⁵ Kr ^m	-81175.4	2.0	304.871	0.020		4.480	h	0.008	1/2-	14		-	1937	$\beta^{-}=78.85; \text{ IT}=21.25$	
⁸⁵ Kr ⁴	- 79488.5	2.0	1991.8	0.2		1.82	μs	0.05	$(17/2^{+})$	14	HRu.A	Т	1989	11=100	
⁸⁵ Rb	-82167.331	0.005	514 0065	0.0000		STABLE		0.001	5/2	14			1921	IS=/2.1/2	
⁸⁵ Rb ^m	-81653.325	0.005	514.0065	0.0022		1.015	μs	0.001	9/2+	14			1964	11=100	
⁸⁵ Sr	-81103.3	2.8	220 70	0.05		64.849	d	0.007	9/2+	14			1940	$\varepsilon = 100$	
85 Srm	-80864.5	2.8	238.79	0.05		67.63	m	0.04	1/2	14			1940	$11=86.64; \beta = 13.44$	
85 Y	-7/842	19	10 (0	0.17		2.68	h	0.05	(1/2)	14			1952	$\beta = 100$	
85 Ym	-1/822	19	19.68	0.17		4.86	n	0.20	$(9/2)^{+}$	14			1952	$\beta \approx 100; 11 < 0.002$	
85 Y #	-//5/6	19	266.18	0.10		1/8	ns	/	(5/2)	14			1977	11=100	
⁶⁵ Zr 857 m	-/31/5	0	202.2	0.2		7.86	m	0.04	$(1/2^{+})$	14			1963	p = 100	
85 NT	- 12883	0	292.2	0.3		10.9	s	0.3	1/2 #	14			1976	n < 100; p' > 0 n + -100	
85 NTL #	-00280	4 80#	150#	<u>80</u> #		20.5	S	0.7	9/2' = (1/2)	14	0512-20	т	1988	$\mu = 100$ IT-2, $\beta = 2$	*
⁸⁵ Nb'''	-00130#	80#	150#	80#		3.3	s	0.9	$(1/2^{-})$	14	05Ka39	J	1988	$p_{+} = p_{+} = p_{+$	*
³⁵ Mo 85m	-5/510	16				3.2	s	0.2	$(1/2^{+})$	14	05Xu04	J	1992	p = 100; p = 0.142	
85D	-45850#	400#						<110 ns	1/2=#	14	00We.A	. 1	2012	$p''_{\theta^+ \theta^-}$	*
³⁵ Ru	-30950#	500#	02(4) 123 5	7 02/7		1#	ms	(>400 ns)	3/2-#	15	13Su23	1	2013	<i>p</i> '?; <i>p</i> 'p?;p?	
***Ga	1 : average	: 13M119=	92(4) 12Ma	57=93(7)											**
. 85 NTL	J : (3/2 ' ,5/	(2°) from $(5K-20)$	135031	1-20.0/0	7)										**
* IND *85 NIL m	F OF March	0 > 6015	1 1(2) 88KU. 1	·+=∠0.9(0.	1)										**
* IND" * ⁸⁵ To	L : UJKa39	> > 07 Ke	, пе Т.	actimated	half life	for B^+ dec	ov.	100#ma							**
* 10	1. also 99J	a02<100	1.5 1.2	csumated	nan-me	$ror p \cdot uec$	ay:	100# 1115							**

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I The NUBASE2016 tabl	le (continued Explanatio	n of Table on nage 18)
TADIC I. THE NUBASE2010 LAD	ie (comunice, Explanatio	II UI TADIC UII page 10)

			Table L	• Inc 100	DASE	2010 ta	DIC	(contin	ucu, Expiai	nau		aDIC	on page	(10)	
Nuclide	Mass ex	cess	I	Excitation		H	Half-	life	J^{π}	Ens	Referen	ce `	Year of	Decay modes and	
	(keV	()	en	ergy (keV)								(liscovery	intensities (%)	-
⁸⁶ Ga	_34080#	400#				47	me	18		15	13Mi10	тр	1997	$\beta^{-}=100$; $\beta^{-}n=60$ 10; $\beta^{-}2n=20$ 10	¥
⁸⁶ Ge	-49400 -49400	400				226	ms	21	0^{+}	15	15101119	ID	1994	$\beta = 100; \beta = 1=00, 10; \beta = 21=20, 10$ $\beta = = 100; \beta = n=45, 15$	*
⁸⁶ As	-58962	3				945	ms	8	$(1^{-}2^{-})$	15	15Ma61	T	1973	$\beta^{-}=100; \beta^{-}=100; \beta^{-}=100$	ŧ
⁸⁶ Se	-70503.2	25				14.3	5	03	0+	15	15101401	3	1973	$\beta^{-}=100; \beta^{-}=100; \beta^{-}=0.02\%$	
⁸⁶ Se ^m	-68131.2	2.7	2372.0	1.0		620	ms	240	0	15	15Ma61	ET	2015	F = 100, F = 100	*
⁸⁶ Br	-75632	3	207210	110		55 1	s	04	(1^{-})	15	1011401	21	1962	$\beta^{-}=100$	
⁸⁶ Kr	-83265.666	0.004				STABLE	0	0	0+	15			1920	$IS=17.279 41: 2\beta^{-}$?	
⁸⁶ Rb	-82746.99	0.20				18.642	d	0.018	2-	15			1941	$\beta^{-} \approx 100; \epsilon = 0.0052.5$	
${}^{86}\text{Rb}^m$	-82190.94	0.27	556.05	0.18		1.017	m	0.003	6-	15			1951	$T \approx 100; \beta^- < 0.3$	
⁸⁶ Sr	-84523.089	0.005				STABLE			0^{+}	15			1931	IS=9.86 1	
⁸⁶ Sr ^m	-81567.00	0.12	2956.09	0.12		455	ns	7	8+	15			1971	IT=100	
⁸⁶ Y	-79283	14				14.74	h	0.02	4-	15			1951	$\beta^{+}=100$	
⁸⁶ Y ^m	-79065	14	218.21	0.09		47.4	m	0.4	(8^+)	15			1962	$J_{T=99.314; \beta^{+}=0.694}$	
${}^{86}Y^n$	-78981	14	302.18	0.09		125.3	ns	5.5	6+	15	10Ru07	J	2000	IT=100	*
⁸⁶ Zr	-77969	4				16.5	h	0.1	0^{+}	15			1951	$\beta^{+}=100$	
⁸⁶ Nb	-69134	5			*	88	s	1	(6^+)	15			1974	$\beta^{+}=100$	
$^{86}Nb^m$	-68880#	160#	250#	160#	*	56.3	s	8.3	high	15	94Sh07	TJD	1994	$\beta^{+}=100$	*
⁸⁶ Mo	-64110	4				19.1	s	0.3	0^{+}	15			1991	$\beta^{+}=100$	
⁸⁶ Tc	-51570#	300#				55	ms	7	(0^+)	15			1992	$\beta^{+}=100; \beta^{+}p?$	
⁸⁶ Tc ^m	-50050#	300#	1524	10		1.10	μs	0.12	(6^+)	15	08Ga04	Т	2000	IT=100	*
⁸⁶ Ru	-39770#	400#				50#	ms	(>400 ns	s) 0 ⁺	15	13Su23	Ι	2013	β^{+} ?; β^{+} p ?	
* ⁸⁶ Ga	T : symme	trized fror	n 13Mi19=4	3(+21-15)											**
$*^{86}$ Se ^m	E : error es	stimated by	y evaluator												**
$*^{86}Y^{n}$	T : average	e 10Ru07=	127(14) 001	002=125(6))										**
$*^{86}Nb^m$	I : existenc	e consider	red as uncert	tain in ENSI	DF'15; n	eeds confi	rmat	ion							**
$*^{86}Tc^{m}$	T : average	e 08Ga04=	1.10(0.14)	00Ch07=1.1	1(0.21)	E :	unc	estimate	d by GAu						**
07															
⁸⁷ Ga	-29250#	500#				10#	ms	(>400 ns)	b) $5/2^{-}\#$	15	10Oh02	I	2010	β^{-} ?; β^{-} n=90#; β^{-} 2n=7#	
⁸⁷ Ge	-44080#	300#				150#	ms	(>300 ns	s) 5/2 ⁺ #	15	97Be70	I	1997	β^{-} ?; β^{-} n=3#; β^{-} 2n=1#	
87 As	-55617.9	3.0				492	ms	25	$(5/2^-, 3/2^-)$) 15	15Ko19	TJ	1970	$\beta^{-}=100; \beta^{-}n=15.4\ 22; \beta^{-}2n=0\#$	*
°'Se	-66426.1	2.2				5.50	s	0.14	$(3/2^+)$	15	15Ko19	J	1968	$\beta^{-}=100; \beta^{-}=0.368$	
87 Br	-73892	3				55.65	s	0.12	$(5/2^{-})$	15			1943	$\beta^{-}=100; \beta^{-}n=2.604$	
⁸⁷ Kr	-80709.52	0.25				76.3	m	0.5	5/2-	15			1940	$\beta^{-}=100$	
87 Rb	-84597.791	0.006				49.7	Gy	0.3	3/2	15			1921	$1S=27.832; \beta =100$	
⁸⁷ Sr	-84880.066	0.005	200 5207	0.0000		STABLE	1	0.010	9/2	15			1931	IS=/.00 I	
87 Sr ^m	-84491.537	0.006	388.5287	0.0023		2.815	h	0.012	1/2	15			1940	$11 \approx 100; \epsilon = 0.30 8$	
87 Y 87 yrm	-83018.4	1.1	200.02	0.07		79.8	h	0.3	1/2	15			1940	$\beta^+=100$	
87 Y	-82637.6	1.1	380.82	0.07		13.37	n	0.03	$9/2^+$	15			1940	11=98.43 11; p = 1.57 11	
⁸⁷ Zr	- /934 /	4	225.04	0.10		1.68	n	0.01	9/2	15			1948	p = 100	
87 NH	- /9011	4	335.84	0.19		14.0	s	0.2	$\frac{1}{2}$	15			1972	11=100 R^{+} 100	
87 ND	-/38/4	7	2.0	0.1		3.7	m	0.1	(1/2)	15			19/1	$\beta^{+}=100$	
87 M -	-/38/0	20	3.9	0.1		2.0	m	0.1	$(9/2)^{+}$	15			1972	p'=100 $p_{+}=100, p_{+}=15.5$	
87 MO	-00884.8	2.9				14.1	s	0.5	//Z'# 0/2+#	15			19//	p'=100; p'=15.5	
87 T c	-57690	4	7	1	*	2.2	s	0.2	9/2 ' #	15	000-040	Б	1991	p = 100; p = p?	
87 T cm	-5/085	4	71	1	*	2# 647	s	24	$1/2 = \pi$ $7/2 + \pi$	15	09Ga40	Е	2000	p + 2; 11 2	*
87 D u	-5/019	4	/1	1		04 / 50#	ns	24) 1/2-#	15	050-02	т	2009	$R^{+} 2 R^{+} R^{-} R^{-}$	
	-43320#	400# 15Ko10-	560(80) 121	Marr_1840	25) 02P	001_485(4	IIIS 10)	$(>1.5 \mu s$) 1/2 #	15	93Ky05	1	1995	\mathbf{p} , \mathbf{r} , \mathbf{p} , \mathbf{p} ,	. la . la
* AS	T : average	120v01=1	450(550)(13)	2000 1100	78Cr02	-720(60)	i0)								**
* AS	E : observe	12Qu01=1	450(550)(+.	3900-1100	V ono d	=750(00)	na 87	Ton							**
~ 10	L. 0030170		1 ray in para			epopulatii	-5								ጥጥ
⁸⁸ Ge	-40140#	400#				100#	ms	(>300 ns	a) 0 ⁺	14			1997	β^{-} ?: β^{-} n=6#: β^{-} 2n=0 1#	
⁸⁸ As	-50720#	200#				270	ms	150		14	12Ou01	т	1994	$\beta^{-}=100; \beta^{-}n=30\#$	*
⁸⁸ Se	-63884	3				1.53	s	0.06	0^{+}	14	- 2001	-	1970	$\beta^{-}=100; \beta^{-}n=0.99 10$	
⁸⁸ Br	-70716	3				16.34	s	0.08	(1^{-})	14	15Cz01	J	1948	$\beta^{-}=100; \beta^{-}n=6.58 18$	
⁸⁸ Br ^m	-70446	3	270.1	0.5		5.51	цs	0.04	(4-)	14	11Ru.A	T	1970	IT=100	*
⁸⁸ Kr	-79691.3	2.6				2.825	h	0.019	0+	14		-	1939	$\beta^{-}=100$	
⁸⁸ Rb	-82608.99	0.16				17.773	m	0.018	2-	14			1939	$\beta^{-}=100$	
⁸⁸ Rb ^m	-81235.2	0.3	1373.8	0.3		123	ns	13	(7+)	14			2000	IT=100	
⁸⁸ Sr	-87921.618	0.006				STABLE		-	0+	14			1923	IS=82.58 1	
⁸⁸ Y	-84299.0	1.5				106.626	d	0.021	- 4 ⁻	14			1948	$\beta^{+}=100$	
⁸⁸ Y ^m	-83906.1	1.5	392.86	0.09		301	μs	3	1^{+}	14			1955	IT=100	
⁸⁸ Y ⁿ	-83624.5	1.5	674.55	0.04		13.98	ms	0.17	8+	14			1962	IT=100	
⁸⁸ Zr	-83629	5		-		83.4	d	0.3	0+	14			1951	<i>ε</i> =100	
88 Zr ^m	-80741	5	2887.79	0.06		1.320	μs	0.025	8+	14			1978	IT=100	
⁸⁸ Nb	-76170	60			*	14.50	m	0.11	(8^+)	14			1964	$\beta^{+}=100$	
⁸⁸ Nb ^m	-76040	100	130	120	BD *	7.7	m	0.1	(4 ⁻)	14			1971	$\beta^{+}=100$	
⁸⁸ Mo	-72687	4				8.0	m	0.2	0+	14			1971	$\beta^{+}=100$	

Chinese Physics C	Vol. 41, No. 3	(2017) 030001
-------------------	----------------	---------------

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

nuclide	Mass ex (keV	(cess ()	e	Excitation nergy (keV	1 /)		ł	1alf-	nie	J^{n}	ens	Keteren	ce	rear of discovery	Decay modes and intensities (%)	
. A-grou	up continued															
⁸⁸ Tc	-61680	150				*	6.4	s	0.8	$(5^+, 6^+, 7^+)$	14			1991	$\beta^{+}=100; \beta^{+}p?$	
$^{88}Tc^m$	-61680#	340#	0#	300#		*	5.8	s	0.2	(2^{+})	14	09Ga40	J	1993	$\beta^{+}=100; \beta^{+}p?$	
⁸ Tc ⁿ	-61580#	160#	100#	50#			146	ns	12	(4^{+})	14	09Ga40	TJ	2009	IT=100	
³ Ru	-54340#	300#					1.3	s	0.3	0^{+}	14			1994	$\beta^{+}=100; \beta^{+}p?$	
⁸ Rh	-36860#	400#					1#	ms							eta^+ ?	
³ As	T : symm	etrized fr	om 12Qu01:	=200(5)(+2)	200–90))										
$^{8}Br^{m}$	J:15Cz0	1=(4 ⁻)														
⁸ Tc ^m	J : 09Ga4	0 suggest	this state to	be 2+, plu	is exist	tence	of an ison	ner 9	5 keV							
⁸ Tc ^m	J: abo	ove this 2	+, that deca	ys by E2, v	with ha	alf-lif	e=146(12)	ns								
⁸ Ru	T : symme	etrized fr	om 01Ki13=	=1.2(+0.3-	0.2)											
Geo.	_33730#	400#					50#	me	(>300 nc)	3/2+#	13			1007	$\beta^{-} 2 \beta^{-} n - 20 \# \beta^{-} 2 n - 2 \#$	
00	-33730#	200#					200#	ma	(>300 ns)	5/2 #	12	04Po24	T	1997	$\beta^{-2}; \beta^{-n} = 100\#; \beta^{-2n} = 0.2\#$	t.
AS C.	-40800#	500#					200#	ms	(>130 lis)	5/2 #	13	94DC24	1	1994	p :, p II=100#; p 2II=0.3#	1
se	-58992	4					430	ms	50	$3/2^{+}$ #	13			1971	p = 100; p = 12, 8, 25	
Br	-68274	3					4.357	s	0.022	(3/2,5/2)	13			1959	$\beta = 100; \beta = 13.84$	
Kr	-76535.8	2.1					3.15	m	0.04	$3/2^{(+)}$	13	95Ke04	J	1940	$\beta^{-}=100$	
Rb	-81712	5					15.32	m	0.10	$3/2^{-}$	13			1940	$\beta^{-}=100$	
Sr	-86209.02	0.09					50.563	d	0.025	$5/2^+$	13			1937	$\beta^{-}=100$	
Ý	-87708.4	1.6					STABLE			$1/2^{-}$	13			1923	IS=100.	
\mathbf{Y}^m	-86799.4	1.6	908.97	0.03			15.663	s	0.005	$9/2^{+}$	13	94It.A	Т	1951	IT=100	
Zr	-84876	3					78.41	h	0.12	$9/2^+$	13			1948	$\beta^{+}=100$	
Zr^m	-84288	3	587.82	0.10			4.161	m	0.010	$1/2^{-}$	13			1953	IT=93.77 12; β^+ =6.23 12	
Nb	-80625	24				*	2.03	h	0.07	$(9/2^+)$	13			1954	$\beta^{+}=100$	
Nb^m	-80630#	40#	0#	30#		*	1.10	h	0.03	$(1/2)^{-}$	13			1954	$\beta^{+}=100$	
Mo	-75015	4					2.11	m	0.10	$(9/2^+)$	13			1980	$\beta^{+}=100$	
Mom	-74628	4	387.5	0.2			190	ms	15	$(1/2^{-})$	13			1980	IT=100	
Гс	-67395	4					12.8	s	0.9	$(9/2^+)$	13			1991	$\beta^{+}=100$	
Γc^m	-67332	4	62.6	0.5			12.9	s	0.8	$(1/2^{-})$	13			1991	$\beta^{+} \approx 100; \text{ IT} < 0.01$	
Ru	-58260#	300#					1.5	s	0.2	$(9/2^+)$	13	12Lo08	D	1992	$\beta^+=100; \beta^+p=3.1.18$	
Rh	-45860#	360#					10#	ms	$(>1.5 \mu s)$	$7/2^+ #$	13			1995	β^+ ?: β^+ p ?: p ?	
Kr	I · positiv	e narity s	since no β^{-}	transition	to ⁸⁹ RI	h orni	und-state		(> 1.0 µ0)	.,	10			1770	P ', P P ', P '	
Ru	$D \cdot \beta^+ n s$	vmmetriz	red from 3.0	$(\pm 1.9 - 1.7)$	10 IQ	T	• other rea	ent	121 008-2 2	2(1,2)						
Ge As	-29220# -41330#	500# 400#					50# 80#	ms ms	(>400 ns) (>300 ns)	0^+	10 09	10Oh02 97Be70	I I	2010 1997	β^{-} ?; β^{-} n=50#; β^{-} 2n=2# β^{-} ?; β^{-} n=30#; β^{-} 2n=3#	
As^m	-41210#	400#	124.5	0.5			220	ns	100			12Ka36	ET	2012	IT=100	
Se	-55800	330					210	ms	80	0^{+}	12	12Qu01	Т	1994	$\beta^{-}=100; \beta^{-}n=1\#$	
Br	-64000	3					1.910	s	0.010		98	93Ru01	Т	1959	$\beta^{-}=100; \beta^{-}n=25.29$	
Kr	-74959.2	1.9					32.32	s	0.09	0^{+}	98			1951	$\beta^{-}=100$	
Rb	-79364	6					158	s	5	0-	98			1951	$\beta^{-}=100$	
Rh ^m	-79257	6	106.90	0.03			258	s	4	3-	98			1967	$\beta^{-}=97.4.4$ · IT=2.6.4	
Rhx	_79293	14	71	12			R = 2.1	5		femix	20			1907	p =>/1,11=2.01	
Sr	_850/8 1	21	/ 1	12			28 70	¥7	0.06	0+	08			1948	$\beta^{-} - 100$	
v	-05940.1	2.1					20.19 61.00	y h	0.00	n-	20 00			1037	$\beta = 100$ $\beta = -100$	
1 Vm	-00+94.1	1.0	681 67	0.10			2 10	n h	0.06	$\frac{2}{7+}$	20 00			1957	F = 100 IT ~ 100. B = -0.0018.2	
1 7.:	-03012.4	0.12	001.07	0.10			5.19 STADLE	n	0.00	0+	90			1004	$11 \sim 100, p = 0.0018 2$ 18-51 45 40	
21 7.m	-00//2.34	0.12	2210.000	0.010			STABLE	*** -	2.0	5-	98			1924	13=31.43 40 IT=100	
LF'' Zw?	-80453.54	0.12	2519.000	0.010			809.2	ms	2.0	3 0+	98			1972	11=100 IT-100	
ΔΓ' \11.	-85183.12	0.12	5589.419	0.016			131	ns	4	8 ⁺	98			19//	11=100 0^+ 100	
ND	-82662	3	100.070	0.000			14.60	h	0.05	87	98			1951	p = 100	
ND"	-82540	3	122.370	0.022			63	μs	2	6+	98			1967	11=100	
Nb ⁿ	-82537	3	124.67	0.25			18.81	s	0.06	4-	98			1969	11=100	
Nb ^p	-82491	3	171.10	0.10			< 1	μs		7+	98			1981	IT=100	
Nb^q	-82280	3	382.01	0.25			6.19	ms	0.08	1^{+}	98			1967	IT=100	
Nb ^r	-80782	3	1880.21	0.20			472	ns	13	(11^{-})	98	05Ch65	ΤJ	1978	IT=100	
Mo	-80173	3					5.56	h	0.09	0^+	98			1953	$\beta^{+}=100$	
Mo ^m	-77298	3	2874.73	0.15			1.12	μs	0.05	8+#	98			1971	IT=100	
Гс	-70724.7	1.0					49.2	s	0.4	(8^+)	98	93Ru03	J	1974	$\beta^{+}=100$	
Γc^m	-70580.7	1.3	144.0	1.7	MD		8.7	s	0.2	1+	98			1974	$\beta^{+}=100$	
Ru	-64884	4					11	s	3	0^+	98			1991	$\beta^{+}=100$	
Rh	-51700#	300#				*	15	ms	7	0^{+} #	98	01Ki13	TD	1994	$\beta^{+}=100; \beta^{+}p?$	
Rh^m	-51700#	580#	0#	500#		*	1.1	s	0.3	9+#		01Ki13	TD	2001	$\beta^{+}=100; \beta^{+}p?$	
Pd	-39710#	400#					10#	ms	(>400 ns)	0^+		16Ce02	Ι	2016	β^+ ?	
As ^m	T : symmetry	etrized fr	om 200(+12	0-90)			//		(<u> </u>	-						
Se	T : symm	etrized fr	om 12Ou01:	=195(7)(+9	95-65)											
Br	T : supers	edes 80A	115=1.92(0	02) same 9	erp: of	her 12	2Ou01=18	50(1	10)(+190-1)	.70)						
Nb ^r	T : average	e 05Ch6	5=470(10) 8	1Fi02=440	(20) 7	8Ha5	52=477(8)	(1		,						
Rh	T · symm	etrized fr	12(+9-4)				= .//(0)									
2.hm	T . oyumu	atrizod f.	m 1.0(+0.2)	່ດາ												
-11	i : symme	cuized If	om 1.0(+0.3	-0.2)												

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

			Table	1. 1 ne	TIUDAS	552010 t	avi		icu, Exp	лан		1 14			
Nuclide	Mass ex (keV	(cess ()	er	Excitation hergy (keV	/)]	Half-	life	J^{π}	Ens	Referen	ce	Year of discovery	Decay modes and intensities (%)	
91 A o	36000#	400#				50#	me	(>300 mc)	5/2-#	12	07R-70	T	1007	$\beta^{-2} \cdot \beta^{-n-00\#} \cdot \beta^{-2n-2\#}$	
91 Se	-50580	400#				270	me	(>300 lls) 50	$\frac{3}{2} + \frac{1}{2^+ \pm}$	13	9/Be/0	1	1997	$\beta^{-1}, \beta^{-1} = 90^{+}, \beta^{-2} = 3^{+}$ $\beta^{-1} = 100^{\circ}, \beta^{-1} = 21^{-1}, 10^{\circ}, \beta^{-2} = 0.03^{+}$	
⁹¹ Br	-61107	4				543	ms	4	$5/2^{-}#$	13			1974	$\beta^{-}=100; \beta^{-}n=19.526$	
⁹¹ Kr	-70974 0	2.2				8 57	5	0.04	$5/2^{(+)}$	13			1951	$\beta^{-}=100; \beta^{-}n=0#$	
⁹¹ Rb	-77745	8				58.2	s	0.3	$3/2^{(-)}$	13			1951	$\beta^{-}=100; \beta^{-}n=0#$	
⁹¹ Sr	-83652	5				9.65	h	0.06	$5/2^+$	13			1943	$\beta^{-}=100$	
⁹¹ Y	-86351.3	1.8				58.51	d	0.06	$1/2^{-}$	13			1943	$\beta^{-}=100$	
$^{91}Y^m$	-85795.7	1.8	555.58	0.05		49.71	m	0.04	$9'/2^+$	13			1953	$T > 98.5; \beta^- < 1.5$	
⁹¹ Zr	-87895.57	0.10				STABLE			$5/2^+$	13			1934	IS=11.22 5	
$^{91}Zr^m$	-84728.3	0.4	3167.3	0.4		4.35	μs	0.14	$(21/2^+)$	13			1985	IT=100	
⁹¹ Nb	-86638.0	2.9				680	У	130	$9/2^+$	13	91Hi.A	D	1951	$\epsilon \approx 100; e^+=0.0138\ 25$	
⁹¹ Nb ^m	-86533.4	2.9	104.60	0.05		60.86	d	0.22	$1/2^{-}$	13	91Hi.A	D	1950	IT=96.6 5; ε =3.4 5; ; e ⁺ =0.0028 2	
⁹¹ Nb ⁿ	-84603.6	2.9	2034.42	0.20		3.76	μs	0.12	$(17/2^{-})$	13			1974	IT=100	
⁹¹ Mo	-82209	6	(50.01	0.00		15.49	m	0.01	9/2+	13			1948	$\beta^+=100$	
91 MOm	-81556	6	653.01	0.09		64.6	s	0.6	$1/2^{-}$	13			1953	$\Gamma = 50.0 \ 16; \ \beta^+ = 50.0 \ 16$	
91 T - M	- /5986.6	2.4	120.2	0.2		3.14	m	0.02	$(9/2)^{+}$	13			1974	$\beta^{+} = 100$ $\beta^{+} > 00$, $\mu = 1$	
91 D.u	-/584/.5	2.4	139.3	0.5		3.3	m	0.1	(1/2) $(0/2^{+})$	13			19/5	$p^+ > 99; 11 < 1$ $p^+ = 100; p^+ = 2$	
91 D 1 m	-08239.8	2.2 500	_340	500	* 8D	8.0 7.6	s	0.4	$(9/2^{+})$ $(1/2^{-})$	13			1903	$p = 100; p \cdot p :$ $\beta^+ \approx 100; \beta^+ p = 2; \text{ IT } 2$	
⁹¹ Ph	-00380 -58570#	300#	-340	500	ыл *	7.0 1.60	s c	0.0	(1/2) $7/2^+ \#$	13			1905	$\mu \sim 100, \mu = 1, 11$ $\beta^+ = 100, \beta^+ = 1.3.5$	ىك
⁹¹ Rh ^m	-58400#	300#	172.9	04		1.00	٥ د	0.13	$1/2^{-\#}$	13			2004	$\beta^{+}=100, \beta^{-}=1.5, 5$ $\beta^{+}=100. \text{ IT } ?$	*
⁹¹ Pd	-45930#	400#	112.7	0.4		10#	ms	$(>1.5 \mu s)$	$\frac{1}{2} + \frac{\pi}{2}$	13	95Rv03	I	1995	β^{+} ?: β^{+} p ?	
* ⁹¹ Rh	T : averag	e 04De40)=1.7(0.2)	01Ki13=1	.47(0.22)	; 00We.A(s	ame	group)=1.74	(0.14)		,,os	•	.,,,,	г ·, Р ۲ ·	**
⁹² As	-30980#	500#				30#	ms	(>300 ns)	0+	12	97Be70	I	1997	β^{-} ?; β^{-} n=60#; β^{-} 2n=40#	
92 g - m	-46/20#	400#	1040	50		100#	ms	(>300 ns)	0	12	9/Be/0	I	1997	p ?; p n=2#; p 2n=0#	
92 Dr	-44/80#	400#	1940	50		0.214c	μs	4	(2^{-})	12	12Kaso	EI	2012	$B^{-}=100, B^{-}=22, 1, 25, B^{-}=20, 0.01 \#$	*
92 Br.m	-55571	7	662	1		0.5145	0. ne	010 8	(2)	12	128.36	FT	2012	p = 100; p = 1=53.1, 25; p = 21=0.01#	*
$^{92}Br^{n}$	-55095	7	1138	1		85	ns	10			12Ka30	ET	2012	IT=100 IT=100	*
⁹² Kr	-68769 3	2.7	1150	1		1 840	s	0.008	0^{+}	12	121(0)0	LI	1951	$\beta^{-}=100; \beta^{-}n=0.0332.25$	~
⁹² Rb	-74772	6				4.48	s	0.03	0-	12			1960	$\beta^{-}=100; \beta^{-}n=0.01075$	
⁹² Sr	-82867	3				2.611	h	0.017	$\tilde{0}^+$	12			1956	$\beta^{-}=100$	
⁹² Y	-84816	9				3.54	h	0.01	2^{-}	12			1940	$\beta^{-}=100$	
$^{92}Y^m$	-84010	50	807	50		3.7	μs	0.5	7+#	12	11Ru.A	ET	2009	IT=100	*
⁹² Zr	-88459.03	0.10				STABLE			0^+	12			1924	IS=17.15 8	
⁹² Nb	-86453.3	1.8				34.7	My	2.4	7+	12			1938	$\beta^{+}=100$	
⁹² Nb ^m	-86317.8	1.8	135.5	0.4		10.15	d	0.02	$(2)^+$	12			1959	$\beta^{+}=100$	
⁹² Nb ⁿ	-86227.5	1.8	225.8	0.4		5.9	μs	0.2	$(2)^{-}$	12			1958	IT=100	
92Nbp	-84250.0	1.8	2203.3	0.4		167	ns	4	(11-)	12		Ŧ	1989	IT=100	
⁹² Mo	-86808.58	0.16	07/0 55	0.14		STABLE		(>190 Ey)	0+	12	97Ba35	Т	1930	$1S=14.53 \ 30; \ 2\beta^+$?	*
⁹² Mo ^m	-84048.06	0.21	2760.52	0.14		190	ns	3	8^+	12			1964	n = 100	
22 T cm	- /8926 78656	3	270.00	0.00		4.25	m	0.15	$(8)^{+}$	12			1964	p = 100	
92 Ton	- / 0000	3	270.09 520.42	0.08		1.03	μs	0.07	(4') (3+)	12			1970	II-100 IT-100	
92TcP	-78215	3	529.42 711 33	0.15		< 0.1	μs		(31)	12			1976	IT=100 IT=100	
92Ru	-74301 2	27	/11.33	0.15		3 65	μs m	0.05	0+	12			1971	$\beta^{+}=100$	
⁹² Rh	-62999	4				4 66	s	0.25	(6^+)	12	04De40	J	1994	$\beta^+=100; \beta^+=1.91$	*
$^{92}Rh^m$	-62950#	100#	50#	100#		0.53	s	0.37	(2^+)	12	04De40	TID	2004	$\beta^+=100; \beta^+p=?$	*
⁹² Pd	-54580#	300#	2.00			1.1	s	0.3	0+	12	01Ki13	TD	1994	$\beta^+=100; \beta^+p?$	*
⁹² Ag	-37130#	500#				1#	ms	(>400 ns)	~		16Ce02	I	2016	β^+ ?	
* ⁹² Se ^m	E : 12Ka3	6=503.4(0.5), 538.8	(0.5) and	897.8(0.5	γ rays in	casca	ide to					-		**
$*^{92}$ Se ^m	E: gr	ound-state	e =1940(1)	; error inc	reased fo	r possible n	nissiı	ng γ							**
$*^{92}$ Se ^m	T : symm	etrized fro	om 10.3(+5	5.5-2.8)											**
* ⁹² Br	I : also an	isomer w	ith T<500	ns decayi	ng by γ-r	ays 1039, 7	80, 3	801 keV							**
$*^{92}Br^{m}$	T : symm	etrized fro	om 89(+7-8	8)											**
$*^{92}Br^{n}$	T : symm	etrized fro	om 84(+10-	-9); other	09Fo05<	<500 ns assu	ımin	g single ison	ner						**
$*^{92}Y^{m}$	T : averag	e 11Ru.A	=3.3(0.6) (09Fo05=4	.2(+0.8-0).6)									**
0.7	E : observ	ed 315 ar	nd 419 γ ra	ys; low en	ergy tran	sition may	direc	tly							**
* ⁹² Y ^m		nonulata	the isomer												**
* ⁹² Y ^m * ⁹² Y ^m	E: de	populate	the isomer												
* ⁹² Y ^m * ⁹² Y ^m * ⁹² Mo	$\begin{array}{ll} E: & de \\ T: T > 19 \end{array}$	0 Ey (2σ)	uic isoinci												**
$*^{92} Y^{m}$ $*^{92} Y^{m}$ $*^{92} Mo$ $*^{92} Rh$	E: de T: T > 19 D: from 1	0 Ey (2σ) 12Lo08													** **
$*^{92} Y^{m}$ $*^{92} Y^{m}$ $*^{92} Mo$ $*^{92} Rh$ $*^{92} Rh^{m}$	E: de T: $T>19$ D: from T I: this sta	0 Ey (2σ) 12Lo08 te is not o	bserved in	12Lo08											** ** **

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Nuclide	Mass ex	cess	Ex	citation]	Half-	life	J^{π}	Ens	Referen	ce	Year of	Decay modes and	
	(keV	/)	ener	gy (keV)								discovery	intensities (%)	
⁹³ Se	-40720#	400#	(70.0	0.7	50#	ms	(>300 ns)	$1/2^{+}$ #	11	97Be70	I	1997	β^{-} ?; β^{-} n=30#; β^{-} 2n=2#	
⁹³ Se ^m	-40040#	400#	6/8.2	0.7	420	ns	100	5 /a- II	1.1	12Ka36	ET	2012	$\Pi = 100$	*
93K	-52890	430			1 296	ms	8	5/2 #	11	13Mi13	ID	1981	$\beta = 100; \beta = n=55 10; \beta = 2n=0.01$	*
93 DL	-04130.0	2.5			1.280	s	0.010	1/2	11			1951	$\beta = 100; \beta = 1.95 11$	*
93 D L m	-72020	0	4422.1	1.5	5.64	5	0.02	$\frac{3/2}{(27/2^{-})}$	11			2010	p = 100; p = 1.597	
93 Ph x	-08197	0 8	253 30	0.03	< 0.5	ne	11	(21/2) $3/2^{-}$	11	865;20	т	1070	IT=100 IT=100	ч.
93 Sr	- 72307	0 8	255.59	0.03	< 0.5 7.43	m	0.03	5/2+	11	803120	1	1970	$\beta^{-}=100$	*
93 V	-84227	10			10.18	h	0.05	$\frac{3}{2}$	11			1939	β^{-100}	
93 Vm	-83468	10	758 719	0.021	820	me	40	$\frac{1}{2}$	11	07Cb07	T	1948	F = 100	
⁹³ 7r	-87122.0	0.5	/50./17	0.021	1.61	My	0.05	$5/2^+$	11	070107	5	1950	$\beta^{-} = 100$	
⁹³ Nb	-87212.8	1.5			STABLE	IVIY	0.05	$9/2^+$	11			1932	IS=100	
⁹³ Nb ^m	-87182.0	1.5	30.77	0.02	16.12	v	0.12	$1/2^{-}$	11			1965	IT=100	
$^{93}Nb^{n}$	-79753	17	7460	17	1.5	иs	0.5	-/-	11			2007	IT ?	*
⁹³ Mo	-86807.07	0.18			4.0	kv	0.8	$5/2^{+}$	11			1946	$\varepsilon = 100$	
⁹³ Mo ^m	-84382.12	0.18	2424.95	0.04	6.85	ĥ	0.07	$21/2^+$	11			1950	IT \approx 100: $\beta^+=0.12$ 1	
⁹³ Mo ⁿ	-77112	17	9695	17	1.8	μs	1.0	$(39/2^{-})$	11			2005	IT ?	*
⁹³ Tc	-83606.1	1.0			2.75	'n	0.05	9/2+	11			1948	$\beta^{+}=100$	
$^{93}\text{Tc}^m$	-83214.3	1.0	391.84	0.08	43.5	m	1.0	$1/2^{-}$	11			1939	IT=77.4 6; β^+ =22.6 6	
⁹³ Tc ⁿ	-81420.9	1.0	2185.16	0.15	10.2	μs	0.3	$(17/2)^{-}$	11			1973	IT=100	
⁹³ Ru	-77216.7	2.1			59.7	s	0.6	$(9/2)^+$	11			1972	$\beta^{+}=100$	
$^{93}Ru^m$	-76482.3	2.1	734.40	0.10	10.8	s	0.3	$(1/2)^{-}$	11			1983	β^+ =78.0 23; IT=22.0 23; β^+ p=0.027 5	
⁹³ Ru ⁿ	-75134.2	2.3	2082.5	0.9	2.49	μs	0.15	$(21/2)^+$	11			1983	IT=100	
⁹³ Rh	-69011.8	2.6			13.9	s	1.6	$9/2^+$ #	11			1994	$\beta^{+}=100$	
⁹³ Pd	-59000#	300#			1.15	s	0.05	$(9/2^+)$	11	12Lo08	TD	1994	$\beta^+=100; \beta^+p=7.55$	
⁹³ Ag	-46270#	400#			20#	ms	$(>1.5\mu s)$	9/2+#	11	95Ry03	Ι	1994	eta^+ ?; p ?; eta^+ p ?	*
$*^{93}$ Se ^m	E : 12Ka3	36=208.3((0.5) and 469	.9(0.5) γ rays i	n cascade to	o grou	ind-state							**
$*^{93}$ Se ^m	T : symm	etrized fro	om 390(+120	0-80)										**
* ⁹³ Br	D : symm	etrized fr	om 13Mi13	$B^{-}n=53(+11-8)$	8)%									**
*93Kr	T : also 1.	3Mi13=1.	.298(0.054) o	outweighed	D : also	13M	i13=1.9(+0.	6–0.2)						**
$*^{93}Rb^{x}$	T : 70Gr3	8=57(15)	μ s not confi	rmed in 14Mi1	2; most like	ly 95	Y ^m							**
* ⁹⁵ Rb ^x	J: 253.4 k	ceV M1 (a	and E2) γ ray	to $5/2^{-}$; β^{-} for	eeding from	$1/2^+$	⁹⁵ Kr	-						**
* ⁹³ Nb ⁿ	E : Ensd	F2011 : x	keV above 7	435.3(2.1) 37/	2 ⁻ level; Nt	JBAS	E assumes x	.<50						**
* ⁹³ Mo ⁿ	E : Ensd	F2011 : x	keV above 9	670.0(2.3) (35	(2,37/2) leve	el; Nt	JBASE assui	mes x<50						**
* ²³ Mo ⁿ	T : symm	etrized fro	om 1.1(+1.5-	-0.4)	· 11 . NT		_							**
* Ag	I: the few	v events re	rusted by NI	JBAS	E							**		
* Ag	1 : 10St.A	$>0.2 \mu s$		4			-1							**
* ²³ Ag	I : estima	ued half-l	$(110 \text{ Is Ior }\beta)$	decay; p-decay	y would be r	nuch	snorter							**
***Ag	i : post-d	eadline 1	oCe02=228#	(10#) ns										**

⁹⁴ Se	-36800#	500#				20#	ms	(>300 ns)	0^+	06	97Be70	Ι	1997	β^{-} ?; β^{-} n=20#; β^{-} 2n=0.2#
⁹⁴ Br	-47400#	300#				70	ms	20	2-#	06			1981	$\beta^{-}=100; \beta^{-}n=68 \ 16; \beta^{-}2n=3\#$
$^{94}\mathrm{Br}^m$	-47110#	300#	294.6	0.5		530	ns	15			12Ka36	ET	2012	IT=100
⁹⁴ Kr	-61348	12				212	ms	5	0^+	11			1972	$\beta^{-}=100; \beta^{-}n=1.117$
⁹⁴ Rb	-68562.8	2.0				2.702	s	0.005	$3^{(-)}$	11			1961	$\beta^{-}=100; \beta^{-}n=10.54$
$^{94}\text{Rb}^m$	-66487.9	2.4	2074.9	1.4		107	ns	16	(10^{-})	11			2008	IT=100
⁹⁴ Sr	-78845.7	1.7				75.3	s	0.2	0+ ´	11			1959	$\beta^{-}=100$
⁹⁴ Y	-82351	6				18.7	m	0.1	2^{-}	06			1948	$\beta^{-}=100$
$^{94}Y^m$	-81149	6	1202.3	1.0		1.295	μs	0.005	(5^{+})	06	11Ru.A	Т	1999	IT=100
⁹⁴ Zr	-87269.32	0.16				STABLE	-	(>110 Py)	0+	06	99Ar25	Т	1924	IS=17.38 28; $2\beta^{-}$?
⁹⁴ Nb	-86369.1	1.5				20.4	ky	0.4	6^+	06	12He11	Т	1938	$\beta^{-}=100$
$^{94}Nb^m$	-86328.2	1.5	40.892	0.012		6.263	m	0.004	3+	06			1962	IT=99.50 6; β^{-} =0.50 6
⁹⁴ Mo	-88414.06	0.14				STABLE			0^+	06			1930	IS=9.15 9
⁹⁴ Tc	-84158	4				293	m	1	7^{+}	06			1948	$\beta^{+}=100$
$^{94}Tc^m$	-84082	5	76	3		52.0	m	1.0	$(2)^{+}$	06			1948	$\beta^+\approx 100$; IT<0.1
⁹⁴ Ru	-82584	3				51.8	m	0.6	0^+	06			1952	$\beta^{+}=100$
94 Ru ^m	-79940	3	2644.1	0.4		71	μs	4	8+	06			1971	IT=100
⁹⁴ Rh	-72908	3			*	70.6	s	0.6	(4^{+})	06	06Ba55	J	1979	$\beta^+=100; \beta^+=1.85$
$^{94}Rh^{m}$	-72853	3	54.60	0.20		480	ns	30	(2^{+})	06			2004	IT=100
⁹⁴ Rh ⁿ	-72610#	200#	300#	200#	*	25.8	s	0.2	(8^+)	06			1973	$\beta^{+}=100$
⁹⁴ Pd	-66102	4				9.0	s	0.5	0^+	06			1982	$\beta^{+}=100$
$^{94}Pd^m$	-61219	4	4883.1	0.4		511.0	ns	7.3	(14^{+})	06	11Br01	Т	1995	IT=100
$^{94}Pd^n$	-58893	4	7209.1	1.8		197	ns	22	(19^{-})		11Br01	TJ	2011	IT=100
A-gro	up is continue	ed on nex	t page											

*

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

			Tubh		, ITO DA	512010	- in		iucu, D		nation	01 1		puge 10)	
Nuclide	Mass ex (keV	(cess	e	Excitatio nergy (ke	n V)	ł	lalf-	life	J^{π}	Ens	Referen	ce	Year of discovery	Decay modes and intensities (%)	
		,		0, (,								y		
A-grou	up continued					37	me	18	0+#	06			100/	$\beta^{+} - 100; \beta^{+} = 2$	4
⁹⁴ A σ ^m	-51060#	400# 570#	1350#	400#		550	ms	60	(7^+)	06			1994	$\beta^{+}=100; \beta^{-}p^{-}$ $\beta^{+}=100; \beta^{+}p=20$	Ŧ
⁹⁴ Ag ⁿ	-45920#	300#	6490#	500#		400	ms	40	(21^+)	06			2002	$\beta^{+}=95.47; \beta^{+}p=27; p=4.16; 2p=0.53$	*
⁹⁴ Cd	-40140#	500#				80#	ms	(>400 ns)	0+		16Ce02	I	2016	β^+ ?	
$*^{94}Pd^m$	T : averag	e 11Br01	=499(13)	09Ga40=	468(19) 02	2La18=530)(10)	· · · · ·						,	**
$*^{94}Pd^n$	E : from 4	883.1(0.4	4) for the 1	4 ⁺ state	and 1651(1), 267(1);	and 4	08(1) keV							**
$*^{94}Pd^n$	Ε: γι	ays in a o	cascade fro	om (19 ⁻);	; uncertain	ties added	in qu	adrature							**
* ⁹⁴ Ag	T : symme	etrized fr	om 26(+26	6–9)											**
$*^{94}Ag^n$	D : p=1.9	(5) + 2.2((4) from 05	5Mu15, 2	p from 061	Mu03									**
⁹⁵ Se	-30460#	500#				10#	ms	(>400 ns)	$3/2^{+}$ #	12	10Oh02	Ι	2010	β^{-} ?; β^{-} n=10#; β^{-} 2n=3#	
⁹⁵ Br	-43770#	300#				50#	ms	(>300 ns)	5/2-#	10	97Be70	Ι	1997	β^- ?; β^- n=70#; β^- 2n=0.2#	
$^{95}Br^m$	-43230#	300#	537.9	0.5		6.8	μs	1.0			12Ka36	ET	2012	IT=100	*
⁹⁵ Kr	-56159	19				114	ms	3	$1/2^{(+)}$	10			1994	$\beta^{-}=100; \beta^{-}n=2.87 \ 18; \beta^{-}2n=0#$	
⁹⁵ Kr ^m	-55964	19	195.5	0.3		1.582	μs	0.022	$(7/2^+)$	10	12Ka36	Т	2006	IT=100	*
⁹⁵ Rb	-65891	20				377.7	ms	0.8	$5/2^{-}$	10			1967	$\beta^{-}=100; \beta^{-}n=8.7 3$	
95Rb ^m	-65056	20	835.0	0.6		< 500	ns		$9/2^+#$	10			2009	IT=100	
⁹⁵ Sr	-75120	6				23.90	s	0.14	$1/2^{+}$	10			1961	$\beta^{-}=100$	
⁹⁵ Y	-81209	7				10.3	m	0.1	$1/2^{-}$	10			1959	$\beta^{-}=100$	
$^{95}Y^m$	-80121	7	1087.6	0.6		48.6	μs	0.5	$9/2^{+}$	10	11Ru.A	Т	1981	IT=100	
⁹⁵ Zr	-85659.9	0.9				64.032	d	0.006	$5/2^{+}$	10			1946	$\beta^{-}=100$	
⁹⁵ Nb	-86786.3	0.5				34.991	d	0.006	$9/2^{+}$	10			1951	$\beta^{-}=100$	
⁹⁵ Nb ^m	-86550.6	0.5	235.69	0.02		3.61	d	0.03	$1/2^{-}$	10			1969	IT=94.4 6; β^{-} =5.6 6	
⁹⁵ Mo	-87711.86	0.12				STABLE			$5/2^{+}$	10			1930	IS=15.84 11	
⁹⁵ Tc	-86021	5				20.0	h	0.1	$9/2^+$	10			1947	$\beta^{+}=100$	
$^{95}\text{Tc}^m$	-85982	5	38.91	0.04		61	d	2	$1/2^{-}$	10			1959	$\beta^+=96.12$ 32; IT=3.88 32	
⁹⁵ Ru	-83458	10				1.643	h	0.013	$5/2^{+}$	10			1948	$\beta^{+}=100$	
⁹⁵ Rh	-78341	4				5.02	m	0.10	$(9/2)^+$	10			1967	$\beta^+=100$	
⁹⁵ Rh ^m	-77798	4	543.3	0.3		1.96	m	0.04	$(1/2)^{-}$	10		-	1974	IT=88 5; $\beta^+=12$ 5	
95 Pd	-69966	3				7.5	s	0.5	9/2+#	10	12Lo08	Т	1980	$\beta^{+}=100; \beta^{+}p?$	
⁹⁵ Pd ^m	-68091	3	1875.13	0.14		13.3	s	0.3	$(21/2^{+})$	10	1.21 0.0	-	1982	$\beta^+=?; \Pi=113; \beta^+p=0.9315$	
⁹⁵ Ag	-59600#	300#				1.76	s	0.09	$(9/2^+)$	10	12Lo08	TD	1994	$\beta^+=100; \beta^+p=2.5 3$	*
⁹⁵ Ag ^m	-59260#	300#	344.2	0.3		< 500	ms		$(1/2^{-})$	10			2003	IT=100	
⁹⁵ Ag ⁿ	-5/0/0#	300#	2531.3	1.5		< 16	ms		$(23/2^+)$	10			2003	II=100	
²⁷ Agr 95 C d	-54/40#	300# 400#	4800.0	1.5		< 40	ms	40	$(37/2^{+})$	10	1054 4	т	2005	11=100 θ^{+}_{2} , θ^{+}_{2} , θ^{+}_{2}	
.95p.m	-40030# T	400# atnized fr	om 67(+1	1.0.0		90	ms	40	9/2 ' #		105t.A	1	2011	<i>p</i> · <i>i</i> ; <i>p</i> · <i>p i</i>	*
.95 v.m	T : symme		26(0.5) or	.1-0.9)	5) **	in accorda	to 0	normal atota							**
* N 95 <i>V</i> m	E : also 12 T : other 1	2Ka50=0	2.0(0.3) at 1.28(0.05)	$06G_{2}05_{-}$	$(0.3) \gamma$ rays	III cascade	to g	round-state							**
* N * ⁹⁵ A a	T : outer 1	121 A	1.28(0.03) 8-1.85(0.03)	00Ge03=	5-1 76(0	13) 03Do0	0-1	85(0 34) and	4						**
* Ag * ⁹⁵ Cd	T · symmetric	etrized fr	$m 73(\pm 52)$	6) 03Ha4 3_28)	5=1.70(0.	13) 03D00	9-1.0	55(0.54) and	1						**
≁ Cu	I . Symme		011175(15:	,-20)											~~
96 D	20160#	200#				20#		(> 200)		00	070-70	T	1007	<i>Q</i> = 0, <i>Q</i> =, 50#, <i>Q</i> =0, <i>C</i> #	
⁹⁶ Br	-38160#	300#	211.5	0.5		20#	ms	(>300 ns)		08	9/Be/0	I ET	1997	p ?; p n=50#; p 2n=6#	
961Z	-3/850#	20	311.5	0.5		3.0	μs	0.9	0+	12	12Kaso	EI	2012	R = -100, R = n - 2.7.4	*
96 D1	-53080	20				80	ms	8	2-	12	020-01	т	1994	p = 100; p = 12, 27; p = 2; 0.02#	
96 D1 m	-01354	3	0.11	200/	*	201	ms		2 1(+#)	08	95Ku01	1	1907	$\beta = 100; \beta = 13.37; \beta = 20002$	*
96 DL n	-61350#	200#	0#	200#	*	200#	ms	(>1 ms)	(10^{-1})	00	81B030	JI	1981	β ?; 11 ?; β n=10#; β 2n=0.02#	*
96 C	-60219	3	1134.6	1.1		1.80	μs	0.04	(10)	08			1999	P = 100, P = 0.00	*
96 V	-72924	8				1.07	s	0.01	0-	08			19/1	p = 100; p = 100	
96 x/m	-/8330	0	1540	0	MD	5.54	s	0.05	0 0+	08	070107	т	1975	p = 100	
96 7	-/6/96	0	1540	9	MD	9.6	S	0.2	8 ' 0+	08	0/Cn0/	J	1974	$\beta = 100$	
96 NIL	-83438.83	0.11				23	Ey L	2 0.05	0' 6+	08	128911	1	1954	$B^{-}=100$ $B^{-}=100$	
96 M a	-03002.82	0.15				23.33 STADLE	п	0.05	0 ⁺	08			1949	$\mu = 100$	
96To	-00/94.88	5				STABLE 4 20	д	0.07	7+	08			1950	$B^{\pm} - 10.07$ 13 $B^{\pm} - 100$	
96 T am	-03022	5	24.00	0.04		4.28	a	1.0	/ ' /+	08			1947	$\mu^{+} = 100$ IT = 08.0.5; $\beta^{+} = 2.0.5$	
96 p	-03/00	J 0.17	54.23	0.04		51.5 STADIE	m	1.0	4 · 0+	08	12P-00	т	1930	$11 = 96.03; \mu^{-} = 2.03$ $18 = 554, 14; 28 \pm 2$	
96 p L	-80080.37	10				STABLE	***	(>00 Ey)	6 ⁺	08	130609	1	1951	B^{\pm}_{-100}	*
96 D Lm	- /9088	10	51.00	0.00		9.90	m	0.10	2+	08			1907	$\mu = 100$ IT-60 5: $B^+ = 40.5$	
~кn‴ 96 р.а	- /9030	10	51.98	0.09		1.51	m	0.02	3 ' 0+	08			1900	$p_{\mu} = 00.5; p_{\mu} = 40.5$ $B_{\mu}^{\pm} = 100$	
~~Pa %p 1"	-/0183	4	2520.55	0.00		122	s	2	0 ⁻	08	00C P	TD	1980	p = 100	
² °Pd‴ 96 ▲ .	-/3052	4	2530.57	0.23		1.81	μs	0.01	8'# (0)+	08	98Gr.B	TD	1983	R^{+}_{-100}	*
~ Ag	-04510	90 100#	0#	50#	*	4.44	s	0.04	(8) ' (2+)	08	12L008	TD	1982	p = 100; p = 0.9 / $R^+ = 100; R^+ = 15 + 26$	*
96 A ~n	-04310#	100#	0#	50#	*	0.9	S	0.5	(2^{+})	08	12L008		2003	p = 100; p = p = 15.1.26	*
96 A - 7	-02050	90	2401.4	0.5		1.542	μs	10	(13)	00	110023	TID	2011	II-100 IT-100	*
96 Aa	-01830	90	2080	7		1.543	μs	0.028	(13^{+})	08	11B023	EIJ	2011	11=100 IT=100	*
Ag	-3/3/0	90 d on mar	0943 t page	/		160	ns	50	(19+)		11B023	EIJ	2011	11=100	*
A-grou	up is continue	u on nex	ı page												

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

			Table	1. 1 lie	NUBA	SE2010	140			лап	ation o	1 14			
Nuclide	Mass ex (keV	(cess	E	xcitation)	1	iair-i	ife	J^{n}	Ens	Reference	ce	rear of discovery	intensities (%)	
	(RC))	cin	ngy (ke v)								uiscovery	intensities (70)	
A-grou	up continued														
⁹⁶ Cd	-55570#	400#				880	ms	90	0^{+}	10	12Lo08	D	2008	$\beta^+=100; \beta^+=5.540$	*
${}^{96}Cd^m$	-50270#	400#	5300#	2000#		300	ms	110	16^{+}	10	11Na34	TJD	2011	$\beta^+=100; \beta^+p?$	*
⁹⁶ In	-37890#	500#				1#	ms	(>400 ns)			16Ce02	Ι	2016	β^+ ?	
$*^{96}Br^m$	T : symm	etrized fr	om 2.7(+1.	1–0.7)											**
* ⁹⁶ Rb	J : measu	red magn	etic momen	t consiste	nt with 2	2-									**
$*^{96}$ Rb ^m	I : non-ob	servatior	n in 81Th04	is not in o	contradic	tion with	81Bo	30 experim	ent						**
$*^{96}$ Rb ⁿ	T : averag	ge 12Ka3	6=1.72(+0.)	6-0.14)	11Ru.A=	1.77(0.05)	05P	i13=2.0(0.1)						**
$*^{96}$ Rb ⁿ	T: 99	Ge01=1.	65(0.15)												**
* ⁹⁶ Ru	T : 13Be0)9 : 2 ν-β	$+\varepsilon$ >80Ey (theor. mo	st probal	ble); $2nu\beta$	$^{+}\beta^{+}$	>140Ey 0n	u2K>1Zy						**
$*^{96}Pd^m$	T : supers	sedes 970	3r02=1.7(0.	1); others	09Ga40:	=1.76(0.05) 071	My02=2.10	(0.21)						**
$*^{96}$ Pd ^m	T: 83	3Gr01=2.	2(0.3)	J : from	1 03Ba39)									**
* ⁹⁶ Ag	T : averag	ge 12Lo0	8=4.40(0.09) 03Ba39	=4.40(0.	06) 97Sc3	0=4.3	50(0.06)							**
* ⁹⁰ Ag	$D: \beta^+ p a$	werage 1	2Lo08=6.5(0.8) 03Ba	139=8.5(1.5)									**
*** Agm	T : averag	ge 12Lo0	8=6.8(1.0))3Ba39=6	.9(0.6)	D:	avera	ge 12Lo08=	=14(3) 03Ba3	59=18	8(5)				**
* ⁹⁰ Ag ⁿ	E : from I	east-squa	tres fit to γ -	ray energi	es using	11Bo23 le	evel s	cheme							**
* ⁹⁰ Ag ⁿ	T: other	11Be34=	8.6(6.3) μs	using a co	ollection	time of 12	μs								**
* ⁹⁶ Ag ^p	E : 25-50	kev abo	ve the 2643	13' level	1 45/0	07)									**
* Agp	I : averag	ge 11B02	3=1.56(0.03	5) 11Be34	=1.45(0.	.07)									**
*~ Ag ¹	E: 4205 a	above the	Agr 4-670(150)	1056 4-0	000(120)	000.52	1020	(1240.210)							**
***Cu	T averag	ge IIINa5	4=070(130)	-200(+1)	990(130)	08Базз=	1050	(+240-210)							**
***Cd	1 : symm	etrized fr	om 11Na34	=290(+1	10–100)										**
⁹⁷ Br	_34060#	400#				10#	me	(\300 ns)	$5/2^{-}$ #	10			1007	β^{-} 2: β^{-} n=00#: β^{-} 2n=5#	
⁹⁷ Kr	-47420	130				62.2	ms	3 2	$3/2^+$ #	10	11Ni01	т	1997	$\beta^{-}=100: \beta^{-}n=6.7.6: \beta^{-}2n=0.1#$	*
97Rh	-585191	19				169.1	ms	0.6	$3/2^+$	15	111401	1	1969	$\beta^{-}=100; \beta^{-}=25.59; \beta^{-}=20=0$	Ŧ
⁹⁷ Rb ^m	-58442.5	1.9	76.6	0.2		57	115	0.0	$(1/2 \ 3/2)^{-}$	15			2012	p = 100, p = 1-25.5, p = 211-0.0	
97Sr	-68581	3	70.0	0.2		429	ms	5	$\frac{1}{2^+}$	10			1978	$\beta^{-}=100; \beta^{-}n<0.05$	
⁹⁷ Sr ^m	-68273	3	308.13	0.11		165	ns	4	$\frac{1}{2}$	10	15Cz01	т	1990	IT=100	*
⁹⁷ Sr ⁿ	-67750	3	830.83	0.23		515	ns	10	$(9/2^+)$	10	13Ru07	TJ	1974	IT=100	
97Y	-76121	7				3.75	s	0.03	$1/2^{-1}$	10	07Ch07	J	1970	$\beta^{-}=100; \beta^{-}n=0.0554$	
$^{97}Y^m$	-75453	7	667.52	0.23		1.17	s	0.03	$9'/2^+$	10	07Ch07	J	1970	$\beta^{-}>99.3$; IT<0.7; $\beta^{-}n<0.08$	
$97 Y^n$	-72598	7	3522.6	0.4		142	ms	8	$(27/2^{-})$	10			1986	IT=94.8 9: $\beta^{-}=5.2$ 9	
⁹⁷ Zr	-82942.7	0.4				16.749	h	0.008	$1/2^{+}$	10			1951	$\beta^{-}=100$	
$^{97}\mathrm{Zr}^m$	-81678.3	0.4	1264.35	0.16		104.8	ns	1.7	$7'/2^+$	10	11Ru.A	Т	1976	IT=100	*
⁹⁷ Nb	-85606	4				72.1	m	0.7	$9/2^+$	10			1951	$\beta^{-}=100$	
97Nb^m	-84863	4	743.35	0.03		58.7	s	1.8	$1/2^{-}$	10			1950	IT=100	
⁹⁷ Mo	-87544.69	0.16				STABLE			$5/2^{+}$	10			1930	IS=9.60 14	
⁹⁷ Tc	-87224	4				4.21	My	0.16	$9/2^{+}$	10			1946	ε=100	
97Tc^m	-87127	4	96.57	0.06		91.0	d	0.6	$1/2^{-}$	10			1954	IT=96.06 18; ε=3.94 18	
⁹⁷ Ru	-86120.6	2.8				2.8370	d	0.0014	$5/2^{+}$	10	09Go29	Т	1946	$\beta^{+}=100$	
⁹⁷ Rh	-82600	40				30.7	m	0.6	$9/2^{+}$	10			1955	$\beta^{+}=100$	
$^{97}Rh^m$	-82340	40	258.76	0.18		46.2	m	1.6	$1/2^{-}$	10			1971	β^+ =94.4 6; IT=5.6 6	
⁹⁷ Pd	-77806	5				3.10	m	0.09	5/2+#	10			1969	$\beta^{+}=100$	
⁹⁷ Ag	-70830	110				25.5	s	0.3	$(9/2)^+$	10	14Fe01	J	1978	$\beta^{+}=100$	
$^{97}Ag^{m}$	-70430#	230#	400#	200#		100#	ms		$1/2^{-}$ #					IT ?	
97Cd	-60450#	300#				1.10	s	0.08	$(9/2^+)$	10	11Lo09	TJD	1978	$\beta^+=100; \beta^+p=11.8\ 20$	
97Cdm	-58950#	580#	1500#	500#		3.8	s	0.2	$(25/2^+)$	10	11Lo09	TJD	1982	$\beta^+=100; \beta^+p=25.4$	
97In	-47190#	400#				50	ms	30	9/2+#		10St.A	TD	2011	$\beta^{+}=100; p ?; \beta^{+}p ?$	*
* ⁹⁷ Kr	T : averag	ge 11Ni0	l=60(+6-5)	03Be05=	63(4)										**
*' Sr"	E : also I	2Ka36=1	41.3(0.5) at	10 167.60	$J.5) \gamma$ ray	ys in casca	de to	ground-stat	e						**
* Sr.	T : others	11KU.A:	=180.9(2.8)	00HW01=	=105(25)	83Kr11=	170(1	(U) 1 - 1 0(U(07(10)						**
* ZI	T averag	$3e_{11}Ku.A$	A=100.1(2.1)) 050020	=102(3)	; others ou	tweig	gned Ooriwo	J1=97(10)						**
* ZI	T: 90	otnigod fr	10(7) 10m 26(1.47	10)											**
* 111	1 : symm	etrized fi	0111 20(+47-	-10)											**
⁹⁸ Br	-28250#	400#				5#	ms	(>400 ns)		10	100h02	T	2010	β^{-} ?: β^{-} n=70#: β^{-} 2n=20#	
98Kr	-44310#	300#				42.8	ms	3.6	0^{+}	03	11Ni01	Т	1997	$\beta^{-}=100; \beta^{-}n=7.0 \ 10; \beta^{-}2n=0#$	*
⁹⁸ Rh	-54369	16				114	ms	5	0(-#)	03	81Th04	J	1971	$\beta^{-}=100; \beta^{-}n=13.86; \beta^{-}2n=0.051.5$	7 *
⁹⁸ Rh ^m	-54296	20	73	26	BD	96	ms	3	$(3,4)^{(+\#)}$	03		-	1980	$\beta^{-}=100; \beta^{-}n=10#; \beta^{-}2n=0.05#$	*
⁹⁸ Rb ⁿ	-54191	16	178.3	0.4	22	358	ns	7	(2, 1)	09	12Ka36	ET	2009	IT=100	*
98Sr	-66423	3	- , 0.0	0.1		653	ms	2	0^{+}	03			1971	$\beta^{-}=100; \beta^{-}n=0.255$	~
⁹⁸ Y	-72295	8				548	ms	2	$(0)^{-}$	03			1970	$\beta^{-}=100; \beta^{-}n=0.33124$	
⁹⁸ Y ^m	-72054	28	241	29	BD	2.0	s	0.2	$(5^{+}, 4^{-})$	03			1977	$\beta^{-}=?$; IT=10#; β^{-} n=3.4 10	*
$^{98}Y^n$	-72124	8	170.74	0.06		610	ns	9	(2)-	03	11Ru.A	Т	1972	IT=100	
$^{98}Y^p$	-71799	8	496.19	0.15		6.87	μs	0.05	(4 ⁻)	03	11Ru.A	Т	1970	IT=100	*
$^{98}Y^q$	-71114	8	1181.1	0.4		806	ns	21	(10-)	03	11Ru.A	Т	1972	IT=100	*
A-grou	up is continu	ed on nex	at page												

Chinese Physics C Vol. 41, No. 3 (2017) 030001

	Table 1. The NUBASE2016 table (continued, Explanation of Table on page 18) Nuclide Mass excess Excitation Half-life J [#] Ens Reference Year of Decay modes and														
Nuclide	Mass ex (keV	xcess /)	l en	Excitation ergy (keV)]	Half-	life	J^{π}	Ens	Reference	ce	Year of discovery	Decay modes and intensities (%)	
A-grou	ip continued														
⁹⁸ Zr	-81287	8				30.7	s	0.4	0^{+}	03			1967	$\beta^{-}=100$	
98 Zr ^m	-74683	8	6603.7	0.3		1.9	μs	0.2	(17^{-})		06Si36	EJT	2005	IT=100	
⁹⁸ Nb	-83525	5				2.86	s	0.06	1+	03			1960	$\beta^{-}=100$	
$^{98}Nb^m$	-83441	6	84	4		51.3	m	0.4	(5^+)	03			1948	$\beta^{-} \approx 100; \text{ IT}=0.1\#$	
⁹⁸ Mo	-88115.97	0.17				STABLE		(>100 Ty)	0+	03	52Fr23	Т	1930	IS=24.39 37; $2\beta^-$?	*
⁹⁸ Tc	-86432	3				4.2	My	0.3	$(6)^+$	03			1955	$\beta^{-}=100; \beta^{+}=0$	
⁹⁸ Tc ^m	-86341	3	90.76	0.16		14.7	μs	0.3	$(2)^{-}$	03			1976	IT=100	
⁹⁸ Ru	-88225	6				STABLE	-		0+	03			1944	IS=1.87 3	
⁹⁸ Rh	-83175	12			*	8.72	m	0.12	$(2)^+$	03			1955	$\beta^{+}=100$	
$^{98}Rh^m$	-83120#	50#	60#	50#	*	3.6	m	0.2	(5+)	03			1966	IT=89 5; $\beta^+=11$ 5	
⁹⁸ Pd	-81321	5				17.7	m	0.3	0^{+}	03			1955	$\beta^{+}=100$	
⁹⁸ Ag	-73070	30				47.5	s	0.3	$(5,6)^+$	03	14Fe01	J	1978	$\beta^+=100; \beta^+p=0.00125$	*
$^{98}Ag^m$	-72900	900 30 167.83 0.15 220 ns 20 (3^+) 03 98Gr.B ETD 1998 IT=100 (40 50 (3^+) 02 (3^+) 03 98Gr.B ETD 1998 (3^+) 100 $(3^+$													
⁹⁸ Cd	-67640	50				9.2	s	0.3			1978	$\beta^+=100; \beta^+p<0.025$			
$^{98}Cd^m$	-65210	50	9.2 s 0.3 0 03 1978 β =100; β p<0.025 2427.5 0.6 189 ns 19 (8 ⁺) 03 04B110 TJ 1996 IT=100												
$^{98}Cd^n$	-61010	50	6635	2		240	ns	40	(12^+)		04B110	ETJ	2004	IT=100	*
⁹⁸ In	-53900#	300#			*	37	ms	5	0^{+} #	03	12Lo08	TD	1994	$\beta^+=100; \beta^+p=5.63$	*
98 In ^m	-53900#	580#	0#	500#	*	1.01	s	0.13		03	12Lo08	TD	2001	$\beta^+=100; \beta^+p=192$	*
* ⁹⁸ Kr	T : averag	ge 11Ni0	1=42(4) 03E	Be05=46(8)											**
* ⁹⁸ Rb	T : also 1	1Ni01=1	02(4), mayb	e mixture											**
$*^{98}$ Rb ^m	I : also an	isomer v	with T=700((+60–50) ns de	ecayii	ng by γ-ray	s of 1	178, 124 keV	7						**
$*^{98}$ Rb ⁿ	E : averag	ge 12Ka3	6=178.4(0.5	5) 09Fo05=17	8.0(0.	7) T	`: otl	ner 09Fo05=	700(+60	-50)					**
$*^{98}Y^{m}$	J : 04Br1	$4=(5^+)93$	5Ha.B=(4 ⁻)	$94St31=(5^+)$)										**
$*^{98}Y^{p}$	J : from 0	94Br14; E	ENSDF= (2^{-})	and (p1/2[30	3]+n9	9/2[404]) co	onfig	(in error)							**
$*^{98}Y^{q}$	J : from 0)4Br14; E	$ENSDF=(8^{-})$	from (2^{-}) for	r 496	keV isomer									**
* ⁹⁸ Mo	T : 52Fr2	$3:0v-\beta$	$\beta > 100$ Ty (1	theoretically f	aster,	see text)									**
* ⁹⁸ Ag	D : symm	netrized fi	rom β^+ p=0.	.0011(+5-4)%	,										**
* ⁹⁸ Cd ^m	T : averag	ge 04B110)=170(+60-	40) 98Gr.B=1	90(20)), the latter	r sup	ersedes							**
* ⁵⁶ Cd ^m	T: 97	/Gr02=20	00(+300-17)	(0); other 97G	018=4	480(160) οι	itwei	ghed							**
* ⁹⁸ Cd"	T : symm	etrized fr	om 230(+40)-30)	E: un	c. estimate	d by	evaluator							**
* ⁹⁸ In	T : averag	ge 12L00	8=47(13)10	St.A=32(6) 0	8Ba5	3=44(+13-	12) ($11K_{113}=32(+$	-32–11)						**
* ⁵⁰ In	$D: p \cdot p \cdot$	symmetri	zed from 12	L008=5.5(+0	.3-0.2	2) 1) 00D 52	0.00		. 1						**
* ⁷⁰ In ^m	1 : averag	ge 12L00	$\delta = 1.2 / (0.30)$) 10St.A=0.80	0(0.21	і) 08Ba53=	0.92	(+0.27-0.17)) and						**
****In‴	1: 01	IK113=1.	2(+1.2-0.4)												**

Table I	The NUB/	SE2016 table	(continued Evi	nlanation of Table (n nage 18)
таріст.		$\Delta \Delta E / U + U + a U = C$	I COMPLEMENT CO. P/XI		\mathbf{m} maye for

99Kr	-38760#	400#			40	ms	11	$5/2^{-}$ #	11	03Be05	TD	1997	$\beta^{-}=100; \beta^{-}n=117; \beta^{-}2n=2\#$	*
⁹⁹ Rb	-51121	4			56.4	ms	1.2	$(3/2^+)$	15			1971	$\beta^{-}=100; \beta^{-}n=15.8\ 24; \beta^{-}2n=0.01\#$	
99Sr	-62521	5			269	ms	1	$3/2^{+}$	11			1975	$\beta^{-}=100; \beta^{-}n=0.100 19$	
⁹⁹ Y	-70650	7			1.484	s	0.007	$5/2^+$	11	07Ch07	J	1975	$\beta^{-}=100; \beta^{-}n=1.74$	
⁹⁹ Y ^m	-68508	7	2141.65	0.19	8.6	μs	0.8	$(17/2^+)$	11			1985	IT=100	
⁹⁹ Zr	-77621	11			2.1	s	0.1	$1/2^{+}$	11	02Ca37	J	1970	$\beta^{-}=100$	
99 Zr ^m	-77369	11	251.96	0.09	293	ns	10	$7/2^+$	11	FGK126	J	1970	IT=100	*
⁹⁹ Nb	-82335	12			15.0	s	0.2	$9/2^+$	11			1950	$\beta^{-}=100$	
$^{99}\text{Nb}^m$	-81970	12	365.27	0.08	2.5	m	0.2	$1/2^{-}$	11			1960	$\beta^{-}=?;$ IT<3.8	
⁹⁹ Mo	-85970.10	0.23			65.976	h	0.024	$1/2^{+}$	11			1948	$\beta^{-}=100$	
⁹⁹ Mo ^m	-85872.32	0.23	97.785	0.003	15.5	μs	0.2	$5/2^{+}$	11			1958	IT=100	
99Mon	-85286.00	0.30	684.10	0.19	760	ns	60	$11/2^{-}$	11			1975	IT=100	
⁹⁹ Tc	-87327.9	0.9			211.1	ky	1.2	$9/2^{+}$	11			1938	$\beta^{-}=100$	
⁹⁹ Tc ^m	-87185.2	0.9	142.6832	0.0011	6.0067	h	0.0005	$1/2^{-}$	11			1958	IT \approx 100; β^{-} =0.0037 6	
⁹⁹ Ru	-87625.4	0.3			STABLE			$5/2^{+}$	11			1931	IS=12.76 14	
⁹⁹ Rh	-85581	7			16.1	d	0.2	$(1/2^{-})$	11			1952	$\beta^{+}=100$	
$^{99}Rh^m$	-85516	7	64.6	0.5	4.7	h	0.1	$9/2^{+}$	11			1952	$\beta^+ \approx 100; \text{IT} < 0.16$	
⁹⁹ Pd	-82183	5			21.4	m	0.2	$(5/2)^+$	11			1955	$\beta^{+}=100$	
99Ag	-76712	6			2.07	m	0.05	$(9/2)^+$	11	14Fe01	J	1967	$\beta^{+}=100$	
$^{99}Ag^m$	-76206	6	506.1	0.4	10.5	s	0.5	$(1/2)^{-}$	11	14Fe01	J	1978	IT=100	
99Cd	-69931.1	1.6			16	s	3	$5/2^+$ #	11			1978	$\beta^+=100; \beta^+p=0.21 8; \beta^+\alpha < 1e-4$	*
⁹⁹ In	-61380#	300#			3.1	s	0.2	9/2+#	11	12Lo08	TD	1994	$\beta^+=100; \beta^+p=0.94$	*
$^{99}In^m$	-60980#	340#	400#	150#	1#	s		$1/2^{-}$ #					β^+ ?; IT ?	
⁹⁹ Sn	-47940#	500#			5#	ms	$(>0.2 \mu s)$	9/2+#		10St.A	Ι	2011	β^+ ?; β^+ p ?	*
99Sn^m	-47540#	510#	400#	100#				$1/2^{-}$ #		Mirror	Ι			
* ⁹⁹ Kr	T: also 1	1Ni01=13	3(+34–6)											**
$*^{99}Zr^{m}$	J : 130.2	γray, E2	to 3/2 ⁺ and 1	21.7 keV, γ ra	y, M1 to 1/2 ⁺									**
* ⁹⁹ Cd	D : symm	etrized fr	$\cos \beta^+ p=0.1$	7(+11–5)%										**
* ⁹⁹ In	T : recent	not used	01Ki13=3.0(+0.8-0.7)										**
* ⁹⁹ Sn	I: the 3 e	vents repo	orted in 95Ry	03 are not true	sted by NUBAS	SE								**

*⁹⁹Kr *⁹⁹Zr^m *⁹⁹Cd *⁹⁹In *⁹⁹Sn

1 : also 11/101=15(+34-6) J : 130.2 γ ray, E2 to 3/2⁺ and 121.7 keV, γ ray, M1 to 1/2⁺ D : symmetrized from β^+ p=0.17(+11-5)% T : recent not used 01Ki13=3.0(+0.8-0.7) I : the 3 events reported in 95Ry03 are not trusted by NUBASE

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I. The	NUBASE2016 ts	able (continued, 1	Explanation o	f Table on nage	18)
таристь гис		inc (continucu.	17AUIAIIAUIUII V	A radic on dage	

Nuclide	Mass ex	cess]	Excitation		H	Ialf-	life	J^{π}	Ens	Reference	ce	Year of	Decay modes and	
	(keV	7)	er	nergy (keV)								discovery	intensities (%)	
100 Kr	35050#	400#				12	me	8	0+	11	11N501	тр	1007	$\beta^{-} = 100; \beta^{-} = 104; \beta^{-} = 22 = 0.44$	÷
100 Rh	-35050π -46247	20				48	me	3	$(3^+) 4^- \#$	08	11Ni01	т	1997	$\beta^{-100}, \beta^{-1-10\pi}, \beta^{-21-0.4\pi}$ $\beta^{-100}, \beta^{-1-6}, \beta^{-21-0.168}$	*
100 Sr	-59821	20				202	me	3	0+	08	111101	1	1978	$\beta^{-}=100; \beta^{-}=0.7813$	
100 Sr^{m}	-58202	7	1618 72	0.20		122	ns	9	(4^{-})	00	12Ka36	т	1995	F = 100, F = 100, 10000000000000000000000000000000	*
100 Y	-67327	11	1010.72	0.20		735	ms	7	(1-)	08	83Wo10	ī	1977	$\beta^{-}=100; \beta^{-}n=0.92.8$	*
100 V m	-67183	11	144	16	MD	940	me	30	(1) (1)	08	13Ma15	J	1977	$\beta^{-100}, \beta^{-100}, \beta^{-100}$	
100 7 r	-76377	8	144	10	WID	71	\$	04	0+	08	15141415	3	1970	$\beta^{-100}, \beta^{-111}$	
100 Nb	-79797	8				1.5	6	0.4	1+	08			1967	$\beta^{-}=100$ $\beta^{-}=100$	
100 Nb ^m	_79484 7	2.0	313	8	MD	2 99	6	0.11	(5 ⁺)	08			1967	$\beta^{-}=100$	
100 Nb ⁿ	_79450	11	347	8	WID	460	ne	60	$(4^{-}5^{-}6^{-})$	08			1986	F = 100	÷
100 Nbp	-79063	11	734	8		12 43	115	0.26	(4,5,0)	08	11Ru Δ	т	1980	IT=100	~ ~
100 Mo	-86193.0	0.3	754	0		7.1	Ev	0.20	0+	08	15Ra11	T	1930	$15-9.82.31 \cdot 2B^{-}-100$	~ ~
100 Tc	-86020.9	1.4				15.46	Ly °	0.4	1+	08	150411	1	1952	$B^- \approx 100$; $g = 0.0018.9$	Ŧ
$^{100}Tc^{m}$	-85820.2	1.4	200.67	0.04		8 32		0.12	$(4)^+$	08			1952	$p \sim 100, e=0.0010$	
$100 \text{T}c^{n}$	-85777.0	1.4	243.95	0.04		3.2	μ3 119	0.14	(1) (6) ⁺	08			1967	IT=100	
100 Ru	_89227.4	0.3	2+3.75	0.04		STABLE	μο	0.2	0+	08			1931	IS=12.60.7	
100 Rh	-85591	18				20.8	h	0.1	1-	08			1948	$s = 95 + 15 = e^{+} = 4 + 9 = 5$	
100 Rhm	-85516	18	74 782	0.014		214.0	ne	2.0	$(2)^+$	08			1965	IT-100	
100 Rh ⁿ	-85483	18	107.6	0.014		4.6	m	0.2	(2) (5 ⁺)	08			1973	$T \approx 98.3 \cdot \beta^+ \approx 1.7$	
100 Rhp	-85371	18	219.61	0.2		130	ne	10	(3^{+})	08			1984	$11 \approx 90.5, p \approx 1.7$	
100 Pd	-85213	18	217.01	0.22		3 63	d	0.09	0+	08			1948	e=100	
100 A g	_78138	5				2.01	m	0.09	(5) ⁺	08	14Ee01	T	1970	$\beta^{+}-100$	
$100 \Delta \sigma^m$	_78122	5	15 52	0.16		2.01	m	0.02	$(2)^+$	08	141 001	3	1980	$\beta^{+}=100$ $\beta^{+}=2$ IT 2	
100 Cd	_74194.6	17	15.52	0.10		49.1	۰ ۱۱۱ ۹	0.15	(2) 0+	10			1970	$\beta^{+}=100$	
100 In	-64310	180				5.83	6	0.17	6+#	14	121.008	TD	1982	$\beta^{+}=100$ $\beta^{+}=100$: $\beta^{+}=1.64.24$	÷
100 Sn	-57280	300				1.16	6	0.17	0+	14	12E000	т	1994	$\beta^{+}=100; \beta^{-}=1.0+24$ $\beta^{+}=100; \beta^{+}=17$	~ ~
100 Sn^{m}	-52780#	360#	4500#	200#		100#	ne	0.10	6 ⁺ #	14	1211107	1	1774	p = 100, p = p < 17	Ŧ
v ¹⁰⁰ Kr	T · symr	netrized	from 11Ni0	$1-7(\pm 11-3)$	3)	100#	113		0 11					p :	**
$*^{100}$ Sr ^m	E : also	12Ka36-	=129.6(0.5)	2881(0.5)	and 12	01 8(0 5) v r	avsi	n cascad	e						**
$*^{100}$ Sr ^m	E: diso	o ground	-129.0(0.5), -state = 161	9 5(0 9) ke	V	01.0(0.5) / 1	uys i	ii cuscuu	c						**
$*^{100}$ Sr ^m	T: other	95Pf04	=85(7)).5(0.)) RC	•										**
* ¹⁰⁰ Y	I · ENSE	$F=1^{-2}$	-0.0(7)	favored fro	om (n5/2	2[303]+n3/2]	411	l) see 83	Wo10						**
$*^{100}Nb^{n}$	E · 34 3	keV abo	ve 5 ⁺ isome	r in the second s	, (p.), -	[000]110/2]		, 500 05							**
$*^{100}Nb^{p}$	E: 420 7	7 keV ab	ove 5 ⁺ ison	ner											**
$*^{100}Nb^{p}$	J : 28 ke	V. (E2) 1	$to (6^{-})$. M	ult. from in	ntensitv	balances									**
* ¹⁰⁰ Mo	T : also	14Ca46=	=7.15(0.37st	at)(0.66svs	st)										**
* ¹⁰⁰ Mo	T : and 1	5Ba11=	670(+50-40)) $14Ar08=$	750(60	stat)(60syst)	to fi	rst exc. (⁺ state						**
* ¹⁰⁰ In	T : avera	ge 12L	08=5.7(0.3)	02P103=5	.9(0.2)	,(222,00)									**
* ¹⁰⁰ In	$D: \beta^+ p$	average	12Lo08=1.	7(0.4) 02PI	03=1.60	(0.3)									**
* ¹⁰⁰ Sn	T : avera	ge 12Hi	07=1.16(0.2	20) 08Ba53	=0.55(+	-0.70-0.31)	96Ki	23=0.94	(+0.54-0.26)						**
				.,					(

-29130#	500#			5#	ms	(>400 ns)	$5/2^{+}$ #	10	10Oh02	Ι	2010	β^{-} ?; β^{-} n=20#; β^{-} 2n=2#	
-42850#	200#			31.8	ms	3.3	$3/2^{+}$ #	06	11Ni01	Т	1992	$\beta^{-}=100; \beta^{-}n=284; \beta^{-}2n=0.3\#?$	*
-55325	8			113.8	ms	1.7	$(5/2^{-})$	06	11Ni01	Т	1983	$\beta^{-}=100; \beta^{-}n=2.37$ 14	*
-65061	7			426	ms	20	$5/2^{+}$	06	07Ch07	J	1983	$\beta^{-}=100; \beta^{-}n=1.94$ 18	*
-64730	7	331.5	0.7	190	ns	40			12Ka36	ETD	2012	IT=100	*
-63854	7	1207.0	1.6	870	ns	90			09Fo05	ETD	2009	IT=100	*
-73166	8			2.3	s	0.1	$3/2^{+}$	06	02Ca37	J	1972	$\beta^{-}=100$	
-78891	4			7.1	s	0.3	$(5/2#)^+$	06			1970	$\beta^{-}=100$	*
-83519.9	0.3			14.61	m	0.03	$1/2^{+}$	06			1941	$\beta^{-}=100$	
-83506.4	0.3	13.497	0.009	226	ns	7	$3/2^{+}$	06			1977	IT=100	
-83462.9	0.3	57.015	0.011	133	ns	70	$5/2^{+}$	06			1977	IT=100	
-86345	24			14.22	m	0.01	$9/2^{+}$	06			1941	$\beta^{-}=100$	
-86137	24	207.526	0.020	636	μs	8	$1/2^{-}$	06			1964	IT=100	
-87958.1	0.4			STABLE			$5/2^{+}$	06			1931	IS=17.06 2	
-87430.5	0.4	527.56	0.10	17.5	μs	0.4	$11/2^{-}$	06			1974	IT=100	
-87412	6			3.3	У	0.3	$1/2^{-}$	06			1948	<i>ε</i> =100	
-87255	6	157.32	0.03	4.34	d	0.01	$9/2^{+}$	06			1944	ε=92.80 25; IT=7.20 25	
-85432	5			8.47	h	0.06	$5/2^{+}$	06			1948	$\beta^{+}=100$	
-81334	5			11.1	m	0.3	$9/2^+$	06	14Fe01	J	1966	$\beta^{+}=100$	
-81060	5	274.1	0.3	3.10	s	0.10	$(1/2)^{-}$	06	14Fe01	J	1975	IT=100	*
-75836.5	1.5			1.36	m	0.05	5/2+#	06			1969	$\beta^{+}=100$	
	$\begin{array}{c} -29130 \# \\ -42850 \# \\ -55325 \\ -65061 \\ -64730 \\ -63854 \\ -73166 \\ -78891 \\ -83519.9 \\ -83519.9 \\ -83506.4 \\ -83462.9 \\ -86345 \\ -86345 \\ -86137 \\ -87958.1 \\ -87958.1 \\ -87958.1 \\ -87430.5 \\ -87412 \\ -87255 \\ -85432 \\ -81334 \\ -81060 \\ -75836.5 \end{array}$	$\begin{array}{cccc} -29130 \# & 500 \# \\ -42850 \# & 200 \# \\ -55325 & 8 \\ -65061 & 7 \\ -64730 & 7 \\ -63854 & 7 \\ -73166 & 8 \\ -78891 & 4 \\ -83519.9 & 0.3 \\ -83506.4 & 0.3 \\ -83506.4 & 0.3 \\ -83462.9 & 0.3 \\ -86345 & 24 \\ -86137 & 24 \\ -87430.5 & 0.4 \\ -87430.5 & 0.4 \\ -87412 & 6 \\ -87255 & 6 \\ -87255 & 6 \\ -85432 & 5 \\ -81334 & 5 \\ -81060 & 5 \\ -75836.5 & 1.5 \\ \end{array}$	$\begin{array}{cccc} -29130\# & 500\# \\ -42850\# & 200\# \\ -55325 & 8 \\ -65061 & 7 \\ -64730 & 7 & 331.5 \\ -63854 & 7 & 1207.0 \\ -73166 & 8 \\ -78891 & 4 \\ -83519.9 & 0.3 \\ -83506.4 & 0.3 & 13.497 \\ -83506.4 & 0.3 & 57.015 \\ -86345 & 24 \\ -86137 & 24 & 207.526 \\ -87958.1 & 0.4 \\ -87430.5 & 0.4 & 527.56 \\ -87412 & 6 \\ -87255 & 6 & 157.32 \\ -85432 & 5 \\ -81334 & 5 \\ -81060 & 5 & 274.1 \\ -75836.5 & 1.5 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

Nuclide	Mass ex	cess	Table	Excitatio	n	3620	Н	alf-li	fe		Ens	Referen	ce	Year of	Decay modes and	
	(keV	7)		energy (ke	eV)					Ū	2110	itereren		discovery	intensities (%)	
A-grou	up continued															
¹⁰¹ In	-68610#	200#					15.1	s	1.1	$9/2^+$ #	06	97Sz04	Т	1988	$\beta^{+}=100; \beta^{+}p=?$	*
¹⁰¹ In ^m	-68060#	220#	550#	100#			10#	s		1/2-#					$\beta^+=95\#$; IT=5#	
¹⁰¹ Sn	-60310	300	01 01/15 4	051104	22(5)		1.97	s	0.16	$(7/2^+)$	07	12Lo08	TD	1994	$\beta^+=100; \beta^+=21.07$	*
* ¹⁰¹ Kb	I : avera	ge 11Ni	01=31(+5-4)	95Ln04=	32(5) 4(4) 831	Wo10_	121(6)									**
* 51 *101 Y	T : avera	ge 11Nh	01 = 113(2) = 00 = 400(20)	86Wa17=11	4(4) 83 440(20)	83Wo	10 = 500(50)	6								**
* ¹⁰¹ Y	T: 9	3Ru01=	279(9) confl	icting, not	used	00 110	10 200(20	,								**
$*^{101} Y^m$	E : 12Ka	36=128.	0(0.5) and 2	03.5(0.5) γ	rays in	cascad	le to groun	d-sta	te							**
$*^{101}Y^{m}$	T : symn	netrized	from 187(+4	19–38)												**
$*^{101}Y^{n}$	T : symn	netrized	from 860(+9	90-80)												**
* ¹⁰¹ Y ⁿ	E : from	a least-s	quares fit to	Eg using 0	19F005 I	evel sc	theme									**
$*^{101} \Delta \sigma^m$	J : positi L : from	ve parity	E3 γ to $(7/2)$	+ E2 γ from γ + level	na + exe	c. leve	1									**
* ¹⁰¹ In	T : avera	ge 97Sz	04=14.9(1.2)) 88Hu07=	16(3)											**
* ¹⁰¹ Sn	T : avera	ge 12Lo	08=2.1(0.2)	07Se04=1	.3(0.5) 0	7Ka15	5=1.9(0.3)									**
* ¹⁰¹ Sn	$D:\beta^+p$	average	12Lo08=22	(1) 10St.A=	=20(1)]	J : from 10	Da17								**
102.04	27710#	200#					27		2	(4+)	00	100-10	ID	1005	<i>Q</i> = 100, <i>Q</i> = <i>x</i> (5.22, <i>Q</i> = 2 <i>x</i> 2#	
102 Sr	-57710# -52160	500# 70					3/ 60	ms	5 6	(4 ') 0 ⁺	09	10wa16	JD	1995	$\rho = 100; \rho = n=05 22; \rho = 2n=2#$ $\beta^{-} = 100; \beta^{-} n=5 5 15$	*
¹⁰² Y	-61173	4				* &	298	ms	9	(2^{-})	09	11Ha48	J	1983	$\beta^{-}=100; \beta^{-}n=4.9 12$	*
$^{102}Y^{m}$	-60970#	200#	200#	200#		* &	360	ms	40	(>5)	09	11Ha48	J	1980	$\beta^{-}=100; \beta^{-}n=4.9 12$	
¹⁰² Zr	-71588	9					2.9	s	0.2	0+	09			1970	$\beta^{-}=100$	
¹⁰² Nb	-76304.5	2.5		_			4.3	s	0.4	(4^{+})	09			1972	$\beta^{-}=100$	
¹⁰² Nb ^m	-76210	8	94	7	MD		1.3	s	0.2	1+ 0+	09			1976	$\beta^{-}=100$	
¹⁰² Mo ¹⁰² Tc	-83500	8				*	5 28	m	0.2	0 ' 1+	09			1954	$\beta = 100$ $\beta^{-} - 100$	
$^{102}Tc^{m}$	-84573 -84553	13	20	10		*	4 35	m	0.13	(4.5)	09			1954	$\beta^{-}=98.2$ IT=2.2	
¹⁰² Ru	-89106.4	0.4	20	10			STABLE		0.07	0+	09			1931	IS=31.55 14	
¹⁰² Rh	-86783	6					207.0	d	1.5	$(1^{-}, 2^{-})$	09	98Sh21	Т	1941	$\beta^+=785; \beta^-=225$	*
$^{102}Rh^m$	-86642	6	140.73	0.09			3.742	У	0.010	6+	09	99Gi14	J	1962	$\beta^+ \approx 100$; IT=0.233 24	
¹⁰² Pd	-87903.2	0.6					STABLE			0+	09			1935	IS=1.02 1; $2\beta^+$?	
¹⁰² Ag	-82247	8	0.40	0.07			12.9	m	0.3	5 ⁽⁺⁾	09			1960	$\beta^+=100$	
¹⁰² Ag ^m ¹⁰² Cd	-82238	8	9.40	0.07			5.5	m	0.5	21 0 ⁺	09			1967	$\beta' = 51.5; 11=49.5$ $\beta^+ = 100$	
¹⁰² In	-70695	5					23.3	s s	0.3	(6^+)	09	958701	T	1909	$\beta^{+}=100$ $\beta^{+}=100$; β^{+} p=0.0093.13	
¹⁰² Sn	-64930	100					3.8	s	0.2	0+	09	<i>JJJJL</i> 01	5	1994	$\beta^{+}=100, \beta^{-}=0.0055, 15$ $\beta^{+}=100$	*
102 Sn ^m	-62910	100	2017	2			367	ns	8	(6^+)	09	98Li50	Е	1996	IT=100	*
* ¹⁰² Rb	T : also	15Lo04=	37(10) 11N	i01=35(+15	5-8)	D	$:\beta^{-}n=18(3)$	8)% i	n 85Pf.A	4						**
* ¹⁰² Sr	T : also	11Ni01=	85(15)	~ ~ ~ ~												**
* ¹⁰² Y	J: in 111	1a48, co	mbining $0/0$	2h0/=(2,3)	$-20\epsilon(2)$	ectroco	opy data fr	om 9	I Hill							**
* Kii * ¹⁰² Sn	T · 95Fa	A=4 6(1	 21=207.5(1. 4) supersed 	7) 01 H100= les 95Sc28	=200(3) =4 5(0 7) nrel	iminary fro	nm sa	me grou	n						**
$*^{102} Sn^{m}$	T : from	11Hi.A	.+) supersee	103 755025	-4.5(0.7), prei	ininary ne	/m 3a	ine grou	P						**
¹⁰³ Rb	-33610#	400#					26	ms	11	$3/2^{+}$ #	15	15Lo04	TD	2010	$\beta^{-}=100; \beta^{-}n=50#; \beta^{-}2n=2#$	*
¹⁰³ Sr	-47420#	200#					53	ms	10	5/2+#	15	112207	T	1997	$\beta^{-}=100; \beta^{-}n=2\#; \beta^{-}2n=0.01\#$	
103 Y	-58458	11					239	ms	12	5/2+#	09	11Ni01	T	1994	$\beta^{-}=100; \beta^{-}n=8.0 17$	*
¹⁰³ Nh	-07813 -75029	4					1.56	s	0.07	5/2 # 5/2+#	09	09Pe00	ID	1987	$\beta = 100; \beta n < 1$ $\beta^{-} = 100; \beta^{-} n = 0 \#$	
¹⁰³ Mo	-80961	9					67.5	s	1.5	$3/2^+$	09	09Ch09	J	1963	$\beta^{-}=100, \beta^{-}=100$	
¹⁰³ Tc	-84604	10					54.2	s	0.8	$5/2^+$	09			1957	$\beta^{-}=100$	
¹⁰³ Ru	-87267.2	0.4					39.247	d	0.013	$3/2^+$	09			1945	$\beta^{-}=100$	*
103 Ru ^m	-87029.0	0.8	238.2	0.7			1.69	ms	0.07	$11/2^{-}$	09			1964	IT=100	
¹⁰³ Rh	-88031.7	2.3	20 752	0.007			STABLE		0.000	$\frac{1}{2^{-}}$	09			1934	IS=100.	
103 DA	-8/991.9	2.3	39.753	0.006			30.114	m A	0.009	1/2 5/2+	09			1943	11=100 s=100	
¹⁰³ Δ σ	-84803	0.9 4					65 7	u m	0.019	$\frac{3}{2^+}$	09			1950	$\beta^{+}=100$	
103Ag ^m	-84669	4	134.45	0.04			5.7	s	0.3	$1/2^{-}$	09			1962	IT=100	
¹⁰³ Cd	-80651.6	1.8					7.3	m	0.1	$5/2^{+}$ #	09			1960	$\beta^{+}=100$	
¹⁰³ In	-74633	10					60	s	1	9/2+#	09	97Sz04	Т	1978	$\beta^{+}=100$	
103 In ^m	-74001	10	631.7	0.1			34	s	2	$1/2^{-}$ #	09			1988	$\beta^{+}=67; IT=33$	
103 Sn	-66970	70					7.0	s	0.2	5/2+#	09			1981	$\beta^+=100; \beta^+p=1.2.1$	
103 Sb	-56180#	300#	from 151 c0	4-23(+12	0)				<49 ns	s 5/2 ⁺ #	15				p ?	- ا- بل
* KU * ¹⁰³ V	T : syinn T : avera	ge 11Ni	131000 + 131000 + 18000 + 18000 + 1310000 + 1310000 + 1310000 + 1310000 + 13100000 + 13100000 + 1310000000000	-15) 09Per	. <i></i>	+40-2	0) 96Me00	=230)(20) and	1						**
* ¹⁰³ Y	T: 9	6Lh04=	190(50)	D : aver	rage 09F	e06=8	(2)% 96M	e09=	8(3)%	-						**
* ¹⁰³ Ru	T : other	recent 0	9Go29=39.2	210(0.038)	5											**

Chinese Physics C Vol. 41, No. 3 (2017) 030001

TADIE I. THE NUBANEZUTO TADIE (CONTINUED, EXDIVIDITION OF TADIE OF DAYE TA	Table I. The	e NUBASE2016 ts	able (continued, F	Explanation of Table on page	e 18)
--	--------------	-----------------	--------------------	------------------------------	-------

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nuclide	Masser	0000	Tuble	Excitation	ODAL	E2010 tab	Ie (life		Ene	Reference		Vear of	Decay modes and	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ivacinac	(keV	()	e	nergy (keV))	1	Ian-	inc	5	LIIS	Keleteik	.c	discovery	intensities (%)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	104 @									<u>e </u>			-		0 100 0 00 0 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁴ Sr 104 x	-44110#	300#				50.6	ms	4.2	0^+	15	15Lo04	Т	1997	$\beta^{-}=100; \beta^{-}n=9\#; \beta^{-}2n=0\#$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	104 7	-54060#	400#				197	ms	4	0+	15	000006	тD	1994	$\beta = 100; \beta = n=34 \ 10; \beta = 2n=0\#$ $\beta^{-} = 100; \beta^{-} = n \le 1$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	104 Nb	-03/24	9				920 * 10	ms	20	(1^+)	07	09Pe00	ID	1990	$\beta = 100; \beta = n < 1$ $\beta^{-} = 100; \beta^{-} = n = 0.06.3$	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{104}Nb^{m}$	-71619.0 -71600	120	210	120	BD	* 4.9	ms	40	high	07			1976	$\beta^{-}=100; \beta^{-}=0.053$ $\beta^{-}=100; \beta^{-}=0.053$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁴ Mo	-80350	9	210	120	DD		s	2	0^+	07			1962	$\beta^{-100}, \beta^{-1000}$	
$ \begin{array}{c} \label{eq:constraints} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	¹⁰⁴ Tc	-82503	25				18.3	m	0.3	(3^+)	07			1956	$\beta^{-}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{104}\mathrm{Tc}^{m}$	-82433	25	69.7	0.2		3.5	μs	0.3	(5^+)	07			1981	IT=100	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{104}\mathrm{Tc}^{n}$	-82397	25	106.1	0.3		400	ns	20	(+)	07			1999	IT=100	
	¹⁰⁴ Ru	-88095.7	2.5				STABLE			0^{+}	07			1931	IS=18.62 27; $2\beta^-$?	*
	¹⁰⁴ Rh	-86959.3	2.3				42.3	s	0.4	1^{+}	07			1939	$\beta^{-} \approx 100; \beta^{+} = 0.45 \ 10$	
	104 Rh ^m	-86830.3	2.3	128.9679	0.0005		4.34	m	0.03	5+	07			1939	IT \approx 100; $\beta^{-}=0.13$ 1	
	¹⁰⁴ Pd	-89395.1	1.3				STABLE			0^{+}	07			1935	IS=11.14 8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁴ Ag	-85116	4				69.2	m	1.0	5+	07			1955	$\beta^+=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁴ Ag ^m	-85109	4	6.90	0.22		33.5	m	2.0	2+	07			1959	$\beta^+ \approx 100; \text{ IT} < 0.07$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	104Cd	-83968.4	1.7				57.7	m	1.0	0^+	07	1214-15	Ŧ	1955	$\beta^+=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	104 In 104 Inm	-/0183	6	02.49	0.10		1.80	m	0.03	(5^+)	07	13Ma15	J	19//	p = 100 IT-90, $R = 20$	
	104 Sp	-71627	6	95.46	0.10		20.8	s	0.5	(3·) 0+	07			1966	$\beta^{\pm}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	104 Sh	-50170	120				20.8	S me	130	0.	07	05Ea A	р	1965	$\beta^{+} = 100$ $\beta^{+} = 2^{+} \beta^{+} p < 7^{+} p < 7^{+} \alpha^{2}$	4
	* ¹⁰⁴ Sr	T · avera	120 re 151.00	4=53(5) 11N	Ni01=43(+9	-7)	470	ms	150		07	951°a.A	D	1995	$p = 1, p p < 7, p < 7, \alpha$	**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ¹⁰⁴ Nb	$D \cdot \beta^{-} n=$	0 71% o	f 83En03 cc	onflicting n	ot used										**
	$*^{104} Tc^{m}$	$J: E2 \gamma te$	(3^+) lev	vel (from EN	(SDF)	or used										**
*** *** *** *** *** *** *** ***	* ¹⁰⁴ Ru	T:0ν-β	B to 1st e	xc. state : 13	3Be09>650)Ey 12A	An08>190Ey									**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$*^{104}$ Sb	T : symm	etrized fi	rom 440(+15	50–110)	D:	95Fa.A super	sede	s 95Sc28 p<	<1%						**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	105 c	20(10)	5001				20		~	5 /0± //	1.5			1007	0-100 0-104 0-2 14	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	105 SF	-38010#	500# 1240				39	ms	5	5/2'# 5/2+#	15			1997	p = 100; p = 10#; p = 2n=1#	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1057.	-51270	1340				95 670	ms	9	$\frac{5}{2^+}$	15			1994	$\beta = 100; \beta = n < 82; \beta = 2n = 0 \#$ $\beta = -100; \beta = n < 2$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	105 Nb	-60016	12				2.95	e nus	20	(3/2) $5/2^+$ #	05			1992	$\beta = 100; \beta = n < 2$ $\beta = -100; \beta = n - 1.7.9$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁵ Mo	-77337	9				35.6	s	1.6	$(5/2^{-})$	05			1962	$\beta^{-100}, \beta^{-1100}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁵ Tc	-82290	40				7.6	m	0.1	$(3/2^{-})$	05			1955	$\beta^{-}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁵ Ru	-85934.5	2.5				4.44	h	0.02	$3/2^+$	05			1945	$\beta^{-}=100$	
	105 Ru ^m	-85913.9	2.5	20.610	0.013		340	ns	15	$(5/2)^+$	05			1974	IT=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁵ Rh	-87851.2	2.5				35.357	h	0.037	$7/2^+$	05	09Go29	Т	1945	$\beta^{-}=100$	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	105 Rh ^m	-87721.4	2.5	129.782	0.004		42.9	s	0.3	$1/2^{-}$	05			1950	IT=100	
	¹⁰⁵ Pd	-88417.9	1.1				STABLE			$5/2^+$	05			1935	IS=22.33 8	
$ \frac{10^{5} A_{g}}{10^{5} - 8706} = \frac{87016}{5} 5 \frac{5}{25.479} 0.016 7.23 m 0.16 7/2^{+} 05 1939 \beta^{+}=100 \frac{11}{100} (\beta^{+}=0.347) \beta^{+}=100 \beta^{+}=0.01 \beta$	105 Pd ^m	-87928.8	1.1	489.14	0.04		36.1	μs	0.4	$11/2^{-}$	05			1970	IT=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁵ Ag	-87071	5				41.29	d	0.07	$1/2^{-}$	05			1939	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{105}\text{Ag}^{m}$	-87046	5	25.479	0.016		7.23	m	0.16	$7/2^+$	05			1969	IT \approx 100; $\beta^+=0.34$ 7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁵ Cd	-84333.8	1.4				55.5	m	0.4	5/2+	05			1950	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	105 In 105 r m	-79641	10	(74.00	0.05		5.07	m	0.07	9/2+	05			1975	$\beta^+=100$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105 Cm	- /896/	10	6/4.08	0.25		48	s	0	(1/2) (5/2 ⁺)	05	95D=09	т	1975	$11=?; p^+=25\pi$ $p^+=100; p^+=-2$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105 Sh	-64015	22				1 12	s	0.16	$(5/2^+)$ $(5/2^+)$	05	05E2 A	ј Т	1981	$p^{+}=100; p^{+}p=2$ $\beta^{+}=2; p<0, 1; \beta^{+}p=2$	4
* ¹⁰⁵ Sb T: 95Fa.A supersedes 95Sc28=1.30(0.15), preliminary from same group * ¹⁰⁵ Sb D: p 05Li47<0.1% above 430 keV disagrees with 94Ti03≈1% * ¹⁰⁵ Te T: average 06Li41=620(70) 06Se08=700(+250-170) * ¹⁰⁶ Te J: same spin as 171.7 state in ¹⁰¹ Sn *** * ¹⁰⁶ Sr34790# 600# 21 ms 8 0 ⁺ 15 15Lo04 T 2010 $\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.3\#$ ** * ¹⁰⁶ Sr34790# 600# 74 ms 6 2 ⁺ # 15 15Lo04 T 1997 $\beta^{-}=100; \beta^{-}n=20\#; \beta^{-}2n=0.3\#$ ** * ¹⁰⁶ Sr58550 430 178.6 ms 5.8 0 ⁺ 15 15Lo04 T 1994 $\beta^{-}=100; \beta^{-}n=20\#; \beta^{-}2n=0.5\#$ * * ¹⁰⁶ Nb - 66203 4 1050 ms 100 (1 ⁻) 15 14Lu07 J 1976 $\beta^{-}=100; \beta^{-}n=4.5$ * * ¹⁰⁶ Nb ⁻ -65998 4 204.8 0.1 800 ns 50 (3 ⁺) 15 1999 IT=100 * * ¹⁰⁶ Nb ⁿ -65998 4 204.8 0.5 849 ns 45 (3 ⁺) 14Lu07 EJ 1999 IT=100 * * ¹⁰⁶ Nb ⁿ -65998 4 204.8 0.5 849 ns 45 (3 ⁺) 14Lu07 EJ 1999 IT=100 * * ¹⁰⁶ Nb ⁿ -6593 5 371.8 d 0.18 0 ⁺ 08 1965 $\beta^{-}=100$ 1 ⁰⁶ Rh -86363 5 30.07 s 0.35 1 ⁺ 08 1947 $\beta^{-}=100$ 1 ⁰⁶ Rh -86363 5 30.07 s 0.35 1 ⁺ 08 1947 $\beta^{-}=100$ 1 ⁰⁶ Rh -86363 5 30.07 s 0.35 1 ⁺ 08 1947 $\beta^{-}=100$ 1 ⁰⁶ Rh -86363 5 30.07 8 23.96 m 0.04 1 ⁺ 08 1935 IS=27.33 3 1 ⁰⁶ Ag -86942 3 23.96 m 0.04 1 ⁺ 08 1935 IS=27.33 3 1 ⁰⁶ Ag -86942 3 23.96 m 0.04 1 ⁺ 08 1935 IS=27.33 3 1 ⁰⁶ Ag -86942 3 23.96 m 0.04 1 ⁺ 08 1935 IS=27.33 3 1 ⁰⁶ Ag -86942 3 23.96 m 0.04 1 ⁺ 08 1935 IS=27.33 3 1 ⁰⁶ Ag -86942 3 89.66 0.07 8.28 d 0.02 6 ⁺ 08 1935 IS=27.33 3 1 ⁰⁶ Ag -869579 12 28.6 0.3 5.2 m 0.1 (2) ⁺ 08 16Be11 T 1935 IS=1.25 6; 2\beta^{+}; * 1 ¹⁰⁶ Inf -80005 12 (2) 6.2 m 0.1 7 ⁺ 08 1962 $\beta^{+}=100$	105 Te	-52810	300				633	ne	66	(3/2) $(7/2^+)$	05	06Se08	т	2006	p :, p < 0.1, p p : $\alpha \approx 100$	*
* 105 D : p 05Li47<0.1% above 430 keV disagrees with 94Ti0321% *** *105 Te J: same spin as 171.7 state in ¹⁰¹ Sn *** *106 Te J: same spin as 171.7 state in ¹⁰¹ Sn *** *106 Te J: same spin as 171.7 state in ¹⁰¹ Sn *** *106 Te J: same spin as 171.7 state in ¹⁰¹ Sn *** *106 Te J: same spin as 171.7 state in ¹⁰¹ Sn *** *** *106 Sr - 34790# 600# CD = $\beta^{-1}=10\%$; $\beta^{-1}=10\%$	* ¹⁰⁵ Sb	T · 95Fa	A supers	edes 95Sc28	=1 30(0 15)) prelir	ninary from sa	me o	roun	(7/2)	00	005000	•	2000	u , 9100	**
* ¹⁰⁵ Te T : average 06Li41=620(70) 06Se08=700(+250-170) * ¹⁰⁶ Te J : same spin as 171.7 state in ¹⁰¹ Sn * ** *** ¹⁰⁶ Sr -34790# 600# 21 ms 8 0 ⁺ 15 15Lo04 T 2010 $\beta^{-}=100; \beta^{-}=10#; \beta^{-}2n=0.3#$ * ¹⁰⁶ Sr -46050# 500# 74 ms 6 2 ⁺ # 15 15Lo04 T 1997 $\beta^{-}=100; \beta^{-}=20#; \beta^{-}2n=0.5#$ * ¹⁰⁶ Y -46050# 500# 74 ms 6.8 0 ⁺ 15 15Lo04 T 1994 $\beta^{-}=100; \beta^{-}=-20#; \beta^{-}2n=0.5#$ * ¹⁰⁶ Ne -66203 4 1050 ms 100 (1 ⁻) 15 14Lu07 J 1976 $\beta^{-}=100; \beta^{-}=-7.7$ * ¹⁰⁶ Nb ^m -65998 4 204.8 0.1 800 ns 50 (3 ⁺) 15 1999 IT=100 * ¹⁰⁶ Nb ⁿ -65998 4 204.8 0.5 849 ns 45 (3 ⁺) 14Lu07 EJ 1999 IT=100 * ¹⁰⁶ Nb ⁿ -65998 4 204.8 0.5 849 ns 45 (3 ⁺) 14Lu07 EJ 1999 IT=100 * ¹⁰⁶ Nb ⁿ -6533 5 3.71.8 d 0.18 0 ⁺ 08 1965 $\beta^{-}=100$ ¹⁰⁶ Ru -86333 5 3.71.8 d 0.18 0 ⁺ 08 1948 $\beta^{-}=100$ ¹⁰⁶ Rh -86363 5 3.71.8 d 0.18 0 ⁺ 08 1948 $\beta^{-}=100$ ¹⁰⁶ Rh -86363 5 3.71.8 d 0.18 0 ⁺ 08 1948 $\beta^{-}=100$ ¹⁰⁶ Rh -86523 3 89.66 0.07 8.28 d 0.02 6 ⁺ 08 1935 $\beta^{-}=100$ ¹⁰⁶ Ag ^m -86852 3 89.66 0.07 8.28 d 0.02 6 ⁺ 08 1938 $\beta^{+}=100$ IT≤4.2e-6 ¹⁰⁶ Na ^m -80608 12 6.2 m 0.1 7 ⁺ 08 1962 $\beta^{+}=100$	* ¹⁰⁵ Sb	D : p 05L	i47<0.1	% above 430) keV disagi	rees wit	th 94Ti03≈1%	ine e	Joup							**
* ¹⁰⁵ Te J: same spin as 171.7 state in ¹⁰¹ Sn *** ¹⁰⁶ Sr -34790# 600# 21 ms 8 0 ⁺ 15 15Lo04 T 2010 $\beta^{-}=100; \beta^{-}=101; \beta^{-}=0.03# *$ ¹⁰⁶ Y -46050# 500# 74 ms 6 2 ⁺ # 15 15Lo04 T 1997 $\beta^{-}=100; \beta^{-}=20\#; \beta^{-}=20.5\# *$ ¹⁰⁶ Zr -58550 430 178.6 ms 5.8 0 ⁺ 15 15Lo04 T 1994 $\beta^{-}=100; \beta^{-}=20\#; \beta^{-}=20.5\# *$ ¹⁰⁶ Nb -66203 4 1050 ms 100 (1 ⁻) 15 14Lu07 J 1976 $\beta^{-}=100; \beta^{-}=4.5 3 *$ ¹⁰⁶ Nb ^m -65998 4 204.8 0.1 800 ns 50 (3 ⁺) 15 1999 IT=100 * ¹⁰⁶ Nb ^m -65998 4 204.8 0.5 849 ns 45 (3 ⁺) 14Lu07 EJ 1999 IT=100 * ¹⁰⁶ Mo -76135 9 8.73 s 0.12 0 ⁺ 08 1969 $\beta^{-}=100$ ¹⁰⁶ Ru -86323 5 35 35.6 s 0.6 (1,2)(^{4#}) 08 1965 $\beta^{-}=100$ ¹⁰⁶ Ru -86363 5 371.8 d 0.18 0 ⁺ 08 1948 $\beta^{-}=100$ ¹⁰⁶ Rh ^m -86231 10 132 11 BD 131 m 2 (6) ⁺ 08 1947 $\beta^{-}=100$ ¹⁰⁶ Ag -86942 3 23.96 m 0.04 1 ⁺ 08 1935 IS=27.33 3 ¹⁰⁶ Ag ^m -86523 3 89.66 0.07 8.28 d 0.02 6 ⁺ 08 1938 $\beta^{+}=100; IT \le 4.2e-6$ ¹⁰⁶ In -80608 12 6.2 m 0.1 7 ⁺ 08 1962 $\beta^{+}=100$	* ¹⁰⁵ Te	T : average	ge 06Li4	1=620(70) 0	6Se08=700	(+250-	170)									**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ¹⁰⁵ Te	J : same s	pin as 17	1.7 state in	¹⁰¹ Sn											**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106 c	24700#	600#				21	-	0	0^+	15	151 -04	т	2010	$B^{-}=100, B^{-}=104, B^{-}=20024$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106 V	-34/90# 46050#	500#				21	ins	0 6	2+#	15	15L004	1 T	2010	$\mu = 100; \mu = 10\#; \beta = 2n=0.03\#$ $\beta^{-} = 100; \beta^{-} = 20\#; \beta^{-} = 2n=0.5\#$	*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106 7 r	-40030#	300# 430				178.6	me	58	2 · # 0+	15	15L004	т	1997	$\beta = 100; \beta = 120\%; \beta = 20\%; \beta = 20\%; \beta = 0.5\%$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	106 NIb	-56203	430				1/8.0	me	100	(1^{-})	15	14L p07	T	1994	$\beta = 100; \beta = n < 7$ $\beta = -100; \beta = n - 4.5.3$	*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁰⁶ Nh ^m	-65998	4	204.8	0.1		800	ns	50	(3^+)	15	14500/	J	1999	p = 100, p = 1-4.55 IT=100	不
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	106Nh^n	-65998	4	204.8	0.5		849	ns	45	(3^+)	15	14Ln07	EI	1999	IT=100	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁶ Mo	-76135	9	20.00	0.0		8.73	8	0.12	0+	08	1.2407		1969	$\beta^{-}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁶ Tc	-79776	12				35.6	s	0.6	$(1.2)^{(+\#)}$	08			1965	$\beta^{-}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁶ Ru	-86323	5				371.8	d	0.18	0+	08			1948	$\beta^{-}=100$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁰⁶ Rh	-86363	5				30.07	s	0.35	1+	08			1947	$\beta^{-}=100$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	106 Rh ^m	-86231	10	132	11	BD	131	m	2	$(6)^{+}$	08			1955	$\beta^{-}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁶ Pd	-89907.5	1.1				STABLE			0+	08			1935	IS=27.33 3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁶ Ag	-86942	3				23.96	m	0.04	1^{+}	08			1937	$\beta^+=?;\beta^-\approx 0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{106}Ag^m$	-86852	3	89.66	0.07		8.28	d	0.02	6^{+}	08			1938	$\beta^+=100; IT \le 4.2e-6$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁶ Cd	-87132.1	1.1				STABLE		(>1.1 Zy)	0^{+}	08	16Be11	Т	1935	IS=1.25 6; $2\beta^+$?	*
$100 \text{ In}^{\text{m}} = -80579$ 12 28.6 0.3 5.2 m 0.1 (2) ⁺ 08 1966 $\beta^{+}=100$	100 In	-80608	12	• · · ·	o -		6.2	m	0.1	7+	08			1962	$\beta^+=100$	
A MARKEN AND A MARKEN	100 In‴	-80579	12	28.6	0.3		5.2	m	0.1	$(2)^{+}$	08			1966	$\beta = 100$	

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Nuclide	Mass ex (keV	(cess ()	E	xcitation ergy (keV	')	Ι	Half-	life	J^{π}	Ens	Referen	ce	Year of discovery	Decay modes and intensities (%)	
A-grou	up continued	1													
¹⁰⁶ Sn	-77354	5				1.92	m	0.08	0^+	08			1975	$\beta^{+}=100$	
¹⁰⁶ Sb	-66473	7				600	ms	200	(2^+)	08			1981	$\beta^{+}=100$	
¹⁰⁶ Sb ^m	-66370	7	103.5	0.3		226	ns	14	(4^+)	08	99So08	Т	1998	IT=100	*
¹⁰⁶ Te	-58220	100				78	μs	11	0^+	08	16Ca33	Т	1981	$\alpha = 100$	*
* ¹⁰⁶ Sr	T : symn	netrized	from 15Lo0	4=20(+8	–7)										**
* ¹⁰⁶ Y	T : avera	ge 15Lo	04=82(+10-	-5) 15Ni2	ZZ=62(9	9) 11Ni01=	62(+	25–14)							**
* ¹⁰⁰ Zr	T : avera	ge 15Lo	04=175(7)	$11N_{101} = 10$	186(+11	-10)	-	201.04 100	0.(50)						**
* ¹⁰⁰ Nb	T : unwe	ighed av	erage 09Pe	06=1240((20) 96N	Ae09=900(2	20) 8	3Sh06=102	0(50)						**
* ¹⁰⁶ Nb ⁿ	T : avera	ge 12Ka	36=660(+1	10-100) 9	99Ge01:	=890(50)	210	E 00E 04.	1100						**
*106 CL m	1 : for ε_{j}	5° , theo	rencally fas	ter chann	220(20)	rs 12Be14;	>210	Ey 021r04>	~410Ey						**
* ¹⁰⁶ To	T : avera	ge 9950	08=232(21) 22=70(+20)	98L150=	220(20)	25 15 04	De 1	1 - 60(140, 2))) and						**
* 10 * ¹⁰⁶ Te	T: 8	1Sc17=0	50(+30–10)	-15) 0558	105-65(-	+23-13) 94	-rai	1=00(+40-20	<i>J)</i> and						**
107 Sr	28900#	700#				10#	me	(>400 pc)	1/2+#	10	100502	T	2010	$\beta^{-} \gamma \beta^{-} n - 30 \# \beta^{-} 2 n - 3 \#$	
107 V	- 12360#	500#				33.5	me	(2400 113)	$\frac{1}{2} \pi$ 5/2+#	15	151 004	т	1007	β^{-} , β^{-} $n=50\pi$, β^{-} $2n=5\pi$ β^{-} = 100: β^{-} $p=30$ #: β^{-} $2n=0.1$ #	
107 7 r	-42300#	1120				145.7	me	0.3 2.4	$5/2 = \pm 5/2^+ \pm 5/2^- \pm 5/2^$	15	15L004	т	1997	$\beta = 100, \beta = 1 = 50\%, \beta = 21 = 0.1\%$ $\beta^{-} = 100; \beta^{-} = n < 23$	¥
¹⁰⁷ Nb	-63724	8				280	me	0	$5/2^{+}$	08	15L004	т	1994	$\beta^{-100}, \beta^{-1} \approx 23$ $\beta^{-100}, \beta^{-} \approx 7.4.8$	*
¹⁰⁷ Mo	-72552	9				35	s	05	$(5/2^+)$	08	152001	•	1972	$\beta^{-100}, \beta^{-100}$	
$107 Mo^{m}$	-72487	9	65.4	0.2		420	ns	30	$(1/2^+)$	08			1976	IT=100	
¹⁰⁷ Tc	-78750	9				21.2	s	0.2	$(3/2^{-})$	08	09Gu11	J	1965	$\beta^{-}=100$	
$^{107} Tc^{m}$	-78720	9	30.1	0.1		3.85	μs	0.05	$(1/2^+)$	08			2007	IT=100	
$^{107}\mathrm{Tc}^{n}$	-78684	9	65.72	0.14		184	ns	3	$(5/2^+)$	08			1974	IT=100	
¹⁰⁷ Ru	-83863	9				3.75	m	0.05	$(5/2)^{+}$	08			1951	$\beta^{-}=100$	
¹⁰⁷ Rh	-86864	12				21.7	m	0.4	$7/2^{+}$	08			1951	$\beta^{-}=100$	
107 Rh ^m	-86596	12	268.36	0.04		> 10	μs		$1/2^{-}$	08			1986	IT=100	
¹⁰⁷ Pd	-88372.6	1.2				6.5	My	0.3	$5/2^{+}$	08			1958	$\beta^{-}=100$	
107 Pd ^m	-88256.9	1.2	115.74	0.12		850	ns	100	$1/2^{+}$	08			1969	IT=100	
$^{107}Pd^{n}$	-88158.0	1.2	214.6	0.3		21.3	s	0.5	$11/2^{-}$	08			1952	IT=100	
¹⁰⁷ Ag	-88406.7	2.4				STABLE			$1/2^{-}$	08	14Fe01	J	1924	IS=51.839 8	
¹⁰⁷ Ag ^m	-88313.6	2.4	93.125	0.019		44.3	s	0.2	7/2+	08			1940	IT=100	
¹⁰⁷ Cd	-86990.3	1.7				6.50	h	0.02	5/2+	08			1946	$\beta^+=100$	
107 In	-83564	11	(70.5	0.2		32.4	m	0.3	9/2	08			1949	$\beta = 100$	
107 G	-82886	11	6/8.5	0.3		50.4	s	0.6	$\frac{1}{2}$	08			1973	11=100 R^{+} 100	
107 Sh	- 70652	3				2.90	m	0.05	$(5/2^{+})$ 5/2+#	08			1976	$\beta^{+}=100$ $\beta^{+}=100$	
107 Te	-60540	70				4.0	5	0.2	5/2 #	08			1994	p = 100 $q = 70, 30; \beta^+ 2; \beta^+ p, 2$	
107 I	_49430#	300#				20#	115	0.1	$5/2^+$ #	00			1)//	$\alpha = 7050, \beta = 1, \beta = \beta$	
* ¹⁰⁷ Zr	T : avera	ge 15Lo	04=150(3) 1	11Ni01=1	138(4): 1	not used 09	Pe06	5=150(+40-3	30)						**
* ¹⁰⁷ Nb	T : avera	ge 15L0	04=280(20)	09Pe06=	=290(11)) 96Me09=	3000	(30)	,0)						**
* ¹⁰⁷ Nb	D : avera	ge 09Pe	06=8(1)% 9	6Me09=	6.0(1.5)	%)							**
		0													
^{108}Y	-37300#	600#				30	ms	5	0±	15			2010	$\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=2\#$	
$108 \times 2r$	-51350#	400#	2074 5	0.0		78.5	ms	2.0	0^{+}	15	1012 01	т	1997	$p = 100; \beta n = 2\#$	
108 NTL	-49280#	400#	2074.5	0.8		540	ns	30 6	(0^+)	15	12Ka36	I.	2011	$R^{-}=100, R^{-}=625, R^{-}=2.5, 0^{+}$	*
108 NTL #	- 39340	8	166.6	0.5		198	ms	0 2	(2')	15	128-26	т	1994	p = 100; p = 0.55; p = 2n = 0 = 0	
108 Mo	- 70756	0	100.0	0.5		1 105	115	2 0.010	(4, 5)	08	12Kd50	л ТП	1072	$B^{-}=100$: $B^{-}=p<0.5$	
108 Tc	-75923	9				5.17	ь с	0.010	$(2)^+$	08	091 000	10	1972	$\beta^{-100}, \beta^{-100}$	*
108 Ru	-83661	9				4 55	m	0.07	0+	08			1970	β^{-100}	
¹⁰⁸ Rh	-85032	14				16.8	s	0.5	1+	08			1955	$\beta^{-}=100$	
$108 Rh^m$	-84917	12	115	18	MD	6.0	m	0.3	(5)(+#)	08			1969	$\beta^{-}=100$	
¹⁰⁸ Pd	-89524 2	11	115	10	INID	STABLE		0.5	0+	08			1935	IS=26.46.9	
108 Ag	-87606.8	2.4				2.382	m	0.011	1+	08			1937	$\beta^{-}=97.15.20; \beta^{+}=2.85.20$	
108Ag^m	-87497.3	2.4	109.466	0.007		438	v	9	6+	08			1969	$\beta^+=91.39$; IT=8.79	
¹⁰⁸ Cd	-89252.4	1.1				STABLE	2	(>410 Py)	0^+	08	95Ge14	Т	1935	IS=0.89 3; $2\beta^+$?	
¹⁰⁸ In	-84120	9				58.0	m	1.2	7+	08			1949	$\beta^{+}=100$	
108 In ^m	-84090	9	29.75	0.05		39.6	m	0.7	2^{+}	08			1955	$\beta^{+}=100$	
¹⁰⁸ Sn	-82070	5				10.30	m	0.08	0^+	08			1968	$\beta^{+}=100$	
¹⁰⁸ Sb	-72445	5				7.4	s	0.3	(4^{+})	08			1976	$\beta^{+}=100$	
¹⁰⁸ Te	-65782	5				2.1	s	0.1	0+	08	85Ti02	D	1974	$\beta^+=514; \alpha=494; \beta^+p=2.410; \beta^+\alpha<0.065$	5
¹⁰⁸ I	-52650	130				36	ms	6	1^{+} #	08	94Pa12	D	1991	$\alpha = ?; \beta^+ = 9\#; p < 1; \beta^+ p ?$	*
$*^{108}$ Zr ^m	T : symn	netrized	from 12Ka3	86=536(+	26–25);	other 11Su	111=	620(150)							**
* ¹⁰⁸ Mo	T : avera	ge 09Pe	06=1.110(0.	.011) 95J	002=1.0	90(0.020)		$D:\beta^{-}nn$	ot allow	ed					**
*108I	$D:\beta^+=9$	9%# esti	mated in 94	Pa12 usi	ng theor	etical β^+ h	alf-l	ife ≈400 ms							**

*¹⁰⁸I D : β^+ =9%# estimated in 94Pa12 using theoretical β^+ half-life \approx 400 ms

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Nuclide	Mass ex (keV	(cess ()	Exe	citation gy (keV)	Н	alf-1	ife	J^{π}	Ens	Reference	ce	Year of discovery	Decay modes and intensities (%)	
109 Y	-33200#	700#			25	ms	5	5/2+#	15			2010	$\beta^{-}=100$ $\beta^{-}n=60$ $\beta^{-}2n=1.5$	
109 Zr	-46190#	500#			56	ms	3	$1/2^+$ #	15			1997	$\beta^{-}=100; \beta^{-}n=5\#; \beta^{-}2n=0\#$	
¹⁰⁹ Nb	-56690	260			106.9	ms	4.9	$5/2^+ #$	06	15Lo04	Т	1994	$\beta^{-}=100; \beta^{-}n=31.5$	*
$^{109}Nb^m$	-56380	260	312.2	0.5	115	ns	8	- /		12Ka36	ET	2011	IT=100	*
¹⁰⁹ Mo	-66666	11			700	ms	14	5/2+#	06	09Pe06	TD	1992	$\beta^{-}=100; \beta^{-}n=1.36$	*
109 Mo ^m	-66596	11	69.7	0.5	210	ns	60	$(1/2^+)$		12Ka36	ET	2012	IT=100	*
¹⁰⁹ Tc	-74283	10			1.14	s	0.03	$5/2^{+}$	06	09Pe06	Т	1976	$\beta^{-}=100; \beta^{-}n=0.082$	*
¹⁰⁹ Ru	-80738	9			34.5	s	1.0	5/2+#	06			1967	$\beta^{-}=100$	
109 Ru ^m	-80642	9	96.2	0.3	680	ns	30	$(5/2^{-})$	06			1976	IT=100	
¹⁰⁹ Rh	-84999	4			80	s	2	$7/2^{+}$	06			1972	$\beta^{-}=100$	
109 Rh ^m	-84773	4	225.974	0.021	1.66	μs	0.04	$3/2^+$	06	FGK127	J	1987	IT=100	*
¹⁰⁹ Pd	-87606.5	1.1			13.7012	h	0.0024	$5/2^{+}$	06			1937	$\beta^{-}=100$	
$^{109}Pd^{m}$	-87493.1	1.1	113.400	0.010	380	ns	50.	$1/2^+$	06			1978	IT=100	
$^{109}Pd^{n}$	-87417.5	1.1	188.990	0.010	4.696	m	0.003	$11/2^{-}$	06			1957	IT=100	
¹⁰⁹ Ag	-88719.4	1.3			STABLE			$1/2^{-}$	06			1924	IS=48.161 8	
$^{109}Ag^{m}$	-88631.4	1.3	88.0341	0.0011	39.6	s	0.2	$7/2^{+}$	06			1967	IT=100	
¹⁰⁹ Cd	-88504.3	1.5			461.6	d	0.4	$5/2^+$	06	16Fe04	Т	1950	ε=100	*
$^{109}Cd^{m}$	-88444.8	1.5	59.49	0.11	12	μs	2	$1/2^+$	06			1956	IT=100	
109 Cd ⁿ	-88040.8	1.5	463.5	0.3	10.9	μs	0.5	$11/2^{-}$	06			1964	IT=100	
¹⁰⁹ In	-86490	4			4.167	h	0.018	$9/2^+$	06			1948	$\beta^{+}=100$	
¹⁰⁹ In ^m	-85840	4	650.1	0.3	1.34	m	0.07	$1/2^{-}$	06			1966	IT=100	
109 In^{n}	-84388	4	2101.8	0.2	209	ms	6	$(19/2^+)$	06		_	1963	IT=100	
109 Sn	-82630	8			18.0	m	0.2	$(5/2^+, 7/2^+)$) 06	13Ma15	J	1966	$\beta^{+}=100$	
109 Sb	-76251	5			17.0	s	0.7	5/2+#	06			1976	$\beta^{+}=100$	
109-Te	-67715	4			4.6	s	0.3	$(5/2^+)$	06			1967	$\beta^+=96.1\ 13;\ \alpha=3.9\ 13;\ldots$	*
1091	-57672	7			103	μs	5	1/2+	06	07Ma35	D	1984	$p=100; \alpha=0.014.4$	
109 Xe	-46170	300			13	ms	2	7/2*#		06L141	TD.	J 2006	$\alpha \approx 100; \beta^+ ?; \beta^+ p ?$	*
* ¹⁰⁹ Nb	T : avera	ge 15L	004=110(6)	1N101=100(-	+9–8); other (19Pe	06=130	(20)						**
* ¹⁰⁹ Nb	D : 09Pe	206 B 1	1 < 15% confluence	cting										**
* ¹⁰⁹ ND ^m	E : other	· II wat	3=313.1(0.5)	(KeV			50(20)							**
* 109 M	T : symr	netrized	1 from 12Ka5	0=114(+8-7)	; other 11 was	J3=1	50(50)							**
* ¹⁰⁹ Mo	T : aiso	15L004	= /00(+40-60))) (104(+7()	0)									**
* 109 To	1 : Synn 1 : 12Ka	28_5/2	1 110111 12 K a5 +	0=194(+70-4	(9)									**
* 1C	J : 12Ku	20=3/2	$\frac{1}{2}$ where $\frac{1}{2}$	+										**
* Kil	J . 223.9	inhad a	~ 1 ray to $1/2$	M-462 1(0 2)	14Up01-46	200	18)							**
* Cd * ¹⁰⁹ Cd	T· 1	1Va02-	-462 20(0 30)	0.04 Sc $0.1(0.5)$	6(1.7) 07Ma	2.5(t 75-	7.0) 460 150	0.16)						**
[∞] Cd	т. 1 Т. 9	21 a25-	-4631(0.8)	1Va11-461 0	(0.3)		-00.13(5.10)						**
√ Cu ↓ ¹⁰⁹ Τe	л. с D· ·	$\beta^2 \Box a 2 \beta$ $\beta^+ n = 0$	$431 \cdot B^+ \alpha < 0$	1005	(0.3)									**
109 Xe	L · same	p p=9. as 150	+51, p $u < 0$											**
* AC	J . Suille	us 150	iever in Te											ጥ ጥ

¹¹⁰ Zr	-42890#	600#				37.5 ms 2.0	0+	-	12 15Lo04	Т	1997	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$	
¹¹⁰ Nb	-52310	840				82 ms 2	(5)	+#)	12 15Lo04	Т	1994	$\beta^{-}=100; \beta^{-}n=40.8; \beta^{-}2n=0.09\#$	
¹¹⁰ Mo	-64543	24				292 ms 7	0+	-	12 15Lo04	Т	1992	$\beta^{-}=100; \beta^{-}n=2.07$	
¹¹⁰ Tc	-71035	9				900 ms 13	$(2^+,$	3+) 1	12		1976	$\beta^{-}=100; \beta^{-}n=0.042$	
¹¹⁰ Ru	-80073	9				12.04 s 0.17	0-		12		1970	$\beta^{-}=100$	
¹¹⁰ Rh	-82829	18			*	3.35 s 0.12	(1)	12		1963	$\beta^{-}=100$	
${}^{110}Rh^{m}$	-82610#	150#	220#	150#	*	28.5 s 1.3	(6-)	12		1969	$\beta^{-}=100$	
¹¹⁰ Pd	-88330.9	0.6				STABLE (>200 H	Ey) 0 ⁴	-	12 13Le10	Т	1935	IS=11.72 9; $2\beta^-$?	*
¹¹⁰ Ag	-87457.3	1.3				24.56 s 0.11	1	-	12		1937	$\beta^-\approx 100; \varepsilon=0.306$	
$^{110}Ag^{m}$	-87456.2	1.3	1.112	0.016		660 ns 40	2-	-	12		1975	IT=100	
$^{110}Ag^{n}$	-87339.7	1.3	117.59	0.05		249.83 d 0.04	6	-	12		1938	$\beta^{-}=98.67 8$; IT=1.33 8	
¹¹⁰ Cd	-90348.0	0.4				STABLE	0-	-	12		1925	IS=12.49 18	
¹¹⁰ In	-86470	12				4.92 h 0.08	7-	-	12		1939	$\beta^{+}=100$	
$^{110}In^{m}$	-86408	12	62.08	0.04		69.1 m 0.5	2+	-	12		1962	$\beta^{+}=100$	
¹¹⁰ Sn	-85842	14				4.154 h 0.004	0-	-	12		1965	€=100	
¹¹⁰ Sb	-77450	6				23.6 s 0.3	(3+) 1	12		1972	$\beta^{+}=100$	
¹¹⁰ Te	-72230	7				18.6 s 0.8	0-	-	12		1977	$\beta^+ \approx 100; \alpha = 0.003 \#$	
^{110}I	-60460	50				664 ms 24	(1) 1	12		1977	$\beta^+=834; \alpha=174; \beta^+p=113; \beta^+\alpha=1.13$	
¹¹⁰ Xe	-51920	100				93 ms 3	0-	-	12		1981	$\alpha = 64 35; \beta^+ ?; \beta^+ p ?$	
* ¹¹⁰ Pd	T:>198	3Ey, >1	72Ey(95% 0	CL) for first e	excit	ed 0 ⁺ and 2 ⁺ ; 52Wi26	5>0.6Ey						**

*^{110}Pd T:>198Ey, >172Ey(95% CL) for first excited 0⁺ and 2⁺ ; 52Wi26>0.6Ey

Chinese Physics C Vol. 41, No. 3 (2017) 030001

			Table	I. THE	NUDAS	E2010 ta	inic	(conti	nucu, I	zyh	anation			page 10)	
Nuclide	Mass ex	cess	I	Excitation	l T	Ha	alf-lif	fe	J^{π}	Ens	Reference	e	Year of	Decay modes and	
	(keV)	en	ergy (ke	/)								discovery	intensities (%)	
111.7.	275(0#	700#				24.0		0.5	2/2+#	15	151 -04	т	2010	p = 100, p = 104, p = 2.5, 14	
111 Nb	-3/300#	700# 200#				24.0	ms	0.5	5/2*# 5/2+#	15	15L004	1	2010	p = 100; p = 10#; p = 2n=1# $\beta^{-} = 100; \beta^{-} = -00\#; \beta^{-} = 2n=0\#$	
111 Mo	-48880#	13				103.6	me	4.4	$\frac{3}{2} + \frac{1}{2} + \frac{1}{2}$	15	151 004	т	1997	$\beta = 100, \beta = 100, \beta = 12$	4
¹¹¹ Mo ^m	-59840#	50#	100#	50#		200	me	4.4	$\frac{1}{2} + \frac{\pi}{2}$	15	13L004	1	2011	$\beta = 100, \beta = 1 < 12$ $\beta^{-} = 100, \beta^{-} = 0.02 \#$	*
111 Te	- 69025	11	100#	50#		200	me	11	5/2+#	00	00Pe06	т	1088	$\beta = 100, \beta = 100, \beta$	
111 Pu	-09023	10				2 12	ms	0.07	5/2 #	09	091600	1	1900	$\beta = 100, \beta = 100, \beta$	
111 Ph	-70785	7				2.12	8	0.07	$(7/2^+)$	09			1971	$\beta = 100$ $\beta^{-} = 100$	
111 Dd	-82304	07				22.4	5	0.2	(1/2) 5/2+	09			1975	$\beta = 100$ $\beta^{-} = 100$	
111 p.am	-03903.9	0.7	172 19	0.08		23.4	h	0.2	$\frac{3}{2}$	09			1957	p = 100 IT = 73.2: $B^{-} = 27.3$	
111 A g	-05015.7	1.5	1/2.10	0.08		7 422	11 d	0.1	$\frac{11}{2}$	09	16Co01	т	1932	$B^{-}=100$	
111 A am	-00213.4	1.5	50.82	0.04		64.9	u	0.010	$\frac{1}{2}$	09	100001	1	1957	p = 100 IT=00.2.2: $\beta^{-}=0.7.2$	*
111Cd	-88133.0	0.4	39.82	0.04		STADLE	8	0.8	1/2+	09			1937	11-99.52, p = 0.72 IS-12.80.12	
$111Cd^m$	-89252.2	0.4	306 214	0.021		18 50	m	0.00	$\frac{1}{2}$	09			1925	IT-100	
111 In	- 88302	3	570.214	0.021		2 8063	d	0.0007	$0/2^+$	00	16Dz01	т	1047	s=100	
111 Inm	-87855	3	536.00	0.07		2.0005	m	0.0007	$\frac{1}{2}$	09	10D201	1	1966	IT-100	
111 Sn	-85030	5	550.99	0.07		35.3	m	0.2	$\frac{1}{2}$	09			1900	$B^{+}=100$	
111 Snm	-85684	5	254 71	0.04		12.5	111	1.0	$\frac{1}{2^+}$	09			1072	p = 100	
111 Sh	-80837	9	234.71	0.04		75	μ3 «	1.0	$(5/2^+)$	09			1972	$\beta^{+}-100$	
111 Te	-73587	6				26.2	5	0.6	(5/2)+	09	058624	т	1972	$\beta^{+} = 100$ $\beta^{+} = 100; \beta^{+} = 2$	*
1111	-64954	5				20.2	5	0.0	(3/2) 5/2+#	09	0551124	1	1077	$\beta^{+} = 100; \beta^{-} p^{-}:$ $\beta^{+} \approx 100; \alpha \approx 0.1; \beta^{+} p^{-}:$	*
111 Ye	-54400	00				740	5 me	200	$5/2^{-\pi}$ $5/2^{+}$	09	12C203	D	1070	$\beta^{+} \sim 100, \alpha \sim 0.1, \beta^{-} \beta^{+}$	
111Ce	- 42820#	200#				1#	1115	200	$3/2 \pi$ 3/2+#	09	120405	D	1979	p^{2} , $a=10.41.9$, p^{2} p:	
* ¹¹¹ Mo	-42020#	200π ο 15L οΩ4	-106(5) 11	Ku16-18	6(0) other	1π	μs 200(-	LA1 36)	5/2 π					p:	بلد بلد
* NIO	T : averag	a 16Co01	-7 422(0.0	12) 7/Do	18_7 450	(0.017)	200(-	F41-50)							**
* Ag	T : averag	a 16Dz01	-2.8067(0.0	0024) 14	10 - 7.450	(0.017) 05(0.004)(1450	04-2 806	2(0.0007	<u>`</u>					**
* III .111 To	T averag	67Ke01-	=2.8007(0.100)	0034)14	0101=2.8	03(0.004) (J4500	04=2.800	5(0.0007)					**
* 10	1. outers	0/Ka01=	19.0(7) 071	5041-19.	5(5) com	icung, not	useu								**
112 7 r	_33810#	700#				43	me	21	0^{+}	15	151.004	т	2010	$\beta^{-} = 100 \cdot \beta^{-} p = 30 \# \cdot \beta^{-} 2 p = 0.3 \#$	¥
112 Nb	_44270#	300#				38	me	21	2+#	15	15L004	т	1007	$\beta^{-100}, \beta^{-n-70\#}, \beta^{-2n-1\#}$	~
¹¹² Mo	-57460#	200#				125	me	5	0+	15	15L004	т	1004	$\beta^{-}=100; \beta^{-}=n=0.3\pm$	
¹¹² Tc	-65259	6				323	me	6	(2^+)	15	15L004	т	1990	$\beta^{-}=100; \beta^{-}=1-5.2$	
$^{112}Te^{m}$	-64907	6	352 3	0.7		150	ne	17	(2)	15	FGK127	F	2010	p = 100, p = 1.52	*
112 Pu	-04907	10	552.5	0.7		1 75	115	0.07	0^+	15	TOR127	Б	1070	$B^{-}=100$	*
112 Ph	-79730	40				3.4	5	0.07	(1^+)	15	001 601	т	1970	$\beta = 100$ $\beta^{-} = 100$	*
112 phm	-79300	40 60	340	70	BD	6.73	5	0.4	(1) (6 ⁺)	15	00I h01	т	1972	$\beta = 100$ $\beta^{-} = 100$	*
112 Pd	- 86322	7	540	70	50	21.04	b b	0.15	0+	15	99LII01	1	1967	$\beta = 100$ $\beta^{-} = 100$	*
112 A a	-80322	24				2 1 2 0	11	0.17	2(-)	15			1931	p = 100 $\beta = -100$	
112 C 4	-80385.7	2.4				5.150 STADLE	п	0.008	2() 0+	15			1936	p = 100 18-24 12 21	
1121.	-90374.80	0.25				3 IABLE		0.15	1+	15			1925	$13=24.15\ 21$ $R=-42\ 6\ 49$	
112 Imm	-8/990	4	156 502	0.025		14.00	m	0.15	1 -	15			1947	p = 37.448; p = 42.048	
112 Im ⁿ	-0/033	4	250.80	0.025		20.07	m	0.08	4· (7)+	15			1935	II=100 IT-100	
112 T. n	-87039	4	(12.02	0.05		2.91	ns	50	(7)	15	075102	т	1970	II=100	
112 g.	-8/3/0	4	013.82	0.06		2.81	μs	0.03	8 0+	15	8/ED02	J	1970	11=100	
112 G1	-88655.06	0.29				STABLE		0.6	(2^+)	15			1927	$1S=0.971; 2p^{+2}$	*
112 c1 m	-81599	18	925.0	0.4		55.5	s	0.0	(3^{-})	15			1959	p = 100	
112 SD	-80//3	18	825.9	0.4		536	ns	22	(8)	15			1976	11=100	
112 I	-//508	8				2.0	m	0.2	0. 1+#	15	70D - 10	D	1970	$p^{+}=100$ $R^{+}=100$ $r = 0.0012$ $R^{+}= 0.88.10$	
112 1	-6/063	10				3.34	s	0.08	1'#	15	/8R019	D	1977	$\beta^+ \approx 100; \alpha = 0.0012; \beta^+ p = 0.88 10; \dots$	*
112 C	-60026	8				2.7	s	0.8	0.	15			1978	$p \approx 100; \alpha = 1.2.8; p \cdot p?$	
. 112	-40290 T.	90 tuino 1 f		-20(.20	10)	490	μs	30	1'#	15			1994	$p \approx 100; \alpha < 0.20$	
* 112 T - M	T : symme	$c_{02} 1(0)$	m 15L004:	=30(+30-	-10) 5) 1 V										**
**** 1C'''	E: 12Ka3	0=95.1(0) 1=2.45(0)	(3) keV and (27) areas	259.2(0.)	$\gamma_{11-2} \gamma_{10}$	ays in case	ade to	$0 2^{\circ} \# \text{gr}(0, \epsilon) = -$	ound-state	•					**
* ¹¹² Rn	T:99Ln0	1=3.43(0.1)	(37) superse	edes 91Jo	11=2.1(0.	5), 88Ay02	=3.8	(0.6) sam	e group						**
****Kn" 112 c	1 : supers	eues 88Ay	y02=0.8(0.2	2) or same	e group	C4									**
****-Sn	1:>1.32	y for $0V$ -	$\varepsilon\varepsilon$ transitio	on to 0_3 's	tate in	Ca									**
****1	$D:\ldots;p$	$\alpha = 0.10^{4}$	+ 12												**
113 NIL	40510#	400#				20	ma	4	5/2+#	15			1007	$\beta^{-} = 100 \cdot \beta^{-} = 200 + \beta^{-} 2 = 20 + 20$	
113 Mo	-40510#	300#				90	1115	7	3/2+#	15			1004	$\beta = 100, \beta = 1-20^{\text{m}}, \beta = 211-2^{\text{m}}$ $\beta = -100, \beta = n-3^{\text{m}}$	
113 T ~	-52490#	200#				00 150	ma	2 8	5/2*#	15			1994	$p = 100, p = 1-3\pi$ $\beta = -100, \beta = -2, 1, 2$	
113 Tam	-02012	3	114 4	0.5		152	ms	0 16	J/2' # (5/2-)	15	128-26	т	2010	p = 100, p = 12.1.5	*
113 p	-02098	3	114.4	0.5		327	IIS	10	(3/2) $(1/2^+)$	10	121230	1	2010	$\beta = -100$	*
113 D m	-/10/0	40	120	19		510	ma	20	$(1/2^+)$ $(7/2^-)$	10	081.17	F	1900	p = 100 IT - 2. $\beta = -2$	
113 DL	-/1/40	40	150	10		200	ms	0.12	(1/2)	10	20NU1/	E	1998	$n_{1-2}; p = p_{1-1}$	*
113 R I	-/8/08	7				2.80	s	0.12	$(1/2^+)$	10	93Pe11	J	19/1	p = 100	
113 P. I.	-83591	/	01.1	0.2		93	s	5	$(5/2^+)$	10			1954	p = 100	
113 A	-83510	/	81.1	0.3		300	ms	100	(9/2)	10			1993	11=100 R=-100	
113 Ag	-87027	17	42.50	0.10		5.37	h	0.05	$1/2^{-}$	10			1949	p = 100	
113 Ag''	-86984	17	43.50	0.10		68.7	S	1.6	7/2*	10			1958	$11=64^{-7}; \beta = 36^{-7}$	
113 C UT	-89043.28	0.24	262.51	0.02		8.04	Ру	0.05	1/2	10	1117 01	TT	1925	$18=12.22$ 12; $\beta =100$	*
113 Cd‴	-88779.74	0.24	203.54	0.03		13.89	У	0.11	$11/2^{-}$	10	11Ko01	TD	1965	p = 99.9036 19; TT=0.0964 19	*
113 m	-89367.12	0.19	201 (222	0.000		STABLE		0.000	9/2*	10			1934	IS=4.29 5	
¹¹³ In ^m	-88975.42	0.19	391.699	0.003		1.6579	h	0.0004	$1/2^{-}$	10			1939	11=100	*

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Naclike Mass excess Facilities Hold in Hold in P Fass Bergrave Var of Decay models and interver interval (42) energy (42) ene				Table 1	I . The NU	JBASI	E2016	table (co	ntinued	l, E	xplana	atio	n of Tab	le on page 18)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nuclide	Mass ex (keV	(cess	E: ene	citation rgy (keV)		Ha	lf-life	J^{π}	Ens	Referen	ice	Year of discovery	Decay modes and intensities (%)	
$ \begin{array}{c}$,		0, ()										
$ \begin{array}{c} 133 \\ 133 \\ 134 \\ 135 $	A-gro	up continued					115.00	1 0 02	1 /2+	10			1020	0+ 100	
	113 Sn	-88328.1	1.6	77 200	0.010		115.09	d 0.03	1/2+	10			1939	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	113 Sh	-88250.7	1.0	//.389	0.019		21.4	m 0.4 m 0.07	5/2+	10			1901	B^{\pm}_{-100}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	113 Te	-84417	28				0.07	m 0.07	$(7/2^+)$	10			1938	$\beta^{+}=100$ $\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	113 _I	-71120	8				6.6	s 0.2	5/2+#	10			1974	$\beta^{+}=100$ $\beta^{+}=100$; $\alpha=3.310e-7$; $\beta^{+}\alpha$?	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹³ Xe	-62204	7				2.74	s 0.08	5/2+#	10			1973	$\beta^{+} \approx 100; \alpha \approx 0.011; \beta^{+} n = 7.4; \beta^{+} \alpha \approx 0.007.4$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	113 Xe ^m	-61800	7	403.6	1.4		6.9	us 0.3	$(11/2^{-1})$)	13Pr01	ET.	J 2013	IT=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	113Cs	-51765	9				17.7	μs 0.4	$(3/2^+)$	15			1984	p=100	
	¹¹³ Ba	-39780#	300#				100#	ms	5/2+#					p ?; α ?	
	* ¹¹³ Tc	J : 07Ku23	3 > 5/2												**
	* ¹¹³ Tc ^m	T : symme	trized from	m 12Ka36=	526(+16-15) ms									**
11 If the interpolation of the structure set of	* ¹¹³ Ru ^m	E : above t	he 99 keV	level and b	elow 160 ke	V									**
$ \begin{array}{c} \label{eq:constraints} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$	*113Cd	T: from 0	/Be61=8.0	037(0.005)(0.0	0.05 system	atics);									**
	****Cd	I: oth	er 09Da0.	3=8.00(0.11)	(syt 0.24) c	outweig	hed	-126(0.2)							**
$ \begin{array}{c} 1^{10} \text{X}_{2} & \text{ i} \ \ c = 0.00240 \text{ (mom estimated limit for the related width, see STD02} \\ +^{10} \text{X}_{2} & \text{ i} \ \ c = 0.1000 \text{ (mom estimated limit for the related width, see STD02} \\ +^{10} \text{X}_{2} & \text{ i} \ \ c = 0.1000 \text{ (mom estimated limit for the related width, see STD02} \\ +^{10} \text{X}_{2} & \text{ i} \ \ c = 0.1000 \text{ (mom estimated limit for the related width, see STD02} \\ +^{10} \text{X}_{2} & \text{ i} \ \ c = 0.1000 \text{ (mom estimated limit for the related width, see STD02} \\ +^{10} \text{X}_{2} & \text{ i} \ \ c = 0.1000 \text{ (mom estimated limit for the related width, see STD02} \\ +^{10} \text{X}_{2} & \text{ i} \ \ c = 0.1000 \text{ (mom estimated limit for the related width, see STD02} \\ +^{10} \text{X}_{2} & \text{ i} \ \ c = 0.1000 \text{ (mom estimated limit for the related width, see STD02} \\ +^{10} \text{X}_{2} & \text{ i} \ \ c = 0.1000 \text{ (mom estimated limit for the related width, see STD02} \\ +^{10} \text{X}_{2} & \text{ i} \ \ c = 0.1000 \text{ i} \ \ c = 0.10000 \text{ i} \ \ c = 0.1000 \text{ i} \ \ c = 0.10000 \text{ i} \ \ c = 0.10000 \text{ i} \ \ c = 0.10000 \text{ i} \ \ c = 0.100000000 \text{ i} \ \ c = 0.10000000000000000000000000000000000$	* Cu * ¹¹³ In ^m	T : average	m 23	=13.97(0.15) /2 wall=1	4.0(0.2) 03FI02	=15.0(0.2)							**
¹¹³ Xc D: β^+ p and β^+ α derived from β^+ p a=605(35) and β^+ p β^+ a=500-1500 in ST102 *** ¹¹⁴ Nb -353900 5000 17 mm 5 15 2010 β^- =100, β^- =100, β^- =00, β^- =0.06 f m=36 f mm 50 f mm 50 (1) 12 11R0 (1) 194 β^- =100, β^- =0.06 f m=36 f mm 50 (2) 12 11R0 (1) 194 β^- =100, β^- =0.06 f m=36 f mm 50 (2) 12 11R0 (1) 194 β^- =100, β^- =0.06 f m=36 f mm 50 (2) 12 11R0 (1) 194 β^- =100, β^- =0.06 f m=36 f mm 50 (2) 12 11R0 (1) 194 β^- =100, β^- =0.06 f m=36 f mm 50 (2) 12 10 (2) 0 (2) 194 f mm 50 (2) 12 11R0 (1) 194 β^- =100 (2) f m=36 f mm 50 (2) 12 10 (2) 0 (2) 194 f mm 50 (2) 12 11R0 (1) 194 f mm 51 (2) 0 (2) 194 f mm 51 (2) 0 (2) 194 f mm 50 (2) 11 (2) 0 (2) 0 (2) 194 f mm 50 (2) 11 (2) 0 (2) 0 (2) 194 f mm 50 (2) 11 (2) 0 (2) 0 (2) 194 f mm 50 (2) (2) 11 (2) 195 (2) 11 (2) 11 (2) 195 (2) 11 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 11 (2) 195 (2) 11 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 11 (2) 195 (2) 11 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 195 (2) 11 (2) 11 (2) 195 (2) 11 (2)	↑ III ↓113 χ _P	$D: \alpha = 0.00$	111 23 124-0 020	4% from est	timated limit	t for the	e reduced	width see	857502						**
1 ¹⁵ Nb -53590# 500# 17 ms 5 15 2010 $\beta^-=100, \beta^-n=50e; \beta^-2n=6#$ 1 ¹⁶ Na -49810# 300 # 5 ms 2 0' 15 1997 $\beta^-=100, \beta^-n=50e; \beta^-2n=6#$ 1 ¹⁷ Tc -53810# 300 # 40 00 ms 20 (1') 12 11801 T1 1994 $\beta^-=100, \beta^-n=6#$ * 1 ¹⁸ Tc -53810 40 100 ms 20 (4,5) 12 100 ms 20 * 18 5 100 5 100 * * 18 5 100 * 10 12 1988 \$==100 * 18 5 100 * 10 13 \$ \$=2421 0.60 1' 12 1980 \$==100 * * 18 \$ 100 \$ \$=2421 0.60 1' 12 1980 \$==100 * * 15 10' 1''''''''''''''''''''''''''''''''''''	* ¹¹³ Xe	$D: \alpha = 0.00$ $D: \beta^+$	n and B^+	α derived fi	$\cos \beta^+ p/\alpha =$	=605(3)	5) and β^-	$n/\beta^+ \alpha = 500$)-1500 in	85T	i02				**
	w ne	D. p	p und p	a derived h	omp pra-	-005(5.)) and p	p/p &=500	7 1500 III	0.01	102				
	114							_							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹⁴ Nb	-35390#	500#				17	ms 5	<i></i>	15			2010	$\beta^{-}=100; \beta^{-}n=50\#; \beta^{-}2n=6\#$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹⁴ Mo	-49810#	300#				58	ms 2	0+	15			1997	$\beta^{-}=100; \beta^{-}n=3\#$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	114 Tc	-58600	430	160	120	&	90	ms 20	(1 ⁺)	12	11Ri01	TJ	1994	$\beta^{-}=100; \beta^{-}=0$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	114 Tcm	-58437	13	160	430	æ	100	ms 20	(4,5)	12	11Ri01	1) 7 T	2011	β^{-} ?; β^{-} n=6#	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	114 ph	-70222	4				1 85	ms 50	1+	12	001000	1	1991	p = 100; p = n=0#; p = 2n=0#	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	114 Rhm	-75510#	170#	200#	150#	*	1.65	s 0.05	(7^{-})	12			1987	$\beta = 100$ $\beta = -100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	114Pd	-83491	7	2001	1500	~r	2 42	m 0.06	0+	12			1958	$\beta^{-}=100$ $\beta^{-}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹⁴ Ag	-84931	5				4.6	s 0.1	1+	12			1958	$\beta^{-}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{114}Ag^m$	-84732	7	199	5		1.50	ms 0.05	$(< 6^+)$	12			1990	IT=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	114Cd	-90014.93	0.28			5	STABLE	(>92 Py)) `0+ ´	12	95Ge14	Т	1925	IS=28.73 42; $2\beta^{-}$?	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹⁴ In	-88569.8	0.3				71.9	s 0.1	1^{+}	12			1937	$\beta^{-}=99.50\ 15;\ \beta^{+}=0.50\ 15$	
	114 In ^m	-88379.5	0.3	190.2682	0.0008		49.51	d 0.01	5+	12			1939	IT=96.75 24; β^+ =3.25 24	
$ \begin{split} & {}^{14}{\rm h}^{0} & = 37928.1 & 0.3 & 641.745 & 0.003 & 4.3 {\rm ns} 0.4 & 7^+ 12 & 1975 & TI=100 & * * \\ & {}^{14}{\rm S}_{\rm OM}^{$	114 In ⁿ	-88067.9	0.3	501.948	0.003		43.1	ms 0.6	8-	12			1958	IT=100	
	114 In ^p	-87928.1	0.3	641.745	0.003		4.3	ns 0.4	7+	12			1975	IT=100	*
	¹¹⁴ Sn	-90559.723	0.029		-		STABLE		0+	12			1927	IS=0.66 1	
	114 Sn ^m	-87472.35	0.08	3087.37	0.07		733	ns 14	7= 2+	12			1980	11 = 100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	114 Sbm	-84497	22	405 5	0.7		5.49 210	m 0.05	(9-)	12			1959	p = 100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹⁴ Te	-84002	22	493.3	0.7		15.2	$\mu s 12$ m 0.7	(°) 0 ⁺	12			1973	$B^+ - 100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹⁴ I	-72800#	150#				2.1	s 0.2	1+	12			1977	$\beta^{+}=100^{\circ}\beta^{+}n^{2}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{114}I^{m}$	-72530#	150#	265.9	0.5		6.2	s 0.5	(7)	12	JB196	D	1995	$\beta^{+}=91$ 2: IT=9 2	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹⁴ Xe	-67086	11				10.0	s 0.4	0+	12			1977	$\beta^+=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	114Cs	-54680	70				570	ms 20	(1^{+})	12			1978	$\beta^+ \approx 100; \alpha = 0.0186; \beta^+ p = 8.713; \beta^+ \alpha = 0.19$	3
*************************************	¹¹⁴ Ba	-45910	100				460	ms 125	0+	12	16Ca33	Т	1995	$\beta^+ \approx 100; \beta^+ p=20\ 10; \alpha=0.9\ 3;\ 12C<0.0034$	*
*** *** *** *** *** *** *** ***	* ¹¹⁴ Tc	T: others,	might be	mixture of g	ground-state	and m	: 15Lo04	=120(10) 06	6Mo07=9	1(+6	2–35)				**
*** *** *** *** *** *** *** ***	* ¹¹⁴ Tc	T: 99	Wa09=150	0(30)											**
** ¹¹ P ⁷ T: typo in NUBASE 2012: 4.5 µs, should be 4.5 ns ct. 5/840/ and ESSDF2012 *** *** *** *** *** *** *** ***	* ¹¹⁴ Ru	T : average	e 06Mo07	=510(+69-6	5) 92Jo05=	530(60) 91Le09	=570(50)	2012						**
**** T = D : evaluated for NUBASE by J. Blachot, based on *** 111 decay *** *********************************	* ¹¹⁴ In ^p	T : typo in	NUBASE	$2012:4.3\mu$	s, should be	e 4.3 ns	cf. 75Ra	07 and ENSI	DF2012						**
* Ba 1 1.4verage 10Ca33=380(+190-110) 97412=430(+300-130) ** 115 Mb -31350# 500# 23 ms 8 5/2 ⁺ # 15 2010 β^{-} =100; β^{-} n=60#; β^{-} 2n=1# 115 Mb -44750# 400# 45.5 ms 2.0 3/2 ⁺ # 15 2010 β^{-} =100; β^{-} n=60#; β^{-} 2n=0.01# 115 Cc -56320 790 78 ms 2 5/2 ⁺ # 15 1994 β^{-} =100; β^{-} n=-0.02# * 115 Ru -66190 90 318 ms 19 (3/2 ⁺) 12 11Ri07 J 1992 β^{-} =100; β^{-} n=0.02# * 115 Ru ^m -65940# 140# 250# 100# 76 ms 6 (9/2 ⁻) 12 2010 IT=100 * 115 Ru ^m -65940# 140# 250# 100# 76 ms 6 (9/2 ⁻) 12 11Ri07 J 1988 β^{-} =100; β^{-} n=0.05# * 115 Rh -74230 7 990 ms 50 (7/2 ⁺) 12 11Ri07 J 1988 β^{-} =100; β^{-} n=0.05# * 115 Pd ^m -80337 14 89.21 0.16 50 s 3 (7/2 ⁻) 12 1987 β^{-} =92.0 20; IT=8.0 20 115 Ag ^m -84942 18 41.16 0.10 18.0 s 0.7 7/2 ⁺ 12 1988 β^{-} =79.0 3; IT=21.0 3 115 Ag ^m -84942 18 41.16 0.10 18.0 s 0.7 7/2 ⁺ 12 1939 β^{-} =100 115 Ag ^m -84942 18 41.16 0.5 44.56 d 0.24 11/2 ⁻ 12 FGK127 J 1959 β^{-} ≈100; IT<0.003 * 115 Cd ⁻ -88084.5 0.7 53.46 h 0.05 1/2 ⁺ 12 1924 IS=95.71 5; β^{-} =100 115 In ^m -89536.346 0.012 441 Ty 25 9/2 ⁺ 12 1924 IS=95.71 5; β^{-} =100 115 In ^m -89200.102 0.021 336.244 0.017 4.486 h 0.004 1/2 ⁻ 12 1924 IS=95.71 5; β^{-} =5.0 7 115 Sn -90033.835 0.015 STABLE 1/2 ⁺ 12 1927 IS=0.34 1 115 Sn ^m -89421.03 0.04 612.81 0.04 3.26 µs 0.08 7/2 ⁺ 12 1927 IS=0.34 1 115 Sn ^m -89420.0 0.12 713.64 0.12 159 µs 1 11/2 ⁻ 12 1958 IT=100 A-group is continued on next page	* ¹¹⁴ Po	D : evaluat	$16C_{0}22$	JBASE DY J. -280(+100	Blachot, Das	= 420(1)	200 150	ecay							**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	∗ Ба	1. average	. 10Ca55=	-300(+190-	110) 9/Jal2	430(4	-500-150	"							**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹⁵ Nb	-31350#	500#				23	ms 8	$5/2^{+}$ #	15			2010	$\beta^{-}=100; \beta^{-}n=60\#; \beta^{-}2n=1\#$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹⁵ Mo	-44750#	400#				45.5	ms 2.0	$3/2^+$ #	15			2010	$\beta^{-}=100; \beta^{-}n=3\#; \beta^{-}2n=0.01\#$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹⁵ Tc	-56320	790				78	ms 2	$5/2^{+}$ #	15			1994	$\beta^{-}=100; \beta^{-}n=20\#$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹⁵ Ru	-66190	90				318	ms 19	$(3/2^+)$	12	11Ri07	J	1992	$\beta^{-}=100; \beta^{-}n=0.02\#$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹⁵ Ru ^m	-65940#	140#	250#	100#		76	ms 6	(9/2-)	12			2010	IT=100	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	115 Rh	-74230	7				990	ms 50	$(7/2^+)$	12	11Ri07	J	1988	$\beta^{-}=100; \beta^{-}n=0.05\#$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115 Pd	-80426	14	00.01	0.14		25	s 2	$(1/2)^+$	12			1958	$\beta^{-}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	115 A -	-80337	14	89.21	0.16		50	s 3 	$(7/2^{-})$	12			1987	$p = 92.0\ 20;\ 11 = 8.0\ 20$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115 A ~m	-84983	18	41 14	0.10		20.0	m 0.5	$\frac{1}{2^{-}}$	12			1949	p = 100 $\beta = -70.0.2$; IT=21.0.2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	115 Cd	-04942	10	41.10	0.10		18.0	5 U./ h 0.05	1/2+	12			1938	$\mu = -19.03; 11=21.03$ $\beta^{-}=-100$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115 CAm	-00004.3	0.7	181.0	0.5		25.40 44 56	d 0.05	$\frac{1}{2}$	12	FGK12	7 T	1959	$\mu = 100$ $\beta^{-} \sim 100$ IT < 0.003	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115 In	-01903.3	0.9	101.0	0.5		44.30	u 0.24 Tv 25	$\frac{11}{2}$ $\frac{9}{2^+}$	12	I OK12	, J	1939	$\beta \sim 100, 11 < 0.003$ IS=95 71 5: $\beta^{-}=100$	*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115 Inm	-89200.340	0.012	336 244	0.017		4 4 8 6	h 0.004	1/2-	12			1961	$II = 95.07 \cdot B^{-} = 5.07$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	115 Sn	-90033 835	0.015	<i>000.2</i> I F	5.017		STABLE		$1/2^+$	12			1927	IS=0.34 1	
115 Sn ⁿ -89320.20 0.12 713.64 0.12 159 μ s 1 11/2 ⁻ 12 1958 IT=100 A-group is continued on next page	$^{115}Sn^{m}$	-89421.03	0.04	612.81	0.04		3.26	µs 0.08	$7/2^+$	12			1967	IT=100	
A-group is continued on next page	115 Sn ⁿ	-89320.20	0.12	713.64	0.12		159	μs 1	$11/2^{-}$	12			1958	IT=100	
	A-gro	up is continue	ed on next	t page					,						

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

			Tuble I		CDIICEL	010 440		conten					uble on p		
Nuclide	Mass ex (keV	(cess	e	Excitation nergy (keV	0	Hal	lt-life	2	J^{n}	Ens	Reference	ce	Year of discovery	Decay modes and intensities (%)	
	(110)	,		inergy (ne (,								discovery		
A-grou	up continued														
¹¹⁵ Sb	-87003	16				32.1	m	0.3	$5/2^{+}$	12			1958	$\beta^{+}=100$	
115 Sb ^m	-84207	16	2796.26	0.09		159	ns	3	$(19/2)^{-}$	12			1977	IT=100	
¹¹⁵ Te	-82063	28			*	5.8	m	0.2	$7/2^{+}$	12			1961	$\beta^{+}=100$	
¹¹⁵ Te ^m	-82053	29	10	7	*	6.7	m	0.4	$(1/2)^+$	12	GAu	Е	1974	$\beta^+ \approx 100; \text{IT} < 0.06$	*
¹¹⁵ Te ⁿ	-81783	28	280.05	0.20		7.5	μs	0.2	$11/2^{-}$	12			1972	IT=100	
¹¹⁵ I	-76338	29				1.3	m	0.2	5/2+#	12			1969	$\beta^{+}=100$	
¹¹⁵ Xe	-68657	12				18	s	4	$(5/2^+)$	12			1969	$\beta^+=100; \beta^+=0.346; \alpha=0.00031$	
115Cs	-59700#	100#				1.4	s	0.8	9/2+#	12			1978	$\beta^{+}=100; \beta^{+}p\approx 0.07$	
¹¹⁵ Ba	-49020#	200#				450	ms	50	5/2+#	12			1997	$\beta^{+}=100; \beta^{+}p>15$	
* ¹¹⁵ Ru	J : sugges	ted in 111	Ri07 from β	- decay stu	udy										**
$*^{115}$ Ru ^m	E : Ensdi	F2012 >	61.7 keV												**
$*^{115}Cd^{m}$	J : measur	ed magne	etic moment	and L(d,p))=5										**
$*^{115}$ Te ^m	E : less th	an 20 keV	, from Ensi	DF DF											**
116															
¹¹⁶ Mo	-41500#	500#				32	ms	4	0^{+}	15			2010	$\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0\#$	
¹¹⁶ Tc	-51460#	300#				57	ms	3	2+#	15			1997	$\beta^{-}=100; \beta^{-}n=20\#; \beta^{-}2n=0.05\#$	
¹¹⁶ Ru	-64069	4				204	ms	6	0^+	15			1994	$\beta^{-}=100; \beta^{-}n=0.1\#$	
¹¹⁶ Rh	-70740	70			*	685	ms	39	1^{+}	10	06Mo07	TD	1970	$\beta^{-}=100; \beta^{-}n<2.1$	*
${}^{116}Rh^{m}$	-70540#	170#	200#	150#	*	570	ms	50	(6^{-})	10			1987	$\beta^{-}=100$	
¹¹⁶ Pd	-79832	7				11.8	s	0.4	0^+	10			1970	$\beta^{-}=100$	
¹¹⁶ Ag	-82543	3				3.83	m	0.08	(0^{-})	10			1958	$\beta^{-}=100$	*
$^{116}Ag^m$	-82495	3	47.90	0.10		20	s	1	(3+)	10			2005	$\beta^{-}=93.0;$ IT=7.0	
$^{116}Ag^n$	-82413	3	129.80	0.22		9.3	s	0.3	(6-)	10			1970	$\beta^{-}=92.0;$ IT=8.0	
116Cd	-88712.48	0.16				28.7	Ev	1.3	0^{+}	10	15Ba11	Т	1925	IS=7.49 18: $2\beta^{-}=100$	*
¹¹⁶ In	-88249.75	0.22				14.10	s	0.03	Ĩ+	10	13Wr01	D	1937	$\beta^{-} \approx 100: \epsilon = 0.0237.43$	*
$^{116}In^{m}$	-88122.48	0.22	127.267	0.006		54.29	m	0.17	5+	10			1945	$\beta^{-}=100$	
$^{116}In^n$	-87960.09	0.22	289 660	0.006		2.18	s	0.04	8-	10			1950	IT=100	
116 Sn	-91525.97	0.10	207.000	0.000		STARLE	5	0.01	0+	10			1922	IS=14 54 9	
116 Spm	-89160.00	0.10	2365 975	0.021		348	ne	19	5-	10			1964	IT-100	
116 Spn	-87078.81	0.10	2505.975	0.021		833	ne	30	10+	10			1078	IT-100	
116 Sh	-0/9/0.01	5	3547.10	0.17		15.9	m	0.8	2+	10			1978	$\beta_{\mu}^{+} = 100$	
116 Shm	-80822	5	03.00	0.05		10.0	no	0.8	3 1+	10			1949	p = 100	
116 Shn	-80728	40	200	40	PD	60.2	m	4	1 0-	10			1970	$\beta_{\pm}^{+}=100$	
116 To	-80440	40	390	40	BD	2.40	111	0.0	0 0+	10			1949	$\beta^{+}=100$ $\beta^{+}=100$	
1161	-83209	20				2.49	п	0.04	1+	10			1938	$p^{+}=100$	
1161m	-77490	100	420.4	0.5		2.91	5	0.15	(7-)	10			1970	p = 100	
116 V -	- / /060	100	430.4	0.5		5.27	μs	0.16	(/)	10			1990	P^+ 100	
116 C-	-/304/	100#					s	40	(1+)	10	770 - 20	р	1969	p = 100 p = 100, p = 0.28.7, p = 0.040.25	
116 C m	-62040#	100#	100//	(0)	*	700	ms	40	(1)	10	//B028	D	1975	$p^+ = 100; p^+ p = 0.287; p^+ \alpha = 0.04925$	*
116D	-61940#	120#	100#	60#	*	3.85	s	0.13	4',5,6	10			1975	$\beta^+ = 100; \beta^+ p = 0.51 15; \beta^+ \alpha = 0.008 2$	
116x	-54580#	200#				1.3	s	0.2	0	10			1997	$\beta^+ = 100; \beta^+ p = 31$	
116D1	-40650#	310#			•	10#	ms			10				<i>p</i> + ?; <i>p</i> + p ?; p ?	*
* ¹¹⁰ Rh	T : averag	e 06M00	/=688(+52-	50) 88Ay0	2=680(60)	D :	₿-n	limit	from 06M	007					**
* ¹¹⁰ Ag	T: 230(5)	s an ar						~ • •							**
* ¹¹⁶ Cd	T : also 0	v-ββ 96A	Ar36>5000E	y and Maj	oron 96Ar	36>1200E	y 981	Da23>	1200Ey						**
* ¹¹⁰ In	D : averag	ge 13Wr0	1=0.0246(44)	stat)(39sy	st) 98Bh04	=0.0227 63	3								**
* ¹¹⁰ In	T : also 13	3Wr01=1	4.9(0.8)												**
* ¹¹⁶ Cs	D : from 7	77Bo28; I	ENSDF2010	erroneousl	y gives β^+	p=2.8 7									**
* ¹¹⁶ La	T : half-li	fe estimat	te is for β^+ of	lecay; no p	o-decay wi	thin 20 μs-2	20ms	6							**
117 Mo	_36170#	500#				22	me	5	3/2+#	15			2010	$\beta^{-}=100: \beta^{-}n=10#: \beta^{-}2n=0.2#$	
117 Tc	_48380#	400#				44 5	me	30	5/2+#	15			1997	$\beta^{-}=100; \beta^{-}=101; \beta^{-}=200; \beta^{-}=100; \beta^{-}=100$	
117 p.	_50/00	430				151	me	3.0	3/2+#	15			1004	$\beta^{-100}, \beta^{-1-50\pi}, \beta^{-21-0\pi}$	
117 p.1m	_50310	430	185.0	0.4		2 40	110	0.6	5/2 #	15			2012	$F = 100, F = 0.5\pi$	ىك
117 Ph	68807	450	185.0	0.4		421	μs 	20	7/2+#	11	06Mo07	тD	1001	$\beta^{-} = 100; \beta^{-} = 27.6$	*
117 DA	_76424	7				421 12		03	(3/2+)	11	0411-04	T	1968	$\beta = 100, \beta = 1 < 7.0$ $\beta^{-} = 100$	*
117 DAM	-76221	2	202.2	0.2		4.5	5	0.5	$(0/2^{-})$	11	0411-04	J	1000	p = 100	
117 A ~	- /0221	14	203.5	0.5		19.1	ins	0.7	(2/2)	11	040104	J	1990	$\beta^{-}=100$	
117 A ~m	-02102	14	20 4	0.2		13.0	s	1.4	1/2 #	11			1938	$\mu = 100$ $\beta = -04.0.15$ IT - 6.0.15	*
117 C 4	-02133	14	28.0	0.2		5.54	S 1.	0.05	1/2'#	11			1990	$\mu = 94.0 13; 11=0.0 13$ $\beta = -100$	*
117 C Inc	-80418.4	1.0	126.4	0.2		2.49	n 1	0.04	1/2*	11	1237 02	T	1939	$\mu = 100$	
117 Cd"	-86282.0	1.0	156.4	0.2		3.36	h	0.05	$11/2^{-}$	11	13 YoU2	J	1966	$p \approx 100; 11 \approx 0$	
117 m	-88943	Ş	215 202	0.011		43.2	m	0.3	9/2*	11			1937	p = 100	
117 c	-88628	5	315.303	0.011		116.2	m	0.3	1/2-	11			1940	p = 52.9 15; 11 = 47.1 15	
117 Sn	-90397.8	0.5	214 50	0.01		STABLE		0.05	1/2*	11			1923	15=/.08 /	
117 Sn ^m	-90083.2	0.5	314.58	0.04		14.00	d	0.05	11/2-	12			1950	11=100	
$\sin^n Sn^n$	-87991.4	0.6	2406.4	0.4		1.75	μs	0.07	$(19/2^+)$	11			1979	11=100	
4-groi	un is continue	d on next	nage												

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

Nuclide	Mass ex	cess		Excitation	1		Ha	f-lif	e	J^{π}	Ens	Reference	e	Year of	Decay modes and	
	(keV	')	e	nergy (keV	V)				-	÷				discovery	intensities (%)	
4		ı														
¹¹⁷ Sb	-88640	1					2.80	h	0.01	$5/2^{+}$	11			1947	$\beta^{+}=100$	
117 Sb ^m	-85509	8	3130.76	0.19			355	μs	17	$(25/2)^+$	11			1970	IT=100	
117 Sb ⁿ	-85409	8	3230.7	0.2			290	ns	5	$(23/2^{-})$	11			1987	IT=100	
¹¹⁷ Te	-85095	13					62	m	2	$1/2^+$	11		_	1958	$\varepsilon = 75 1; e^+ = 25 1$	
¹¹⁷ Te ^m	-84799	13	296.1	0.5			103	ms	3	$(11/2^{-})$	11	99Mo30	J	1963	$IT ? = 2^{+} 100 + 2^{-} 77$	
117 Yo	-80436	26					2.22	m	0.04	$(5/2)^{+}$ 5/2(+)	11			1969	$\beta' = 100; e' \approx 77$ $\beta' = 100; \beta' = 0.0020.6$	
¹¹⁷ Cs	-74183 -66490	60				*	84	s	0.6	$9/2^{+}$	11			1909	$\beta^{+}=100; \beta^{+}p=0.0029.00$ $\beta^{+}=100$	
$^{117}Cs^{m}$	-66340#	100#	150#	80#		*	6.5	s	0.4	$3/2^+ \#$	11			1978	$\beta^{+}=100$	
$^{117}Cs^{x}$	-66440	80	50	50			R = ?			spmix						
¹¹⁷ Ba	-57460	250					1.75	s	0.07	$(3/2)^{(+\#)}$	11	97Ja12	D	1977	$\beta^+=100; \beta^+p=13 3; \beta^+\alpha=0.024 8$	*
¹¹⁷ La	-46470#	200#					21.7	ms	1.8	$(3/2^+)$	11	11Li28	ΤJ	2001	$p=?; \beta^+=6.1\#; \beta^+p?$	*
$^{117}La^{m}$	T		non ex	istent	RN	0.05	10	ms	5	$(9/2^+)$	11	01So02	I			*
* ¹¹⁷ Ph	T : symn	netrized	170m 12Ka;	30=2.48/(-17, 42)011	+0.058	-0.05	5) N									**
* Kn * ¹¹⁷ Aø	T · svmn	netrized	from 72.8(-	-2.0-0.7	C10-4	+0(+0	·)									**
$*^{117}Ag^{m}$	J : E3 to	ground	-state 1/2 ^{-#}	2.0 0.7)												**
* ¹¹⁷ Ba	$D:\beta^+p$	from 97	Ja12. β ⁺ p/	$8^{+}\alpha = 350$	1200 f	from 8	5Ti02 yie	lds /	$\beta^+\alpha=0$.011%-0.037	1%					**
* ¹¹⁷ La	T : avera	ge 11Li	28=20.1(2.5) 01Ma69	=24(3)	01So	02=22(5)									**
$*^{117}$ La ^m	I : report	ed in 01	So02 with I	E=121(10)	keV. N	lot ob	served in	11Li	28							**
¹¹⁸ Mo	-32630#	500#					21	ms	6	0^+	15	15Lo04	TD	2015	$\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.08\#$	*
¹¹⁸ Tc	-43790#	400#					30	ms	4	2+#	15			2010	$\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=0.6\#$	
¹¹⁸ Ru	-57260#	200#					99	ms	3	0+	15			1994	$\beta^{-}=100; \beta^{-}n=1\#$	
¹¹⁸ Rh	-64887	24					284	ms	9	$(4^{-}10)^{(+\#)}$	06	15Lo04	Т	1994	$\beta^{-}=100; \beta^{-}n=3.1 14$	*
118 Pd	-75388.7	2.5					1.9	s	0.1	0 ⁺	06	021-02	т	1969	$\beta^{-}=100$ $\beta^{-}=-100$	
118 A gm	-79508.0	2.5	45 79	0.09			5.70	5	0.15	$0^{(-)}$ to2 ⁽⁻⁾	95	951405	J	1907	p = 100	
¹¹⁸ Ag ⁿ	-79426.2	2.5	127.63	0.10			2.0	μs s	0.2	4 ⁽⁺⁾	95			1971	$\beta^{-}=59$: IT=41	
$^{118}Ag^{p}$	-79274.4	2.5	279.37	0.20			0.1	μs		$(2^+, 3^+)$	95			1989	IT=100	
¹¹⁸ Cd	-86702	20					50.3	m	0.2	0^+	95			1961	$\beta^{-}=100$	
¹¹⁸ In	-87228	8	100"	50.0		*	5.0	s	0.5	1+	95	0.07. 1	m	1949	$\beta^{-}=100$	
¹¹⁸ In ^m 118 In ⁿ	-87130#	50#	100#	50#		*	4.364	m	0.007	5	95	94lt.A	Т	1964	$\beta^{-}=100$	
¹¹⁸ Sn	-91652.9	0.5	240#	50#			o.j Stable	8	0.5	$^{0}_{0^{+}}$	95			1909	II = 98.03, p = 1.43 IS=24.22.9	*
$^{118}Sn^{m}$	-89078.0	0.5	2574.91	0.04			230	ns	10	7-	95			1961	IT=100	
118 Sn ⁿ	-88544.8	0.5	3108.06	0.22			2.52	μs	0.06	(10^{+})	95	11Fo15	J	1973	IT=100	
¹¹⁸ Sb	-87996	3					3.6	m	0.1	1+	95			1947	$\beta^+=100$	
118 Sb ^m	-87945	3	50.814	0.021	пD		20.6	μs	0.6	$(3)^+$	95			1975	IT=100 R^{+} 100	
118 Te	-87607	18	250	0	BD		5.00	n d	0.02	8 0+	95			1947	p = 100 c = 100	
¹¹⁸ I	-80971	20					13.7	m	0.5	2-	95			1948	$\beta^{+}=100$	
$^{118}I^{m}$	-80782	20	188.8	0.7			8.5	m	0.5	(7^{-})	95	03Mo36	Е	1968	$\beta^+ \approx 100;$ IT=?	*
¹¹⁸ Xe	-78079	10					3.8	m	0.9	0+	95			1965	$\beta^+=100$	
¹¹⁸ Cs	-68409	13				*	14	s	2	2	95		÷	1969	$\beta^+=100; \beta^+p=0.021 \ 14; \beta^+\alpha=0.0012 \ 5$	*
$^{118}Cs^{m}$	-68310#	60#	100#	60#		*	17 D : 0.1	s	3	(7-)	95	93Be46	J	1972	$\beta^+=100; \beta^+p=0.021$ 14; $\beta^+\alpha=0.0012$ 5	
118 Ba	-08404	200#	3	4			K < 0.1	e	0.2	spmix 0 ⁺	06	071-12	т	1007	B ⁺ -100	
118 La	-49560#	200#					200#	ms	0.2	0	00	91 J d1∠	1	1771	$\beta = 100$ $\beta^+ ?: \beta^+ p ?$	
* ¹¹⁸ Mo	T : symn	netrized	from 15Lo(04=19(+7-	-4)										F OF F	**
* ¹¹⁸ Rh	T : avera	ge 15Lo	04=285(10)	06Mo07=	=266(+	22-21) 00Jo18:	=310	(30)							**
* ¹¹⁸ Rh	J : from (00Jo18														**
$*^{118} In^{n}$	E: 138.2	2(0.5) ke	V above 118	In ^{<i>m</i>} , from	Ensdi	F	26									**
* ¹¹⁸ Cs	E : from D : deriv	a least-	$\beta_{\rm n}^{+}$ squares fit to	$(6)\% B^+$	$\alpha = 0.00$	03MG	030 % for miv	ture	of gro	und-state and	1 1001	ner				**
* ¹¹⁸ Cs	D: Genv	Replaced	d by uniform	distributi	ons fro	m zer	o to value	s for	each i	somer	1 1301	ner.				**
		1	.,							-						
110	100-01	500.0							2					2010		
119 Tc	-40370#	500# 200#					22	ms	3	$5/2^+ #$	15			2010	$\beta = 100; \beta^{-}n=30\#; \beta^{-}2n=0.1\#$ $\beta^{-}=100; \beta^{-}n=2\#; \beta^{-}2n=0.4\#$	
¹¹⁹ Ru ^m	-52330# -52330#	300#	227.1	07			384	ns	2.0 22	5/2.#	15			2012	$p = 100, p = 1 = 3\pi, p = 211 = 0\pi$ IT=100	*
¹¹⁹ Rh	-62823	9	<i>22</i> /.1	0.7			190	ms	6	7/2+#	09	15Lo04	Т	1994	$\beta^{-}=100; \beta^{-}n=6.4 \ 16$	
¹¹⁹ Pd	-71408	8					920	ms	80	3/2+#	09	06Mo07	TD	1991	$\beta^{-}=100; \beta^{-}n=0#$	*
119 Pd ^m	-71110#	150#	300#	150#			3#	ms		$11/2^{-}$ #					IT ?; β^{-} ?	
119 Ag	-78646	15	201	20."		* &	6.0	s	0.5	$1/2^{-}\#$	09			1975	$\beta^{-}=100$	
¹¹⁹ Cd	- /8626#	25#	20#	20#		* &	2.1	s	0.1	1/2 ⁺ #	09	131000	т	19/5	p = 100 $\beta^{-} - 100$	*
$^{119}Cd^{m}$	-83830	40	146 54	0.11			2.09	m	0.02	$\frac{1}{2^{-1}}$	09	13 1002 13 Yo02	J	1901	$\beta = 100$ $\beta^{-} = 100$	
A-grou	up is continu	ied on n	ext page				2.20			/-			-		r	

Chinese Physics C Vol. 41, No. 3 (2017) 030001

			Tabl	e I. The I	NUBA	ASE	2016 ta	ble	(con	tinued,	Exp	lanatio	n of '	Fable on	page 18)	
Nuclide	Mass ex (keV	(cess 7)	e	Excitation nergy (keV)			Half-	life		J^{π}	Ens	Referenc	e	Year of discovery	Decay modes and intensities (%)	
		/												,		
A-grou	up continued	l								0 / • 1				10.10	0	
¹¹⁹ In	-87699	7		0.02			2.4	m	0.1	$9/2^+$	09			1949	$\beta^{-}=100$	
119 In ^m	-8/388	7	311.37	0.03			18.0	m	0.3	$1/2^{-}$	09			1973	$\beta^{-}=95.6; 11=4.4$	
119 In"	-8/045	7	054.27	0.07			130	ns	15	$(3/2)^{+}$	09			1974	II=100 IT-100	
119 Sp	-85042	07	2000.9	1.8			STADLE	ns	25	$(25/2^+)$ 1/2+	09			2002	11=100	
119 Spm	-90005.0	0.7	80 531	0.013			203 1	đ	07	$\frac{1}{2}$	09			1925	IS-8.594 IT-100	
119 Sn ⁿ	-87938.0	1.2	2127.0	1.0			9.6	115	1.2	$(19/2^+)$	09			1992	IT=100	
$^{119}Sn^{p}$	-87696.0	0.8	2369.0	0.3			96	ns	9	$\frac{(1)/2}{23/2^+}$	07	16Is03	ETJ	2016	IT=100	
119Sb	-89474	8					38.19	h	0.22	$5/2^+$	09			1947	ε=100	
119 Sb ^m	-86920	8	2553.6	0.3			130	ns	3	$19/2^{-}$	09	91Io02	J	1991	IT=100	
119 Sb ⁿ	-86622	11	2852	7			850	ms	90	27/2+#	09			1979	IT=100	*
¹¹⁹ Te	-87181	8					16.05	h	0.05	$1/2^+$	09			1948	ε =97.94 5; e ⁺ =2.06 5	
¹¹⁹ Te ^m	-86920	8	260.96	0.05			4.70	d	0.04	$11/2^{-}$	09			1960	ϵ =99.59 4; e ⁺ =0.41 4; IT<0.008	
¹¹⁹ I	-83766	28					19.1	m	0.4	$5/2^{+}$	09			1954	$e^+=514; \epsilon=494$	
¹¹⁹ Xe	-78794	10					5.8	m	0.3	$5/2^{(+)}$	09	90Ne.A	J	1965	$e^+=795; \varepsilon=215$	
¹¹⁹ Cs	-72305	14			*		43.0	s	0.2	$9/2^+$	09	75Ho09	D	1969	$\beta^+=100; \beta^+\alpha < 2e-6$	
$^{119}Cs^{m}$	-72260#	30#	50#	30#	*		30.4	s	0.1	$3/2^{(+)}$	09			1978	$\beta^{+}=100$	
$^{119}Cs^x$	-72289	9	16	11		1	R = .5 .25			spmix						
¹¹⁹ Ba	-64590	200					5.4	s	0.3	$(5/2^+)$	09			1974	$\beta^+=100; \beta^+=252$	
119 La	-54790#	300#					1#	S		11/2-#					β^+ ?	
119 Dum	-43940#	500# 	from 12Vo	26-202(122	21)		200#	ms		5/2'#					<i>p</i> ⁺ ?; <i>p</i> ⁺ p ?	
* ¹¹⁹ Rd	T : symn	ac 06M	170m 12Ka	30=383(+22)	-21)	20)										**
* Fu $*^{119}\Delta \sigma^m$	F : estim	ge oow	$m 7/2^+$ leve	l in isotones	113 A	30) 1-43	$115 \Delta \sigma - 41$	117 🛆	α-28							**
$*^{119}Sb^{n}$	E : estim	ated les	s than 20 ke	V above 284	171е	vel	, Ag=41	Г	1g-20							**
* 55	E : cour	ated ies	5 than 20 ke	1 40010 20	1.7 10	ver										
¹²⁰ Tc	-35520#	500#					21	ms	5		15			2010	$\beta^{-}=100; \beta^{-}n=30\#; \beta^{-}2n=2\#$	
¹²⁰ Ru	-50010#	400#					45	ms	2	0^+	15			2010	$\beta^{-}=100; \beta^{-}n=4\#$	
¹²⁰ Rh	-58820#	200#					129.6	ms	4.2		13	15Lo04	Т	1994	$\beta^{-}=100; \beta^{-}n<5.4; \beta^{-}2n=0\#$	*
¹²⁰ Rh ^m	-58660#	200#	157.2	0.7			295	ns	16	0+	13	12Ka36	ETD	2012	IT=100	*
120 Pd	-70280.1	2.3					492	ms	33	0^+	14	06Mo07	TD	1993	$\beta^{-}=100; \beta^{-}n<0.7$	*
120 Ag	-75652	4	0.11	50.1			1.52	S	0.07	$4^{(+)}$	02	12Ba58	TJ	1971	$\beta^{-}=100; \beta^{-}n<0.003$	*
120 A gm	-/3630#	50#	202.0	50#			940	ms	100	(0, 1)	02	12Ba58	LID	2012	p = ?; 11 ?	
120 C 4	- / 5449	4	203.0	0.2			50.80	ms	22	0 ⁺	02	12Ba58	EJD	19/1	R^{-100} R^{-100}	*
120 In	-85730	4			4		3 08	s	0.21	1+	02			1975	$\beta = 100$ $\beta^{-} - 100$	
$^{120}In^{m}$	-85680#	40 50#	50#	60#	*	&	46.2	5	0.08	$(5)^{+}$	02	13Ma15	T	1958	$\beta^{-}=100$ $\beta^{-}=100$	
$^{120}In^{n}$	-85430#	200#	300#	200#	*	&	47.3	5	0.5	8(-)	02	79Fo10	J	1960	$\beta^{-}=100$	
¹²⁰ Sn	-91098.4	0.9	5001	2001		a	STABLE	5	0.5	0^{+}	02	///010	5	1926	IS=32.58 9	
$^{120}Sn^{m}$	-88616.8	0.9	2481.63	0.06			11.8	μs	0.5	7-	02			1960	IT=100	
120 Sn ⁿ	-88196.2	0.9	2902.22	0.22			6.26	μs	0.11	10^{+}	02	FGK128	J	1987	IT=100	*
¹²⁰ Sb	-88418	7			*		15.89	m	0.04	1^{+}	02			1937	$\beta^{+}=100$	
120 Sb ^m	-88420 #	100#	0#	100#	*		5.76	d	0.02	8-	02			1958	$\beta^{+}=100$	
120 Sb ⁿ	-88340	7	78.16	0.05			246	ns	2	(3^+)	02			1976	IT=100	
120 Sb ^p	-86090	7	2328.3	0.6			400	ns	8		02			1983	IT=100	
¹²⁰ Te	-89368	3					STABLE			0^{+}	02		_	1936	IS=0.09 1; $2\beta^+$?	
120 I	-83753	15	72 (1	0.00			81.67	m	0.18	2-	02	06Ph01	T	1957	$\beta^{+}=100$	*
120 Im 120 In	-83680	15	72.61	0.09			242	ns	5	3+	02	11Mo27	TJ	1974	11=100	*
120 In 120 X -	-83433	21	320	15			23	m	4	(/)	02	0(DL01	т	1967	$\beta^+ = 100$	
120 C	-62172	12					40.0	ш	0.0	$2^{(+)}$	02	00P1101	T	1905	$p^{+} = 100$ $R^{+} = 100, R^{+} \approx c^{2} 0, 5, 4, R^{+} \approx c^{2} c^{2}$	
120 Com	-/3889	10	100#	60#	*		60.4	s	0.0	(7-)	02	00Ph01	I D	1909	$p^{+}=100; p^{+}\alpha < 2.0e^{-5}4; p^{+}p < 7e^{-6}3$,* ,
$^{120}Ce^{x}$	-73884	00#	100#	4	*		P < 0.1	s	0	(/)	02	/30009	D	1977	$p^{+}=100; p^{+}\alpha < 2.0e^{-3}4; p^{+}p < 7e^{-6}3$,
120 Ba	-68890	300	5	4			24	c	2	0 ⁺	02	92Xu04	т	1974	$\beta^{+}-100$	
¹²⁰ La	-57570#	300#					28	5	02	0	02)2/(u0+	1	1984	$\beta^{+}=100; \beta^{+}=2$	
¹²⁰ Ce	-49600#	500#					250#	ms	0.2	0^{+}	02			1701	β^+ 2: β^+ p ?	
* ¹²⁰ Rh	T : avera	ge 15Lo	04=131(5)	06Mo07=13	6(+14	-13))) 04Wa26=	120	(10)						F ', F F	**
$*^{120}$ Rh ^m	E : 12Ka	36=59.	1(0.5) and 9	8.1(0.5) γ ra	ys in c	casca	de to grour	nd-st	ate							**
$*^{120}$ Rh ^m	T : symm	netrized	from 12Ka	36=294(+16	-15)		5									**
* ¹²⁰ Pd	D:2ν-β	β decay	y estimated	150(60) Ey												**
* ¹²⁰ Ag	T : not u	sed 83R	e05=1.25(0	.03) 71Fo22	=1.17((0.05	5) D	: fro	m 93R	Lu01						**
$*^{120}$ Ag ⁿ	T : avera	ge 12Ba	a58=440(50) 03Wa13=4	00(30)) 711	Fo22=320(4	(0								**
$*^{120}$ Sn ⁿ	J : E2 (fr	om inte	nsity balanc	(35) to 8^+ I(35)	54.9)/I	(65.	7)=8.7(1.0)									**
* ¹²⁰ I	T : avera	ge 06Ph	01=82.1(0.	6) 00Ho19=	31.7(0	.2) 6	5An05=81	.0(0.	6)							**
* ¹²⁰ I ^m	T : avera	ge 11M	027=244(5)	74Mu10=22	28(15))		~		(1.4)						**
****Cs	I : avera	ge 06Ph	101=60.0(7)	93A103=60	2)770 :	Ge0.	5=64(3)690	Un I t	s=01.3	(1.4)						**
* ¹²⁰ Cs	D: 1som	ers not o	limite for h	u Dy /5H009	$\nu \ln \beta$	α_{α}	uia $p \cdot p$. Vanishing of 1180	autes	s replac	ea						**
* 'Us	D: t	y upper	minus for b	oui (see ENS	our ev	aiua		.8)								**

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I. The	NUBASE2016	table (continued	Explanation	of Table on page 1	8)

Nuclide	Mass ex (keV	cess ()	e	Excitation nergy (keV)			Hal	f-life		J^{π}]	Ens	Reference	e	Year of discovery	Decay modes and intensities (%)	
121-																
¹²¹ Tc	-31780#	500#					22	ms	6	5/2+#	15			2015	$\beta^{-}=100; \beta^{-}n=50\#; \beta^{-}2n=0.7\#$	
¹²¹ Ru	-45050#	400#					29	ms	2	3/2+#	15		_	2010	$\beta^{-}=100; \beta^{-}n=6\#; \beta^{-}2n=0\#$	
¹²¹ Rh	-56250	620					76	ms	5	7/2+#	10	15Lo04	Т	1994	$\beta^{-}=100; \beta^{-}n=7\#$	
¹²¹ Pd	-66182	3					290	ms	1	3/2+#	10	15Lo04	Т	1994	$\beta^{-}=100; \beta^{-}n<0.8$	
121 Pd ^m	-66047	3	135.5	0.5			460	ns	90	$11/2^{-}$ #	10	12Ka36	ETD	2007	IT=100; β^- ?; β^- n=0#	*
121 Pd ⁿ	-66022	15	160	15			460	ns	90			12Ka36	ETD	2007	IT=100; β^- ?; β^- n=0#	*
¹²¹ Ag	-74403	12				*	780	ms	20	7/2+#	10			1982	$\beta^{-}=100; \beta^{-}n=0.080 \ 13$	
$^{121}Ag^m$	-74383#	23#	20#	20#		*	200#	ms		$1/2^{-}$ #					β^- ?; IT ?	
¹²¹ Cd	-81073.8	1.9					13.5	s	0.3	$3/2^{+}$	10	13Yo02	J	1965	$\beta^{-}=100$	
$^{121}Cd^m$	-80858.9	1.9	214.86	0.15			8.3	s	0.8	$11/2^{-}$	10	13Yo02	J	1982	$\beta^{-}=100$	
¹²¹ In	-85836	27					23.1	s	0.6	$9/2^{+}$	10			1960	$\beta^{-}=100$	
$^{121}In^{m}$	-85522	27	313.68	0.07			3.88	m	0.10	$1/2^{-}$	10			1974	$\beta^{-}=98.82$; IT=1.22	
121 In ⁿ	-83388	27	2448	1			17	μs	2	$(21/2^{-})$		10Re01	ETJ	2010	IT=100	*
¹²¹ Sn	-89197.3	1.0					27.03	h	0.04	$3/2^{+}$	10			1948	$\beta^{-}=100$	
121 Sn ^m	-89191.0	1.0	6.31	0.06			43.9	У	0.5	$11/2^{-}$	10			1962	IT=77.6 20; β^{-} =22.4 20	
121 Sn ⁿ	-87198.5	1.3	1998.8	0.9			5.3	μs	0.5	$(19/2^+)$	10			1995	IT=100	*
$^{121}Sn^{p}$	-86976.2	1.1	2221.1	0.4			520	ns	50	$(23/2^+)$		16Is03	EJT	2012	IT=100	
121 Sn ^q	-86362.7	2.1	2834.6	1.8			167	ns	25	$(27/2^{-})$	10			1995	IT=100	
¹²¹ Sb	-89600.3	2.6					STABLE			$5/2^{+}$	10			1922	IS=57.21 5	
121 Sb ^m	-86859	12	2741	12			179	μs	6	$(25/2^+)$	10	09Wa02	EJ	2008	IT=100	*
¹²¹ Te	-88546	26					19.17	d	0.04	$1/2^+$	10			1939	$\beta^{+}=100$	
$^{121}\text{Te}^m$	-88252	26	293.974	0.022			164.2	d	0.8	$11/2^{-}$	10			1940	IT=88.6 11; β^+ =11.4 11	
¹²¹ I	-86251	5					2.12	h	0.01	$5/2^{+}$	10			1950	$\beta^{+}=100$	
${}^{121}I^{m}$	-83874	5	2376.9	0.4			9.0	μs	1.4		10			1982	IT=100	
¹²¹ Xe	-82481	10					40.1	m	2.0	$5/2^{(+)}$	10			1952	$\beta^{+}=100$	
121Cs	-77102	14					155	s	4	$3/2^{(+)}$	10			1969	$\beta^{+}=100$	
$^{121}Cs^{m}$	-77034	14	68.5	0.3			122	s	3	$9'/2^{(+)}$	10			1981	$\beta^{+}=83$: IT=17	
$^{121}Cs^{x}$	-77056	16	46	8			R = 21			spmix					P,	
¹²¹ Ba	-70740	140					29.7	s	15	$5/2^{(+)}$	10	75Bo11	D	1975	$\beta^+=100: \beta^+=0.02.1$	
¹²¹ La	-62190#	300#					53	s	0.2	$11/2^{-}$ #	10	100011	D	1988	$\beta^{+}=100; \beta^{+}p^{-}=100; \beta^{+}p^{-}$	
¹²¹ Ce	-52690#	400#					11	s	0.1	$(5/2)^{(+\#)}$	10			1997	$\beta^{+}=100; \beta^{+}p^{-1}$	
121-	_41420#	500#					1.1	me	5	(3/2)	10			2005	$p = 100, p = p \approx 1$ $p \approx 100$	¥
121 Pr	$\tau_{1}\tau_{4}00$	5001					12	ms	5	(3/2)	10			2005	p~100	Ŧ
¹²¹ Pr * ¹²¹ Pd ^m	T · symm	netrized	from 12Ka36	$-460(\pm 85)$	92)	F	• other 07T	023-	135(3)	eV						++
$*^{121}$ Pr $*^{121}$ Pd ^m $*^{121}$ Pd ⁿ	T : symn	netrized	from 12Ka36 from 12Ka36	6=460(+85-9 6=463(+83-9	92) 94) an	E Lasse b	E : other 07To	o23= uscad	135(3) k ing isom	eV						**
121 Pr $*^{121}$ Pd ^m $*^{121}$ Pd ⁿ $*^{121}$ Pd ⁿ	T : symn T : symn E : x keV	netrized netrized	from 12Ka36 from 12Ka36 121Pdm x be	5=460(+85-9 5=463(+83-9 2000 energy	92) 94) an thresh	E d assu	E : other 07To ming two ca	o23= iscad	135(3) k ing isom	eV ners						** **
121 Pr * 121 Pd ^m * 121 Pd ⁿ * 121 Pd ⁿ * 121 Pd ⁿ	T : symn T : symn E : x keV T : other	netrized netrized above	from 12Ka36 from 12Ka36 121Pdm, x be (=350(50) ps	=460(+85-9 =463(+83-9 elow energy	92) 94) an thresh (25/2 ⁺	E d assu old 50	E : other 07To uming two ca 0 keV ther studies	o23= iscad	135(3) k ing isom	eV ners						** ** **
$^{121} Pr \\ *^{121} Pd^{m} \\ *^{121} Pd^{n} \\ *^{121} Pd^{n} \\ *^{121} In^{n} \\ *^{121} Sn^{n}$	T : symm T : symm E : x keV T : other F : 121 Sr	netrized netrized above 02Lu15 n=1998	from 12Ka36 from 12Ka36 121Pdm, x be =350(50) ns, 8(0.9) and ¹²	=460(+85-9) =463(+83-9) elow energy assigned J= 1 Sn ^p =2834	92) 94) an thresh (25/2 ⁺ 6(1.8)	E d assu old 50); fur are fr	E : other 07T uning two ca 0 keV ther studies com ENSDE?	o23= iscad are n	135(3) k ing isom eeded	eV ners						** ** ** **
* ¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sn ⁿ	T : symm T : symm E : x keV T : other E : 121 Sn E : above	netrized netrized above 02Lu15 ⁿ =1998.	from 12Ka36 from 12Ka36 121Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2	5=460(+85-9) 5=463(+83-9) elow energy assigned J= 1 Sn ^p =2834.0 2761; other 0	92) 94) and thresh (25/2 ⁺ 6(1.8) 081003	E d assu old 50); fur are fr =272	E : other 07To uming two ca 0 keV ther studies rom ENSDF2 1 1 + x with	o23= iscad are n 000,i x < 6	135(3) k ing isom eeded not in 20 0 or x < 8	eV ners 910 80						** ** ** ** **
* ¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ Sn ⁿ * ¹²¹ Sb ^m * ¹²¹ Sb ^m	T : symm T : symm E : x keV T : other E : 121 Sr E : above T : symm	netrized netrized above 02Lu15 "=1998. e 2720.9	from 12Ka36 from 12Ka36 121Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6–	5=460(+85-9) 5=463(+83-9) 1000000000000000000000000000000000000	92) 94) and thresh (25/2 ⁺ 6(1.8))8Jo03	E d assu old 50); fur are fr 3=272	E : other 07To uming two ca 0 keV ther studies rom ENSDF2 1.1 + x with	o23= iscad are n 000,i x<6	135(3) k ing isom eeded not in 20 0 or x<8	eV ners 910 80						** ** ** ** ** **
* ¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ Sn ⁿ * ¹²¹ Sb ^m * ¹²¹ Sb ^m	T : symm T : symm E : x keV T : other E : 121 Sr E : above T : symm	netrized netrized / above 02Lu15 n=1998 e 2720.9 netrized	from 12Ka36 from 12Ka36 121Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6–	5=460(+85-9) 5=463(+83-9) 1000 energy 1000 assigned J=1000 assigned $1^{1} \text{ Sn}^{p} = 2834.000000000000000000000000000000000000$	92) 94) and thresh (25/2 ⁺ 6(1.8) 98Jo03	E d assu old 50 ; fur are fr 5=272	E : other 07T6 iming two ca 0 keV ther studies from ENSDF2 1.1 + x with	o23= iscad are n 000,i x<6	135(3) k ing isom eeded not in 20 0 or x<8	eV ners 910 80						** ** ** ** ** **
	T : symn T : symn E : x keV T : other E : ¹²¹ Sr E : above T : symn	netrized netrized above 02Lu15 ⁿ =1998. e 2720.9 netrized	from 12Ka36 from 12Ka36 121Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6–	5=460(+85-5) 5=463(+83-5) 5=463(+83-5) 1 solution 3 solution 3 solution 5=2834.0 3 solution 3	92) 94) and thresh (25/2 ⁺ 6(1.8) 98Jo03	E d assu old 50); fur are fr =272	E : other 07T6 ming two ca 0 keV ther studies rom ENSDF2 1.1 + x with	o23= iscad are n 000,i x<6	135(3) k ing isom eeded not in 20 0 or x<8	eV hers 910 80						** ** ** ** ** ** **
¹²¹ Pr * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sn ⁿ * ¹²¹ Sb ^m * ¹²¹ Sb ^m	T : symn T : symn E : x keV T : other E : ¹²¹ Sr E : above T : symn	netrized netrized 2 above 02Lu15 n=1998 e 2720.9 netrized 500#	from 12Ka36 from 12Ka36 121Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6–	5=460(+85-5) 5=463(+83-5) 5=463(+83-5) 1000000000000000000000000000000000000	92) 94) and thresh (25/2 ⁺ 6(1.8) 98Jo03	E d assu old 50); fur are fr =272	E : other 07T6 uming two ca 0 keV ther studies rom ENSDF2 1.1 + x with 25	023= iscad are n 000,i x<6 ms	135(3) k ing isom eeded not in 20 0 or x<8 1	eV hers 010 30 0 ⁺	15			2010	$\beta^{-}=100: \beta^{-}n=7#: \beta^{-}2n=0#$	** ** ** ** ** **
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sn ⁿ * ¹²² Sb ^m * ¹²² Ru ¹²² Ru	T : symm T : symm E : x keV T : other E : ¹²¹ Sr E : above T : symm -42150# -52080#	netrized netrized above 02Lu15 n=1998 e 2720.9 netrized 500# 300#	from 12Ka36 from 12Ka36 121Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6–	=460(+85-5) =463(+83-5) solve energy assigned J= 1 Sn ^p =2834.0 (761; other 0 3)	92) 94) and thresh (25/2 ⁺ 6(1.8) 98Jo03	E d assu old 5(); fur are fr =272	E : other 07T5 iming two ca 0 keV ther studies om ENSDF2 1.1 + x with 25 51	o23= uscad are n 000,i x<6 ms ms	135(3) k ing isom eeded not in 20 0 or x<8 1 6	eV hers 010 30 0 ⁺	15 13	15Lo04	TD	2010 1997	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$ $\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\#$	** ** ** ** ** **
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sn ⁿ * ¹²¹ Sb ^m * ¹²² Sb ^m * ¹²² Ru ¹²² Rh	T : symm T : symm E : x keV T : other E : ¹²¹ Sr E : above T : symm -42150# -52080# -51810#	netrized netrized above 02Lu15 n=1998. 2720.9 netrized 500# 300#	from 12Ka36 from 12Ka36 121Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0	=460(+85-5) =463(+83-5) =1000000000000000000000000000000000000	92) 94) and thresh (25/2 ⁺ 6(1.8) 98Jo03	E d assu old 5(); fur are fr 5=272	E : other 07T5 iming two ca 0 keV ther studies om ENSDF2 1.1 + x with 25 51 830	o23= uscad are n 000,i x<6 ms ms ns	135(3) k ing isom eeded not in 20 0 or x<8 1 6 120	eV hers 910 80 0 ⁺	15 13 13	15Lo04 12Ka36	TD	2010 1997 2012	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$ $\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\#$ TT=100	** ** ** ** ** **
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sb ^m * ¹²¹ Sb ^m * ¹²¹ Pr ¹²² Ru ¹²² Rh ^m ¹²² Rh ^m	T : symm T : symm E : x keV T : other E : ¹²¹ Sr E : above T : symm -42150# -52080# -51810#	netrized netrized above 02Lu15 n=1998. 2720.9 netrized 500# 300# 20	from 12Ka36 from 12Ka36 121Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0	=460(+85-5 =463(+83-5 elow energy assigned J= ¹ Sn ^p =2834.0 7/61; other 0 3)	92) 94) and thresh (25/2 ⁺ 6(1.8))8Jo03	E d assu old 5(); fur are fr =272	E : other 07T5 iming two ca 0 keV ther studies fom ENSDF2 1.1 + x with 25 51 830 195	o23= uscad are n 000,i x<6 ms ms ns ms	135(3) k ing isom eeded not in 20 0 or x<8 1 6 120 5	eV hers 010 30 0 ⁺ 0 ⁺	15 13 13 14	15Lo04 12Ka36 15Lo04	TD ETD T	2010 1997 2012 1994	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$ $\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\#$ $IT=100; \beta^{-}n<2.5$	** ** ** ** **
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sb ^m * ¹²¹ Sb ^m * ¹²¹ Pr ¹²² Ru ¹²² Rh ^m ¹²² Pd	T : symm T : symm E : x keV T : other E : ¹²¹ Sr E : above T : symm -42150# -52080# -51810# -64616 -71110	netrized netrized above 02Lu15 n=1998. 2720.9 netrized 500# 300# 20 40	from 12Ka36 from 12Ka36 121Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0	=460(+85-4 i=463(+83-4) elow energy assigned J= ¹ Sn ^p =2834,1 (761; other 0 3) 0.7	92) 94) and thresh (25/2 ⁺ 6(1.8))8Jo03	E d assu old 5(-); fur are fr s=272	3 : other 07Ts ming two ca 0 keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529	o23= uscad are n 000,i x<6 ms ms ms ms ms	135(3) k ing isom eeded not in 20 0 or x<8 1 6 120 5 13	eV hers 010 0^+ 0^+ (3^+)	15 13 13 14 07	15Lo04 12Ka36 15Lo04	TD ETD T	2010 1997 2012 1994 1978	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$ $\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\#$ $TT=100; \beta^{-}n<2.5; \beta^{-}=100; \beta^{-}n=0.186; 10$	** ** ** ** **
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sn ⁿ * ¹²¹ Sb ^m * ¹²¹ Pr ¹²² Ru ¹²² Rh ^m ¹²² Pd ¹²² Ag ^m	T : symm T : symm E : x keV T : other E : ¹²¹ Sr E : abov T : symm -42150# -52080# -51810# -64616 -71110 -71030#	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 20 40 60#	from 12Ka36 from 12Ka36 121Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80#	=460(+85- =463(+83- 	92) 94) and thresh (25/2 ⁺ 6(1.8) 98Jo03	E d assu old 50); fur are fr =272	E : other 07Ts ming two ca 0 keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529 550	ns ms	135(3) k ing isom eeded not in 20 0 or x < 8 1 6 120 5 13 50	eV hers 0^{10} 0^{+} (3^{+}) (1^{-})	15 13 13 14 07 07	15Lo04 12Ka36 15Lo04	TD ETD T	2010 1997 2012 1994 1978 2000	$β^-=100; β^-n=7#; β^-2n=0#$ $β^-=100; β^-n=10#; β^-2n=0.01#$ IT=100 $β^-=100; β^-n<2.5$ $β^-=100; β^-n=0.186$ 10 $β^-=100; β^-n=0.2#$	** ** ** ** ** *
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sb ^m * ¹²¹ Sb ^m * ¹²² Ru ¹²² Ru ¹²² Rh ^m ¹²² Ag ^m ¹²² Ag ^m	T : symm T : symm E : x keV T : other E : ¹²¹ Sr E : abov T : symm -42150# -52080# -51810# -64616 -71110 -71030#	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 20 40 60# 60#	from 12Ka36 from 12Ka36 121Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80#	=460(+85-/ 5=463(+83-/ clow energy low	92) 94) and thresh (25/2 ⁺ 6(1.8) 98Jo03	E d assu old 50); fur are fr =272	E : other 07Ts ming two ca 0 keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529 550 200	o23= sscad are n 000,; x<6 ms ms ms ms ms ms ms ms	135(3) k ing isom eeded not in 20 0 or x < 8 1 6 120 5 13 50 50	eV hers 010 30 0^+ (3^+) (1^-) (9^-)	15 13 13 14 07 07 07	15Lo04 12Ka36 15Lo04	TD ETD T	2010 1997 2012 1994 1978 2000 2000	$β^-=100; β^-n=7#; β^-2n=0#$ $β^-=100; β^-n=10#; β^-2n=0.01#$ $I^{T=100}$ $β^-=100; β^-n<2.5$ $β^-=100; β^-n<2.86 10$ $β^-=100; IT ?; β^-n=0.2#$ $β^-=100; IT ?; β^-n=0.7#$	** *** *** * *
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sn ^m * ¹²¹ Sb ^m * ¹²¹ Pr ¹²² Ru ¹²² Rh ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ⁿ	T : symm T : symm E : x keV T : other E : l ²¹ Sr E : above T : symm -42150# -52080# -51810# -64616 -71110 -71030# -71030#	netrized netrized 7 above 02Lu15 n=1998. 2 2720.9 netrized 500# 300# 20 40 60# 60#	from 12Ka36 from 12Ka36 (21Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80#	=460(+85-4 =463(+83-4) =10w energy assigned J== ¹ Sn ^p =2834, (761; other C 3) 0.7 50# 50# 50#	92) 94) an thresh (25/2 ⁺ 6(1.8))8Jo03	E d assu old 5(-); fur are fr ==272 * *	E : other 07Ts ming two ca 0 keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6 3	ns ms	135(3) k ing isom eeded not in 20 0 or x <8 1 6 120 5 13 50 50 10	eV hers 010 30 0^+ (3^+) (1^-) (9^-)	15 13 13 14 07 07 07	15Lo04 12Ka36 15Lo04	TD ETD T	2010 1997 2012 1994 1978 2000 2000 2000	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\# \\ \beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\# \\ \text{IT}=100 \\ \beta^{-}=100; \beta^{-}n<2.5 \\ \beta^{-}=100; \beta^{-}n=0.186 \ 10 \\ \beta^{-}=100; \text{IT} \ ?; \beta^{-}n=0.2\# \\ \beta^{-}=100; \text{IT} \ ?; \beta^{-}n=0.2\# \\ \text{IT}=100 \\ \text{IT}=1$	** *** *** * * *
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sb ^m * ¹²¹ Sb ^m * ¹²¹ Pr ¹²² Ru ¹²² Rh ^m ¹²² Rh ^m ¹²² Ag ^m ¹²² Ag ^p ¹²² Ag ^p ¹²² Ag ^p	T: symm T: symm E: x keV T: other E: 1 ²¹ Sr E: above T: symm -42150# -52080# -51810# -64616 -71110 -71030# -71030# -71030#	netrized netrized 7 above 02Lu15 n=1998. 2720.9 netrized 500# 300# 20 40 60# 60# 60# 2 3	from 12Ka36 from 12Ka36 from 12Ka36 =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80#	=460(+85-4 =463(+83-4) =10w energy assigned J= ¹ Sn ^p =2834,1 (761; other 0 3) 0.7 50# 50# 50#	92) 94) and thresh (25/2 ⁺ 6(1.8) 98Jo03	E d assu old 50 ; fur are fr 3=272 * * *	3 : other 07Ts ming two cs 0 keV ther studies tom ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24	023= ascad are n 000,, x<6 ms ms ms ms ms ms ms ms ms s s s s s	135(3) k ing isom eeded tot in 20 0 or x<8 1 6 120 5 13 50 50 50 1.0 0.03	eV hers 010 30 0 ⁺ (3 ⁺) (1 ⁻) (9 ⁻) 0 ⁺	15 13 13 14 07 07 07	15Lo04 12Ka36 15Lo04 13La11	TD ETD T	2010 1997 2012 1994 1978 2000 2000 2013	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$ $\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\#$ IT=100 $\beta^{-}=100; \beta^{-}n<2.5$ $\beta^{-}=100; \beta^{-}n=0.186$ 10 $\beta^{-}=100; IT ?; \beta^{-}n=0.2\#$ $\beta^{-}=100$ IT ?; $\beta^{-}n=0.2\#$ $\beta^{-}=100$	** *** *** * *
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sb ^m * ¹²¹ Sb ^m * ¹²¹ Pr ¹²² Ru ¹²² Rh ^m ¹²² Rh ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^p ¹²² Ag ^p ¹²² Ag ^p ¹²² Cd	T : symm T : symm E : x keV T : other E : 121 Sr E : abov T : symm -42150# -52080# -51810# -64616 -71110 -71030# -71030# -71030# -80612.4 -83570	netrized netrized above 02Lu15 "=1998, 2720.9 netrized 500# 300# 20 40 60# 60# 60# 2.3 50	from 12Ka36 from 12Ka36 from 12Ka36 =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80#	=460(+85-4 i=463(+83-4) ilow energy assigned J= ¹ Sn ^p =2834,1 (761; other 0 3) 0.7 50# 50# 50#	92) 94) and thresh (25/2 ⁺ 6(1.8))8Jo03	E d assu old 50 ; fur are fr ==272 * *	E : other 07Ts ming two ca 0 keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5	023= ascad are n 000, x<6 ms ms ms ms ms ms ms ms ms s s s s	135(3) k ing isom eeded tot in 20 0 or x<8 1 6 120 5 13 50 50 1.0 0.03 0 3	eV hers 0^{10} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+}	15 13 13 14 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11	TD ETD T	2010 1997 2012 1994 1978 2000 2000 2013 1973 1963	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$ $\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\#$ TT=100 $\beta^{-}=100; \beta^{-}n=0.186 \ 10$ $\beta^{-}=100; TT ?; \beta^{-}n=0.2\#$ $\beta^{-}=100; TT ?; \beta^{-}n=0.2\#$ TT=100 $\beta^{-}=100$ $\beta^{-}=100$	* * * * * * * * *
¹²¹ Pr * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sb ^m * ¹²¹ Sb ^m * ¹²¹ Pr ¹²² Ru ¹²² Rh ^m ¹²² Pd ¹²² Ag ^m ¹²² Ag ⁿ ¹²² Ag ^p ¹²² Cd ¹²² In ^m	T : symm T : symm E : x keV T : other E : ¹²¹ Sr E : abov T : symm -42150# -52080# -51810# -64616 -71130# -71030# -71030# -80612.4 -83570 83530#	netrized netrized above 02Lu15 "=1998. 2720.9 netrized 500# 300# 300# 20 40 60# 60# 60# 2.3 50 80#	from 12Ka36 from 12Ka36 121Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80#	=460(+85-4 i=463(+83-4) elow energy assigned J= ¹ Sn ^p =2834.4 (761; other 0 3) 0.7 50# 50# 50# 50#	92) 94) and thresh (25/2 ⁺ 6(1.8) 88J003	E d assu old 50 ; fur are fr ==272 * * *	E : other 07Ts ming two ca 0 keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5	023= ascad are n 0000, x < 6 ms ms ms ms ms ms ms s s s s	135(3) k ing isom eeded oot in 20 0 or x <8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6	eV hers 0^{10} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+}	15 13 13 14 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11	TD ETD T	2010 1997 2012 1994 1978 2000 2000 2013 1973 1963	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\# \\ \beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\# \\ IT=100 \\ \beta^{-}=100; \beta^{-}n=0.186 \ 10 \\ \beta^{-}=100; \beta^{-}n=0.2\# \\ \beta^{-}=100; IT \ ?; \beta^{-}n=0.2\# \\ IT=100 \\ \beta^{-}=100 \\ \beta^{$	* * * * * * * * *
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ Sn ⁿ * ¹²¹ Sb ^m * ¹²¹ Sb ^m * ¹²² Ru ¹²² Rh ¹²² Rh ^m ¹²² Pd ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^p ¹²² Ag ^p ¹²² Ag ^p ¹²² Ln ^m	T : symm T : symm E : x keV T : other E : ¹²¹ Sr E : abov T : symm -42150# -52080# -51810# -64616 -71110 -71030# -71030# -71030# -80612.4 -83530 -83530#	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 20 40 60# 60# 60# 2.3 50 80# 130	from 12Ka36 from 12Ka36 from 12Ka36 =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 80#	=460(+85-4) =463(+83-4) =463(+83-4) =100 energy $assigned J==1^{-1} \text{ Sn}^{p}=2834, 4$ =761; other C 3) 0.7 50# 50# 50# 50# 50# 140	92) 94) an thresh (25/2 ⁺ 6(1.8) 98Jo03	E d assu old 50 ; fur are fr s=272 * * * * * * * *	E : other 07Ts ming two ca 0 keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5 10.3 10 8	023= ascad are n 0000, x < 6 ms ms ms ms ms ms ms s s s s s	135(3) k ing isom eeded tot in 20 0 or x<8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.4	eV hers 010 30 0^+ (3^+) (1^-) (9^-) 0^+ 1^+ 5^+ (8^-)	15 13 13 14 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11	TD ETD T	2010 1997 2012 1994 1978 2000 2000 2013 1973 1963 1979	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\# \\ \beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\# \\ \text{IT}=100 \\ \beta^{-}=100; \beta^{-}n<2.5 \\ \beta^{-}=100; \beta^{-}n=0.186 \ 10 \\ \beta^{-}=100; \text{ IT } ?; \beta^{-}n=0.2\# \\ \beta^{-}=100; \text{ IT } ?; \beta^{-}n=0.2\# \\ \text{IT}=100 \\ \beta^{-}=100 \\ \beta^{-}=1$	* * * * * * * * *
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ Sn ⁿ * ¹²¹ Sn ^m * ¹²¹ Sb ^m * ¹²¹ Pr ¹²² Ru ¹²² Rh ¹²² Rh ^m ¹²² Ag ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Cd ¹²² In ^m ¹²² In ^m	T: symm T: symm E: x keV T: other E: 1 ²¹ Sr E: above T: symm -42150# -52080# -51810# -64616 -71110 -71030# -71030# -71030# -70307 -83570 -83530# -83530# -83530#	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 300# 20 40 60# 60# 60# 60# 60# 130 80# 130	from 12Ka36 from 12Ka36 from 12Ka36 =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 80# 40# 290	=460(+85-4 =463(+83-4) =10w energy assigned J== ¹ Sn ^p =2834.(761; other C 3) 0.7 50# 50# 50# 60# 140	92) 94) an: thresh (25/2 ⁺ 6(1.8) 98Jo03	E d assu old 50 ; fur are fr are fr =272 * * * * * *	 e) other 07Ts ming two cs D) keV ther studies from ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STAPLE 	$p_{23} = 1$ ascad are n 000, x < 6 ms ms ms ms ms ms ms ms ms ms s s s s	135(3) k ing isom eeded not in 20 0 or x < 8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4	eV hers 0^{10} 30 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+}	15 13 13 14 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11	TD ETD T T	2010 1997 2012 1994 1978 2000 2010 2013 1973 1963 1979 1979 1979	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$ $\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\#$ IT=100 $\beta^{-}=100; \beta^{-}n<2.5$ $\beta^{-}=100; \beta^{-}n=0.186$ 10 $\beta^{-}=100; IT ?; \beta^{-}n=0.2\#$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$	* * * * * * * *
*121 Pr *121 Pd ^m *121 Pd ⁿ *121 Pd ⁿ *121 Pd ⁿ *121 Sb ^m *121 Sb ^m *121 Sb ^m *121 Pr *122 Ru *122 Rh ^m *122 Rh ^m *122 Ag ⁿ *122 Ag ⁿ *122 Ag ⁿ *122 Cd *122 In *122 In ⁿ *122 Sn *122 Sn ^m	T: symm T: symm E: x keV T: other E: 121 Sr E: above T: symm -52080# -51810# -64616 -71110 -71030# -71030# -71030# -83530 -83530 -83530 -83530 -83520 -835222	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 300# 300# 40 60# 60# 60# 2.3 50 80# 130 2.4 2.4	from 12Ka36 from 12Ka36 from 12Ka36 =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 200 2400.02	=460(+85-4 =463(+83-4) =10w energy assigned J= ¹ Sn ^p =2834,1 (761; other 0 3) 0.7 50# 50# 50# 60# 140 0.04	92) 94) an. thresh (25/2 ⁺ 6(1.8) 8J003 BD	E d assu old 50 ; fur are fr ==272 * * * * *	 e) other 07Ts ming two ca 0) keV ther studies ther studie	$p_{23} = 1$ ascad are n 000, x < 6 ms ms ms ms ms ms ms ms ms s s s s s s	135(3) k ing isom eeded not in 20 0 or x<8 1 6 120 5 13 50 50 1.0 0.03 0.6 0.4	eV hers 0^{10} 30 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-}	15 13 13 14 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11	TD ETD T	2010 1997 2012 1994 1978 2000 2000 2013 1973 1963 1979 1963 1979 1979	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\# \\ \beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\# \\ IT=100 \\ \beta^{-}=100; \beta^{-}n<2.5 \\ \beta^{-}=100; \beta^{-}n=0.186 \ 10 \\ \beta^{-}=100; IT \ ?; \beta^{-}n=0.2\# \\ \beta^{-}=100 \\ IS=4.63 \ 3; 2\beta^{-} \ ? \\ IT_{-}=100 \\ IT_{-}=00 $	* * * * * * * *
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sb ^m * ¹²¹ Sb ^m * ¹²¹ Pr ¹²² Ru ¹²² Rh ^m ¹²² Pd ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ln ^m ¹²² In ^m ¹²² Sn ^m ¹²² Sn ^m	T : symm T : symm E : x keV T : other E : ¹²¹ Sr E : abov T : symm -42150# -52080# -51810# -64616 -71130# -71030# -71030# -71030# -83570 -83530 -83530 -83290 -83290 -89941.3 -87532.3 -87532.3	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 20 40 60# 60# 60# 2.3 50 80# 130 2.4 2.4	from 12Ka36 from 12Ka36 l21Pdm, x be i=350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 40# 290 2409.03 275.6	=460(+85-4 =463(+83-4) elow energy assigned J= ¹ Sn ^p =2834,1 (761; other 0 3) 0.7 50# 50# 50# 50# 60# 140 0.04	92) 94) an. thresh (25/2 ⁺ 6(1.8) 8J003 BD	E d assu old 5(; fur are fr =272 * * * * *	E : other 07Ts ming two ca 0 keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	223= are n 000, x < 6 ms ms ms ms ms ms ms ms ms s s s s s s	135(3) k ing isom eeded oot in 20 0 or x<8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (1^{+})	15 13 13 14 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11	TD ETD T	2010 1997 2012 1994 1978 2000 2000 2013 1973 1963 1979 1979 1979 1928 1979	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$ $\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\#$ TT=100 $\beta^{-}=100; \beta^{-}n<2.5$ $\beta^{-}=100; \Gamma 7; \beta^{-}n=0.2\#$ $\beta^{-}=100; \Gamma T ?; \beta^{-}n=0.2\#$ TT=100 $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\Gamma =100$ $\beta^{-}=100$ $\Gamma =100$ $\beta^{-}=$	* * * * * * * * *
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ In ⁿ * ¹²¹ Sn ⁿ * ¹²¹ Sb ^m * ¹²¹ Pr ¹²² Ru ¹²² Rh ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ln ^m ¹²² In ^m ¹²² Sn ^m ¹²² S	T: symm T: symm E: x keV T: other E: 1^{21} Sr E: abov T: symm -42150# -52080# -51810# -64616 -71100 -71030# -71030# -71030# -80612.4 -83530 -83530# -83290 -839941.3 -87532.3 -877532.1	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 20 40 60# 60# 2.3 50 80# 130 2.4 2.4 2.6 2.5	from 12Ka36 from 12Ka36 121Pdm, x be i=350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 2409.03 2765.6 1720 2	$=460(+85-4)^{10}$	92) 94) an thresh (25/2 ⁺ 6(1.8) 8J003 BD	E d assu old 50); fur are fr =272 * * * * *	E : other 07Ts ming two ca 0 keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62	223= are n 000, x < 6 ms ms ms ms ms ms ms ms ms s s s s s s	135(3) k ing isom eeded ot in 20 0 or x <8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-})	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11	TD ETD T T	2010 1997 2012 1994 1978 2000 2010 2013 1973 1963 1979 1979 1928 1979 1928	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$ $\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\#$ IT=100 $\beta^{-}=100; \beta^{-}n=0.186 \ 10$ $\beta^{-}=100; IT ?; \beta^{-}n=0.2\#$ $\beta^{-}=100; IT ?; \beta^{-}n=0.2\#$ IT=100 $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IS=4.63 3; $2\beta^{-}$? IT=100 IT=100 IT=100	* * * * * * * * *
¹²¹ Pr * ¹²¹ Pd ^m * ¹²¹ Pd ⁿ * ¹²¹ Pd ⁿ * ¹²¹ Sn ⁿ * ¹²¹ Sn ^m * ¹²¹ Sb ^m * ¹²² Ru ¹²² Rh ¹²² Rh ^m ¹²² Pd ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ag ^m ¹²² Ln ^m ¹²² In ^m ¹²² Sn ^m ¹²² Sn ⁿ ¹²² Sn ⁿ	T: symm T: symm E: x keV T: other E: 121 Sr E: abov T: symm -42150# -52080# -51810# -64616 -71110 -71030# -71030# -71030# -80612.4 -83530 -83530# -83530# -83290 -83941.3 -87532.3 -871557 -85221.1 -95221.1	netrized netrized ' above ' 2Lu15 "=1998. 2720.9 netrized 500# 300# 300# 300# 20 40 60# 60# 60# 60# 60# 130 2.4 2.4 2.4 2.6 2.5 2.6	from 12Ka36 from 12Ka36 from 12Ka36 =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 209 2409.03 2765.6 4720.2	5=460(+85-4 5=463(+83-4) 10w energy assigned J= 1 ^s n ^p =2834, (761; other C 3) 0.7 50# 50# 50# 60# 140 0.04 1.0 0.5	92) 94) an. thresh (25/2 ⁺ (6(1.8) 88Jo03	E d assu old 5(); fur are fr =272 * * * *	E : other 07Ts iming two cs 0 keV ther studies from ENSDF2 1.1 + x with 25 51 8300 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62 146 2.726		135(3) k ing isom eeded not in 20 0 or x<8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3 15 0 0 0 0 0	eV hers 0^{10} 30 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) (15^{-})	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05	TD ETD T T	2010 1997 2012 1994 1978 2000 2013 1973 1963 1979 1979 1928 1979 1928 1979	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\# \\ \beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\# \\ IT=100 \\ \beta^{-}=100; \beta^{-}n=0.186 \ 10 \\ \beta^{-}=100; IT ?; \beta^{-}n=0.2\# \\ \beta^{-}=100 \\ IT=100 \\ IT=10 \\ IT=100 \\ IT=10 \\$	* * * * * * * *
*121 Pr *121 Pd ^m *121 Pd ⁿ *121 Pd ⁿ *121 Sh ⁿ *121 Sh ⁿ *121 Sh ^m *121 Sh ^m *121 Pr *122 Rh *122 Rh ^m *122 Rh ^m *122 Ag ⁿ *122 Ag ^m *122 Ag ⁿ *122 Ag ⁿ *122 Ln ^m *122 In ^m *122 Sn ^m *122 Sn ^m *122 Sh ^m	$\begin{array}{l} T: symm\\ T: symm\\ E: x \ keV\\ T: other\\ E: 121 \ Sr\\ E: above\\ T: symm\\ -52080 \#\\ -51810 \#\\ -64616\\ -71110\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -80612.4\\ -83570\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83532 \\ -87175.7\\ -85221.1\\ -88335.4\\ -835.4\\ -835$	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 300# 300# 300# 20 40 60# 60# 60# 60# 130 2.4 2.4 2.4 2.6 2.5 2.6	from 12Ka36 from 12Ka36 from 12Ka36 =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 2090 2409.03 2765.6 4720.2	=460(+85-4 =463(+83-4 =160 energy assigned J= ¹ Sn ^p =2834, (761; other C 3) 0.7 50# 50# 50# 60# 140 0.04 1.0 0.5 0.0005	92) 94) an. thresh (25/2 ⁺ (25/2 ⁺ (25/2 ⁺) (25/2 ⁺)	E d assu old 5(); fur are fr =272 * * * * *	E : other 07Ts ming two cs 0 keV ther studies com ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238	$p_{23} = 1$ scad are n 000, x < 6 ms ms ms ms ms ms ms μs s s s s μs μs μs μs μs μs	135(3) k ing isom eeded not in 20 0 or x<8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3 15 0.0002	eV hers 0^{10} 30 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 2^{+}	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05	TD ETD T T EJT	2010 1997 2012 1994 1978 2000 2000 2010 1973 1963 1979 1963 1979 1979 1979 1979 2012 2012 1939 2012	$\begin{array}{l} \beta^{-}=100; \ \beta^{-}n=7\#; \ \beta^{-}2n=0\#\\ \beta^{-}=100; \ \beta^{-}n=10\#; \ \beta^{-}2n=0.01\#\\ \mathrm{IT}=100\\ \beta^{-}=100; \ \beta^{-}n=0.28\\ \beta^{-}=100; \ \beta^{-}n=0.2\#\\ \beta^{-}=100; \ \mathrm{IT}\ ?; \ \beta^{-}n=0.2\#\\ \beta^{-}=100\\ \beta^{-}=100\\ \beta^{-}=100\\ \beta^{-}=100\\ \beta^{-}=100\\ \beta^{-}=100\\ \mathrm{IS}=4.63\ 3; \ 2\beta^{-}\ ?\\ \mathrm{IT}=100\\ \mathrm{IT}=100\\ \mathrm{IT}=100\\ \mathrm{IT}=100\\ \mathrm{IT}=100\\ \end{array}$	* * * * * * *
*121 Pr *121 Pd ^m *121 Pd ⁿ *121 Pd ⁿ *121 Sh ⁿ *121 Sh ^m *121 Sh ^m *121 Sh ^m *121 Pr *122 Rh *122 Rh ^m *122 Rh ^m *122 Ag ^m *122 Ag ⁿ *122 Ag ⁿ *122 Cd *122 In ^m *122 Sh ^m *	T: symm T: symm E: x keV T: other E: 1 ²¹ Sr E: abov T: symm -52080# -51810# -64616 -71130 -71030# -71030# -71030# -71030# -83530 -83530 -83530 -83530 -83521.1 -88335.4 -88274.0 -8924.0	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 300# 300# 300# 300 40 60# 60# 2.3 50 80# 130 2.4 2.4 2.4 2.6 2.5 2.6 2.5	from 12Ka36 from 12Ka36 from 12Ka36 =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 2409.03 2765.6 4720.2 61.4131	=460(+85-4 =463(+83-4 =160w energy assigned J= ¹ Sn ^p =2834,1 (761; other 0 3) 0.7 50# 50# 50# 60# 140 0.04 1.0 0.5 0.00055 0.00055	92) 94) an. thresh (25/2 ⁺ 6(1.8) 88J003 BD	E d asst old 5(); fur are fr =272 * * * * *	E : other 07Ts ming two cs 0 keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238 1.86	$p_{23} = 1$ $p_{33} = 1$	135(3) k ing isom eeded not in 20 0 or x<8 1 6 120 5 13 50 50 1.0 0.3 0.6 0.4 0.9 3 15 0.0002 0.08	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} (3^{+})	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05	TD ETD T T	2010 1997 2012 1994 1978 2000 2000 2013 1973 1963 1979 1979 1979 1979 1979 1979 1979 197	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$ $\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\#$ TT=100 $\beta^{-}=100; \beta^{-}n<2.5$ $\beta^{-}=100; \beta^{-}n=0.186 10$ $\beta^{-}=100; TT ?; \beta^{-}n=0.2\#$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ TT=100 TT=100 TT=100 TT=100	* * * * * * *
121 Pr * 121 Pd ^m * 121 Pd ⁿ * 121 Pd ⁿ * 121 Sn ⁿ * 121 Sn ⁿ * 121 Sn ⁿ * 121 Sb ^m * 121 Sb ^m * 122 Rh 122 Rh 122 Rh ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Cd 122 In ^m 122 Sn ^m 122 Sn ^p 122 Sb ^m 122 Sb ^m 123 S	$\begin{array}{l} T: symm\\ T: symm\\ E: x \ keV\\ T: other\\ E: 1^{21} \ sr\\ E: above T: symm\\ -52080 \#\\ -51810 \#\\ -64616\\ -71110\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -80612.4\\ -83570\\ -83530 \#\\ -83290\\ -83530 \#\\ -83290\\ -89941.3\\ -87532.3\\ -87175.7\\ -85221.1\\ -88335.4\\ -88274.0\\ -88197.9\\ -801224 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -88197.9\\ -80124 + 3335.4\\ -8014 + 3335.4\\ -8014 + 3335.4\\ -8014 + 3335.4\\ -8014 + 3335.4\\ -8014 + 3335.4\\ -8014 + 3335.4\\ -8014 + 3335.4\\ -8014 + 3335.4\\ -8014 + 3335.4\\ -8014 + 3335.4\\ -8014 + 3335.4\\ -8014 + 3335 + 3335 + 33355 + 33355 + 33355 + 33355 + 33355 + 3355 + 3355 +$	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 20 40 60# 60# 2.3 50 80# 130 2.4 2.4 2.4 2.6 2.5 2.6 2.6 2.6 2.6	from 12Ka36 from 12Ka36 l21Pdm, x be i=350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 2409.03 2765.6 4720.2 61.4131 137,4726	=460(+85-4 =463(+83-4) elow energy assigned J= ¹ Sn ^p =2834,1 (761; other 0 3) 0.7 50# 50# 50# 50# 60# 140 0.04 1.0 0.5 0.0005 0.0005 0.0005	92) 94) an. thresh (25/2 ⁺ 6(1.8) 88Jo03 BD	E d asst old 5(); fur are fr =272 * * * * *	E : other 07Ts ming two ca 0 keV ther studies om ENSDF2 1.1 + x with 255 51 830 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238 1.86 5300	ms =	135(3) k ing isom eeded ot in 20 0 or x<8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3 15 0.0002 0.08 30	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} (5^{+})	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05	TD ETD T T	2010 1997 2012 1994 1978 2000 2013 1973 1963 1979 1979 1978 1979 1928 1979 1922 2012 1939 1962 1963	$\beta^-=100; \beta^-n=7\#; \beta^-2n=0\#$ $\beta^-=100; \beta^-n=10\#; \beta^-2n=0.01\#$ TT=100 $\beta^-=100; \beta^-n=0.186 \ 10$ $\beta^-=100; TT^-?; \beta^-n=0.2\#$ $\beta^-=100; TT^-?; \beta^-n=0.2\#$ TT=100 $\beta^-=100$ $\beta^-=100$ $\beta^-=100$ $\beta^-=100$ $\beta^-=100$ TT=100	* * * * * * * *
121 Pr *121 Pd ⁿ *121 Pd ⁿ *121 Pd ⁿ *121 Sn ⁿ *121 Sn ⁿ *121 Sb ^m *121 Pr 122 Ru 122 Rh 122 Rh ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ln ^m 122 In ^m 122 Sn ⁿ 122 Sb ⁿ 122 S ⁿ 122 S	T: symm T: symm E: x keV T: other E: 121 Sr E: abov T: symm -42150# -52080# -51810# -64616 -71110 -71030# -71030# -71030# -7033 -83530# -83530# -83290 -839941.3 -87532.3 -87757.7 -85221.1 -88335.4 -88274.0 -88197.9 -88171.8	netrized netrized '7 above 02Lu15 "=1998. 2720.9 netrized 500# 300# 300# 20 40 60# 60# 60# 2.3 50 80# 130 2.4 2.4 2.4 2.6 2.5 2.6 2.6 2.6 2.6 2.6	from 12Ka36 from 12Ka36 from 12Ka36 (21Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 2409.03 2765.6 4720.2 61.4131 137.4726 163.5591	5=460(+85-4 5=463(+83-4) 10w energy assigned J= 1 ^s n ^p =2834, 761; other C 3) 0.7 50# 50# 50# 60# 140 0.04 1.0 0.5 0.0005 0.0005 0.0008 0.0017	92) 94) an. thresh (25/2 ⁺ 6(1.8) 88Jo03	E d asst old 5C); fur are fr 3=272 * * * * * *	E : other 07Ts iming two cs D keV ther studies from ENSDF2 1.1 + x with 25 51 8300 195 529 5500 2000 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238 1.86 530 4.191	ms =	135(3) k ing isom eeded not in 20 0 or x <8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3 15 0.0002 0.08 30 0.003	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} $(5)^{+}$ $(8)^{-}$	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05	TD ETD T T	2010 1997 2012 1994 1978 2000 2013 1973 1963 1979 1979 1928 1979 1928 1979 1929 2012 1939 1962 1963 1947	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\#$ $\beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\#$ IT=100 $\beta^{-}=100; \beta^{-}n=0.186 \ 10$ $\beta^{-}=100; IT ?; \beta^{-}n=0.2\#$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IT=100 IT=1	* * * * * * *
121 Pr *121 Pd ^m *121 Pd ⁿ *121 Pd ⁿ *121 Sn ⁿ *121 Sn ^m *121 Sb ^m *121 Pr 122 Ru 122 Rh 122 Rh ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ln ^m 122 Sn ^m 122 Sn ^m 122 Sn ^m 122 Sb ^m 122 Sb ^p 122 S	$\begin{array}{l} T: symm\\ T: symm\\ E: x \ keV\\ T: other\\ E: 121 \ Sr\\ E: above\\ T: symm\\ -52080 \#\\ -51810 \#\\ -64616\\ -71110\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83532.3\\ -87175.7\\ -85221.1\\ -88335.4\\ -88274.0\\ -88197.9\\ -88171.8\\ -90314.5\\ -90414.5\\ -$	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 300# 20 40 60# 60# 60# 60# 60# 60# 60# 60# 60# 60	from 12Ka36 from 12Ka36 from 12Ka36 (21Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 80# 2409.03 2765.6 4720.2 61.4131 137.4726 163.5591	5=460(+85-4 5=463(+83-4 10w energy assigned J= ¹ Sn ^p =2834, (761; other C 3) 0.7 50# 50# 60# 140 0.04 1.0 0.5 0.0005 0.0005 0.0008 0.0017	92) 94) an. thresh (25/2 ⁺ 6(1.8) 88Jo03 BD	E d asst old 50(;); fur are fr =272 * * * * *	E : other 07Ts iming two cs 0 keV ther studies iming two cs 0 keV ther studies imin ENSDF2 1.1 + x with 25 51 8300 195 529 550 200 6.3 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238 1.86 530 4.191 STABLE	ms =	135(3) k ing isom eeded not in 20 0 or x <8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3 15 0.0002 0.08 30 0.003	eV hers 0^{10} 30 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} $(5)^{+}$ $(8)^{-}$ 0^{+}	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05	TD ETD T T EJT	2010 1997 2012 1994 1978 2000 2013 1973 1963 1979 1979 1979 1979 1979 1979 1979 197	$\beta^{-}=100; \beta^{-}n=7\#; \beta^{-}2n=0\# \\ \beta^{-}=100; \beta^{-}n=10\#; \beta^{-}2n=0.01\# \\ IT=100 \\ \beta^{-}=100; \beta^{-}n=0.186 \ 10 \\ \beta^{-}=100; \beta^{-}n=0.2\# \\ \beta^{-}=100; IT ?; \beta^{-}n=0.2\# \\ \beta^{-}=100 \\ \beta^$	***************************************
121 Pr *121 Pd ^m *121 Pd ⁿ *121 Pd ⁿ *121 Sh ⁿ *121 Sh ⁿ *121 Sh ^m *121 Pr 122 Ru 122 Rh 122 Rh ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ln ^m 122 Sn ^m 122 Sn ^m 122 Sh ^m 122 S	$\begin{array}{l} T: symm\\ T: symm\\ E: x \ keV\\ T: other\\ T: other\\ E: 1^{21}Sr\\ E: above T: symm\\ -52080 \#\\ -51810 \#\\ -64616\\ -711030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -83530 \#\\ -831718 \#\\ -90314.5 \\ -86080 \#\\ -8800 \#\\ -8800 \#\\ -8800 \#\\ -8800 \#\\ -8800 \#\\ -8800 \#\\ -8800 \#\\ -8800 \#\\ -8800 \#\\ -8$	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 20 40 60# 60# 60# 60# 60# 60# 130 2.4 2.4 2.6 2.5 2.6 2.6 2.6 2.6 2.5 5	from 12Ka36 from 12Ka36 from 12Ka36 (50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 2090 2409.03 2765.6 4720.2 61.4131 137.4726 163.5591	=460(+85-4 =463(+83-4) =463(+83-4) =10w energy assigned J= 1 Sn ^p =2834,1 (761; other 0 3) 0.7 50# 50# 50# 50# 60# 140 0.04 1.0 0.5 0.0005 0.0005 0.0008 0.0017	92) 94) an. thresh (25/2 ⁺ 6(1.8) 88Jo03 BD	E d assi old 5(); fur are fr =272 * * * * *	E : other 07Ts ming two cs 0 keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238 1.86 530 4.191 STABLE 3.63	ms =	135(3) k ing isom eeded not in 20 0 or x<8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3 15 0.0002 0.08 30 0.003 0.003 0.06	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} $(5)^{+}$ $(8)^{-}$ 0^{+} 1^{+}	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05	TD ETD T T EJT	2010 1997 2012 1994 1978 2000 2013 1973 1963 1979 1979 1979 1979 1979 1979 2012 1939 1962 1947 1947 1932 1950	$\begin{array}{l} \beta^{-}=100; \ \beta^{-}n=7\#; \ \beta^{-}2n=0\#\\ \beta^{-}=100; \ \beta^{-}n=10\#; \ \beta^{-}2n=0.01\#\\ \mathrm{IT}=100\\ \beta^{-}=100; \ \beta^{-}n<2.5\\ \beta^{-}=100; \ \beta^{-}n=0.186 \ 10\\ \beta^{-}=100; \ \mathrm{IT}\ ?; \ \beta^{-}n=0.2\#\\ \beta^{-}=100\\ \beta^{-}=100\\ \beta^{-}=100\\ \beta^{-}=100\\ \beta^{-}=100\\ \beta^{-}=100\\ \mathrm{IT}=100\\ \mathrm{IT}=10\\ \mathrm{IT}=10\\$	***************************************
121 Pr * 121 Pd ^m * 121 Pd ⁿ * 121 Pd ⁿ * 121 Sn ⁿ * 122 Rd 122 Rd 122 Rd 122 Rd ^m 122 Ag ^m 122 Ag ^m 122 Ag ⁿ 122 Ag ⁿ 122 Ag ⁿ 122 Sn ⁿ 1	$\begin{array}{l} T: symm\\ T: symm\\ E: x \ keV\\ T: other\\ E: 1^{21} \ sr\\ E: aboveT: symm\\ -52080 \#\\ -51810 \#\\ -64616\\ -71130 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -80612.4\\ -83570\\ -83530 \#\\ -83290\\ -83530 \#\\ -83290\\ -83530 \#\\ -83290\\ -83532.3\\ -87532.3\\ -87532.3\\ -87753.2\\ -88274.0\\ -88335.4\\ -88274.0\\ -88197.9\\ -88197.8\\ -90314.5\\ -86080\\ -85765\end{array}$	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 300# 300# 20 40 60# 60# 60# 2.3 50 80# 130 2.4 2.4 2.6 2.6 2.6 2.6 2.6 2.6 2.6 5 5 5	from 12Ka36 from 12Ka36 from 12Ka36 =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 2409.03 2765.6 4720.2 61.4131 137.4726 163.5591 314.9	=460(+85-4 =463(+83-4) elow energy assigned J= ¹ Sn ^p =2834,1 (761; other C 3) 0.7 50# 50# 50# 50# 60# 140 0.04 1.0 0.5 0.0005 0.0005 0.0008 0.0017 0.4	92) 94) an. thresh (25/2 ⁺ 6(1.8) 88J003 BD	E d asst old 50 (); fur are fr =272	E : other 07Ts iming two cs 0 keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238 1.86 530 4.191 STABLE 3.63 190	$\begin{array}{c} \text{o23}=\\ \text{sscad}\\ \text{are n} \\ \text{o00}, \text{i}, \text{i}, \text{scad}\\ \text{ms}\\ \text{ms}\\ \text{ms}\\ \text{ms}\\ \text{ms}\\ \text{ms}\\ \text{ms}\\ \text{ss}\\ \text{ss}\\ \text{ss}\\ \text{ss}\\ \mu \text{s}\\ \mu \text{s}\\ \mu \text{s}\\ \text{m}\\ \text{ms}\\ \text{ms}\\ \text{ms}\\ \text{ms}\\ \mu \text{ss}\\ \text{ms}\\ \mu \text{ss}\\ \mu \text{ss}\\ \text{ms}\\ \mu \text{ss}\\ \mu $	135(3) k ing isom eeded oot in 20 0 or x<8 1 6 120 5 13 50 50 1.0 0.03 0.6 0.4 0.9 3 15 0.0002 0.08 30 0.003 0.06 10	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} $(5)^{+}$ $(8)^{-}$ 0^{+} 1^{+} (7^{-})	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05 12As05	TD ETD T EJT	2010 1997 2012 1994 1978 2000 2013 1973 1963 1979 1979 1979 1979 1992 2012 1939 1962 1939 1962 1939 1962 1939 1950 2004	$\begin{array}{l} \beta^-=100; \ \beta^-n=7\#; \ \beta^-2n=0\#\\ \beta^-=100; \ \beta^-n=10\#; \ \beta^-2n=0.01\#\\ TT=100\\ \beta^-=100; \ \beta^-n<2.5\\ \beta^-=100; \ \beta^-n=0.186\ 10\\ \beta^-=100; \ TT^-; \ \beta^-n=0.2\#\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ 1S=4.63\ 3; \ 2\beta^-?\\ TT=100\\ TT=10\\ TT=10\\ TT=10\\ TT=10\\ TT=10\\ TT=10\\ TT=10\\ TT=10\\ TT=10\\ TT=1$	***************************************
121 Pr *121 Pd ^m *121 Pd ⁿ *121 Pd ⁿ *121 Sn ⁿ *121 Sn ^m *121 Sb ^m *121 Pr 122 Ru 122 Rh 122 Rh ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ln ^m 122 Sn ⁿ 122 Sn ⁿ 122 Sb ^m 122 S	$\begin{array}{l} T: symm\\ T: symm\\ E: x keV\\ T: other\\ E: 1^{21} Sr\\ E: above\\ T: symm\\ -52080 \#\\ -51810 \#\\ -64616\\ -71110\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -80612.4\\ -83570\\ -83530 \#\\ -83290\\ -89941.3\\ -87532.3\\ -87175.7\\ -85221.1\\ -88335.4\\ -88274.0\\ -88197.9\\ -88171.8\\ -90314.5\\ -86080\\ -85765\\ -85701\\ \end{array}$	netrized netrized '7 above '02Lu15 "=1998. 2720.9 netrized 500# 300# 20 40 60# 60# 2.3 50 80# 130 2.4 2.4 2.6 2.5 2.6 2.6 2.6 2.6 2.5 5 5	from 12Ka36 from 12Ka36 from 12Ka36 growth 221Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 2409.03 2765.6 4720.2 61.4131 137.4726 163.5591 314.9 379.4	$=460(+85-4)^{10}(+85-4)^{10}(+83-4)^{10}$	92) 94) an. thresh (25/2 ⁺ 6(1.8) 88Jo03	E d asst old 50 (); fur are fr 3=272 * * * * *	E : other 07Ts iming two cs D keV ther studies from ENSDF2 1.1 + x with 25 51 8300 195 529 5500 2000 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238 1.86 5300 4.191 STABLE 3.63 190 81	$\begin{array}{c} \text{o23} = \\ \text{sscad} \\ \text{are n} \\ \text{o00}, \text{i} \\ \text{ox} < 6 \\ \text{ms} \\ \text{ss} \\ \text{ms} \\ m$	135(3) k ing isom eeded not in 20 0 or x <8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3 15 0.0002 0.08 30 0.003 0.003 0.006 10 3	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} $(5)^{+}$ $(8)^{-}$ 0^{+} 1^{+} (7^{-}) (7^{-})	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05 12At01 12Mo.A 12Mo.A	TD ETD T EJT D T T	2010 1997 2012 1994 1978 2000 2013 1973 1963 1979 1979 1979 1979 1979 1979 1922 2012 1939 1962 1963 1947 1950 2004 2004	$\begin{array}{l} \beta^-=100; \ \beta^-n=7\#; \ \beta^-2n=0\#\\ \beta^-=100; \ \beta^-n=10\#; \ \beta^-2n=0.01\#\\ TT=100\\ \beta^-=100; \ \beta^-n=0.186 \ 10\\ \beta^-=100; \ T^-2; \ \beta^-n=0.2\#\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ TT=100\\ TT=10\\ TT=1$	***************************************
121 Pr *121 Pd ^m *121 Pd ⁿ *121 Pd ⁿ *121 Sn ⁿ *121 Sn ^m *121 Sb ^m *121 Sb ^m *121 Pr 122 Ru 122 Rh 122 Rh ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Cd 122 In ^m 122 Sn ⁿ 122 Sn ⁿ 122 Sb ^m 122 Sb ^m 122 Sb ^p 122 Sb ^p 122 Sb ^p 122 In ^m 122 Sb ^p 122 Sb	$\begin{array}{l} T: symm\\ T: symm\\ E: x \ keV\\ T: other\\ E: 121 \ Sr\\ E: above\\ T: symm\\ -52080 \#\\ -51810 \#\\ -64616\\ -71110\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -83530 \#\\ -85350 \#\\ -85751 \\ -85686 \\ -85701 \\ -85686 \\ \end{array}$	netrized netrized v above 02Lu15 "=1998. 2720.9 netrized 500# 300# 300# 20 40 60# 60# 60# 60# 60# 60# 60# 60# 60# 60	from 12Ka36 from 12Ka36 from 12Ka36 growth 221Pdm, x be =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 200 2409.03 2765.6 4720.2 61.4131 137.4726 163.5591 314.9 379.4 394.1	5=460(+85-4 5=463(+83-4) 10w energy assigned J= 1 ^s n ^p =2834,(761; other C 3) 0.7 50# 50# 50# 60# 140 0.04 1.0 0.5 0.0005 0.0005 0.0008 0.0017 0.4 0.5 0.5	92) 94) an. thresh (25/2 ⁺ 6(1.8) 88Jo03	E d asst old 5(;); fur are fr =272 * * * * *	E : other 07Ts iming two cs 0 keV ther studies iming two cs 0 keV ther studies imin ENSDF2 1.1 + x with 25 51 8300 195 529 550 200 6.3 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238 1.86 530 4.191 STABLE 3.63 190 81 81 81	ms =	135(3) k ing isom eeded not in 20 0 or x <8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3 15 0.0002 0.08 30 0.0003 0.006 10 3 3	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} $(5)^{+}$ $(8)^{-}$ 0^{+} 1^{+} (7^{-}) (7^{-}) (8^{+})	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05 12At01 12Mo.A 12Mo.A 12Mo.A	TD ETD T T EJT	2010 1997 2012 1994 1978 2000 2013 1973 1963 1979 1979 1979 1979 1979 1979 1979 197	$\begin{array}{l} \beta^-=100; \ \beta^-n=7\#; \ \beta^-2n=0\#\\ \beta^-=100; \ \beta^-n=10\#; \ \beta^-2n=0.01\#\\ \mathrm{IT}=100\\ \beta^-=100; \ \beta^-n=0.186 \ 10\\ \beta^-=100; \ \beta^-n=0.2\#\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \mathrm{IT}=100\\ \mathrm{IT}=10\\ IT$	***************************************
*121 Pr *121 Pd ^m *121 Pd ⁿ *121 Pd ⁿ *121 Sh ⁿ *121 Sh ⁿ *121 Sh ^m *121 Sh ^m *121 Pr *122 Rh *122 Rh ^m *122 Rh ^m *122 Ag ^m *122 Ag ^m *122 Ag ^m *122 Ag ^m *122 Ag ^m *122 Sh ^m *122 Sn ^m *122 Sn ^m *122 Sn ^m *122 Sh ^m	$\begin{array}{l} T: symm\\ T: symm\\ E: x \ keV\\ T: other\\ E: 1^{21}Sr\\ E: above\\ T: symm\\ -52080 \#\\ -51810 \#\\ -64616\\ -711030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -85731 +\\ -86080\\ -85765\\ -85701\\ -85686\\ -85636 \end{bmatrix}$	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 20 40 60# 60# 60# 60# 60# 60# 60# 60# 130 2.4 2.5 2.6 2.6 2.6 2.6 2.6 2.5 5 5 5 5 5	from 12Ka36 from 12Ka36 from 12Ka36 grown 12Ka36 =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 80# 2409.03 2765.6 4720.2 61.4131 137.4726 163.5591 314.9 379.4 394.1 444.1	=460(+85-4) =463(+83-4) =1000 energy =1000 energy =1000 energy =1000 energy =1000000000000000000000000000000000000	92) 94) an. thresh 6(1.8) 88J003 BD	E d asst old 5(); fur are fr =272 * * * * *	E : other 07Ts iming two cs 0 keV ther studies tom ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238 1.86 530 4.191 STABLE 3.63 190 81 81 148	$ms ms \mu s s s ms \mu s ms \mu s ms \mu s ns d \mu s m m ns \mu s m m ns \mu s ns$	135(3) k ing isom eeded not in 20 0 or x<8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3 15 0.0002 0.003 0.003 0.003 0.006 10 3 3 5	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} $(5)^{+}$ (8^{-}) 0^{+} 1^{+} (7^{-}) (7^{-}) (8^{-}) (8^{-})	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05 12As05 12At01 12Mo.A 12Mo.A 12Mo.A	TD ETD T T EJT D T T T T	2010 1997 2012 1994 1978 2000 2000 2013 1973 1963 1979 1979 1979 1979 1979 1979 1979 2012 1939 1962 1947 1932 1947 1947 1947 2004 2004 2004 2004	$\begin{array}{l} \beta^-=100; \ \beta^-n=7\#; \ \beta^-2n=0\#\\ \beta^-=100; \ \beta^-n=10\#; \ \beta^-2n=0.01\#\\ \mathrm{IT}=100\\ \beta^-=100; \ \beta^-n<2.5\\ \beta^-=100; \ \beta^-n=0.186\ 10\\ \beta^-=100; \ \mathrm{IT}\ ?; \ \beta^-n=0.2\#\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \mathrm{IT}=100\\ \mathrm{IT}=10\\ \mathrm{IT}=10$	***************************************
121 Pr * 121 Pd ^m * 121 Pd ⁿ * 121 Pd ⁿ * 121 Sn ⁿ * 122 Rh ^m 122 Rd 122 Rd 122 Rd ^m 122 Ag ^m 122 Ag ^m 122 Ag ⁿ 122 Ag ⁿ 122 Sn ^m 122 Sn ^p 122 Sn ^p 122 Sn ^p 122 Sb ⁿ 122 Sb ⁿ	$\begin{array}{l} T: symm\\ T: symm\\ E: x \ keV\\ T: other\\ E: 1^{21} \ Sr\\ E: aboveT: symm\\ -52080 \#\\ -51810 \#\\ -64616\\ -71110\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -80612.4\\ -83570\\ -83530 \#\\ -83290\\ -835330 \#\\ -83290\\ -835330 \#\\ -83290\\ -835330 \#\\ -83290\\ -835330 \#\\ -83290\\ -83530 \#\\ -83290\\ -83530 \#\\ -83290\\ -83530 \#\\ -83290\\ -83530 \#\\ -83290\\ -83530 \#\\ -83530 \#\\ -83535 \#\\ -83535 \#\\ -83555\\ -85636\\ -855355\\ -8555\\ -855\\ -8555\\ -8555\\ -8555\\ -8555\\ -8555\\ -85$	netrized netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 300# 300# 300# 300 40 60# 60# 2.3 50 80# 130 2.4 2.4 2.6 2.5 2.6 2.6 2.6 2.6 2.6 2.5 5 5 5 5 5 5 5	from 12Ka36 from 12Ka36 from 12Ka36 grown 12Ka36 =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 2409.03 2765.6 4720.2 61.4131 137.4726 163.5591 314.9 379.4 394.1 444.1	$\begin{array}{c} = 460(+85-4) \\ = 463(+83-4) \\ = 463(+83-4) \\ = 300 \\ = $	92) 94) an. thresh (25/2 ⁺ 6(1.8) 8J003 BD	E d asst old 50 (); fur are fr =272 * * * * *	 e) other 07Ts ming two cs d) keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238 1.86 530 4.191 STABLE 3.63 190 81 81 148 20.1 	$ b23=$ $ biscad $ are n $0000,$ $ x < 60 $ ms ms ms ms ms ms ms ms ms μs s s s μs ns μs m m ns μs m m ns μs ns h	135(3) k ing isom eeded not in 20 0 or x<8 1 6 120 5 13 50 50 1.0 0.03 0.6 0.4 0.9 3 15 0.0002 0.08 30 0.003 0.06 10 3 5 5 0.1	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} $(5)^{+}$ $(8)^{-}$ 0^{+} 1^{+} (7^{-}) (7^{-}) (8^{+}) (8^{-}) 0^{+}	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05 12As05 12At01 12Mo.A 12Mo.A 12Mo.A	TD ETD T EJT D T T T T	2010 1997 2012 1994 1978 2000 2013 1973 1963 1979 1979 1979 1979 1992 2012 1939 1962 1939 1962 1939 1962 1939 1950 2004 2004 2004 2004 2004	$\begin{array}{l} \beta^-=100; \ \beta^-n=7\#; \ \beta^-2n=0\#\\ \beta^-=100; \ \beta^-n=10\#; \ \beta^-2n=0.01\#\\ TT=100\\ \beta^-=100; \ \beta^-n<2.5\\ \beta^-=100; \ \beta^-n=0.186\ 10\\ \beta^-=100; \ T^-?; \ \beta^-n=0.2\#\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ 1S=4.63\ 3; \ 2\beta^-?\\ TT=100\\ TT=10\\ TT=1$	***************************************
121 Pr *121 Pd ^m *121 Pd ⁿ *121 Pd ⁿ *121 Sn ⁿ *121 Sn ^m *121 Sb ^m *121 Sb ^m *121 Pr 122 Ru 122 Rh ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Cd 122 In ^m 122 Sn ⁿ 122 Sn ^m 122 Sb ^m 122	$\begin{array}{l} T: symm\\ T: symm\\ E: x \ keV\\ T: other\\ E: 1^{21} \ sr\\ E: above\\ T: symm\\ -52080 \ modelse \\ -51810 \ modelse \\ -52080 \ modelse \\ -71030 \ modelse \\ -83530 \ modelse \\ -85351 \ modelse \\ -85686 \ modelse \\ -85355 \ modelse \\ -78140 \end{array}$	netrized netrized v above 02Lu15 "=1998. 2720.9 netrized 500# 300# 20 40 60# 60# 2.3 50 80# 130 2.4 2.4 2.6 2.5 2.6 2.6 2.6 2.6 2.6 2.5 5 5 5 5 5 5 5 11 30	from 12Ka36 from 12Ka36 from 12Ka36 growth 12Ka36 solution 2210 display the second second solution 2210 display the second second second solution 2210 display the second second second second solution 2210 display the second s	$ \begin{array}{c} = 460(+85-4) \\ = 463(+83-4) \\ = 463(+83-4) \\ = 10 \\ = 0 \\ $	92) 94) an. thresh (25/2 ⁺ 6(1.8) 88Jo03	E d asst old 50 (); fur are fr 3=272 * * * * *	 e) other 07T5 ming two cs D) keV ther studies for ENSDF2 1.1 + x with 25 51 8300 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STABLE 3.63 190 81 148 20.1 21.18 	023= are n $000,$; $x < 6$ ms ms ms ms ms ms ms ms ms ms s s s s s	135(3) k ing isom eeded not in 20 0 or x < 8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3 15 0.0002 0.08 30 0.003 0.003 0.003 0.006 10 3 5 0.10 0.19	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} $(5)^{+}$ $(8)^{-}$ 0^{+} 1^{+} (7^{-}) (7^{-}) (8^{+}) (8^{-}) 0^{+} 1^{+} (1^{-}) (8^{-}) 0^{+} 1^{+} (1^{-}) (1^{+}) (1^{-}) (1^{-}) (1^{+}) (1^{+}) (1^{-}) (1^{+}) (1^{+}) (1^{-}) (1^{+}) (1^{-}) (1^{+}) (1^{+}) (1^{+}) (1^{-}) (1^{+}) $(1^{+}$	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05 12At01 12Mo.A 12Mo.A 12Mo.A 12Mo.A 75Ho09	TD ETD T T EJT D T T T T T D	2010 1997 2012 1994 1978 2000 2013 1973 1963 1979 1979 1979 1979 1928 1979 1992 2012 1939 1962 1963 1947 1950 2004 2004 2004 2004 2004 2004	$\begin{array}{l} \beta^-=100; \ \beta^-n=7\#; \ \beta^-2n=0\#\\ \beta^-=100; \ \beta^-n=10\#; \ \beta^-2n=0.01\#\\ TT=100\\ \beta^-=100; \ \beta^-n=2.5\\ \beta^-=100; \ \beta^-n=0.186 \ 10\\ \beta^-=100; \ \beta^-n=0.2\#\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ TT=100\\ TT=10\\ TT=10$	***************************************
121 Pr *121 Pd ^m *121 Pd ⁿ *121 Pd ⁿ *121 Sn ⁿ *121 Sn ^m *121 Sb ^m *121 Sb ^m *121 Pr 122 Ru 122 Rh 122 Rh ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Cd 122 In ^m 122 Sn ⁿ 122 Sn ⁿ 122 Sb ⁿ 122 S ⁿ	$\begin{array}{l} T: symm\\ T: symm\\ E: x \ keV\\ T: other\\ T: other\\ E: 121 \ Sr\\ E: above\\ T: symm\\ -52080 \#\\ -51810 \#\\ -64616\\ -71110\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -83530 \#\\ -83290\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83535, \\ -85221.1\\ -88335.4\\ -88274.0\\ -88171.8\\ -90314.5\\ -86080\\ -85765\\ -85701\\ -85686\\ -85636\\ -85535\\ -78140\\ -78090 \\ \end{array}$	netrized netrized v above 02Lu15 "=1998. 2720.9 netrized 500# 300# 300# 20 40 60# 60# 60# 60# 60# 60# 60# 60# 60# 60	from 12Ka36 from 12Ka36 from 12Ka36 growth 12Ka36 =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 2409.03 2765.6 4720.2 61.4131 137.4726 163.5591 314.9 379.4 394.1 444.1 45.87	5=460(+85-4 5=463(+83-4) 10w energy assigned J= 1 Sn ^p =2834, (761; other C 3) 0.7 50# 50# 60# 140 0.04 1.0 0.5 0.0005 0.0005 0.0008 0.0017 0.4 0.5 0.5 0.5 0.12	92) 94) an. thresh (25/2 ⁺ 6(1.8) 8J003 BD	E d asst old 5(); fur are fr =272 * * * * *	 e) other 07Ts ming two cs D keV ther studies com ENSDF2 1.1 + x with 25 51 8300 195 529 550 2000 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238 1.86 530 4.191 STABLE 3.63 190 81 148 20.1 21.18 > 1 	023= sscad are n 000, x<6 ms ms ms ms ms ms ms ms ms s s s s μ s s s ms μ s ms μ s ms μ s ms ms hs μ s ms s hs ms ms ms ms ms ms ms ms ms ms ms ms ms	135(3) k ing isom eeded not in 20 0 or x <8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3 15 0.0002 0.08 30 0.006 10 3 3 5 0.1 0.19	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 1^{+} (15^{-}) 2^{-} 3^{+} $(5)^{+}$ $(8)^{-}$ 0^{+} 1^{+} (7^{-}) (7^{-}) (8^{+}) (8^{-}) 0^{+} 1^{+} $(3^{+})^{+}$ $(3^$	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05 12At01 12Mo.A 12Mo.A 12Mo.A 12Mo.A 12Mo.A	TD ETD T T EJT D T T T T T D	2010 1997 2012 1994 1978 2000 2013 1973 1963 1979 1979 1979 1928 1979 1922 2012 1939 1962 1963 1947 1952 2004 2004 2004 2004 2004 2004 2004 20	$\begin{array}{l} \beta^-=100; \ \beta^-n=7\#; \ \beta^-2n=0\#\\ \beta^-=100; \ \beta^-n=10\#; \ \beta^-2n=0.01\#\\ \mathrm{IT}=100\\ \beta^-=100; \ \beta^-n=0.186 \ 10\\ \beta^-=100; \ \beta^-n=0.2\#\\ \beta^-=100\\ \mathrm{IT}=100\\ \mathrm{IT}=10\\ \mathrm{IT}=$	***************************************
121 Pr *121 Pd ^m *121 Pd ⁿ *121 Pd ⁿ *121 Sh ^m *121 Sh ^m *121 Sh ^m *121 Pr 122 Ru 122 Rh 122 Rh ^m 122 Ag 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Cd 122 In ^m 122 Sn ⁿ 122 Sn ⁿ 122 Sh ^m 122 Sh ^m	$\begin{array}{l} T: symm\\ T: symm\\ E: x keV\\ T: other\\ E: 121 Sr\\ E: above\\ T: symm\\ -52080 \#\\ -51810 \#\\ -64616\\ -71110\\ -711030 \#\\ -71030 \#\\ -71030 \#\\ -71030 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -83530 \#\\ -88171.8\\ -90314.5\\ -86080\\ -85765\\ -85701\\ -85686\\ -85636\\ -8566\\ -8566\\ -8566\\ -8566\\ -8566\\ -8566\\ -8566\\ -8566\\ -8566\\ -8566\\ -8566\\ -8566\\ -8566\\ -8566\\ -8566\\ -8566\\ -8566\\ -856\\$	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 20 40 60# 60# 60# 60# 60# 60# 60# 60# 60# 60	from 12Ka36 from 12Ka36 from 12Ka36 grown 12Ka36 =350(50) ns, 8(0.9) and ¹² level and <2 from 10(+6– 271.0 80# 80# 80# 2409.03 2765.6 4720.2 61.4131 137.4726 163.5591 314.9 379.4 394.1 444.1	5=460(+85-4 5=463(+83-4 10w energy assigned J= 1 Sn ^p =2834, (761; other C 3) 0.7 50# 50# 50# 60# 140 0.04 1.0 0.5 0.0005 0.0005 0.0008 0.0017 0.4 0.5 0.5 0.5 0.12 30	92) 94) an. thresh (25/2 ⁺ 6(1.8) 88Jo03 BD	E d asst old 5(); fur are fr =272 * * * * *	E : other 07Ts iming two cs 0 keV ther studies iming two cs 0 keV ther studies imin 2 km 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238 1.86 530 4.191 STABLE 3.63 190 81 81 81 81 81 81 81 81 81 81	b23= $ biscad $ $ are n n 000,, x<6 $ $ ms ms $ $ ms$	135(3) k ing isom eeded not in 20 0 or x <8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3 15 0.0002 0.08 30 0.0003 0.006 10 3 3 5 5 0.1 0.19 0.11	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} $(5)^{+}$ (8^{-}) 0^{+} 1^{+} (7^{-}) (7^{-}) (8^{+}) (8^{-}) 0^{+} 1^{+} (7^{-}) (7^{-}) (8^{+}) (8^{-}) 0^{+} 1^{+} (7^{-}) (7^{-}) (8^{+}) (8^{-}) 0^{+} 1^{+} (7^{-}) (7^{-}) (8^{+}) (8^{-}) 0^{+} 1^{+} (7^{-}) (7^{-}) (8^{+}) (8^{-}) 0^{+} 1^{+} (7^{-}) (7^{-}) (8^{+}) (8^{-}) 0^{+} 1^{+} (7^{-}) (7^{-}) (8^{+}) (8^{-}) 0^{+} 1^{+} (8^{-}) (8^{-}) 0^{+} 1^{+} (8^{-}) (8^{-}) 0^{+} 1^{+} (8^{-}) (8	$\begin{array}{c} 15\\ 13\\ 13\\ 14\\ 07\\ 07\\ 07\\ 07\\ 07\\ 07\\ 07\\ 07\\ 07\\ 07$	15Lo04 12Ka36 15Lo04 13La11 12As05 12As05 12At01 12Mo.A 12Mo.A 12Mo.A 12Mo.A 12Mo.A	TD ETD T EJT D T T T T T D	2010 1997 2012 1994 1978 2000 2010 2010 2013 1973 1963 1979 1979 1979 1979 1979 1979 1979 2012 1939 1962 1963 1947 1950 2004 2004 2004 2004 2004 2004 2004 20	$\begin{array}{l} \beta^-=100; \ \beta^-n=7\#; \ \beta^-2n=0\#\\ \beta^-=100; \ \beta^-n=10\#; \ \beta^-2n=0.01\#\\ \mathrm{IT}=100\\ \beta^-=100; \ \beta^-n<2.5\\ \beta^-=100; \ \beta^-n=0.186\ 10\\ \beta^-=100; \ \beta^-n=0.2\#\\ \beta^-=100\\ \mathbf{1T}=100\\ \mathbf{1T}=10\\ \mathbf{1T}=$	******* * **
121 Pr * 121 Pd ^m * 121 Pd ⁿ * 121 Pd ⁿ * 121 Sn ⁿ * 121 Pr 122 Ru 122 Rh ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Sn ^m 122 Sn ^p 122 Sn ^p 122 Sn ^p 122 Sn ^p 122 Sb ⁿ 122 Sb ⁿ	T: symm T: symm E: x keV T: other E: 12 Sr E: abov T: symm -42150# -52080# -51810# -64616 -7110 -71030# -71030# -71030# -80612.4 -83570 -83533 -83290 -83533 -87532.3 -87532.3 -87752.3 -87752.3 -87752.3 -87752.3 -87752.3 -87752.3 -87752.3 -87752.3 -87752.3 -87752.3 -87752.3 -87752.3 -87752.3 -87752.3 -87752.3 -87752.3 -87755.5 -85221.1 -88335.4 -88274.0 -88171.8 -90314.5 -86080 -855636 -855636 -85555 -781400 -780050 -78010	netrized netrized ' above 02Lu15 "=1998. 2720.9 netrized 500# 300# 300# 20 40 60# 60# 2.3 50 80# 130 2.4 2.4 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 5 5 5 5 5 5 5 5 5 11 30 30 9 30	from 12Ka36 from 12Ka36 from 12Ka36 grown 12Ka36 solution (200) and 12 level and <2 from 10(+6- 271.0 80# 80# 80# 2409.03 2765.6 4720.2 61.4131 137.4726 163.5591 314.9 379.4 394.1 444.1 45.87 140 127.07	$\begin{array}{c} = 460(+85-4) \\ = 463(+83-4) \\ = 463(+83-4) \\ = 300 \\ = $	92) 94) an thresh (25/2 ⁺ 6(1.8) 8J003 BD	E d asst old 50(); fur are fr =272 * * * * *	 e) other 07Ts ming two cs D keV ther studies om ENSDF2 1.1 + x with 25 51 830 195 529 550 200 6.3 5.24 1.5 10.3 10.8 STABLE 7.55 62 146 2.7238 1.86 530 4.191 STABLE 3.63 190 81 81 81 148 20.1 21.18 > 1 3.70 360 		135(3) k ing isom eeded not in 20 0 or x <8 1 6 120 5 13 50 50 1.0 0.3 0.6 0.4 0.9 3 15 0.0002 0.08 30 0.003 0.06 10 3 5 5 0.1 0.19 0.11 20	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} $(5)^{+}$ $(8)^{-}$ 0^{+} 1^{+} (7^{-}) (7^{-}) (8^{+}) (8^{-}) 0^{+} 1^{+} $(5)^{-}$ $(3)^{+}$ $(3)^{+}$ $(3)^{+}$ $(3)^{+}$ $(5)^{-}$	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05 12As05 12At01 12Mo.A 12Mo.A 12Mo.A 75Ho09	TD ETD T EJT D T T T T T D	2010 1997 2012 1994 1978 2000 2013 1973 1963 1979 1979 1979 1979 1979 1979 1979 2012 1939 1962 1963 1947 1950 2004 2004 2004 2004 2004 2004 2004 20	$\begin{array}{l} \beta^-=100; \ \beta^-n=7\#; \ \beta^-2n=0\#\\ \beta^-=100; \ \beta^-n=10\#; \ \beta^-2n=0.01\#\\ TT=100\\ \beta^-=100; \ \beta^-n<2.5\\ \beta^-=100; \ \beta^-n=0.186\ 10\\ \beta^-=100; \ T^-?; \ \beta^-n=0.2\#\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ 1S=4.63\ 3; \ 2\beta^-?\\ TT=100\\ TT=10\\ TT=100\\ TT=100\\ TT=10\\ TT=10\\ TT=10\\ TT=10\\ TT=10\\ $	******* * * * *
121 Pr * 121 Pd ^m * 121 Pd ⁿ * 121 Pd ⁿ * 121 Sn ⁿ * 121 Sn ⁿ * 121 Sb ^m * 121 Sb ^m * 121 Sb ^m * 121 Pr 122 Ru 122 Rh ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Ag ^m 122 Cd 122 In ^m 122 Sn ⁿ 122 Sn ⁿ 122 Sb ^m 122 S	T: symm T: symm E: x keV T: other E: 1^{21} Sr E: abov T: symm -42150# -52080# -51810# -64616 -71130 -71030# -71030# -71030# -71030# -83535 -86080 -85765 -85636 -855636 -855636 -85355 -78140 -78000 -78010 -78130	netrized netrized v above v 202Lu15 "=1998. 2720.9 netrized 500# 300# 20 40 60# 60# 2.3 50 80# 130 2.4 2.4 2.6 2.5 2.6 2.6 2.6 2.6 2.6 2.6 2.6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	from 12Ka36 from 12Ka36 from 12Ka36 growth 12Ka36 solution 2210 difference in the second second solution 12Ka36 solution 2210 difference in the second second solution 12Ka36 from 10(+6	$=460(+85-4)^{10}=463(+83-4)^{10}=463(+83-4)^{10}=463(+83-4)^{10}=10^$	92) 94) an thresh (25/2 ⁺ 6(1.8) 88Jo03 BD	E d asst old 50(); fur are fr =272 * * * * *	E : other 07Ts iming two cs 0 keV ther studies from ENSDF2 1.1 + x with 25 51 8300 195 529 5500 2000 6.3 5.24 1.5 10.3 10.8 STABLE 7.5 62 146 2.7238 1.86 5300 4.191 STABLE 3.63 190 81 81 148 20.1 21.18 >1 3.70 360 R = 0.105	$p_{23} = p_{13} = p$	135(3) k ing isom eeded not in 20 0 or x < 8 1 6 120 5 13 50 50 1.0 0.03 0.3 0.6 0.4 0.9 3 15 0.0002 0.08 30 0.003 0.003 0.006 10 3 5 0.10 0.11 20	eV hers 0^{+} 0^{+} (3^{+}) (1^{-}) (9^{-}) 0^{+} 1^{+} 5^{+} (8^{-}) 0^{+} 7^{-} (10^{+}) (15^{-}) 2^{-} 3^{+} $(5)^{+}$ (8^{-}) 0^{+} 1^{+} $(5^{-})^{-}$ (8^{+}) (8^{-}) 0^{+} 1^{+} $(5^{-})^{-}$ (8^{+}) (8^{-}) 0^{+} 1^{+} $(5^{-})^{-}$ (8^{+}) $(5^{-})^{-}$	15 13 13 14 07 07 07 07 07 07 07 07 07 07 07 07 07	15Lo04 12Ka36 15Lo04 13La11 12As05 12At01 12Mo.A 12Mo.A 12Mo.A 12Mo.A 75Ho09	TD ETD T EJT D T T T T T D	2010 1997 2012 1994 1978 2000 2013 1973 1963 1979 1979 1928 1979 1928 1979 1928 1979 1928 1939 1962 1963 1947 1950 2004 2004 2004 2004 2004 2004 2004 20	$\begin{array}{l} \beta^-=100; \ \beta^-n=7\#; \ \beta^-2n=0\#\\ \beta^-=100; \ \beta^-n=10\#; \ \beta^-2n=0.01\#\\ TT=100\\ \beta^-=100; \ \beta^-n=0.186 \ 10\\ \beta^-=100; \ \beta^-n=0.2\#\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ TT=100\\ TT=10\\ TT=$	******* * * * *

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Muslida	Massa		Table	Evoitatio	NUBASE	2010 ta		fe		Enc	Deference	Table	Vacan of	10)	
Nuclide	(keV	V)	6	energy (ke	n V)	Н	an-n	Ie	<i>J</i> "	Ens	Reference	e	discovery	intensities (%)	
A-grou	in continued	1													
¹²² Ba	-74609	28				1 95	m	0.15	0^{+}	07			1974	$\beta^{+}=100$	
¹²² La	-64540#	300#				8.6	s	0.5	0	07			1984	$\beta^{+}=100; \beta^{+}p=?$	
¹²² Ce	-57870#	400#				2#	s		0^{+}	07			2005	β^{+} ?: β^{+} p ?	
¹²² Pr	-44780#	500#				500#	ms							β^+ ?; β^+ p?	
$*^{122}Rh^m$	E : 12Ka	136=63.9	(0.5) and 20	07.1(0.5)	y rays in cas	cade to gro	und-s	state						, , , ,	**
$*^{122}Rh^m$	T : symr	netrized	from 12Ka	36=820(+1	30–110)										**
$*^{122}Ag^m$	$D: \beta^{-}n$	has beer	observed b	oy 00Kr18	but not qua	ntified									**
$*^{122}Ag^n$	$D:\beta^{-}n$	has beer	observed b	oy 00Kr18	but not qua	ntified									**
* ¹²² Cs	$D:\beta^+\alpha$	intensit	y upper limi	it is from '	75Ho09										**
123 p.u	37080#	500#				10	me	2	3/2+#	15			2010	$B^{-} = 100 \cdot B^{-} = 20 \# \cdot B^{-} = 20 = 0.2 \#$	
123 Ph	-40360#	400#				19	me	4	$\frac{3}{2}$ #	15			2010	$\beta = 100, \beta = 1-20\%, \beta = 21-0.2\%$ $\beta^{-} = -100, \beta^{-} = -20\%, \beta^{-} = 20-0\%$	
123 Pd	-49300π -60430	790				108	me	2	$3/2^{+}$ #	15			1994	$\beta = 100, \beta = 1 = 20\pi, \beta = 21 = 0\pi$ $\beta^{-} = 100; \beta^{-} = 0.4 \#$	
¹²³ A σ	-69550	30			*	300	ms	5	$\frac{3}{2}$ "	04	06Mo07	D	1976	$\beta^{-}=100; \beta^{-}n=1.05$	
123 A gm	-69530#	40#	20#	20#	*	100#	ms	5	$1/2^{-}$ #	04	0011007	D	1770	$\beta^{-} 2 \cdot IT 2$	
$123 A \sigma^n$	-68150#	60#	1400#	50#		202	ns	20	1/2 "		13La11	ETD	2013	IT=100	*
$123 A \sigma^p$	-68080	30	1473	2		393	ns	15	$(17/2^{-})$		13La11	ET	2009	IT=100	*
¹²³ Cd	-77414.2	2.7	1170	-		2.10	s	0.02	$3/2^+$	04	13Yo02	J	1983	$\beta^{-}=100$	
$^{123}Cd^m$	-77271	3	143	4	MD	1.82	s	0.03	$\frac{11}{2^{-}}$	04	13Yo02	Ĵ	1986	$\beta^{-}=?$: IT ?	
¹²³ In	-83430	20	110		1112	6.17	s	0.05	$(9/2)^+$	04	10 1002	0	1960	$\beta^{-}=100$	
123 In ^m	-83103	20	327.21	0.04		47.4	s	0.4	$(1/2)^{-}$	04			1960	$\beta^{-}=100$	
123 In ⁿ	-81352	20	2078.1	0.6		1.4	μs	0.2	$(17/2^{-})$		04Sc42	ETJ	2004	IT=100	*
123 In ^p	-81300	50	2128.1	50.0		> 100	μs		$(21/2^{-})$	10	10Re01	EJT	2010	IT=100	*
¹²³ Sn	-87816.2	2.4				129.2	d	0.4	11/2-	04			1948	$\beta^{-}=100$	
123 Sn ^m	-87791.6	2.4	24.6	0.4		40.06	m	0.01	$3/2^+$	04			1948	$\beta^{-}=100$	
123 Sn ⁿ	-85871.2	2.6	1945.0	1.0		7.4	μs	2.6	$(19/2^+)$	04			1992	IT=100	
123 Sn ^p	-85663.2	2.7	2153.0	1.2		6	μs		$(23/2^+)$	04			1994	IT=100	
123Sn ^q	-85103.2	2.8	2713.0	1.4		34	μs		$(27/2^{-})$	04			1994	IT=100	
¹²³ Sb	-89224.1	1.5				STABLE			$7/2^+$	04			1922	IS=42.79 5	
$^{123}Sb^{m}$	-86986.3	1.5	2237.8	0.3		214	ns	3	$19/2^{-}$		09Wa02	ETJ	2005	IT=100	*
$^{123}Sb^{n}$	-86610.7	1.6	2613.4	0.4		65	μs	1	$23/2^+$		09Wa02	ETJ	2007	IT=100	*
¹²³ Te	-89172.2	1.5				STABLE		(>2 Py)	$1/2^+$	04	03Al02	Т	1932	IS=0.89 3; ε =100	
123 Tem	-88924.7	1.5	247.47	0.04		119.2	d	0.1	11/2-	04			1951	IT=100	
125] 123 I	-87944	4				13.2235	h	0.0019	5/2+	04	0011		1949	$\beta^+=100$	
¹²⁵ Xe	-85249	10	105.10	0.11		2.08	h	0.02	$1/2^{+}$	04	90Ne.A	J	1952	$\beta = 100$	
¹²³ Xe ^m	-85064	10	185.18	0.11		5.49	μs	0.26	1/2	04			1981	11=100 R^{+} 100	
123 Com	-81044	12	156 07	0.05		5.88	m	0.03	$\frac{1}{2}$	04			1954	p = 100	
123 Co ⁿ	-00000	12	252	20		1.04	s	0.12	(11/2) $(0/2^{+})$	04	GA1127	Б	2000	IT=100 IT=100	
$^{123}Ce^{x}$	-81037	13	232	20		R < 0.1	IIS	5	(9/2) enmix	04	OAu127	Е	2000	11=100	*
123 Ba	-75655	12	/	4		27	m	0.4	$5/2^{(+)}$	04			1062	$\beta^{+}-100$	
123 Bam	-75534	12	120.95	0.08		830	ne	60	$1/2^+ \#$	04			1902	p = 100 IT-100	
¹²³ La	-68650#	200#	120.95	0.00		17	5	3	$11/2^{-}$ #	04			1978	$\beta^{+}=100$	
¹²³ Ce	-60290#	300#				3.8	5	0.2	$(5/2)^{(+\#)}$	04			1984	$\beta^{+}=100; \beta^{+}p=?$	
123 Pr	-50230#	400#				800#	ms	0.2	$3/2^+$ #	01			1701	$\beta^{-100}, \beta^{-1} p^{-1}$ $\beta^{+} \gamma, \beta^{+} p^{-2}$	
* ¹²³ Ag ⁿ	E : 13La	11=1365	ikeV above	$123 \operatorname{Ag}^{m}$		00011			5/2					P ., P P .	**
* ¹²³ Ag ^p	T : avera	nge 13La	11=393(16)	09St28=3	396(37)	J : 09Sť	28=(1	$7/2^{-}$)							**
* ¹²³ In ⁿ	E : deriv	ed by NI	JBASE from	1 least-squ	ares fit to γ -	ray energie	s	,							**
$*^{123}$ In ^p	E : no di	rect depo	opulating γ	seen, assu	med less that	in 50 keV									**
$*^{123}$ Sb ^m	E : deriv	red from	least-square	es fit to γ-r	ay energies										**
$*^{123}Sb^{m}$	ETJ : als	so 07Ju00	5 2239.1(1.0	0) keV, 190	0(30) ns, 19/	2^{-} ; and									**
$*^{123}Sb^{m}$	ETJ :	05Po03	3 2247.1(0.4	4) keV, 110	0(10) ns (cor	nflicting), (19/2-)							**
$*^{123}$ Sb ⁿ	E : deriv	ed from	least-square	es fit to γ-r	ay energies										**
$*^{123}$ Sb ⁿ	ETJ : als	so 07Ju00	5 2614.1(1.0	0) keV, 66	(4) μ s, 23/2 ⁻	⁺ ; and									**
$*^{123}$ Sb ⁿ	ETJ :	08Jo03	2614.2(0.6) keV, 52(3) µs (confli	icting), 23/2	2^{+}								**
$*^{123}$ Cs ⁿ	E:231.6	53 + x; x	estimared 2	20#20											**
¹²⁴ Ru	_33960#	600#				15	ms	3	0^{+}	15			2010	$\beta^{-}=100: \beta^{-}n=10#: \beta^{-}2n=0#$	
¹²⁴ Rh	-44890#	400#				30	ms	2	0	15			2010	$\beta^{-}=100; \beta^{-}n=20\#; \beta^{-}2n=0.3\#$	
¹²⁴ Pd	-58390#	300#				88	ms	15	0^{+}	14	15Lo04	Т	1997	$\beta^{-}=100; \beta^{-}n=0.03\#$	
124 Pd ^m	-58330#	300#	62.2	1.6		> 20	μs		÷	14	12Ka36	ĒT	2012	$IT=100; \beta^{-}?$	
¹²⁴ Ag	-66200	250			*	177.9	ms	2.6	(2^{-})	15	14Ba18	J	1984	$\beta^{-}=100; \beta^{-}n=1.39$	*
$^{124}Ag^m$	-66200#	270#	0#	100#	*	144	ms	20	(8-)	15	14Ba18	TJ	1995	$\beta^{-}=100; \beta^{-}n=1\#$	
$^{124}Ag^n$	-65970	250	231.1	0.7		1.7	μs	0.3	(*)	15	12Ka36	E	2012	IT=100	*
¹²⁴ Cd	-76701.7	3.0				1.25	s	0.02	0^+	08			1974	$\beta^{-}=100$	
¹²⁴ In	-80870	30			*	3.12	s	0.09	3+	08	13Ma15	J	1964	$\beta^{-}=100$	
124 In ^m	-80890	50	-20	60	BD *	3.7	s	0.2	$(8)^{(-\#)}$	08			1974	$\beta^{-}\approx 100$; IT ?	
A grou	in is continu	ad on na	vt nage												

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I. The NUBASE2016 table (continued, Explanation of Table on page	Table on page	xplanation of	continued.	table /	BASE2016	The NI	Table I.	٢
--	---------------	---------------	------------	---------	----------	--------	----------	---

Nuclida	Mass av	0000		Excitation				Jolf	life	, Γ 1π	Enc	Pafaranc	0	Vear of	Decay modes and	
Nucliuc	(keV	D		energy (keV)			1	1411-	inc	5	LIIS	Kererene	C	discovery	intensities (%)	
	(KC V)		chergy (kev)										uiscovery	intensities (70)	
A-grou	up continued	1														
¹²⁴ Sn	-88234.2	1.0					STABLE		(>100 Pv)	0^{+}	08	52Ka41	Т	1922	IS=5.79 5: $2\beta^{-}$?	
124 Sn ^m	-86029.6	1.0	2204.620	0.023			270	ns	60	5-	08	FGK127	J	1979	IT=100	*
124 Sn ⁿ	-85909.2	1.0	2325.01	0.04			3.1	μs	0.5	7-	08	FGK127	J	1979	IT=100	
124 Sn ^p	-85577.6	1.1	2656.6	0.5			45	μs	5	10^{+}	08	FGK127	J	1992	IT=100	
124 Sn ^q	-83682.8	1.2	4551.4	0.7			260	ns	25	15^{-}		12As05	EJT	2012	IT=100	
¹²⁴ Sb	-87620.2	1.5					60.20	d	0.03	3-	08			1939	$\beta^{-}=100$	
124 Sb ^m	-87609.3	1.5	10.8627	0.0008			93	s	5	5+	08			1947	IT=75 5; $\beta^{-}=25$ 5	
124 Sb ⁿ	-87583.4	1.5	36.8440	0.0014			20.2	m	0.2	$(8)^{-}$	08			1947	IT=100	
124 Sb ^p	-87579.4	1.5	40.8038	0.0007			3.2	μs	0.3	$(3^+, 4^+)$) 08			1989	IT=100	
¹²⁴ Te	-90525.3	1.5					STABLE			0+	08			1932	IS=4.74 14	
¹²⁴ I	-87365.7	2.4					4.1760	d	0.0003	2^{-}	08			1938	$\beta^{+}=100$	
¹²⁴ Xe	-87661.4	1.8					STABLE		(>200 Ty)	0^{+}	08			1922	IS=0.0952 3; $2\beta^+$?	*
¹²⁴ Cs	-81731	8					30.9	s	0.4	1^{+}	08			1969	$\beta^{+}=100$	
$^{124}Cs^m$	-81268	8	462.63	0.14			6.3	s	0.2	$(7)^+$	08			1983	IT=100	
$^{124}Cs^{x}$	-81701	22	30	20			R = ?			spmix						
¹²⁴ Ba	-79090	12					11.0	m	0.5	0^+	08			1967	$\beta^{+}=100$	
¹²⁴ La	-70260	60			*	&	29.21	s	0.17	$(7^{-}, 8^{-})$) 08	92Id01	J	1978	$\beta^{+}=100$	
$^{124}La^m$	-70160#	120#	100#	100#	*	&	21	s	4	low ^(+#)	08	92Id01	J	1992	$\beta^{+}=100$	
¹²⁴ Ce	-64920#	300#					9.1	s	1.2	0^+	08	97As05	Т	1978	$\beta^{+}=100$	*
¹²⁴ Pr	-53150#	400#					1.2	s	0.2		08			1986	$\beta^{+}=100; \beta^{+}p=?$	
¹²⁴ Nd	-44530#	500#					500#	ms		0^+					β^{+} ?; β^{+} p ?	
* ¹²⁴ Ag	T : avera	ge 15Lo	04=180(3) 9	5Fe12=172(5);	other	14B	Ba18=191(28)								**
$*^{124}Ag^{n}$	E : 12Ka	36=75.5	6(0.5) and 155	5.6(0.5) γ rays	in cas	cade	to ground	l-stat	te							**
$*^{124}Sn^{m}$	J : E1 to	4+; L(p	,p)=5 for ¹²⁴ 8	Sn^m ; E2 to 5 ⁻ f	or 124	Sn ⁿ ;	E2 to 8 ⁺	for ¹	24 Sn ^p							**
* ¹²⁴ Xe	$T: 2\nu-\varepsilon$	ε: 16Ab	03>4.7 Zy (a	at 90% C.L.)												**
* ¹²⁴ Ce	T : avera	ge 97As	05=10.8(1.5)) 78Bo32=6(2)												**

¹²⁵ Rh	-42000#	500#					26.5	ms	2.0	7/2+#	15			2010	$\beta^{-}=100; \beta^{-}n=20\#; \beta^{-}2n=0.03\#$	
¹²⁵ Pd	-54120#	400#					57	ms	10	3/2+#	15			2008	$\beta^{-}=100 ?; \beta^{-}n=6#$	
¹²⁵ Ag	-64520	430				*	159	ms	8	$7/2^{+}$ #	15			1994	$\beta^{-}=100; \beta^{-}n=5\#$	
$^{125}Ag^m$	-64500 #	430#	20#	20#		*	50#	ms		$1/2^{-}$ #					β^- ?; IT ?	
$^{125}Ag^n$	-63640#	430#	880#	20#			80	ns	17		15	13La11	ET	2013	IT=100	*
$^{125}Ag^{p}$	-63020	430	1501.2	0.6			491	ns	20	$(17/2^{-})$	15			2009	IT=100	
¹²⁵ Cd	-73348.1	2.9					680	\mathbf{ms}	40	$3/2^{+}$	11	13Yo02	J	1986	$\beta^{-}=100$	
¹²⁵ Cd ^m	-73162	3	186	4	MD		480	\mathbf{ms}	30	$11/2^{-}$	11	13Yo02	J	1986	$\beta^{-}=100$	
$^{125}Cd^n$	-71840	70	1512	70			19	μs	3	$(19/2^+)$		11Si32	EJT	2011	IT=100	*
¹²⁵ In	-80477	27					2.36	s	0.04	$9/2^{+}$	11			1967	$\beta^{-}=100$	
$^{125}In^{m}$	-80117	27	360.12	0.09			12.2	s	0.2	$1/2^{(-)}$	11			1974	$\beta^{-}=100$	
125 In ⁿ	-78468	27	2009.4	0.7			9.4	μs	0.6	$(19/2^+)$	11			1998	IT=100	
$^{125}In^{p}$	-78316	27	2161.2	0.9			5.0	ms	1.5	$(23/2^{-})$	11			1998	IT=100	
¹²⁵ Sn	-85896.4	1.0					9.64	d	0.03	$11/2^{-}$	11			1939	$\beta^{-}=100$	
$^{125}Sn^{m}$	-85868.9	1.0	27.50	0.14			9.52	m	0.05	$3/2^{+}$	11			1939	$\beta^{-}=100$	
125 Sn ⁿ	-84003.6	1.0	1892.8	0.3			6.2	μs	0.2	$19/2^{+}$	11	08Lo07	J	2000	IT=100	
125 Sn ^p	-83836.9	1.1	2059.5	0.4			650	ns	60	$23/2^+$	11	16Is03	Т	2008	IT=100	*
125 Sn ^q	-83272.9	1.1	2623.5	0.5			230	ns	17	$(27/2^{-})$	11	08Lo07	Т	2000	IT=100	
¹²⁵ Sb	-88256.3	2.6					2.7586	У	0.0003	$7/2^{+}$	11			1951	$\beta^{-}=100$	*
¹²⁵ Sb ^m	-86285.1	2.6	1971.25	0.20			4.1	μs	0.2	$15/2^{-}$	11			2007	IT=100	
¹²⁵ Sb ⁿ	-86144.2	2.6	2112.1	0.3			28.0	μs	0.7	$19/2^{-}$	11	FGK128	J	2007	IT=100	*
$^{125}\text{Sb}^{q}$	-85785.3	2.6	2471.0	0.4			272	ns	16	$(23/2)^+$	11			2007	IT=100	
¹²⁵ Te	-89023.0	1.5					STABLE			$1/2^{+}$	11			1931	IS=7.07 15	
¹²⁵ Te ^m	-88878.2	1.5	144.775	0.008			57.40	d	0.15	$11/2^{-}$	11			1949	IT=100	
¹²⁵ I	-88837.2	1.5					59.407	d	0.010	$5/2^{+}$	11			1947	ε=100	
¹²⁵ Xe	-87193.4	1.8					16.9	h	0.2	$1/2^{(+)}$	11			1950	$\beta^{+}=100$	
¹²⁵ Xe ^m	-86940.8	1.8	252.61	0.14			56.9	s	0.9	$9/2^{(-)}$	11			1954	IT=100	
125 Xen	-86897.5	1.8	295.89	0.15			140	ns	30	$7/2^{(+)}$	11			1979	IT=100	
¹²⁵ Cs	-84088	8					46.7	m	0.1	$1/2^{(+)}$	11			1954	$\beta^{+}=100$	
$^{125}Cs^m$	-83822	8	266.1	1.1			900	μs	30	$(11/2^{-})$	11	98Su16	J	1998	IT=100	
¹²⁵ Ba	-79669	11					3.3	m	0.3	$1/2^{(+\#)}$	11			1968	$\beta^{+}=100$	
$^{125}Ba^m$	-79559	23	110	20			2.76	μs	0.14	$(7/2^{-})$	11	FGK128	J	1989	IT=100	*
¹²⁵ La	-73759	26					64.8	s	1.2	$11/2^{-}$ #	11			1973	$\beta^{+}=100$	
$^{125}La^m$	-73652	26	107.00	0.10			390	ms	40	$(3/2^+)$	11	99Ca21	J	1998	IT=100	*
¹²⁵ Ce	-66660#	200#					9.7	s	0.3	$(7/2^{-})$	11	02Pe15	J	1978	$\beta^{+}=100; \beta^{+}p=?$	
¹²⁵ Ce ^m	-66570#	200#	93.6	0.4			13	s	10	$(1/2^+)$	11	07Su07	ETJ	2007	IT=100	*
A-grou	ip is continu	ued on no	ext page							/						

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

			Tab	e I. I no	enue	SASE2010	tab	ie (co	ontinuea, Exp	папа	uo	10 12	ible	on page	18)	
Nuclide	Mass ex (keV	xcess /)	e	Excitatio energy (ke	n V)		Hal	f-life	J^{π}	Ens	; 1	Referenc	e	Year of discovery	Decay modes and intensities (%)	
A-grou	ip continuec	1				2	2	07	2/2+#	11	1			2002	R^{+}_{-100} , R^{+}_{-2}	
125 N.4	-37940# 47600#	300# 400#				5.	5 S	0.7	$(5/2)^{(+1)}$	↓ 11 (#)	1			1000	$p^{+}=100; p^{+}p^{-}$	
125 A an	-4/000# E · 12Lo	400#	0koV abou	a 125 A am		0.5	0 11	\$ 150	(3/2)	/ II	1			1999	p = 100; p = p > 0	
* Ag * ¹²⁵ Cd ⁿ	E 115La	32-1461	8(0.5) keV	c ng Vabove the	- 11/2-	isomer										**
* ¹²⁵ Sn ^p	L · E2 to	$19/2^+$ for	or $125 \operatorname{Sn}^{p} \cdot \mathrm{I}$	$= \frac{100}{10} = \frac$	⁻ for ¹²	⁵ Sn ^q										**
* ¹²⁵ Sb	T · round	ded from	ENSDE20	$11=2.758^{\circ}$	56(0.00	025): other 1	6Li01	=2.75	817(0.00082)							**
$*^{125}Sb^{n}$	J : E2 to	$15/2^{-}$	T : 01	thers recer	nt 10Re	01=25(4) 07.	lu06=	25(4)	(**
* ¹²⁵ Ba ^m	E: 67.7((0.4) abo	ve 5/2+#1e	evel at esti	mated 3	30#20	J:E	1 to 5/	2+							**
$*^{125}La^{m}$	J: 3/2+#	from tr	ends in La	isotopes; 1	ow spir	and even-pa	urity f	rom 99	PCa21							**
$*^{125}$ Ce ^m	T : symr	netrized	from 134(-	+641–61)s	s for ful	ly ionized io	n; icc	=38.1	for a							**
* ¹²⁵ Ce ^m	T: 9	93.6(0.4)	keV, E3 tra	unsition; E	NSDF o	uotes 3.4(2.2	7) s									**
126 Ph	27200#	500#				1	0	. 2		15	5			2010	$\beta^{-} = 100; \beta^{-} = 204; \beta^{-} = 22 = 0.24$	
126 p.d	-37300# 51860#	400#				19	9 m 6 m	s 5 0 1 7	0+	1.	5			2010	$\beta = 100, \beta = 100, \beta$	
126 p.dm	-31800#	400#	2022 5	0.7		40.	0 m	s 1.2	(5 ⁻)	1.5	5			2008	p = 100; p = 1=0.4	
126 p.dn	-49840#	400#	2023.3	0.7		33	0 n	30	(3) (7^{-})	1.	5			2013	IT=100 IT=100	
126 pdp	-49/30#	400#	2109.7	1.0		23	0 n	s 50	(10^+)	1.	5			2013	IT=100 IT=2: B 2	
126 A g	-49430#	200#	2400.0	1.0		23.	0 II 3 m	0.9 0.9	(10)	1.	5 5 1	151 004	т	1004	$\beta^{-} = -100; \beta^{-} = -6#$	<u>ب</u>
126 A am	-00080#	200#	100#	100#		<i>99</i> .	2 m	s 4.0	2 m 9-#	1.	5 1	152004	1	1994	$\beta^{-}=100; \beta^{-}=100; TT 2; \beta^{-}=100; \beta^{$	*
126 A g ⁿ	-00380#	220#	254.8	0.5		2	2 m 7 u	s 9 ° 6	0 # 1 #	1.5	5			2012	p = 100; 11 ?; p = 1=0#	
126 C d	-00430#	200#	234.0	0.5		51	1 μ 2 m	s 0 . 6	0 ⁺	02) 21	151 004	т	1078	$\beta^{-} - 100$	
126 In	-72230.8	2.5					эш 2 о	s 0 00	1 2 ^(+#)	02	2	152004	1	1978	$\beta^{-}=100$ $\beta^{-}=100$	
126 Inm	-77710	50	70	60	PD	* 1.5	55	0.0	s s(-#)	02	, 27	70E-10	т	1974	$\beta = 100$ $\beta^{-} = 100$	
1261mn	-77520	27	242.2	00	ЪD	* 1.0	4 8 2		1(-)	0.5	, , ,	048-42	J	2002	p = 100	
126 5	-//550	10	245.5	0.2		22	2μ	s 2	0+	07	, L	045042	EIJ	2005	R^{-}_{-100}	
126 S m	-80015	10	2218.00	0.09		23	ок <u></u>	14	0.	03	5 7 1	124-05	т	1962	p = 100	
126 S n	-85/90	10	2210.99	0.08		3.	ομ ζι	s 0.7	10+	02	5 I 7 1	12AS05	I TI	2000	IT=100 IT-100	*
126 Smp	-65451 81660	10	2304.3	0.5		/.	0 μ 0 π	s 0.5	10	02	5 I 1	12AS05		2000	IT=100 IT=100	*
126 Sh	-81009	30	4343.7	0.8		12.3	5 d	5 <u>20</u>	5 (<u>8</u> -)	03	2	12A805	LJI	1056	$\beta^{-} - 100$	
126 chm	-80390 86270	30	177	0.2		12.3	5 0	0.0	(0)	02) 2			1956	$\beta = 100$ $\beta^{-} = -96.4$; IT=14.4	
126 chn	-80370	30	17.7	0.5		19.1	5 П 1 о	0.0	(3^{-})	02	2			1950	p = 804; 11 = 144	
126 Sbp	-86290	30	104.6	0.3		55	1 3 3 n	5	(3^+)	03	3			1976	IT-100	
126 Te	-90065 3	15	104.0	0.5		STABL	5 II E	, ,	(3 ⁻)	03	3			1970	IS-18 84 25	
126 I	-87911	4				12 9	2 d	0.0	5 2-	03	3			1938	$\beta^+=52.75; \beta^-=47.35$	
126 m	-87800	4	111.00	0.23		12.9	8 n	. 0.0.	3+	0.	1	12Mo A	EIT	2012	F = 52.75, F = 17.55	
126 Xe	-89147	3	111.00	0.25		STABL	F II	,	0+	03	3	121010.71	LJI	1922	$IS=0.0890.228^+.2$	
126Cs	-84351	10				1.6	2 4 п	0.0	2 1+	03	3			1954	$\beta^{+}=100$	
$^{126}Cs^{m}$	-84078	10	273.0	0.7		>	1 u	s 010.		03	3			1993	IT=100	
$^{126}Cs^n$	-83755	10	596.1	1.1		17	1 u	s 14		03	3			1993	IT=100	
¹²⁶ Ba	-82670	12				10	0 n	2	0^{+}	03	3			1954	$\beta^{+}=100$	
¹²⁶ La	-74970	90				* 5	4 s	2	(5) ^(+#)	03	3			1961	$\beta^{+}=100$	
$^{126}La^{m}$	-74760	400	210	410	BD	* 2	0 s	20	$(0^{-}, 1^{-}, 2$	-) 03	3			1997	$\beta^{+}=100$	*
¹²⁶ Ce	-70821	28				51.	0 s	0.3	0+	03	3			1978	$\beta^{+}=100$	
¹²⁶ Pr	-60320#	200#				3.1	2 s	0.1	8 (4,5,6)) 03	38	88Ba42	Т	1983	$\beta^{+}=100; \beta^{+}p=?$	*
¹²⁶ Nd	-52990#	300#				1	# s	(>2	200ns) 0^+	03	3 (00So11	Ι	2000	β^{+} ?: β^{+} p ?	
¹²⁶ Pm	-39350#	500#				500	# m	s							β^{+} ?; β^{+} p ?	
* ¹²⁶ Ag	T : avera	ge 15Lc	04=98(5)	5Fe12=10)7(12);	other 14Ba1	8=52	10) at	variance							**
$*^{126}Sn^{m}$	T : avera	ige 12As	05=6.6(1.4) 10Tl01=	5.6(0.8)										**
$*^{126}Sn^n$	T : avera	ige 12As	s05=7.7(0.5) 10Tl01=	7.5(0.3)										**
$*^{126}La^m$	T : 97As	05: "by	far shorter	than 50 s"												**
* ¹²⁶ Pr	T : avera	ige 95Os	03=3.14(0	.22) 88Ba4	42=3.00	0.4) 83Ni05	=3.2().6)								**
127-5-1	24020"	(00)				-	0		a /a !			151 04	TTE	2015	0- 100 0- 20" 0-2 0.5"	
127 Rh	-34030#	600#				2	8 m	s 14	7/2*#	15	5 1	15L004	TD	2015	$\beta = 100; \beta = n=30\#; \beta = 2n=0.2\#$	*
127 A	-4/180#	500#				3	8 m	s 2	3/2+#	15		151.04	т	2010	$p = 100; p = 100; \beta = 2n = 0$	
127 A _ m	-58440#	200#	20#	20#			9m	s Z	1/2*#	11	1	13L004	1	1995	$p = 100; p = n = / \pi$	*
127 C 1	-58420#	200#	20#	20#		* 20	# m	s and	1/2-#			128-02	т	1097	p ?; 11 ? R = -100; R = -0.02"	
127 C 4m	-08/4/	12	276	15	MD	33	0 m	s 20	5/2	11	1 1	131002	J	1980	p = 100; p = n=0.03#	*
127 C 4n	-004/2	ð 20	2/0	13	MD	200	#m 5	s 	$\frac{11/2}{(10/2^+)}$)	1	151002 10Nc17	ј ГТТ	2010	p (; 11 (IT-100	
127 1-	-00930	21	1013	32		1/.	ις Γρ	s 0.3	(19/2)	/	1	ioinal/	EIJ	2010	$B^{-}=100, B^{-}=0.02$	*
127 Inm	-76490	21	408.0	03		1.0	> s 7 ~	0.0	1/2 ⁻	11	1			1973	$\beta = 100, \beta = 1 < 0.05$ $\beta^{-} = 100, \beta^{-} = 0.60 A$	
127 Inn	-75030	60	1870	60	RD	5.0	, s 4 ~	0.0	+ 1/2#) (ว1/ว=) 11	1			2004	$\beta^{-}=100; \beta^{-}=1-0.094$ $\beta^{-}=100; \beta^{-}=-1#$	
127 Inp	-74530	21	2364.7	00	עם	1.0		ຸ່າ	2 (21/2 (20/2+) 11) 11	1 (045c42	ETI	2004	p = 100, p = 1 = 1 = 1 = 1	ىك
III.	1-551	<u>~1</u>	2504.7	0.9			- μ	. 4	(29/2	, 11	. (0 10042	L1J	2004	11-100	

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I	. The NUBASE20	6 table (continued	. Explanation of Table of	n page 18)

Nuclide	Mass ex	cess		Excitation	0 Dill		Ha	lf-life	<u>,</u>	17	Ens	Referenc	e	Year of	Decay modes and	
riaenae	(keV	7)		energy (keV	7)					U I	2.1.0	10101010		discovery	intensities (%)	
														-		
A-grou	ip continued														0 100	
¹²⁷ Sn	-83471	10	5.07	0.00			2.10	h	0.04	$\frac{11}{2^{-}}$	11			1951	$\beta^{-}=100$	
127 Sn ^m	-83466	10	5.07	0.06			4.13	m	0.03	3/2+	11	001 - 07	т	1962	$\beta^{-}=100$	
127 Sn ⁿ	-81644	10	1820.07	0.16			4.52	μs	0.15	$\frac{19}{2}$	11	08L007	J	2000	II=100	
127 Snp	-81540	10	1930.97	0.17			1.26	μs	0.15	$(23/2^+)$ $(27/2^-)$	11	091 -07	т	2004	II=100 IT-100	
127 Sh	-80919	10	2552.4	1.0			250	ns	30	(21/2)	11	08L007	J	2008	R = -100	
127 Sbm	-80099	5	1020 10	0.21			5.65	u u	0.05	15/2-	11	0000024	T	1959	p = 100	
127 Sbn	-84779	5	2324.7	0.21			234	μs	12	$\frac{13}{2}$	11	09 Wa24	ј ТІ	2005	II=100 IT=100	4
127 Te	-88281 7	15	2324.1	0.4			0 35	h	0.07	$\frac{23}{2}$	11	09 Wa24	15	1938	$\beta^{-} = 100$	*
¹²⁷ Te ^m	-88193.5	1.5	88 23	0.07			106.1	d	0.7	$\frac{3}{2}$	11			1940	F = 100 IT=97.6.2: $B^{-}=2.4.2$	
127 I	-88984	4	00.25	0.07			STABLE	u	0.7	$5/2^+$	11			1920	IS=100	
¹²⁷ Xe	-88322	4					36 346	d	0.003	$1/2^+$	11			1950	$\varepsilon = 100$	
$^{127}Xe^{m}$	-88025	4	297 10	0.08			69.2	s	0.005	$9/2^{-}$	11			1940	IT=100	
¹²⁷ Cs	-86240	6	277110	0.00			6.25	h	0.10	$1/2^+$	11			1950	$\beta^{+}=100$	
$^{127}Cs^{m}$	-85788	6	452.23	0.21			55	us	3	$(11/2)^{-}$	11			1980	IT=100	
¹²⁷ Ba	-82818	11					12.7	m	0.4	$1/2^+$	11			1952	$\beta^{+}=100$	
$^{127}Ba^m$	-82738	11	80.32	0.11			1.93	s	0.07	$7'/2^{-}$	11			1992	IT=100	
¹²⁷ La	-77896	26					5.1	m	0.1	$(11/2^{-})$	11			1963	$\beta^{+}=100$	
$^{127}La^{m}$	-77882	26	14.2	0.4			3.7	m	0.4	$(3/2^+)$	11			1963	$\beta^+ \approx 100$	
¹²⁷ Ce	-71979	29					34	s	2	$(1/2^+)$	11			1978	$\beta^{+}=100$	
127 Ce ^m	-71972	29	7.3	1.1			28.6	s	0.7	5/2+#	11			1978	$\beta^{+}=100$	
127 Ce ⁿ	-71942	29	36.8	1.2			> 10	μs		$(7/2^{-})$	11			1995	IT=100	
¹²⁷ Pr	-64540#	200#					4.2	s	0.3	$3/2^{+}$ #	11			1995	$\beta^{+}=100$	
127 Pr ^m	-63940#	280#	600#	200#			50#	ms		$11/2^{-}$	11	98Mo30	J	1998	β^+ ?; IT ?	
¹²⁷ Nd	-55540#	300#					1.8	s	0.4	$5/2^{+}$ #	11			1983	$\beta^{+}=100; \beta^{+}p=?$	
¹²⁷ Pm	-44790#	400#					1#	s		$5/2^{+}$ #					β ⁺ ?; p ?	
* ¹²⁷ Rh	T : symn	netrized f	from 15Lo04	4=20(+20-7)											**
* ¹²⁷ Ag	T : other	96Wo.A	=79(3) supe	rsedes 95Fe	12 = 10	9(25)	from same	grou	р							**
* ¹²⁷ Cd	T : from	15Lo04=	=330(20)	G 117					2.5							**
* ¹²⁷ Cd"	E : 1560.	1(0.5) ke	V above 12/	Cd ^m	T: oth	her 12	Ka36=11.0	(+9.2	-3.5)							**
* ¹²⁷ In ^p	E : derive	ed by NU	BASE from	least-square	es nt to	γ-ray	energies									**
*127 Sb"	T : also ()5Po03=	165(20) con	flicting, not	used											**
¹²⁸ Pd	-44490#	500#					35	ms	3	0^{+}	16			2010	$\beta^{-}=100; \beta^{-}n=20\#$	
$^{128}Pd^{m}$	-42340#	500#	2151.0	1.0			5.8	μs	0.8	(8^+)	16			2013	IT=100	
¹²⁸ Ag	-54620#	300#					59	ms	5		15	15Lo04	Т	2000	$\beta^{-}=100; \beta^{-}n=8\#; \beta^{-}2n=0.01\#$	
¹²⁸ Cd	-67242	7					246	ms	2	0^{+}	15	16Du13	Т	1986	$\beta^{-}=100; \beta^{-}n=0.7\#$	*
$^{128}Cd^{m}$	-65372	7	1870.5	0.3			270	ns	7	(5-)	15			2009	IT=100	
$^{128}Cd^{n}$	-64527	7	2714.6	0.4			3.56	μs	0.06	(10^{+})	15			2009	IT=100	
$^{128}Cd^{p}$	-62955	7	4286.6	1.5			6.3	ms	0.8	(15^{-})		16Ju.A	ETJ	2016	IT=100	
¹²⁸ In	-74150	150					816	ms	27	$(3)^+$	15	93Ru01	D	1975	$\beta^{-}=100; \beta^{-}n=0.0383$	*
¹²⁸ In ^m	-74060	30	80	160	BD		720	ms	100	(8-)	15	0.10 10		1986	$\beta^{-}=100$	
128 In ⁿ	-73900	150	247.87	0.10			23	μs	2	(1)	15	04Sc42	J	1988	11=100	
128 Sn	-83362	18	2001 50	0.11			59.07	m	0.14	(7-)	15			1956	$\beta^{-}=100$	
128 Smm	-812/1	18	2091.50	0.11			0.5	S	0.5	(/)	15			19/9	II=100	
128 Sm ⁿ	-80870	18	2491.91 4000 5	0.17			2.91	μs	0.14	(10^{+}) (15^{-})	15			2011	II=100 IT-100	
128 61	- 19205	10	4099.5	0.4			220	IIS h	50	(15)	15			2011	R = -100	
128 Shm	-84630	19	10	7		*	9.05	m	0.04	0 5+	15			1950	$\rho = 100$ $\beta = -06.4.10$; IT-2.6.10	
128 Te	-84020	10	10	1		*	2.0	WV VV	0.10	0+	15	15Ba11	т	1955	p = 90.4 10, 11 = 5.0 10 IS=31 74 8: 2 B^{-} =100	*
128 Tem	-86202.9	0.9	2790.8	0.3			363	ns	27	(10^{+})	15	04V203	т	1924	I_{T-100} IT-100	*
1281	-87739	4	2190.0	0.5			24 99	m	0.02	1+	15	04 1000	1	1998	$\beta^{-}-93 + 8 \cdot \beta^{+}-6 + 9 = 8$	*
128 m	-87601	4	137 851	0.003			845	ns	20	1 4-	15			1982	F = 55.10, F = 0.50	
128 In	-87572	4	167.368	0.003			175	ns	15	(6)-	15			1991	IT=100	
128 Xe	-89860 3	11	107.500	0.001			STARLE	115	15	0+	15			1922	IS-1 9102 8	
128 Xem	-87073 1	1.1	2787.2	0.3			83 83	ne	2	8-	15			1922	IT-100	
128 Ce	-85032	5	2101.2	0.5			3 640	m	$\frac{2}{0.014}$	1+	15	93 4 103	т	1951	$\beta^{+}=100$	×
128 Ra	-85378	5					2 42	d III	0.014	0+	15	25/1103	1	1950	r = 100	*
128 L a	-78630	50				*	5 18	m	0.14	(5+)	15	97Ha30	т	1961	$\beta^{+}=100$	*
128 L am	-78530#	110#	100#	100#		*	< 1.4	m	0.14	$(1^+ 2^-)$	15	>,110.0	•	1995	$\beta^{+}=100$	·P
128 Ce	-75534	28	1001	1000			3 93	m	0.02	0+	15	001 i08	т	1968	$\beta^{+}=100$	*
¹²⁸ Pr	-66331	30					2.85	s	0.09	(3^+)	15	99Xi03	J	1985	$\beta^{+}=100; \beta^{+}p=?$	*
¹²⁸ Nd	-60310#	200#					5#	s	0.07	0+	15	///////////////////////////////////////		1985	β^+ ?	*
								-			-				•	

¹²⁸Pr -66331 30 ¹²⁸Nd -60310# 200# ... A-group is continued on next page ...

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Nuclide	Mass exce	ess	Excitation	Ha	lf-lif	e		π	Ens	Referen	ice	Year of	Decay modes and	
	(keV)		energy (keV)									discovery	intensities (%)	
A-gro	up continued													
¹²⁸ Pm	-47790# 3	600#		1.0	s	0.3	(5,6,	$7)^{(+#)}$	15	93Li40	D	1999	$\beta^+\approx 100; \beta^+p ?; p=0$	*
¹²⁸ Sm	-38670# 5	600#		500#	ms		()+					β^{+} ?; β^{+} p ?	
* ¹²⁸ Cd	T : average 10	6Du13=246.2(2	2.1) 15Lo04t=245(5)											**
* ¹²⁸ In	T : average 15	5Lo04=810(30) 86Go10=840(60)											**
$*^{128}Sb^{m}$	E : less than 2	20 keV above g	round state, see ENSDF											**
*128 Tem	T : average 04	4Va03=337(59)) 98Zh09=370(30)											**
* ¹²⁸ Cs	T : average 93	3A103=3.66(0.0	02) 76He04=3.62(0.02)											**
* ¹²⁸ La	T : average 97	7Ha30=5.4(0.2) 77Zo02=5.2(0.4) 66Pa	a06=4.9(0.4)	66Li0	4=4.9	(0.4)							**
* ¹²⁸ Ce	T : average 00	0Li08=4.0(0.1)	97Ha30=4.1(0.3) 97As	\$05=3.925(0.0	21)									**
* ¹²⁸ Pr	T : average 99	9Xi03=2.8(0.1)	88Ba42=3.1(0.3) 85W	i07=3.2(+0.5-	-0.4)									**
* ¹²⁸ Pr	D : from 85W	/i07												**
* ¹²⁸ Nd	T : 83Ni05 ga	ave 4(2) s. Prov	ed, in 85Wi07, to be du	e to 128Pr, not	to 12	⁸ Nd								**
* ¹²⁸ Pm	D : p=0% fro	m 93Li40	J: from 02Xu11 and	calculated 6 ⁺										**

¹²⁹ Pd	-37610#	600#					31	ms	7	7/2-#	15			2015	$\beta^{-}=100; \beta^{-}n=90\#; \beta^{-}2n=2\#$	-
¹²⁹ Ag	-51980#	400#				*	49.9	ms	3.5	7/2+#	14	15Lo04	Т	2000	$\beta^{-}=100; \beta^{-}n=10\#$	*
$^{129}Ag^m$	-51960#	400#	20#	20#		*	10#	ms		$1/2^{-}$ #	14				β^{-} ?; β^{-} n=10#	*
129Cd	-63058	17				* &	151.5	ms	5.7	$3/2^+$	14	16Du13	Т	1986	$\beta^{-}=100; \beta^{-}n=0.1\#$	*
$^{129}Cd^m$	-62910#	150#	150#	150#		* &	147	ms	3	$11/2^{-}$	14	16Du13	Т	2003	$\beta^{-}=100; \beta^{-}n=0.1\#$	*
$^{129}Cd^n$	-60970#	150#	2090#	150#			3.6	ms	0.2	$(21/2^+)$	14	14Ta29	TJ	2014	IT=100	*
¹²⁹ In	-72837.7	2.7					570	ms	10	$(9/2^+)$	14	15Lo04	Т	1975	$\beta^{-}=100; \beta^{-}n=0.237$	*
129 In ^m	-72380	3	458	4	MD		1.23	s	0.03	$(1/2^{-})$	14	04Ga24	J	1976	$\beta^{-}\approx 100; \text{ IT} < 0.3; \beta^{-}\text{ n} = 3.64$	
129 In ⁿ	-71149.7	2.7	1687.97	0.25			11.2	μs	0.2	$(17/2^{-})$	14	14Ta.A	Т	2003	IT=100	
¹²⁹ In ^p	-71180	50	1660	50	BD		670	ms	100	$(23/2^{-})$	14	04Ga24	ETJ	2004	$\beta^{-}\approx 100$; IT ?	
129 In ^q	-70920	50	1921	50			110	ms	15	$(29/2^+)$	14			2004	$T \approx 100; \beta^-$?	*
129Sn	-80591	17					2.23	m	0.04	$3/2^{+}$	14			1962	$\beta^{-}=100$	
129 Sn ^m	-80556	17	35.15	0.05			6.9	m	0.1	$11/2^{-}$	14			1962	$\beta^{-} \approx 100; \text{ IT} < 0.002$	
129 Sn ⁿ	-78829	17	1761.6	1.0			3.49	μs	0.11	$(19/2^+)$	14	08Lo07	Т	2000	IT=100	*
129 Sn ^p	-78788	17	1802.6	1.0			2.22	μs	0.13	$23/2^{+}$	14	08Lo07	TJ	2000	IT=100	*
129 Sn ^q	-78038	17	2552.9	1.1			221	ns	18	$(27/2^{-})$	14	08Lo07	J	2008	IT=100	
¹²⁹ Sb	-84629	21					4.366	h	0.026	$7/2^{+}$	14			1939	$\beta^{-}=100$	
129 Sb ^m	-82778	21	1851.31	0.06			17.7	m	0.1	$(19/2^{-})$	14			1982	$\beta^{-}=85;$ IT=15	
129 Sb ⁿ	-82768	21	1861.06	0.05			2.2	μs	0.2	$(15/2^{-})$	14			1987	IT=100	
¹²⁹ Sb ^p	-82490	21	2139.4	0.3			1.1	μs	0.1	$(23/2^+)$	14			2003	IT=100	
¹²⁹ Te	-87004.8	0.9					69.6	m	0.3	$3/2^{+}$	14			1939	$\beta^{-}=100$	
¹²⁹ Te ^m	-86899.3	0.9	105.51	0.03			33.6	d	0.1	$11/2^{-}$	14			1940	IT=64 7; β^{-} =36 7	
¹²⁹ I	-88507	3					15.7	My	0.4	$7/2^{+}$	14			1951	$\beta^{-}=100$	
129 Xe	-88696.059	0.005					STABLE			$1/2^+$	14			1920	IS=26.4006 82	
129 Xe ^m	-88459.92	0.03	236.14	0.03			8.88	d	0.02	$11/2^{-}$	14			1951	IT=100	
129Cs	-87499	5					32.06	h	0.06	$1/2^{+}$	14			1950	$\beta^{+}=100$	
$^{129}Cs^m$	-86924	5	575.40	0.14			718	ns	21	$(11/2^{-})$	14			1977	IT=100	
¹²⁹ Ba	-85063	11					2.23	h	0.11	$1/2^{+}$	14			1950	$\beta^{+}=100$	
$^{129}Ba^m$	-85055	11	8.42	0.06			2.135	h	0.010	$7/2^+$	14			1950	$\beta^+ \approx 100;$ IT=?	
¹²⁹ La	-81325	21					11.6	m	0.2	$(3/2^+)$	14			1963	$\beta^{+}=100$	
$^{129}La^{m}$	-81153	21	172.33	0.20			560	ms	50	$(11/2^{-})$	14			1969	IT=100	
¹²⁹ Ce	-76287	28					3.5	m	0.3	$(5/2^+)$	14			1977	$\beta^{+}=100$	
¹²⁹ Pr	-69774	30					30	s	4	$(3/2^+)$	14	96Gi08	J	1977	$\beta^{+}=100$	
¹²⁹ Pr ^m	-69390	30	382.57	0.24			1#	ms		$(11/2^{-})$	14			1997	IT=100	
¹²⁹ Nd	-62320#	200#					6.8	s	0.6	5/2+#	14	10Xu12	Т	1977	$\beta^{+}=100; \beta^{+}p=?$	*
¹²⁹ Nd ^m	-62270#	220#	50#	100#			2.6	s	0.4	$1/2^{+}$ #	14			2010	$\beta^{+}=100; \beta^{+}p=?$	
¹²⁹ Pm	-52880#	300#					2.4	s	0.9	$(5/2^{-})$	14			2004	$\beta^+=100; \beta^+p?; p?$	
¹²⁹ Sm	-42000#	500#					550	ms	100	$(3/2^+, 1/2^+)$	14			1999	$\beta^{+}=100; \beta^{+}p=?$	
* ¹²⁹ Ag	T : average	15Lo04=5	52(4) 00Kr	18=46(+5	-9)											**
* ¹²⁹ Ag	D : β^- n ha	s been obs	erved by 00)Kr18 bu	not qu	lantifie	d									**
$*^{129}$ Ag ^m	T:00Kr18	$\approx 160 \mathrm{ms}$ i	s not convi	ncing												**
* ¹²⁹ Cd	D : β^- n ha	s been obs	erved by 05	5Kr20 bu	not qu	lantifie	d									**
* ¹²⁹ Cd	T : average	16Du13=	157(8) 15Ta	a13=146(8)											**
* ¹²⁹ Cd	T: other 15	5Lo04=154	4.5(2.0) for	mixture of	of two	states										**
$*^{129}Cd^{m}$	T: other 15	5Ta13=151	(15) ms													**
$*^{129}Cd^{m}$	D : β^- n ha	s been obs	erved by 05	5Kr20 bu	not qu	lantifie	d									**
* ¹²⁹ Cd ⁿ	E : 1940 ke	V above th	ne 11/2 ⁻ iso	omer												**
* ¹²⁹ In	J : from 040	Ga24														**
$*^{129}$ In ^q	E:281.0 (0).2) keV γ	above the 2	3/2 ⁻ isoi	ner											**
$*^{129} Sn^n$	T : average	08Lo07=3	3.4(0.4) 040	Ga24=3.2	(0.2) 0	0Pi03=	=3.7(0.2) 0	0Ge0	7=3.6(0).2)						**
$*^{129}Sn^{p}$	T : average	08Lo07=2	2.4(4) 04Ga	24=2.0(2) 00Ge	e07=2.4	4(2)									**
* ¹²⁹ Nd	T : average	10Xu12=	6.7(0.7) 970	Gi07=7(1); 85W	/i07=4.	9(0.2) is fo	or gs+	-m mixt	ture						**

 $\begin{array}{l} E:281.0 \ (0.2) \ keV \ \gamma \ above \ the \ 23/2^{-} \ isomer \\ T: \ average \ 08Lo07=3.4(0.4) \ 04Ga24=3.2(0.2) \ 00Pi03=3.7(0.2) \ 00Ge07=3.6(0.2) \\ T: \ average \ 08Lo07=2.4(4) \ 04Ga24=2.0(2) \ 00Ge07=2.4(2) \\ T: \ average \ 10Xu12=6.7(0.7) \ 97Gi07=7(1); \ 85Wi07=4.9(0.2) \ is \ for \ gs+m \ mixture \\ \end{array}$

Chinese Physics C Vol. 41, No. 3 (2017) 030001

T.L. T.T M.	TR + 472016 + 11		.1	T. I.I.	10)
Table I. The NU	JBASE2016 table	(continued. Ex	blanation of	ladie on bage	18)

Nuclide	Mass ex	cess		Excitation		Halt	f-life		<u></u>	Ens	Reference	e	Year of	Decay modes and	
ruende	(keV	r)	er	hergy (keV)		1 Iul	inte		<i>,</i>		Reference		discovery	intensities (%)	
120															
¹³⁰ Ag	-45700#	500#				40.6	ms	4.5		15	15Lo04	Т	2000	$\beta^{-}=100; \beta^{-}n=90\#; \beta^{-}2n=2\#$	*
¹³⁰ Cd	-61118	22	212 0 (1.0		126.8	ms	1.8	0^+	08	16Du13	Т	1986	$\beta^{-}=100; \beta^{-}n=3.5 \ 10$	*
130 Cdm	-58988	22	2129.6	1.0		240	ns	16	(8 ⁺)	08	12Ka36	ET	2007	II = 100	*
130 In 130 I.m	-69880	40	50	50	*	284	ms	10	<u>Г()</u> 0-4	08	15L004	Т	1973	$\beta = 100; \beta = 0.93 13$	
130 In ⁿ	-09830	40 50	50 400	50 60	BD *	540	ms	10	8 # (5 ⁺)	08			19/5	p = 100; p = 1.05 15 $B^{-} = 100; B^{-} = 1.65 15$	
$^{130}In^{p}$	-69490	40	388 3	0.2	BD	53	1115	0.4	(3^+)	08	12Ka36	т	2003	p = 100, p = 1.05 15	÷
¹³⁰ Sn	-80132.2	19	500.5	0.2		3 72	m	0.4	0+	01	121(0)0	1	1972	$\beta^{-}=100$	Ŧ
$^{130}Sn^{m}$	-78185.3	1.9	1946.88	0.10		1.7	m	0.1	7-	01	05Le34	J	1974	$\beta^{-}=100$	
130 Sn ⁿ	-77697.4	1.9	2434.79	0.12		1.501	μs	0.017	(10^{+})	01	11Pi05	Т	1981	IT=100	
¹³⁰ Sb	-82286	14				39.5	m	0.8	(8-)	01	02Ge07	J	1962	$\beta^{-}=100$	
130 Sb ^m	-82281	14	4.80	0.20		6.3	m	0.2	$(4,5)^+$	01			1962	$\beta^{-}=100$	
130 Sb ⁿ	-82201	14	84.67	0.04		800	ns	100	6-	01	02Ge07	TJ	2002	IT=100	
$^{130}\mathrm{Sb}^{p}$	-80741	14	1544.7	0.5		1.8	μs	0.2	(13^{+})		02Ge07	ETJ	2002	IT=100	
¹³⁰ Te	-87352.949	0.011				690	Ey	130	0^{+}	01	15Ba11	Т	1924	IS=34.08 62; $2\beta^{-}=100$	*
130 Te ^m	-85206.54	0.04	2146.41	0.04		186	ns	11	7-	01	04Va03	Т	1972	IT=100	*
$^{130}\text{Te}^{n}$	-84685.7	0.8	2667.2	0.8		1.90	μs	0.08	(10^{+})	01	04Br19	Е	1998	IT=100	*
¹³⁰ Te ^p	-82977.5	1.8	4375.4	1.8		261	ns	33	-	01			1998	IT=100	
130 I	-86936	3				12.36	h	0.01	5+	01			1938	$\beta^{-}=100$	
130 Im 130 xn	-86896	3	39.9525	0.0013		8.84	m	0.06	2+	01			1966	$11=842; \beta^{-}=162$	
130 In 130 In	-86866	3	69.5865	0.0007		133	ns	15	(6)	01			1989	11=100	
130 IP	-86854	3	82.3960	0.0019		315	ns	15	(8)	01			1989	II=100	
130 Vo	-80851	3 0.000	85.1099	0.0010		204 STADLE	ns	4	(0) 0 ⁺	01			1975	II=100 IS=4.0710.12	
130 Co	-89880.405	0.009				20 21		0.04	0 · 1 +	01			1922	$B^{+}_{-08} = 0.84$	
$^{130}Ce^{m}$	-86737	8	163 25	0.11		3.46	m	0.04	1 5	01			1952	p = -98.4, p = 1.0 IT~100: $B^+ = 0.16.2$	
$^{130}Cs^{x}$	-86873	17	27	15		R = 2 - 1	m	0.00	fsmix	01			1977	$11 \approx 100, p = 0.102$	
¹³⁰ Ba	-87261 5	2.6	27	15		STABLE		1 Z v	0^+	01	15Ba11	т	1936	IS=0.106.1 \cdot 2 β ⁺ ?	
${}^{130}Ba^{m}$	-84786.4	2.6	2475.12	0.18		9.54	ms	0.14	8-	01	02Mo31	Ť	1969	IT=100	*
¹³⁰ La	-81627	26				8.7	m	0.1	3(+)	01		-	1961	$\beta^{+}=100$	
$^{130}La^m$	-81413	26	214.0	0.5		760	ns	90	(5^{+})		14Io01	ETJ	2012	IT=100	
$^{130}La^n$	-81308	26	319.1	0.5		33	ns	1	(6^+)		14Io01	ETJ	2014	IT=100	
¹³⁰ Ce	-79423	28				22.9	m	0.5	0+	01			1965	$\beta^{+}=100$	
130 Ce ^m	-76969	28	2453.6	0.3		100	ns	8	(7^{-})	01			1999	IT=100	
¹³⁰ Pr	-71180	60				40.0	s	0.4	$(6,7)^{(+\#)}$	01	88Ba42	J	1977	$\beta^{+}=100$	
$^{130}Pr^{m}$	-71080#	120#	100#	100#		10#	s		2+#	01	88Ba42	J	1988	eta^+ ?	*
¹³⁰ Nd	-66596	28				21	s	3	0^{+}	01	01Gi17	Т	1977	$\beta^{+}=100$	*
¹³⁰ Pm	-55400#	200#				2.6	s	0.2	$(5^+, 6^+, 4^+)$	01	99Xi03	J	1985	$\beta^{+}=100; \beta^{+}p=?$	
¹³⁰ Sm	-47510#	400#				1#	s		0+	01			1999	β^+ ?	
130 Eu	-33680#	500#	10(5) 0517 OC	25(10)		1.0	ms	0.4	(1^{+})	08			2004	$p \approx 100; \beta^+ = 1\#; \beta^+ p?$	*
* ¹³⁰ Ag	1 : average	15L004=4	42(5) 05Kr2(J=35(10)											**
* ¹³⁰ Cd ^m	T : average	10Du13=	120(4) 15L0(248(+21-10)	04=127(2) 071005-220	0(20)										**
* Cd * ¹³⁰ Cd ^m	E · 12Ko36	= 12 Kaso = .	246(+21-19) 5) 138 0(0 5)	073003=220 538.2(0.5)	(50)	54(0.5) y ray	in in	cascad	e to ground et	oto					**
* Cu * ¹³⁰ In ^p	E : other 12	2Ka36=38	8 5(0 5)), 558.2(0.5)	and 152.		y 5 m	cascau	c to ground-st	an					**
* ¹³⁰ In ^p	T : symmet	trized from	12Ka36=5	25(+0.40-0	35), other	04Sc42=3.1	(0.3)							**
* ¹³⁰ Te	T : 15Al20	: 0v - BB >	>2700 Zv		<i>,</i> ouler	010012 011	(0.0	,							**
*130 Tem	T : other co	onflicting c	lata: 72Ke28	=115(11)	J:E	1 to 6 ⁺ , E2 1	o 4+								**
$*^{130}$ Te ⁿ	E : other: le	ess than 25	5 keV above 2	2648.57(0.22	2) (8^+) lev	el, see Ens	df'0	1							**
*130 Ten	T : other co	onflicting d	lata, not used	: 98Zh09=4	.2(0.9) µs										**
$*^{130}Ba^m$	T : others 6	6Br14=8.	8(0.2) 69Wa.	A=13.5(1.0)	not used										**
$*^{130}$ Pr ^m	J:88Ba42:	there is a	lso a low-spin	n componen	t in ¹³⁰ Pr	activity									**
* ¹³⁰ Pr ^m	J : see also	the discus	sion in 01Gi	17 on three i	someric s	tates in ¹³⁰ P	r								**
* ¹³⁰ Nd	T: other 00)Xu08=13	(3) 77Bo02=	28(3) conflic	cting, not	used									**
* ¹⁵⁰ Eu	T : symmet	trized from	n 0.90(+0.49-	-0.29)	D : estin	n from β^+ h	alf-li	ive=49	# ms						**
131 A g	-40380#	500#				35	me	8	7/2+#	15			2013	$\beta^{-} = 100; \beta^{-} = 90\%; \beta^{-} = 20 = 10$	
131 Cd	-55220	100				08	me	2	$7/2^{-}$ #	06	151.004	т	2000	$\beta^{-}=100; \beta^{-}n=3510; \beta^{-}2n=0$ #	
¹³¹ In	-68025 0	2.7				261	ms	3	$(9/2^+)$	06	15L004	Ť	1976	$\beta^{-}=100; \beta^{-}=12.23$	*
$^{131}In^{m}$	-67660	7	365	8	MD	350	ms	50	$(1/2^{-})$	06		-	1984	$\beta^{-} \approx 100; \beta^{-} n < 2.0 3; IT < 0.018$	
$^{131}In^{n}$	-64280	90	3750	90	BD	320	ms	60	$(21/2^+)$	06			1984	$\beta^{-}>99; \beta^{-}n=0.0285; IT<1$	
131 In ^p	-64241.4	2.7	3783.6	0.5		669	ns	34	$(17'/2^+)$		09Go40	TJ	2009	IT=100	*
131 Sn	-77265	4				56.0	s	0.5	$3/2^{+}$	06	05Le34	J	1963	$\beta^{-}=100$	
$^{131}Sn^{m}$	-77200	4	65.1	0.3		58.4	s	0.5	$11/2^{-}$	06	04Fo06	Е	1977	$\beta^{-}=100; \text{IT}<0.0004\#$	*
$^{131}Sn^{n}$	-72595	4	4670.0	0.3		304	ns	15	$(23/2^{-})$	06	12Ka36	Т	2001	IT=100	*
¹³¹ Sb	-81981.4	2.1				23.03	m	0.04	$(7/2^+)$	06			1956	$\beta^{-}=100$	
¹³¹ Sb ^m	-80305.3	2.1	1676.06	0.06		91	μs	4	15/2-#	06			1969	IT=100	
131 Sb ⁿ	-80294.2	2.3	1687.2	0.9		4.3	μs	0.8	$(19/2^{-})$	06			2000	IT=100	
¹³¹ Sb ^p	-79815.8	2.6	2165.6	1.5		1.1	μs	0.2	$(23/2^+)$	06			2000	11=100	
A-grou	ip is continued	1 on next p	age												

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I. '	The NUBAS	SE2016 table	(continued.	Explanation	of Table on page	18)
------------	-----------	--------------	-------------	-------------	------------------	-----

Nuclida	Massar	CARE		voitation	1	Half	life	<u>π</u>	Ene	Peferen		Vear of	Decay modes and	
Nucliuc	(keV	0	en	ergy (keV)		Tan	inc	5	LIIS	Kelefelik	.c	discovery	intensities (%)	
	(RC V)	en	ergy (Re V)								uiscovery	intensities (70)	
A-grou	up continued .													
¹³¹ Te	-85211.01	0.06			25.0	m	0.1	$3/2^{+}$	06			1939	$\beta^{-}=100$	
¹³¹ Te ^m	-85028.75	0.06	182.258	0.018	32.48	h	0.11	$11/2^{-}$	06	08Ea01	Т	1940	$\beta^{-}=74.15$; IT=25.95	
¹³¹ Te ⁿ	-83271.0	0.4	1940.0	0.4	93	ms	12	$(23/2^+)$	06			1998	IT=100	
¹³¹ I	-87442.7	0.6			8.0252	d	0.0006	$7/2^{+}$	06			1939	$\beta^{-}=100$	
$^{131}I^{m}$	-85524.3	0.7	1918.4	0.42	24	μs	1	$19/2^{-}$		09Wa11	EJT	2009	IT=100	*
¹³¹ Xe	-88413.558	0.009			STABLE			$3/2^+$	06			1920	IS=21.2324 30	
131 Xe ^m	-88249.628	0.012	163.930	0.008	11.84	d	0.04	$11/2^{-}$	06			1966	IT=100	
131Cs	-88059	5			9.689	d	0.016	$5/2^+$	06			1947	ε=100	
¹³¹ Ba	-86683.7	2.6			11.52	d	0.01	$1/2^+$	06	12Da04	Т	1947	$\beta^{+}=100$	
$^{131}Ba^m$	-86495.7	2.6	187.995	0.009	14.26	m	0.09	$9/2^{-}$	06	12Da04	Т	1963	IT=100	
¹³¹ La	-83769	28			59	m	2	$3/2^+$	06			1951	$\beta^{+}=100$	
$^{131}La^{m}$	-83464	28	304.60	0.24	170	μs	7	$11/2^{-}$	06			1966	IT=100	
¹³¹ Ce	-79710	30			10.3	m	0.3	$7/2^+$	06			1966	$\beta^{+}=100$	
131 Ce ^m	-79650	30	63.09	0.09	5.4	m	0.4	$(1/2^+)$	06	96Gi08	Е	1966	$\beta^{+}=100$	
¹³¹ Pr	-74300	50			1.50	m	0.03	3/2+#	06	96Gi08	Т	1977	$\beta^{+}=100$	*
$^{131}Pr^{m}$	-74150	50	152.4	0.3	5.73	s	0.20	$(11/2^{-})$	06			1996	IT=96.4 12; β^+ =3.6 12	
¹³¹ Nd	-67768	28			25.4	s	0.9	$(5/2)^{(+\#)}$	06			1977	$\beta^{+}=100; \beta^{+}p=?$	
¹³¹ Pm	-59660#	200#			6.3	s	0.8	$(11/2^{-})$	06	99Ga41	Т	1998	$\beta^{+}=100$	
¹³¹ Sm	-50130#	400#			1.2	s	0.2	5/2+#	06			1986	$\beta^{+}=100; \beta^{+}p=?$	
¹³¹ Eu	-39270#	400#			17.8	ms	1.9	$3/2^+$	06			1998	$p=89.9; \beta^+?; \beta^+p?$	
* ¹³¹ In	D : from 93	3Ru01												**
$*^{131}$ In ^p	E: other 12	2Ka36=37	83.6(0.5)											**
$*^{131}$ In ^p	T : average	12Ka36=	685(+42-39)	09Go40=630(60)	J : f	rom	09Go40							**
$*^{131}Sn^{m}$	J : from 05	Le34												**
$*^{131}Sn^{n}$	E:4605.02	2(0.21) abo	ove the 58.4 s	s 11/2 ⁻ level										**
$*^{131}Sn^{n}$	T : average	12Ka36=	309(+24-23)	84Fo19=300(20)										**
$*^{131}I^{m}$	E : derived	from least	-squares fit t	o γ-ray energies										**
* ¹³¹ Pr	T : average	96Gi08=1	1.57(0.07) 93	A103=1.48(0.02) 8	3Ga.A=1.5	58(0.	05)							**

	¹³² Ag	-33790#	500#				30	ms	14		15	15Lo04	TD	2015	$\beta^{-}=100; \beta^{-}n=0\#; \beta^{-}2n=90\#$	*
	¹³² Cd	-50260#	200#				82	ms	4	0^{+}	05	15Lo04	Т	2000	$\beta^{-}=100; \beta^{-}n=60 15; \beta^{-}2n=0.2\#$	
	¹³² In	-62410	60				198	ms	2	(7^{-})	05	15Lo04	Т	1973	$\beta^{-}=100; \beta^{-}n=6.3 9; \beta^{-}2n=0\#$	
	¹³² Sn	-76546.5	2.0				39.7	s	0.8	0+	05			1963	$\beta^{-}=100$	
	132 Sn ^m	-71698.0	2.0	4848.52	0.20		2.079	μs	0.016	(8^+)	05	12Ka36	Т	1986	IT=100	*
	¹³² Sb	-79635.3	2.5				2.79	m	0.07	(4) ⁺	05			1956	$\beta^{-}=100$	
	132 Sb ^m	-79440	30	200	30		4.10	m	0.05	(8-)	05	89St06	Е	1956	$\beta^{-}=100$	
	132 Sb ⁿ	-79380.8	2.5	254.5	0.3		102	ns	4	(6-)	05			1974	IT=100	
	¹³² Te	-85188	3				3.204	d	0.013	0+	05			1948	$\beta^{-}=100$	
	$^{132}\text{Te}^m$	-83413	3	1774.80	0.09		145	ns	8	6^{+}	05			1973	IT=100	
	¹³² Te ⁿ	-83263	3	1925.47	0.09		28.1	μs	1.5	7^{-}	05	FGK128	J	1979	IT=100	*
	¹³² Te ^p	-82465	3	2723.3	0.8		3.70	μs	0.09	(10^{+})	05			1979	IT=100	
	^{132}I	-85703	4				2.295	h	0.013	4+	05			1948	$\beta^{-}=100$	
	$^{132}I^m$	-85594	10	110	11	BD	1.387	h	0.015	(8^{-})	05			1973	IT=86 2; $\beta^{-}=14$ 2	
	¹³² Xe	-89278.962	0.005				STABLE			0+	05			1920	IS=26.9086 33	
	132 Xe ^m	-86526.75	0.17	2752.21	0.17		8.39	ms	0.11	(10^{+})	05			1976	IT=100	
	132Cs	-87152.7	1.0				6.480	d	0.006	2+	05			1953	$\beta^+=98.139; \beta^-=1.879$	
	¹³² Ba	-88435.0	1.1				STABLE		(>300 Ey)	0^{+}	05	96Ba24	Т	1936	IS=0.101 1; $2\beta^+$?	
	¹³² La	-83720	40				4.8	h	0.2	2^{-}	05			1951	$\beta^{+}=100$	
	$^{132}La^m$	-83530	40	188.20	0.11		24.3	m	0.5	6-	05			1969	IT=76; $\beta^+=24$	
	¹³² Ce	-82471	20				3.51	h	0.11	0^{+}	05			1960	$\beta^{+}=100$	
	$^{132}Ce^m$	-80130	20	2341.15	0.21		9.4	ms	0.3	8-	05	09Pe31	J	1969	IT=100	
	¹³² Pr	-75227	29			*	1.49	m	0.11	(2^+)	05	94Bu18	TJ	1974	$\beta^{+}=100$	*
	132 Pr ^m	-75200#	40#	30#	30#	*	1#	s		(5+)	05	90Ko25	J	1990	β^+ ?	
	132 Pr ⁿ	-74980#	40#	250#	30#		2.46	μs	0.04	(8^+)		12Ta18	TJD	2012	IT=100	*
	$^{132}Pr^{p}$	-74960#	100#	270#	100#		486	ns	70	(8-)		12Ta18	TJD	2012	IT=100	*
	¹³² Nd	-71426	24				1.56	m	0.10	0^{+}	05	95Bu11	Т	1977	$\beta^{+}=100$	*
	¹³² Pm	-61630#	150#				6.2	s	0.6	(3^{+})	05			1977	$\beta^+=100; \beta^+p\approx 5e-5$	
	¹³² Sm	-55080#	300#				4.0	s	0.3	0^{+}	05			1989	$\beta^{+}=100; \beta^{+}p?$	
	¹³² Eu	-42200#	400#				100#	ms			05	93Li40	D		β^+ ?; β^+ p ?; p=0	
×	¹³² Ag	T : symmet	rized from	n 15Lo04=28	8(+15-12))										**
×	$*^{132}$ Sn ^m	T : average	12Ka36=2	2.088(0.017) 94Fo14=	2.03(4);	other 82Ka	25=1	.7(2)							**
×	¹³² Te ⁿ	J : E1 to 6 ⁺														**
×	^{∗132} Pr	T : average	94Bu18=	1.47(0.12) 7	4Ar27=1.	6(0.3)										**
×	¹³² Pr ⁿ	E:12Ta18=	=219.9(0.1	14) keV abov	ve (5 ⁺) iso	omer										**
×	∗ ¹³² Pr ^p	E : 12Ta18=	=273.0(0.1	14) keV abov	ve (5 ⁺) iso	omer										**
×	¹³² Nd	T : average	95Bu11=	1.47(0.12) 7	7Bo02=1.	75(0.17)										**
Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Nuclida	Magaa			vaitation		10 14010		:fa		Enc	Defense		Veer of	Decory modes and	
Nuclide	(keV	() ()	en	ergy (keV)		1	1411-1	lie	J	LIIS	Kelelelik		discovery	intensities (%)	
		/		,											
¹³³ Cd	-43920#	300#				61	ms	6	$7/2^{-}$ #	11	15Lo04	Т	2010	$\beta^{-}=100; \beta^{-}n=0.5\#; \beta^{-}2n=90\#$	*
¹³³ In	-57460#	200#				165	ms	3	$(9/2^+)$	11	96Ho16	J	1996	$\beta^{-}=100; \beta^{-}n=85 \ 10; \beta^{-}2n=0.4 \pm 10$	ŧ *
$^{133}In^{m}$	-57130#	200#	330#	40#		180#	ms		$(1/2^{-})$	11	96Ho16	J	1996	IT ?; β ⁻ ?	
133 Sn	-70873.9	1.9				1.46	s	0.03	$(7/2^{-})$	11			1973	$\beta^{-}=100; \beta^{-}n=0.029424$	
¹³³ Sb	-78924	3				2.34	m	0.05	7/2+#	11			1966	$\beta^{-}=100$	
133 Sb ^m	-74360	100	4560	100		16.54	μs	0.19	$(21/2^+)$	11			1978	IT=100	
¹³³ Te	-82937.1	2.1				12.5	m	0.3	3/2+#	11			1940	$\beta^{-}=100$	
¹³³ Te ^m	-82602.8	2.1	334 26	0.04		55.4	m	0.4	$(11/2^{-})$	11			1957	$\beta^{-}=83.5.20$ IT=16.5.20	
¹³³ Te ⁿ	-81326.7	2.2	1610.4	0.5		100	ns	5	$(19/2^{-})$	11			2001	IT=100	
133 I	-85858	6	1010.4	0.5		20.83	h	0.08	7/2+	11			1940	$\beta^{-} - 100$	
133 m	-84224	6	163/ 1/8	0.010		20.05	п с	0.00 2	$(10/2^{-})$	11			1970	F = 100	
133 m	-04224	6	1034.140	0.010		170	5	2	(19/2) $(15/2^{-})$	11			1970	IT=100 IT=100	
13310	-04129	0	2425.00	0.010		170	ns	1(0)	(13/2)	11			1964	II=100	
13310	-03423	0	2455.00	0.25		/ 60	ns	1000	$(19/2^+)$ $(22/2^+)$	11			2004	II=100	
135 Iq 122 M	-83364	6	2493.7	0.4		469	ns	15	$(23/2^{+})$	11	0.011 0.0	m	2009	11=100	
¹³³ Xe	-8/643.6	2.4				5.2475	d	0.0005	3/2+	11	02Un02	Т	1940	$\beta^{-}=100$	
¹³⁵ Xe ^m	-87410.4	2.4	233.221	0.015		2.198	d	0.013	$11/2^{-}$	11			1951	11=100	
¹³⁵ Cs	-88070.931	0.008				STABLE			$7/2^+$	11			1921	IS=100.	
¹³³ Ba	-87553.6	1.0				10.551	У	0.011	$1/2^{+}$	11			1941	ε=100	
$^{133}Ba^m$	-87265.3	1.0	288.252	0.009		38.90	h	0.06	$11/2^{-}$	11	12Da04	Т	1941	IT \approx 100; ϵ =0.0104 5	*
¹³³ La	-85494	28				3.912	h	0.008	$5/2^{+}$	11			1950	$\beta^{+}=100$	
¹³³ Ce	-82418	16				97	m	4	$1/2^{+}$	11			1951	$\beta^{+}=100$	
$^{133}Ce^m$	-82381	16	37.2	0.7		5.1	h	0.3	$9/2^{-}$	11			1951	$\beta^{+}=100$	
133Pr	-77938	12				6.5	m	0.3	$(3/2^+)$	11			1970	$\beta^{+}=100$	
$^{133}Pr^{m}$	-77746	12	192.12	0.14		1.1	s	0.2	$(11/2^{-})$	11			1995	IT=100	
133 Nd	-72330	50				70	s	10	$(7/2^+)$	11			1977	$\beta^{+}=100$	
133Nd ^m	-72200	50	127.97	0.12		70	s	10	$(1/2)^+$	11	95Br24	D	1993	$\beta^+ \approx 100^{\circ}$ IT=?	
133 Nan	-72150	50	176.10	0.12		301	ne	18	$(0/2^{-})$	11)JDI24	D	1003	$p \sim 100, 11 = 100$	
133 Dm	65410	50	170.10	0.10		12.5	115	2.1	$(3/2^+)$	11			1995	$\beta^{+}-100$	
133 Dmm M	-03410	50	120.7	0.7		13.3	5	2.1	(3/2)	11			1977	p = 100 $R^+ 2$, IT 2	
133 C	-03280	200#	129.7	0.7		2 90	s	0.16	(11/2)	11			1990	p^{-1} ; 11 ? p^{+} 100; p^{+} 2	
133 G	-5/230#	300#	100"	<i>cou</i>		2.89	s	0.16	$(5/2^+)$	11			1977	p = 100; p = p = ?	
133 Sm ^m	-5/110#	310#	120#	60#		3.5	s	0.4	(1/2)	11			1993	β ?; II ?; β p ?	
¹³⁵ Eu	-47240#	300#				200#	ms		$11/2^{-}$ #					β^{+} ?; β^{+} p ?	
¹³⁵ Gd	-35860#	500#				10#	ms		5/2+#					β^{+} ?; β^{+} p ?	
* ¹⁵⁵ Cd	T : average	15Lo04=6	64(8) 05Kr20	=57(10)											**
* ¹³³ Cd	D : delayed	l neutrons	were observe	d in 05Kr20											**
* ¹³³ In	T : average	15Lo04=1	163(7) 02Di1	2 = 165(3)											**
$*^{133}Ba^{m}$	T : average	12Da04=3	38.88(0.08) 1	1Gr01=38.92	.(0.09)										**
134 C 4	20020#	400#				(5		15	0 ⁺	15			2015	R = 100, R = -0.24, R = 2.004	
134 x	-38920#	400#				65	ms	15		15	0.57		2015	p = 100; p = 0.2#; p = 2n=90#	
¹³⁴ In	-51660#	300#				140	ms	4	high	04	95Jo.A	D	1996	$\beta^{-}=100; \beta^{-}n=65; \beta^{-}2n<4$	*
¹³⁴ Sn	-66434	3				890	ms	20	0+	04	15Lo04	Т	1974	$\beta^{-}=100; \beta^{-}n=17\ 13$	
134 Sn ^m	-65187	3	1247.4	0.5		87	ns	8	6+	04	12Ka36	Т	2000	IT=100	*
¹³⁴ Sb	-74020.5	1.7				780	ms	60	(0^{-})	11			1967	$\beta^{-}=100; \beta^{-}n=5\#$	
134 Sb ^m	-73741.5	2.0	279	1		10.07	s	0.05	(7^{-})	11			1968	$\beta^{-}=100; \beta^{-}n=0.0884$	
¹³⁴ Te	-82533.7	2.7				41.8	m	0.8	0+	04			1948	$\beta^{-}=100$	
$^{134}\text{Te}^m$	-80842.4	2.7	1691.34	0.16		164.1	ns	0.9	6^{+}	04			1970	IT=100	
¹³⁴ I	-84043	5				52.5	m	0.2	$(4)^+$	04			1948	$\beta^{-}=100$	
$^{134}I^{m}$	-83727	5	316 49	0.22		3 52	m	0.04	$(8)^{-}$	04			1970	$IT=97.7.10$ $\beta^{-}=2.3.10$	
¹³⁴ Xe	-88125 822	0.009				STABLE		(>11 Pv)	0+	04	89Ba22	т	1920	$IS=10.4357.21 \cdot 2\beta^{-2}$	*
134 Ne^m	-86160.3	0.5	1965 5	0.5		200	me	17	(7^{-})	04	070422	•	1968	IT-100	
134 V on	85100.6	1.5	2025.2	1.5		270	1113	1	(10^{+})	04			2001	IT-100	
134 C-	-85100.0	1.5	3023.2	1.5		2 0 (5 2	μs	1	(10)	04			2001	R = 100 a 0.0002 1	
134 C m	-80891.154	0.016	120 7441	0.000		2.0652	y	0.0004	4	04			1940	$p = 100; \epsilon = 0.0003 1$	
124 m	-86/52.410	0.016	138.7441	0.0026		2.912	n	0.002	8	04			1975	11=100	
134 Ba	-88949.9	0.3				STABLE			0	04			1936	IS=2.41/18	
¹³⁴ Ba ^m	-85992.7	0.6	2957.2	0.5		2.63	μs	0.14	(10^{+})	04			1982	IT=100	
¹⁵⁴ La	-85219	20				6.45	m	0.16	1+	04			1951	$\beta^{+}=100$	
$^{134}La^{m}$	-84780#	100#	440#	100#		29	μs	4		04			1985	IT=100	*
¹³⁴ Ce	-84833	20				3.16	d	0.04	0^+	04			1951	ε =100	
134 Ce ^m	-81624	20	3208.6	0.4		308	ns	5	10^{+}	04			1980	IT=100	
¹³⁴ Pr	-78528	20				17	m	2	2^{-}	04			1967	$\beta^{+}=100$	
134 Pr ^m	-78460	20	68	1		11	m		(6-)	04	11Ti10	Е	1973	$\beta^{+}=100; IT\approx 0$	
¹³⁴ Nd	-75646	12	-			8.5	m	1.5	0+	04			1970	$\beta^{+}=100$	
¹³⁴ N <i>d^m</i>	-73353	12	2293.0	04		410	110	30	(8)-	04			1969	IT=100	
134 Dm	-66740	60	.0	0.7	. <i>Q</i> -	-10	مم	1	(5+)	04			1977	$\beta^{+}-100$	
134 D mm	66740#	120#	0#	100#	τ ΟC 	22 5	5	*	(2^+)	04			1089	$\beta^{+}=100$	
134 mn	-00740#	20#	120#	50#	* &	20	8	1	(2^{+})	04	000-00	тт	1200	$\mu = 100$	
134 c	-00020#	00# 200#	120#	30#		20	μs	1	(/)	04	090002	1 J	2009	R^{\pm}_{-100}	*
Sm	-01580#	200#				9.5	s	0.0	0	04			19//	p = 100	

Table I. The NUBASE2	016 table (continue	d, Expl	anation of Tal	ole on page	18)
E 't t'	TT 10 1°C	×π	E D C	XZ C	D 1

$ \begin{array}{c} \text{The matrix texture} & Later and the latter and the lat$	Nuo111	N	00000	1.0010 1	Evoltet				61£ 1	ifo		1π	Dec.	Dafa	~~~~	Voor of	Doopy modes and	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nuclide	Mass ex (keV	(cess ()	e	nergy (ke)	ı V)		Н	alf-l	nie		J~	EUS	Kelerenc	e	discoverv	intensities (%)	
$ \begin{array}{c}, Argon continued, \\ PML = -0.920 & 0.00 & 0.00 & 0.00 & 0.0 & $		()	,	U.		. /												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-grou	up continued .																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁴ Eu	-49930#	300#					500	ms	200			04			1989	$\beta^{+}=100; \beta^{+}p=?$	
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1^{10} \text{cm}^{-1} 1 \\ 1^{10} 1 \\ 1^{10} \text{cm}^{-1} 1 \\ 1^{10} 1 \\ 1^{10} \text{cm}^{-1} 1 \\ 1^{10} 1 \\ 1^$	134Gd	-41300#	400#					400#	ms			0^+	04				β^+ ?; β^+ p ?	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ¹³⁴ In	T : other 1:	5Lo04=12	26(7)	051 4													**
$ \begin{array}{c} \frac{1}{10} \frac{1}$	* ¹³⁴ In	$D:\beta^{-}2ni$	ntensity li	mits is from	1 95JO.A	- 41 (0.017 -	15 00/15	、 、									**
$ \begin{array}{c} \frac{1}{2} \frac{1}{2$	* ¹³⁴ Va	T : symme	rized from	n 12Kaso=	80(+8-7);	other (00Kc	015=80(15)) 	+	atima	1						**
	* ¹³⁴ Lom	E • 100#10	Dazz: UV OkeV abc	-pp>362y we 33644()	and >202	Ly for ($0 \rightarrow$	o and 0	$\rightarrow 2$	respe	cuve	iy						**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* La $*^{134}Pm^m$	$E \cdot 70.7(0)$	2) keV abo	ove a 6^+ sta	te that de	avs vi	a a lo	w-energy	νto	5+								**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* 111	L . /0./(0.	2) Ke V ub	510 4 0 514	the that det	Jujo II	uun	ow energy	100	5								
	¹³⁵ In	-46530#	400#					101	ms	4		$9/2^{+}$ #	08	15Lo04	Т	2002	β^- ?; β^- n=90#; β^- 2n=8#	*
	¹³⁵ Sn	-60632	3					515	ms	5		$7/2^{-}$ #	08	15Lo04	Т	1994	$\beta^{-}=100; \beta^{-}n=21 3; \beta^{-}2n=6\#$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁵ Sb	-69690.3	2.6					1.679	s	0.015		$(7/2^+)$	08			1964	$\beta^{-}=100; \beta^{-}n=22.3$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁵ Te	-77728.8	1.7					19.0	s	0.2		$(7/2^{-})$	08			1969	$\beta^{-}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁵ Te ^m	-76173.9	1.7	1554.89	0.16			511	ns	20		$(19/2^{-})$	08			1980	ff=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	135 V -	-83//9.1	2.1					0.58	n 1	0.03		7/21	08			1940	$\beta = 100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	135 Xe 135 Xem	-80413	4	576 551	0.012			9.14	n	0.02		3/21	08			1940	p = 100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	135 Co	-83880	4	526.551	0.015			15.29	m Mv	0.05		$\frac{11}{2}$	08	16Ma05	т	1960	$B^{-}=100$ = 0.30 17	*
	$135 Ce^m$	-87381.0	1.0	1632.0	15			1.55	m	0.19		$\frac{1}{10}/2^{-1}$	08	10101000	1	1949	p = 100 IT-100	*
	135 Ba	-87850.5	0.3	1052.7	1.5			STARLE	m	2		$3/2^+$	08			1932	IS=6 592 12	
	$^{135}Ba^{m}$	-87582.3	0.3	268.218	0.020			28.11	h	0.02		$\frac{3}{2}$	08	12Da04	т	1948	IT=100	
	135La	-86643	9	2001210	0.020			19.5	h	0.2		$5/2^+$	08	120401	•	1948	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁵ Ce	-84616	10					17.7	h	0.3		$1/2^{(+)}$	08			1948	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁵ Ce ^m	-84170	10	445.81	0.21			20	s	1		$(11/2^{-})$	08			1963	IT=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁵ Pr	-80936	12					24	m	1		$3/2^{(+)}$	08			1954	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{135}Pr^{m}$	-80578	12	358.06	0.06			105	μs	10		$(11/2^{-})$	08			1973	IT=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁵ Nd	-76214	19					12.4	m	0.6		$9/2^{(-)}$	08			1970	$\beta^{+}=100$	
	135 Nd ^m	-76149	19	64.95	0.24			5.5	m	0.5		$(1/2^+)$	08			1970	$\beta^+>99.97$; IT<0.03	
	¹³⁵ Pm	-70050	80					49	s	3	($(5/2^+, 3/2^+)$	08 (1975	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁵ Pm ^m	-69830#	50#	220#	90#			40	s	3		$(11/2^{-})$	08	89Ko07	TJ	1989	$\beta^{+}=100$	*
$ \frac{1^{15} \text{Sm}^m}{162} - 62800\theta 340\theta 0\theta 300\theta + 2.4 \text{ s} 0.9 (3/2^{-7},5/2^{-7}) 08 899/04 \text{ TD} 1989 \beta^{+100}, \beta^{+} \text{ p} \text{ c} 100 \beta^{+} \text{ c} 100 \beta^{+} \text{ c} 100 \beta^{+} \text{ c} 100 \beta^{+} \text{ p} \text{ c} 100 \beta^{+} $	¹³⁵ Sm	-62860	150				*	10.3	s	0.5		$(7/2^+)$	08	77Bo02	J	1977	$\beta^+=100; \beta^+p=0.021$	
	$^{135}Sm^{m}$	-62860#	340#	0#	300#		*	2.4	s	0.9	($3/2^+, 5/2^+)$) 08	89Vi04	TJD	1989	$\beta^+=100$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁵ Eu	-54150#	200#					1.5	s	0.2		$11/2^{-}\#$	08			1989	$\beta^+=100; \beta^+p?$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	135 Gd	-44390#	400#					1.1	s	0.2		$(5/2^+)$	08			1996	$\beta' = 100; \beta' = 18$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	135 ID	-32830#	400#	102(5) 020	12-02(1)	0)		1.01	ms	0.28		(7/2)	08			2004	$p\approx 100; p \leq 2$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* III * ¹³⁵ In	D · delayed	1 neutrons	were obser	$\frac{112 - 92}{10}$	0) Di12												**
	* ¹³⁵ Xe ^m	$D \cdot \beta^-$ ran	ging from	0.004% to	0.6%	0112												**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ¹³⁵ Cs	T : average	: 16Ma05	=1.6(0.6) by	AMS and	11.3(0	.2) I	CPMS										**
	$*^{135}$ Pm ^m	E : Trends	of 11/2 ⁻¹	level in Pm	isotopes:	133 Pm:	129	.7(0.7) 135	Pm:	150#50	0							**
	$*^{135}Pm^{m}$	E: ¹³⁷	Pm: 150(5	50) 139Pm: 1	188.7(0.3)	¹⁴¹ Pm	: 628	8.40(0.10)	¹⁴³ P	m: 959.	.7(0.1	1)						**
	$*^{135}Pm^{m}$	E: (N)	>82) ¹⁴⁵ Pi	m: 794.6(0.	4) ¹⁴⁷ Pm:	649.3((0.4)	¹⁴⁹ Pm: 24	0.21	5(0.007	7)							**
*** *** *** *** *** *** *** *** *** **	$*^{135}$ Pm ^m	E : Ensdf	2008 : 68	.7 + y														**
*************************************	$*^{135}$ Sm ^m	I : existenc	e of ¹³⁵ Sn	n ^m and spin	s of both s	states a	re di	scussed in	EN	SDF								**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ¹⁵⁵ Tb	T : symme	trized from	n 940(+330	–220) μs													**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁶ In	-40510#	400#					86	ms	9			15	15L004	TD	2015	$\beta^{-}=100; \beta^{-}n=0# \beta^{-}2n=90#$	*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁶ Sn	-55900#	300#					350	ms	5		0^+	14	15Lo04	T	1994	$\beta^{-}=100; \beta^{-}n=28 3; \beta^{-}2n=2#$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁶ Sb	-64507	6					923	ms	14		(1-)	02	15Lo08	J	1976	$\beta^{-}=100; \beta^{-}n=16.3 32; \beta^{-}2n=10\#$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{136}\mathrm{Sb}^m$	-64230	6	277.0	0.7			570	ns	5		(6 ⁻)	02	12Ka36	ET	2001	IT=100	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁶ Te	-74425.3	2.3					17.63	s	0.08		0^{+}	02			1974	$\beta^{-}=100; \beta^{-}n=1.315$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁶ I	-79545	14					83.4	s	1.0		(1^{-})	02			1949	$\beta^{-}=100$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{136}I^{m}$	-79339	5	206	15	BD		46.9	s	1.0		(6^{-})	02			1959	$\beta^{-}=100;$ IT=0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁶ Xe	-86429.159	0.007					2.19	Zy	0.06		0+	02	15Ba11	Т	1920	IS=8.8573 44; $2\beta^{-}=100$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{1.50} Xe ^m	-84537.456	0.016	1891.703	0.014			2.95	μs	0.09		6+	02			1969	IT=100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁰ Cs	-86338.7	1.9	515 0	0.1			13.16	d	0.03		5+	02	1111200	r	1951	p = 100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	136 D	-85820.8	1.9	517.9	0.1			17.5	s	0.2		8 ⁻ 0 ⁺	02	11W109	ΕT	1981	$11=?; \beta$?	*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	136 D - m	-88886.9	0.3	2020 400	0.010			STABLE	ena -	1.0		0' 7-	02			1932	15=/.854 24 IT=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	136 p .n	-00030.4	0.5	2030.400	0.018			508.4	ins	1.9 2		(10+)	02	041602	тΡ	2004	II-100 IT-100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	136 L a	-85529.5 -86040	50	5557.4	0.4			91	m	∠ 0.03		1+	02	04 va05	īD	2004	$\beta^{+}=100$	*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	136 La	-85780	50	250 3	0.4			9.07	me	3		(7)(-#)	02	05Rh06	FI	1950	р =100 IT=100	
$ \begin{array}{ccccccc} 136 \mbox{Ce}^m & -83412.9 & 0.6 & 3095.5 & 0.4 & 1.96 & \mu s & 0.09 & 10^+ & 02 & 13Va10 & T & 1991 & IT=100 & * \\ 1^{136} \mbox{Pr} & -81340 & 11 & 13.1 & m & 0.1 & 2^+ & 02 & 1968 & \beta^+=100 & \\ 1^{136} \mbox{Nd} & -79199 & 12 & 50.7 & m & 0.3 & 0^+ & 02 & 1968 & \beta^+=100 & \\ 1^{136} \mbox{Pm} & -71170 & 70 & * & \& & 107 & s & 6 & (5)^{(+\#)} & 02 & FGK12a & J & 1982 & \beta^+=100 & * \\ 1^{136} \mbox{Pm}^m & -71070 & 90 & 100 & 120 & MD & * & 300 & s & 50 & (2)^{(+\#)} & 02 & 88Ke03 & T & 1988 & \beta^+=100 & * \\ 1^{136} \mbox{Pm}^m & -71100 & 70 & 68 & 25 & 1.5 & \mu s & 0.1 & 8^+\# & 02 & 08Ri05 & ET & 1987 & IT=100 & * \\ \end{array} $	136 Ce	-86508 4	04	439.3	0.4			STARIE	1115	(>38 D	Pv)	0+	02	01Da22	сл Т	1900	$IS=0.185.2 \cdot 2\beta^{+}.2$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	136 Cem	-83412.9	0.4	3095 5	04			1 96	119	0.09	· y)	10+	02	13Va10	Ť	1991	IT=100	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	136 Pr	-81340	11	5675.5	0.7			13.1	m	0.1		2+	02	10 1010	•	1968	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁶ Nd	-79199	12					50.7	m	0.3		$\tilde{0}^+$	02			1968	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁶ Pm	-71170	70				* &	107	s	6		$(5)^{(+\#)}$	02	FGK12a	J	1982	$\beta^{+}=100$	*
136 Pm ⁿ -71100 70 68 25 1.5 μ s 0.1 8 ⁺ # 02 08Ri05 ET 1987 IT=100 *	136 Pm ^m	-71070	90	100	120	MD	* &	300	s	50		$(2)^{(+\#)}$	02	88Ke03	Т	1988	$\beta^{+}=100$	*
	136 Pm ⁿ	-71100	70	68	25			1.5	μs	0.1		8+#	02	08Ri05	ET	1987	IT=100	*

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

			Tuble	E int	C D/10	220	10 4401		1.C	, BAPIGI	F	D C		V f		
Nuclide	Mass e	xcess V)		Excitation energy (ke)	n V)		1	lair-	life	J^{κ}	Ens	Referen	ce	tear of discovery	intensities (%)	
	(KC	•)		chergy (ke	•)									uiscovery	intensities (70)	
A-grou	up continued															
¹³⁶ Sm	-66811	12					47	s	2	0^{+}	02			1982	$\beta^{+}=100$	
$^{136}Sm^{m}$	-64546	12	2264.7	1.1			15	μs	1	(8^{-})	02			1994	IT=100	
¹³⁶ Eu	-56240#	200#				*	3.3	s	0.3	(7+)	02	89Vi04	D	1987	$\beta^+=100; \beta^+p=0.093$	
¹³⁶ Eu ^m	-56240#	540#	0#	500#		*	3.8	s	0.3	(3^{+})	02	89Vi04	D	1987	$\beta^+=100; \beta^+p=0.093$	
¹³⁶ Gd	-49090#	300#					1#	s	(>200 ns)	0^{+}	02	00So11	Ι	2000	β^+ ?; β^+ p ?	
¹³⁶ Tb	-36130#	500#					200#	ms			02				β^+ ?; β^+ p ?	
* ¹³⁶ In	T : symm	etrized from	m 15Lo04=	85(+10-8)												**
* ¹³⁶ Sn	$D:\beta^{-}na$	verage 11	Ar18=27(4)	% 02Sh08	$=30(5)^{\circ}$	%										**
$*^{136}Sb^{m}$	E:12Ka3	86=53.9(0.1	5) and 173.	$1(0.5) \gamma$ in	cascade	e to g	round-stat	e; 15	5Lo08=269.3	;						**
$*^{136}Sb^{m}$	T : others	15Lo08=4	489(40) 075	i27=480(1	00) 011	Mi22:	=570(50)									**
* ¹³⁶ Xe	T : others	14Al03=2	.165(0.061)	Zy 12Ga1	7=2.38	(0.14)Zy 02Be7	4>1	0Zy							**
* ¹³⁶ Xe	T:0ν-ββ	B: 16As01	>2500 Zy 1	3Ga07>19	9000 Zy	12A	u03>1600	00 Zy	y (all at 90%	C.L.)						**
$*^{136}Cs^{m}$	E : also 8.	3We07=51	8(5)													**
$*^{136}Ba^n$	T : other (04Sh15=94	4(10) outwe	ighed												**
* ¹³⁶ Ce	T: also 1	1Be02>18	Py; both fo	$r 2\nu - \beta\beta$ ar	nd 1 σ											**
$*^{136}$ Ce ^m	T : averag	e 13Va10=	=1.9(0.1) 75	Yo01=2.2((0.2)											**
* ¹³⁶ Pm	J : expecte	ed 5 ⁺ n9/2	[514]+p1/2	[550]; supj	ported b	oy ob	served dire	ect fe	eeding							**
* ¹³⁶ Pm	J: to	I=4,5,6 lev	els followir	ng ¹³⁶ Pm β	+ deca	y										**
* ¹³⁶ Pm ^m	J : expecte	ed 2 ⁺ n9/2	[514]+p1/2	[550]; supp	ported b	oy ob	served dire	ect fe	eeding							**
$*^{136}Pm^{m}$	J: to	$I=2^+$ and 3	3 ⁺ levels fo	llowing β^+	decay											**
* ¹³⁶ Pm ⁿ	E : 08Ri0	5=42.7(0.2	2) keV abov	e a long liv	ed state	e that	could be e	eithe	r the							**
* ¹³⁶ Pm ⁿ	E: gr	ound-state	or an excite	ed level loc	cated <	50 ke	V above th	ne gr	ound-state o	wing to no	on-					**
*136Pm ⁿ	E: ob	servation	of any decay	y radiation												**
127																
¹³⁷ In	-35040#	500#					70	ms	40	9/2+#	15	15Lo04	TD	2015	$\beta^{-}=100; \beta^{-}n=0\#; \beta^{-}2n=90\#$	*
¹³⁷ Sn	-49790#	400#					273	ms	7	5/2-#	07	11Ar18	TD	1994	$\beta^{-}=100; \beta^{-}n=50.8; \beta^{-}2n=40\#$	
¹³⁷ Sb	-60060	50					484	ms	22	7/2+#	07	11Ar18	TD	1994	$\beta^{-}=100; \beta^{-}n=496; \beta^{-}2n=0.3\#$	*
¹³⁷ Te	-69303.8	2.1					2.49	s	0.05	3/2-#	07			1975	$\beta^{-}=100; \beta^{-}n=2.99 \ 16$	*
13/I	-76356	8					24.13	s	0.12	7/2+#	07	16Ag03	D	1943	$\beta^{-}=100; \beta^{-}n=7.76 \ 14$	*
¹³⁷ Xe	-82383.40	0.10					3.818	m	0.013	7/2-	07			1943	$\beta^{-}=100$	
137Cs	-86545.6	0.4					30.08	У	0.09	$7/2^+$	07			1951	$\beta^{-}=100$	
¹³⁷ Ba	-87721.2	0.3					STABLE			$3/2^{+}$	07			1932	IS=11.232 24	
$^{137}Ba^{m}$	-87059.5	0.3	661.659	0.003			2.552	m	0.001	$11/2^{-}$	07			1965	IT=100	
137 Ba ⁿ	-85372.1	0.6	2349.1	0.5			590	ns	100	$(17/2^{-})$	07			1973	IT=100	
137La	-87140.7	1.7					60	ky	20	$7/2^+$	07			1948	ε=100	
¹³⁷ La ^m	-85271.2	1.7	1869.50	0.21			342	ns	25	$19/2^{-}$	07			1982	IT=100	
¹³⁷ Ce	-85918.6	0.4					9.0	h	0.3	$3/2^+$	07			1948	$\beta^{+}=100$	
$^{137}Ce^{m}$	-85664.3	0.4	254.29	0.05			34.4	h	0.3	$11/2^{-}$	07			1958	IT=99.21 4; β^+ =0.79 4	
¹³⁷ Pr	-83202	8					1.28	h	0.03	$5/2^+$	07			1958	$\beta^{+}=100$	
$^{137}Pr^{m}$	-82641	8	561.22	0.23			2.66	μs	0.07	$11/2^{-}$	07			1987	IT=100	
137Nd	-79585	12					38.5	m	1.5	$1/2^+$	07			1970	$\beta^{+}=100$	
¹³⁷ Nd ^m	-79066	12	519.43	0.20			1.60	s	0.15	$11/2^{-}$	07			1970	IT=100	
¹³⁷ Pm	-74073	13				&	2#	m		5/2+#				1975	β^+ ?	
¹³⁷ Pm ^m	-73930	50	150	50	BD	&	2.4	m	0.1	$11/2^{-}$	07			1973	$\beta^+=100$	
¹³⁷ Sm	-68030	40					45	s	1	$(9/2^{-})$	07			1986	$\beta^{+}=100$	
¹³⁷ Sm ^m	-67850#	60#	180#	50#			20#	s		$1/2^+$ #			_		β^+ ?	
¹³⁷ Eu	-60146	4					8.4	s	0.5	11/2-#	07	88Be.A	Т	1982	$\beta^{+}=100$	
137Gd	-51210#	300#					2.2	s	0.2	$(7/2)^{(+\#)}$	07			1999	$\beta^{+}=100; \beta^{+}p=?$	
¹³⁷ Tb	-40970#	400#					600#	ms		$11/2^{-}$ #					p?;β ⁺ ?	
* ¹³⁷ In	T : symm	etrized fro	m 15Lo04=	65(+40-30))											**
* ¹³⁷ Sb	T : averag	e 11Ar18=	=492(25) 02	Sh08=450	(50)											**
* ¹³⁷ Sb	$D:\beta^{-}na$	iverage 11	Ar18=49(8)	% 02Sh08	=49(10)%										**
* ¹³⁷ Te	J : TNN o	of N=85 1sc	otones. ENS	DF'07 give	es (7/2-) fro	m shell-mo	odel	prediction							**
* ¹³⁷ Te	D : from 9	93Ru01 ev	aluation													**
***/1	1 : 93Ru(n=24.13(0	(12) supers	edes /4Ru	08=24.	5(0.2) from sam	e gr	oup							**
138 S m	_44860#	500#					150	me	30	0^+	16			2010	$B^{-} = 100 \cdot B^{-} = n \approx 36 \cdot B^{-} = 2n = 5 \#$	ىك
138 Spm	_43520#	500#	1344	2			210	1115 pc	45	(6 ⁺)	16			2014	$p = 100, p = 1 \sim 50, p = 211 = 5 \#$	*
138 Sh	-43320#	1060	1.544	2			210	115	15	(0^{-})	16	EGK 16	т	1004	$\beta^{-} = 100 \cdot \beta^{-} n = 72 \cdot 8 \cdot \beta^{-} 2n = 24$	ىك
138 To	-65606	1000					340 14		0.4	(°) 0 ⁺	03	1 01/108	J	1075	$\beta = 100, \beta = 1-72, 0, \beta = 211-2#$ $\beta^{-} = 100, \beta^{-} = 63, 21$	*
138 T	-05090	+ 6					6.72	5 0	0.03	(1^{-})	16	03R101	D	1975	$\beta = 100, \beta = 1-0.5 21$ $\beta^{-} = 100, \beta^{-} = 5.46 18$	
138 m	_71012	6	67.0	0.5			1.25	5	0.05	(1) (2^{-})	16	25Ku01	D	2007	p = 100, p = 1-3.40 10	ىك
138 V.	_70072.2	28	01.9	0.5			1.20	μs m	0.05	0+	03	120/021	т	1943	$\beta^{-} = 100$	* ±
138 Ce	_87887	2.0 0					22/1	m	0.05	3-	03	1 2 W d 2 l	1	1043	β^{-100}	*
138 Com	-02007	2	70.0	0.2			2.41	m	0.10	5	03			1071	F = 100 IT = 81.2 · $B^{-} = 10.2$	
138 Cx	-82807	25	79.9 /0	22			2.71 P _ 9	ш	0.00	femiv	03			17/1	11-012, p = 172	
138 0	-02041	0.2	40	23			A = ?			0 ⁺	02			1025	IS-71 698 42	
138 p.m	-86171 1	0.5	2000 54	0.06			91ABLE 900	ne	100	6+	03			1923	IT-100	
A area	-out/1.1	tven no be	2090.34	0.00			000	115	100	0	03			17/1	11-100	
A-grou	up is commute	a on next	page													

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Nuclide	Massa	xcess		Excitation		1	Half	life	1π	Ene	Reference	Year of	Decay modes and	
INUCIIUE	(keV	V)	e	energy (keV	⁷)	1	nan-	me	J	Ells	Kelefelice	discovery	intensities (%)	
		<i>,</i>		0,7 (<i>,</i>							,		
A-gro	up continue	d					~							_
130 La	-86519	3		0.02		102	Gy	1	5+	03		1947	IS=0.08881 71; β^+ =65.6 5; β^- =34.4	5
138 Lam	-86446	3	72.57	0.03		116	ns	5	$(3)^+$	03		1975	ff=100	
13% Lan	-85780	3	739.2	0.5		2.0	μs	0.3	7-		14As02 E	FJ 2014	TT=100	
¹³⁸ Ce	-87571	5				STABLE		(>57 Py)	0+	03	11Be02 T	1936	IS=0.251 2; $2\beta^+$?	*
$^{138}Ce^{m}$	-85442	5	2129.17	0.12		8.65	ms	0.20	7-	03		1960	IT=100	
138Pr	-83134	11				1.45	m	0.05	1+	03		1951	$\beta^{+}=100$	
$^{138}Pr^{m}$	-82782	17	352	19	BD	2.12	h	0.04	7-	03		1958	$\beta^{+}=100$	
¹³⁸ Nd	-82018	12				5.04	h	0.09	0^{+}	03		1965	$\beta^{+}=100$	
$^{138}Nd^{m}$	-78843	12	3174.9	0.4		370	ns	5	10^{+}	03	13Va10 T	1975	IT=100	
¹³⁸ Pm	-74940	28			*	10	s	2	1+#	03		1981	$\beta^{+}=100$	
138 Pm ^m	-74911	13	30	30	BD *	3.24	m	0.05	5-#	03		1973	$\beta^{+}=100$	
138 Pm ⁿ			non e	xistent	EU	3.24	m	0.05	(3^{+})		81De38 I		$\beta^{+}=100$	*
¹³⁸ Sm	-71498	12				3.1	m	0.2	0^{+}	03		1982	$\beta^{+}=100$	
¹³⁸ Eu	-61750	28				12.1	s	0.6	(6^{-})	03		1982	$\beta^{+}=100$	
¹³⁸ Gd	-55800#	200#				4.7	s	0.9	0^{+}	03		1985	$\beta^{+}=100$	
$^{138}\text{Gd}^m$	-53570#	200#	2233.1	0.5		6.2	μs	0.2	(8^{-})	03	11Pr02 T	1997	IT=100	*
¹³⁸ Tb	-43670#	300#				800#	ms	(>200 ns)		03	00So11 I	1993	β^+ ?; β^+ p ?; p=0	*
¹³⁸ Dy	-34930#	500#				200#	ms	. ,	0^{+}				β^+ ?; β^+ p ?	
* ¹³⁸ Sn	T : symi	netrized	from 15Lo	04=140(+3	60-20)									**
* ¹³⁸ Sb	J : expec	ted pg7	/2 nf7/2 cor	nfig and str	ong repul	lsive residua	al inte	eraction						**
* ¹³⁸ I ^m	J:67.9	E2γrav	(delayed)	o (1 ⁻)	8 r u									**
* ¹³⁸ Xe	T : aver	age of 12	2Wa21=14	18(0.10) 70	2Mo33=1	4.08(0.08)	69Ca	03=14.17(0	.07)					**
* ¹³⁸ Ce	T : also	01Da22	>150Tv br	oth for 2ν -	3β and 1	σ								**
* ¹³⁸ Pm ⁿ	D · arou	ments fo	or a second	isomer of i	ntermedi	ate spin are	not	convincing						**
[∞] ¹³⁸ Gd ^m	E : for le	aet_can	ares fit to V	rav energie	s in 11P	r02	not	onvineing						**
	D : from	031 ;70		hay chergi	25 III 1 I I I	102								**
* 10	D . non	1951110												
139Sn	-38440#	500#				130	ms	60	5/2-#	15		2015	$\beta^{-}=100; \beta^{-}n=80\#; \beta^{-}2n=20\#$	
¹³⁹ Sb	-49790#	400#				93	ms	13	7/2+#	01	11Ar18 T	D 1994	$\beta^{-}=100; \beta^{-}n=90 \ 10; \beta^{-}2n=3\#$	
¹³⁹ Te	-60205	4				500#	ms	(>150 ns)	$5/2^{-}$ #	01	94Be24 I	1994	β^{-} ?; $\beta^{-}n=2\#$	
139I	-68471	4				2.282	s	0.010	7/2+#	01	93Ru01 T	1949	$\beta^{-}=100; \beta^{-}n=10.03$	*
¹³⁹ Xe	-75644.6	2.1				39.68	s	0.14	$3/2^{-}$	01		1951	$\beta^{-}=100$	
139Cs	-80701	3				9.27	m	0.05	$7/2^+$	01		1939	$\beta^{-}=100$	
139Ba	-84913.8	03				83 13	m	0.06	$(7/2^{-})$	01	12Da17 T	1937	$\beta^{-}=100$	*
¹³⁹ La	-87226.2	2.0				STABLE		0.00	7/2+	01	120417 1	1924	IS=99 91119 71	
139 Lam	-85426.3	2.0	1799.9	0.5		315	ne	35	$(17/2^+)$	01	12As06 E	TI 2012	IT-100	
139 Ce	-86948	7	1777.7	0.5		137 641	d	0.020	3/2+	01	12/1300 1	1948	r=100 r=100	
$139 Ce^{m}$	-86104	7	754 24	0.08		56 54	u c	0.020	$\frac{3}{2}$	01	0/It A T	1940	E=100 IT=100	
139 Dr	-30194 84810	, ,	754.24	0.08		4 41	b b	0.15	5/2+	01	94II.A I	1907	$\beta^{+}-100$	
139 N.4	-04019	20				4.41		0.04	$\frac{3}{2}$	01		1951	$\beta = 100$ $\beta^{+} - 100$	
139 NT 4m	-62014	20	221.15	0.05		29.7	1.	0.3	5/2	01		1951	$p^{+} = 100$ $p^{+} = 0.24$ JT 11.04	
139 N 10	-81/83	28	231.15	0.05		5.50	n	0.20	$\frac{11}{2}$	01	1237 10 5	1951	p = 88.24; 11 = 11.84	
139 D	- /9398	28	2616	2		276.8	ns	1.8	$\frac{23}{2}$	01	13 valu E	IJ 1980	11 ?	*
139 pm	-//500	14	100 7	0.2		4.15	m	0.05	(5/2) ⁺	01		1967	p = 100	
139 c	-7/311	14	188.7	0.3		180	ms	20	$(11/2)^{-}$	01		1975	$11 \approx 100; \beta' = 0.16\#$	
139 Sm	-72380	11				2.57	m	0.10	$1/2^+$	01		1971	$\beta^{+}=100$	
¹³⁹ Sm ^m	-71923	11	457.40	0.22		10.7	s	0.6	$11/2^{-}$	01		1973	$TT=93.75; \beta^+=6.35$	
¹³⁹ Eu	-65398	13				17.9	s	0.6	$(11/2)^{-}$	01		1975	$\beta^{+}=100$	
¹³⁹ Eu ^m	-65250	13	148.2	0.2		10	μs	2	$(7/2^+)$		11Cu01 E	TJ 2011	IT=100	
¹³⁹ Gd	-57630#	200#			*	5.7	s	0.3	9/2-#	01	99Xi04 T	1983	$\beta^{+}=100; \beta^{+}p=?$	*
$^{139}\text{Gd}^m$	-57380#	250#	250#	150#	*	4.8	s	0.9	$1/2^+$ #	01		1983	$\beta^{+}=100; \beta^{+}p=?$	*
¹³⁹ Tb	-48130#	300#				1.6	s	0.2	$11/2^{-}$ #	01		1999	$\beta^{+}=100; \beta^{+}p?$	
¹³⁹ Dy	-37640#	500#				600	ms	200	$(7/2^+)$	01		1999	$\beta^{+}=100; \beta^{+}p?$	
* ¹³⁹ I	T : avera	ige 93R	u01=2.2800	0.011) 80A	115=2.29	9(0.02)			()					**
* ¹³⁹ Ba	T : aver:	age 12D	a17=83.010	0.14) 12D:	04=83.2	5(0.08) 72F	m01:	=82.71(0.18)					**
* ¹³⁹ Nd ⁿ	T · aver	age 13V	10=278(2)	08Fe02=2	72(4)				/					**
* ¹³⁹ Nd ⁿ	T · 80M	10 > 1	41 ns		(.)									**
* ¹³⁹ Gd	T · over	10 > 1	i04=5 8(0 0) 88Be 4-	5 8(0 4).	other \$3NG)5-4	9(1 (1) not 1	sed					4 4 4 4
* ¹³⁹ G4	T · avera	ince it o	orreenondo	to a mixtu	re of area	ind_state on								4 A ب
$*^{139}Gd^{m}$	1. 8 D · assu	ming the	at the delay	ed protons	reported	in 83Ni05 a	u 180 re fra	om both stat	es					**
. Gu	10 . assu	g uid	une uerdy	ea protons	poned	0511105 a		oou stat						~ 1
¹⁴⁰ Sb	-43940#	600#				100#	ms	(>400 ns)	$(4^{-} 3^{-})$	16		2010	β^{-} ?: β^{-} n=40#: β^{-} 2n=20#	
140 Sh ^m	-43610#	600#	330	10		41	119	8	(6- 7-)	16		2016	IT=100	*
140 To	-56580	60	550	10		300#	me	(\300 mc)	0+	07		100/	$\beta^{-} 2 \beta^{-} n - 3 \#$	4
140 T	62404	12				300# 020	ms	(> 500 IIS) 40	(A=)	07		1994	β^{-} , β^{-} = 100, β^{-} = β^{-}	
140 57	-03000	12				860	ms	40	(4)	07		1972	$p = 100; p = n=9.3 \ 10; p = 2n=0#$	
140 c	- /2986.5	2.3				13.60	S	0.10	0	07		1951	p = 100	
140Cs	-77050	8				63.7	s	0.3	1-	07		1950	$\beta^{-}=100$	
$^{140}Cs^m$	-77036	8	13.931	0.021		471	ns	51	$(2)^{-}$	07		1974	IT=100	
A-grou	up is contin	ued on n	ext page											

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I 1	The NUBASE?	016 table ((continued	Explanation	of Table on	nage 18)

			Table	1. THC	TUDA	5E2010 tabl		onunucu,	Блріа	natio			i page 10)	~	
Nuclide	Mass ex	ccess		Excitatio	n	I	Half-I	ite	J^{π}	Ens	Reference	e	Year of	Decay modes and	
	(keV	/)	e	energy (ke	eV)								discovery	intensities (%)	
4															
A-grot	ip continued					10 7507	ı	0.0022	0+	07			1020	<i>Q</i> = 100	
140 L o	- 83209	20				12.7327	u 1	0.0025	2-	07			1939	$\beta = 100$ $\beta = -100$	
140 Ca	-64515.9	2.0				40.285	п	0.005	5 0+	07			1955	p = 100	
140 Cam	-86070.1	1.0	2107.96	0.02		5 TABLE		15	0 ·	07			1923	IS=88.450 51 IT=100	
140 p.	-83908.2	1.0	2107.80	0.05		2.20	μs	1.5	1+	07			1900	11=100	
140 pm	-84688	0	107.9	0.2		3.39	m	0.01	1 ' 5 +	07			1938	e = 51.5 18; E=48.7 18	*
140 pn	-84560	0	127.8	0.5		350	ns	20	3' (7)-	07			1964	II=100 IT_100	
140 Pr ⁿ	-83924	6	/63./	0.5		3.05	μs	0.20	(/)	07			1964	11=100	
140 Nd	-84259	3	2221.4	0.1		3.37	a	0.02	0	07			1949	$\varepsilon = 100$	
140 Ndm	-82038	3	2221.4	0.1		600	μs	50	-7-	07	005 00		1962	11=100	
140 Nd ⁿ	-76829	3	7429.6	0.7		1.22	μs	0.06	20+	~-	08Fe02	EIJ	2008	11=100	*
140 Pm	-78214	24				9.2	s	0.2	1+	07			1966	$\beta^{+}=100$	
¹⁴⁰ Pm ^m	-77783	13	431	28	BD	5.95	m	0.05	8-	07			1966	$\beta^{+}=100$	
¹⁴⁰ Sm	-75456	12				14.82	m	0.12	0+	07			1967	$\beta^{+}=100$	
¹⁴⁰ Eu	-66990	50				1.51	s	0.02	1+	07			1982	$\beta^{+}=100$	
140 Eu ^m	-66780	50	210	15		125	ms	2	(5^{-})	07			1988	IT \approx 100; β^+ <1	*
140 Eu ⁿ	-66320	50	669	15		299.8	ns	2.1	(8^+)	07			2002	IT=100	*
¹⁴⁰ Gd	-61782	28				15.8	s	0.4	0^{+}	07			1985	$\beta^{+}=100$	
¹⁴⁰ Tb	-50480	800				2.32	s	0.16	(7^{+})	07	06Xu03	Т	1986	$\beta^+=100; \beta^+p=0.26 \ 13$	*
¹⁴⁰ Dy	-42830#	400#				700#	ms		0^+	07			2002	β^{+} ?; β^{+} p ?	
140 Dy ^m	-40660#	400#	2166.1	0.5		7.0	μs	0.5	(8^{-})	07			2002	IT=100	
¹⁴⁰ Ho	-29260#	500#				6	ms	3	8+#	07			1999	$p=?; \beta^+=1\#; \beta^+p?$	*
$*^{140}$ Sb ^m	E : 16Lo	01=298.2	2 + x, x estir	nated by a	authors	x=30#									**
* ¹⁴⁰ Pr	T: other:	: 07Li71=	=7.3(0.4) for	r q=59 ⁺ (bare ion	a) 3.04(0.10) for	q=58	+							**
* ¹⁴⁰ Pr	T: (1	H-like ioi	n) and 3.84(0.15) for	q=57 ⁺ ((He-like ion)									**
* ¹⁴⁰ Pr	D : e ⁺ =4	2.4(2.3)	%; ε=57.6(2	.3)% for a	$q=58^+$ (H-like ion) and									**
* ¹⁴⁰ Pr	D: e	+=51.2(3	3.1)%; ε=48	.8(3.1)%	for $q=5^{\circ}$	7 ⁺ (He-like ion)									**
$*^{140}$ Nd ⁿ	ⁿ E : uncertainty not given, estimated by evaluator												**		
$*^{140}$ Nd ⁿ	^{<i>n</i>} T: average $13Va10=1.2(0.1) 08Fe02=1.23(0.07)$												**		
$*^{140}$ Eu ^m	^m E : less than 50 keV above 185.3 level, from ENSDF, thus $185.3 + 25(15)$												**		
$*^{140}$ Eu ⁿ	^{<i>n</i>} E: 459.5(0.3) keV above ${}^{140}\text{Eu}^{m}$												**		
$*^{140}$ Tb	T: $average (0 \xi x u) = 2.0(0.5) 0 \xi x u) = 2.1(0.4) 91Fi03=2.4(0.2) 86Wi15=2.4(0.4)$												**		
* ¹⁴⁰ Ho	D : from	estimate	d β^+ half-li	fe 400# m	s; p obs	served in 99Ry04	Ĺ								**
					· •	•									

141 Sb	-39110#	500#					100#	ms		7/2+#					β^{-} ?; β^{-} n=90#; β^{-} 2n=3#	
¹⁴¹ Te	-50490#	400#					150#	ms	(>150 ns)	$5/2^{-}$ #	14	94Be24	Ι	1994	β^- ?; β^- n=8#; β^- 2n=0.4#	
^{141}I	-59927	16					430	ms	20	$7/2^+$ #	14			1974	$\beta^{-}=100; \beta^{-}n=21.3$	*
¹⁴¹ Xe	-68197.3	2.9					1.73	s	0.01	$5/2^{(-\#)}$	14			1951	$\beta^{-}=100; \beta^{-}n=0.0445$	
141Cs	-74478	9					24.84	s	0.16	$7/2^+$	14			1962	$\beta^{-}=100; \beta^{-}n=0.0353$	
¹⁴¹ Ba	-79733	5					18.27	m	0.07	$3/2^{-}$	14			1945	$\beta^{-}=100$	
¹⁴¹ La	-82932	4					3.92	h	0.03	$(7/2^+)$	14			1951	$\beta^{-}=100$	
¹⁴¹ Ce	-85432.9	1.6					32.511	d	0.013	$7/2^{-}$	14			1948	$\beta^{-}=100$	
¹⁴¹ Pr	-86015.6	1.7					STABLE			$5/2^{+}$	14			1924	IS=100.	
¹⁴¹ Nd	-84193	3					2.49	h	0.03	$3/2^{+}$	14			1949	$\beta^{+}=100$	
$^{141}Nd^{m}$	-83436	3	756.51	0.05			62.0	s	0.8	$11/2^{-}$	14	70Ab05	D	1960	IT \approx 100; β^+ =0.032 8	
¹⁴¹ Pm	-80523	14					20.90	m	0.05	$5/2^{+}$	14			1952	$\beta^{+}=100$	
141 Pm ^m	-79894	14	628.62	0.07			630	ns	20	$11/2^{-}$	14			1970	IT=100	
141 Pm ⁿ	-77992	14	2530.75	0.17			> 2	μs			14			1985	IT=100	
¹⁴¹ Sm	-75934	9					10.2	m	0.2	$1/2^{+}$	14			1967	$\beta^{+}=100$	
141 Sm ^m	-75758	9	175.9	0.3			22.6	m	0.2	$11/2^{-}$	14			1967	$\beta^+ \approx 100$; IT=0.31 3	
¹⁴¹ Eu	-69926	13					40.7	s	0.7	$5/2^{+}$	14			1977	$\beta^{+}=100$	
$^{141}Eu^{m}$	-69830	13	96.45	0.07			2.7	s	0.3	$11/2^{-}$	14			1973	IT=86 3; β^+ =14 3	*
¹⁴¹ Gd	-63224	20					14	s	4	$(1/2^+)$	14			1986	$\beta^+=100; \beta^+p=0.03 1$	*
141 Gd ^m	-62846	20	377.76	0.09			24.5	s	0.5	$(11/2^{-})$	14			1986	$\beta^+=892$; IT=112	
¹⁴¹ Tb	-54540	110				*	3.5	s	0.2	$(5/2^{-})$	14			1986	$\beta^{+}=100$	
141 Tb ^m	-54540#	230#	0#	200#	EU	*	7.9	s	0.6	$11/2^{-}$ #	14	88Be.A	Ι	1988	$\beta^{+}=100$	*
¹⁴¹ Dy	-45380#	300#					900	ms	140	$(9/2^{-})$	14			1984	$\beta^{+}=100; \beta^{+}p=?$	
¹⁴¹ Ho	-34360#	400#					4.1	ms	0.1	$(7/2^{-})$	14			1998	$p=?; \beta^+=1\#; \beta^+p?$	*
¹⁴¹ Ho ^m	-34290#	400#	66	2			7.3	μs	0.3	$(1/2^{+})$	14			1998	p=100	
* ¹⁴¹ I	D : round	led from	21.2(3.0); 8	30A115=21	.2(3.0) incl	uded in 93R	u01=2	22(3)							**
* ¹⁴¹ Eu ^m	D : symn	netrized f	rom IT=87	(+2–4)% a	and β^+	=13(+4-2)%	141 -								**
* ¹⁴¹ Gd	J : weak a	argument	s in ENSDE	"2001 for	J^{π} ass	ignm	ent; same for	r 141 C	d ^m							**
* ¹⁴¹ Tb ^{"l}	I : exister	ice discu	ssed in 88B	e.A. Provi	isional	ly ac	cepted									**
*' ⁻ 'Ho	D : from	estimated	d β⊤ half-li	te 200# m	s											**

*¹⁴¹Eu^m *¹⁴¹Gd *¹⁴¹Tb^m *¹⁴¹Ho D : sounded from 21.2(3.0) s0A115=21.2(3.0) included in 95Ru01=22(3 D : symmetrized from IT=87(+2-4)% and $\beta^+=13(+4-2)\%$ J : weak arguments in ENSDF'2001 for J^{π} assignment; same for ¹⁴¹Gd^m I : existence discussed in 88Be.A. Provisionally accepted D : from estimated β^+ half-life 200# ms

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I. The NUBASE2016 table (continued.)	Explanation of Table on	page 18
--	-------------------------	---------

	Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)														
Nuclide	Mass ex (keV	(cess ()	е	Excitation nergy (keV	7)]	Half-l	ife	J^{π}	Ens	Referenc	e	Year of discovery	Decay modes and intensities (%)	
142 -	462704	500#			,	100//		(> 150)	0+	11	040-24	T	1004	$R = 2, R = -10^{4}, R = 2^{-1}, 0^{4}$	
142 T	-46370#	270				100#	ms	(>150 ns)	2-#	11	94Be24	1	1994	p ?; p n=10#; p 2n=0# g_{-100}^{-} , g_{-20}^{-} , g_{-2n-1}^{-}	
1 142 V a	-34770	370				1 22	ms	12	2 # 0+	11			1973	$\rho = 100; \rho = 120\#; \rho = 21=1\#$	
142 Co	-05229.0	2.7				1.23	s	0.02	0-	11			1960	p = 100; p = 0.216 $\beta = -100; \beta = -0.0004$	*
142 D a	-70515	6				1.084	s	0.014	0	11			1962	$\beta = 100; \beta = 100; \beta = 0.0904$	
142 I -	-//842	0				10.6	m	0.2	0.	11			1959	p = 100	*
142 La	-80024	6	145.92	0.09		91.1	m	0.5	$(A)^{-}$	11			1955	p = 100	
142 Ca	- /98/8	0	145.82	0.08		8/U	ns	170 (> 50 Pm)	(4) 0 ⁺	11			1985	II = 100 IS = 11, 114, 51, or 2, 2 B^{-2}	
142 Da	-64333.2	2.3				STABLE 10.12	h	(>30 Py)	2-	11			1925	$B = 11.114 51; \alpha 2; 2p 2$	*
142 D=m	-03/0/.3	1.7	2 604	0.002		19.12	п	0.04	2 5-	11			1955	$\rho \approx 100; \epsilon = 0.0104.8$	
142 N.4	-03/03.0	1./	5.094	0.005		14.0 STADLE	ш	0.5	5 0+	11			1907	11=100	
142 N.dm	-83930.0	1.4	2200 202	0.021		JIABLE 16.5			0 6 ⁺	14			1924	IS=27.152.40 IT=100	
142 Dee	-65/40.7	24	2209.303	0.021		10.5	μs	0.5	0 · 1+	14			1904	$n^{+} - 77 + 27 + 2 - 22 + 27$	
142 Drag m	-01142	24	002 17	0.16		40.3	s	0.3	(0)-	11			1939	$E^{+}=77.127; E=22.927$	*
142 D m ⁿ	-80239	24	2022.17	0.10		2.0	ms ue	0.2	(0) (12-)	11			1971	IT=100 IT=100	
142 See	-/6515	24	2020.7	0.0		72 40	μs	5	(15)	11			1974	R^{\pm}_{-100}	
142 Samm	-/6960	2	2272.1	0.4		12.49	ma	0.05	7-	11			1939	p^{-100}	
142 Smn	-70014	2	2572.1	0.4		170	ns	2	10+	11			1973	IT=100 IT-100	
142 En	-/5524	20	3002.2	0.7		480	ns	0.10	10	11	01E:02	т	1979	$R^{+}=100$	
142 Eum	-71510	12	460	20	ЪD	2.50	5	0.10	0-	11	911105	1	1900	$p^{+}=100$ $p^{+}=100$	*
142 C 4	-70830	12	400	30	вр	1.223	m	0.008	0 0+	11			1900	$p^{+}=100$ $a=52.5 a^{+}=48.5$	
142 Th	-00900	20				70.2	s	0.0	1+	11			1980	$e=32.3, e^{-}=46.5$ $e^{\pm}=100, e^{\pm}=-0.0022.11$	
142 Thm	-30300	700	270.7	0.4		202	ms	17	5-	11			1991	p = 100; p = p = 0.0022 11	
142 m n	-30280	700	279.7	0.4		503	ms	1/	5 0+	11			1980	II=100	
142 D-1	-55910	700	052.1	0.6		20	μs	1	8 · 0+	11			1989	$R^{\pm}_{11} = 100$	
142 U -	-50120#	/30#				2.3	s	0.3	$(7-0^+)$	11			1986	$\beta = 100; \beta = p=0.06.3$	
142 F	-3/250#	400#				400	ms	100	(/ ,8')	11			2001	$p \approx 100; p = ?; p \approx 0$	*
142 X	-28030#	500#	(() 75 1-04	0 40000		10# T - 02D -05	μs	V(0.025)	0					p ?	
* ¹⁴² Ae	D:03Be	0.001(0)	(6) / 5As04 = 002)	0.406(0.03	94) 	1:03Be05=	1.250	J(0.025)							**
* ¹⁴² G	D:pn=	=0.091(0	.003)% in E	NSDF 00 C	ontradicts	Q(p n) = -29)/9(<i>1</i>) KeV							**
* ¹⁴² D	I : lower	· limit is	for α decay;	for pp de	cay IIBe0	2>300Py 01	$Da2_{1}$	2>260 Py							**
* ¹⁴² Pm	1 : other	: 09W109	f=56(3) for c	$1 = 01^{1}$ (bar	$e_{100} = 39.2$	(0, 7) for $q=0$	50 '								**
* ¹⁴² Pm	1: (I D: + 7	H-11 ke 10	n) and $39.6($	(1.4) for $q=$	59^{+} (He–II	ike ion)									**
* ¹⁴² Pm	D:e'=/	+ 70.90	$\%; \varepsilon = 29.0(1)$	$\frac{3}{2}$ 107 q=	=00 (H-II	ke ion) and									**
* ¹⁴² Pm	D: e	= -9.8($1.0)\%; \varepsilon = 20$.2(1.0)% IC	r q = 39 (He-like lon)									**
* ¹⁴² II	T: avera	ge 91F10	3=2.34(0.12) /5Ke08=	2.4(0.2)										**
****H0	D : p=01	rom 931	.140												**
¹⁴³ Te	-40280 #	500#				100#	ms	(>400 ns)	$7/2^{+}$ #	12			2010	β^{-} ?; β^{-} n=20#; β^{-} 2n=2#	
¹⁴³ I	-50630#	200#				130	ms	45	$7/2^{+}$ #	12			1994	β^- ?; β^- n=70#; β^- 2n=0.02#	
¹⁴³ Xe	-60203	5				511	ms	6	$5/2^{-}$	12	03Be05	D	1951	$\beta^{-}=100; \beta^{-}n=1.00 15$	
¹⁴³ Cs	-67676	8				1.791	s	0.007	$3/2^+$	12			1962	$\beta^{-}=100; \beta^{-}n=1.647$	
¹⁴³ Ba	-73937	7				14.5	s	0.3	$5/2^{-}$	12			1962	$\beta^{-}=100$	
¹⁴³ La	-78172	7				14.2	m	0.1	$(7/2)^+$	12			1951	$\beta^{-}=100$	
¹⁴³ Ce	-81606.7	2.5				33.039	h	0.006	$3/2^{-}$	12			1948	$\beta^{-}=100$	
¹⁴³ Pr	-83068.2	1.9				13.57	d	0.02	$7/2^+$	12			1948	$\beta^{-}=100$	
¹⁴³ Nd	-84002.2	1.4				STABLE			$7/2^{-}$	12			1933	IS=12.174 26	
¹⁴³ Pm	-82960.7	3.0				265	d	7	$5/2^+$	12			1952	$\varepsilon = 100; e^+ < 5.7e^-6$	
¹⁴³ Sm	-79517.2	2.8				8.75	m	0.06	$3/2^{+}$	12			1956	$\beta^{+}=100$	
143 Sm ^m	-78763.2	2.8	753.99	0.16		66	s	2	$11/2^{-}$	12			1960	IT \approx 100; $\beta^+=0.245$	
143 Sm ⁿ	-76723	3	2793.8	1.3		30	ms	3	$23/2^{-}$	12	FGK128	J	1969	IT=100	*
¹⁴³ Eu	-74241	11				2.59	m	0.02	$5/2^+$	12			1965	$\beta^{+}=100$	
$^{143}\mathrm{Eu}^m$	-73851	11	389.51	0.04		50.0	μs	0.5	$11/2^{-}$	12			1978	IT=100	
¹⁴³ Gd	-68230	200				39	s	2	$(1/2)^+$	12	78Fi02	D	1975	$\beta^+=100; \beta^+p=?; \beta^+\alpha=?$	*
$^{143}\text{Gd}^m$	-68080	200	152.6	0.5		110.0	s	1.4	$11/2^{-}$	12	78Fi02	D	1973	$\beta^{+}=100; \beta^{+}p=?; \beta^{+}\alpha=?$	*
¹⁴³ Tb	-60420	50			*	12	s	1	$(11^{\prime}/2^{-})$	12			1985	$\beta^{+}=100$	
$^{143}\mathrm{Tb}^m$	-60420#	110#	0#	100#	*	_	s	<21s	5/2+#	12			1986	$\dot{\beta}^+$?	
¹⁴³ Dv	-52169	13				5.6	s	1.0	$(1/2^+)$	12	03Xu04	J	1983	$\beta^{+}=100; \beta^{+}p=?$	*
143 Dy ^m	-51858	13	310.7	0.6		3.0	s	0.3	$(11/2^{-})$	12	03Xu04	EJD	2003	$\beta^{+}=100; \beta^{+}p=?$	
143 Dy ⁿ	-51763	13	406.3	0.8		1.2	μs	0.3	()	12	05Ri17	Е	2005	IT=100	*
¹⁴³ Ho	-42050#	300#	-	-		300#	ms	(>200 ns)	$11/2^{-}$ #	12	00So11	Ι	2000	β^+ ?; β^+ p ?	
¹⁴³ Er	-31260#	400#				200#	ms		9/2-#	12				β^+ ?; β^+ p ?	
142 ~		1							,					· · · ·	

¹⁴³ Dy^m ¹⁴³ Dyⁿ ¹⁴³ Ho ¹⁴³ Er *¹⁴³ Smⁿ *¹⁴³ Gd *¹⁴³ Gd^m *¹⁴³ Dy *¹⁴³ Dyⁿ

** ** ** **

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Mualida	Massar		14.01	Evoitoti		101	12010		life		Enc	Deference		Veer of	Decou modes and	
Nuchde	Mass ex (keV	Cess		energy (k	on eV)		1	Hall-I	ine	J~	Ens	Reference	3	discovery	intensities (%)	
	(KC V)		chergy (k)									uiscovery	intensities (70)	
^{144}I	-45280#	400#					100#	ms	(>150 ns)	1^{-} #	01	94Be24	Ι	1994	β^{-} ?: β^{-} n=40#: β^{-} 2n=1#	
¹⁴⁴ Xe	-56872	5					388	ms	7	0^{+}	01	03Be05	TD	2003	$\beta^{-}=100; \beta^{-}n=3.03$	
¹⁴⁴ Cs	-63271	20				*	994	ms	6	$1^{(-)}$	10			1967	$\beta^{-}=100; \beta^{-}n=3.03 \ 13$	
$^{144}Cs^m$	-63179	20	92.2	0.5			1.1	μs	0.1	(4^{-})	10			2009	IT=100	
$^{144}Cs^n$	-62970#	200#	300#	200#		*	< 1	s		(>3)	10			1978	$\beta^{-}=?;$ IT ?	
¹⁴⁴ Ba	-71767	7					11.5	s	0.2	0+	01			1967	$\beta^{-}=100$	*
¹⁴⁴ La	-74850	13					40.8	s	0.4	(3^{-})	01			1967	$\beta^{-}=100$	
¹⁴⁴ Ce	-80431.9	2.9					284.91	d	0.05	0+	01			1945	$\beta^{-}=100$	
¹⁴⁴ Pr	-80750.5	2.8					17.28	m	0.05	0^{-}	01			1951	$\beta^{-}=100$	
144 Pr ^m	-80691.5	2.8	59.03	0.03			7.2	m	0.3	3-	01			1970	IT $\approx 100; \beta^{-}=0.07$	
¹⁴⁴ Nd	-83748.0	1.4					2.29	Ру	0.16	0^{+}	01			1924	IS=23.798 19; α=100	
¹⁴⁴ Pm	-81416.1	3.0					363	d	14	5-	01	94Hi05	D	1952	$\varepsilon = 100; e^+ < 8e - 5$	
144 Pm ^m	-80575	3	840.90	0.05			780	ns	200	$(9)^+$	01			1993	IT=100	
144 Pm ⁿ	-72820	4	8595.8	2.2			2.7	μs		(27^{+})	01			1994	IT=100	
¹⁴⁴ Sm	-81965.5	1.6					STABLE			0^+	01			1933	IS=3.07 7; $2\beta^+$?	
144 Sm ^m	-79641.9	1.6	2323.60	0.08			880	ns	25	6^{+}	01			1972	IT=100	
¹⁴⁴ Eu	-75619	11					10.2	s	0.1	1^{+}	01			1965	$\beta^{+}=100$	
$^{144}Eu^m$	-74491	11	1127.6	0.6			1.0	μs	0.1	8-	01	FGK127	J	1976	IT=100	*
¹⁴⁴ Gd	-71760	28					4.47	m	0.06	0^{+}	01			1968	$\beta^{+}=100$	
144 Gd ^m	-68327	28	3433.1	0.5			145	ns	30	(10^{+})	01			1978	IT=100	
¹⁴⁴ Tb	-62368	28					1	s		1+	01			1982	$\beta^+=100$	
$^{144}\text{Tb}^{m}$	-61971	28	396.9	0.5			4.25	s	0.15	(6-)	01			1982	IT=66; $\beta^+=34$	*
¹⁴⁴ Tb ⁿ	-61892	28	476.2	0.5			2.8	μs	0.3	(8-)	01			1996	IT=100	
¹⁴⁴ Tb ^p	-61851	28	517.1	0.5			670	ns	60	(9+)	01			1996	IT=100	
144 Tb ^q	-61824	28	544.5	0.6			< 300	ns		(10 ⁺)	01			1996	IT=100	
144 Dy	-56570	7					9.1	s	0.4	0^+	01			1986	$\beta^+=100; \beta^+p=?$	
144 IL m	-44610	8	265.2	0.2			700	ms	100	(5)	08	1014 00	T	1986	$\beta' = 100; \beta' p = ?$	
144 E	-44345	8	265.3	0.3			519	ns	5	(8))	08	10Ma08	Т	2001	11=100	
144 T	-30010#	200#					400#	ms	(>200 ns)	(10^{+})	06			2003	p'''	
144 Do	-22200#	400#	W in ENG	vr'01 hala		faat	2.3	μs	0.9	(10^{+})	08			2005	p=?; p = 0#	*
* Da 144 Eum	D: p II=	=3.0(0.7) 6-	1% III ENSI	of of belo	ngs m	Tact	O Cs; p	1 HOL	anowed							**
* Eu . 144 Thm	J: E2 to	021:42-	$-12(2) \circ f_{0}$	$a = 65 \pm (h)$		、 、										**
* 10 * ¹⁴⁴ Tm	T : outer	03L142-	$from 1.0(\pm$	q=0.5 (0 1.2 0.5) μ)										**
* 1111	1. synni	icuizcu	1101111.9(+	$1.2-0.3)\mu$	5											**
¹⁴⁵ I	-40940#	500#					100#	ms	(>400 ns)	$7/2^{+}$ #	10	10Oh02	Ι	2010	β^- ?; β^- n=40#; β^- 2n=0.3#	
¹⁴⁵ Xe	-51493	11					188	ms	4	$3/2^{-}$ #	09			2003	$\beta^{-}=100; \beta^{-}n=5.06; \beta^{-}2n=0#$	
145Cs	-60054	9					582	ms	6	$3/2^{+}$	09	93Ru01	Т	1971	$\beta^{-}=100; \beta^{-}n=14.79$	*
$^{145}Cs^m$	-59291	9	762.9	0.4			500	ns	100	$19/2^{-}$ #		15YaZW	TD	2015	IT=100	*
¹⁴⁵ Ba	-67516	8					4.31	s	0.16	$5/2^{-}$	09			1974	$\beta^{-}=100$	
¹⁴⁵ La	-72835	12					24.8	s	2.0	$(5/2^+)$	09			1974	$\beta^{-}=100$	
¹⁴⁵ Ce	-77070	30					3.01	m	0.06	$5/2^{-}$ #	09			1954	$\beta^{-}=100$	
¹⁴⁵ Pr	-79626	7					5.984	h	0.010	$7/2^{+}$	09			1954	$\beta^{-}=100$	
¹⁴⁵ Nd	-81432.0	1.4					STABLE			$7/2^{-}$	09			1933	IS=8.293 12	
¹⁴⁵ Pm	-81267.5	2.9					17.7	У	0.4	$5/2^{+}$	09			1951	ϵ =100; α =2.8e-7	
¹⁴⁵ Sm	-80651.3	1.6					340	d	3	$7/2^{-}$	09			1947	$\varepsilon = 100$	
145 Sm ^m	-71865.1	1.7	8786.2	0.7			990	ns	170	$(49/2^+)$	09			1993	IT=100	*
¹⁴⁵ Eu	-77992	3					5.93	d	0.04	$5/2^{+}$	09			1951	$\beta^{+}=100$	
¹⁴⁵ Eu ^m	-77276	3	716.0	0.3			490	ns	30	$11/2^{-}$	09			1975	IT=100	
145Gd	-72926	20					23.0	m	0.4	$1/2^{+}$	09			1959	$\beta^+=100$	
145 Gd ^m	-72177	20	749.1	0.2			85	s	3	$11/2^{-}$	09			1969	IT=94.3 5; β^+ =5.7 5	
¹⁴⁵ Tb	-66390	110				* 6	& 30.9	s	0.6	$(11/2^{-})$	09			1981	$\beta^{+}=100$	
¹⁴⁵ Tb ^m	-65540	200	850	230	BD	* 6	k ($(3/2^+)$	09			1993	β^+ ?	
¹⁴⁵ Dy	-58243	7					9.5	s	1.0	$(1/2^+)$	09	93A103	Т	1982	$\beta^{+}=100; \beta^{+}p=?$	*
$^{145}\text{Dy}^m$	-58125	7	118.2	0.2			14.1	s	0.7	$(11/2^{-})$	09			1982	$\beta^+=100; \beta^+p\approx 50$	
¹⁴⁵ Ho	-49120	7				*	2.4	s	0.1	$11/2^{-}$ #	09			1987	$\beta^{+}=100$	
145 Hom	-49020#	100#	100#	100#		*	100#	ms		5/2+#					β^+ ?; IT ?	
¹⁴⁵ Er	-39240#	200#					900	ms	300	$1/2^+#$	09			1989	$\beta^{+}=100; \beta^{+}p=?$	*
$^{145}Er^{m}$	-39040#	200#	205	4	р		1.0	s	0.3	$11/2^{-}$ #		10Ma20	Т	2010	β^+ ?	
¹⁴⁵ Tm	-27580#	200#					3.17	μs	0.20	$(11/2^{-})$	09			1998	p=100	
* ¹⁴⁵ Cs	T : avera	ge 93Ru	01=579(6)	82Ra13=5	594(13); oth	er 16Wu.At=	=613(+32–24)							**
$*^{145}Cs^{m}$	E : 16Ya	A=762.	9(0.4)													**
$*^{145}$ Sm ^m	T : symn	netrized	from 960(+	-190–150)												**
* ¹⁴⁵ Dv	T : avera	ge 93A1	3=10.5(1.3)	5) 93To04	=6(2)	34Sc.	C=10(1)									**

* Dy 1: average $93A(0) = 10.0(1.5) + 931004 = 0(2) + 8430.0(10) + 10445 \text{ km}^{-1}$ *¹⁴⁵Er T: 89Vi02=900(300) for mixture gs+isomer; similarly 900(200) from 10Ma20

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I. The NUBASE2016 table (continued. Explanation of Table on page
--

			Table	e 1. 1 ne	INUBA	SE2010	able	(cont	muea, E	xpia	mation	n la	one on pag	ge 10)	
Nuclide	Mass ex (keV	(cess ()	er	Excitation hergy (keV	7)	H	alf-lif	e	J^{π}	Ens	Reference	e	Year of discovery	Decay modes and intensities (%)	
146 V 2	47055	24		0, (,	146	m 0	6	0+	07	020-05	TD	1080	$\beta^{-} = 100; \beta^{-} = -60.15$	
146Cs	-47933 -55310.4	24				323	ms	6	1-	97	93Ru01	т	1989	$\beta^{-}=100; \beta^{-}=14.25; \beta^{-}=2n=0#$	*
$^{146}Cs^{m}$	-55263.7	2.9	46 7	0.1		1 25	115	0.05	4-#	71	15YaZW	TD	2015	p = 100, p = 14.2, 5, p = 21 = 0.0	*
¹⁴⁶ Ba	-64947	21	10.7	0.1		2.22	s	0.07	0+	97	93Ru01	D	1970	$\beta^{-}=100$	*
¹⁴⁶ La	-69050	30			*	6.27	s	0.10	$\tilde{2}^{-}$	97	93Ru01	D	1970	$\beta^{-}=100$	*
$^{146}La^m$	-68920	130	130	130	*	10.0	s	0.1	(6^{-})	97	79Ke02	Е	1969	$\beta^{-}=100$	*
¹⁴⁶ Ce	-75635	16				13.52	m	0.13	0+	97			1953	$\beta^{-}=100$	
¹⁴⁶ Pr	-76680	30				24.15	m	0.18	$(2)^{-}$	97			1953	$\beta^{-}=100$	
¹⁴⁶ Nd	-80925.9	1.4				STABLE			0^+	97			1924	IS=17.189 32; $2\beta^-$?; α ?	
¹⁴⁶ Pm	-79454	4				5.53	У	0.05	3-	99			1960	ε =66.0 13; β ⁻ =34.0 13	
¹⁴⁶ Sm	-80996	3				68	My	7	0+	97	12Ki16	Т	1953	$\alpha = 100$	
¹⁴⁶ Eu	-77118	6				4.61	d	0.03	4-	97			1957	$\beta^{+}=100$	
146 Eum	-76452	6	666.37	0.16		235	μs	3	9 ⁺	97			1962	IT=100	
146 Gd	-/6086	4				48.27	d	0.10	0	01			1957	$\varepsilon = 100$	
146 Thm	-0//00	40	150#	100#	*	24.1	s	4	1' 5-	97	02 4 102	т	1974	$\beta' = 100$ $\beta^+ = 100$	
146 TLn	-0/010#	110#	020#	100#	*	24.1	s	0.5	(10^{+})	97	95A105	1	1974	$\beta = 100$	
146 Dv	-00850#	7	950#	100#		1.10	ins c	0.02	(10^{+})	97	03 \ 103	т	1989	$\beta^{+} = 100$	*
¹⁴⁶ Dy ^m	-59619	7	2035 7	0.6		150	5 me	20	(10^+)	97	93A103 FGK128	T	1981	p = 100	*
¹⁴⁶ Ho	-51238	7	2755.1	0.0		2.8	s	0.5	(6^{-})	97	10Ma37	TI	1982	$\beta^{+}=100^{\circ}\beta^{+}p=?$	*
¹⁴⁶ Er	-44322	7				1.7	s	0.6	0+	97	93To05	D	1993	$\beta^{+}=100; \beta^{+}p=?$	
¹⁴⁶ Tm	-31060#	200#				155	ms	20	(1^+)		05Ro40	TJD	1993	$p \approx 100; \beta^+ ?; \beta^+ p ?$	*
$^{146}\mathrm{Tm}^{m}$	-30750#	200#	304	6	p	75	ms	7	(5-)	02	06Ta08	TJ	1993	$p \approx 100; \beta^+ ?; \beta^+ p ?$	*
$^{146}\text{Tm}^n$	-30620#	200#	437	7	p	200	ms	3	(10^{+})	02	06Ta08	TJ	1993	$p=?; \beta^+=16\#; \beta^+p?$	*
* ¹⁴⁶ Cs	T : avera	ge 93Ru	01=321(2)	76Lu02=3	43(7); of	her 16Wu.A	=288	(13)	()						**
$*^{146}Cs^{m}$	E : 16Ya	.A=46.7(0.1)												**
* ¹⁴⁶ Ba	D : 93Ru	i01 β [−] n∢	<0.02% is 1	not relevai	nt since Q	$(\beta^{-}n) = -17$	6(24)	is negat	ive						**
* ¹⁴⁶ La	D : 93Ru	ι01 β [−] n∢	<0.007% is	not releva	ant since	$Q(\beta^-n)=-5$	0(50)	is negat	ive						**
$*^{146}La^{m}$	E : derive	ed from	$Q(^{146}La^m) =$	6660(120) in 79Ke	02									**
$*^{140}$ Tb ⁿ	E : 779.6	keV abo	ove ¹⁴⁰ Tb ^{m} ,	from ENS	SDF										**
* ¹⁴⁶ Dy ^m	J : E3 to	(7-)													**
* ¹⁴⁰ Ho	J: from	$\beta^{+}p$ bran	thing in 10)Ma37; su	pported t	oy β⊤p spec	trum	from 85	W115						**
* ¹⁴⁶ Tm ^m	T : also (J5Bb02=	190(80) ms	00_60(2)	05D a 40	02(A). 05DL	.02_7	5(2)	mandad in (×T-0	0				**
* 1111 	T : unwe	agned av	711-212(0)	06To08	108(2)	82(4); 03BL	02=7	5(5)supe	iseded in c	0140	0				**
* 111	I . avera	ge 07Da	20-215(9)	001a00-	190(3)										**
¹⁴⁷ Xe	-42360#	200#				130	ms	80	3/2-#	09			1994	$\beta^{-}=100; \beta^{-}n=4.023; \beta^{-}2n=0.01\#$	*
¹⁴⁷ Cs	-51920	8				230	ms	1	$(3/2^+)$	09		-	1978	$\beta^{-}=100; \beta^{-}n=28.5 17$	
$^{147}Cs'''$	-51219	8	701.4	0.4		190	ns	20	19/2-#	00	15YaZW	TD	2015	IT=100	*
147 Ba	-60264	20				894	ms	10	$5/2^{-}$	09	13Rz01	J	1978	$\beta^{-}=100; \beta^{-}=0.063$	
147 Ca	-000/8	11				4.06	s	0.04	$(5/2^{+})$	09	96Ur02	J	1979	$\beta = 100; \beta = n = 0.0414$	
147 Dr	-72014	16				13.4	s	0.3	(3/2) $3/2^+$	09	15Wo28	т	1904	$\beta = 100$ $\beta^{-} = 100$	
147 Nd	-781467	10				10.98	d III	0.5	5/2-	09	13 Wa20	J	1904	β^{-100}	
147 Pm	-79042.3	1.4				2 6234	v	0.0002	$\frac{3}{2}$	09			1947	$\beta^{-}=100$ $\beta^{-}=100$	
¹⁴⁷ Sm	-792664	1.1				106.6	Gv	0.0002	$\frac{7}{2}$	09	09Ko15	т	1933	$IS=14.99.18 \cdot \alpha = 100$	
¹⁴⁷ Eu	-77544.8	2.6				24.1	d	0.6	$5/2^+$	09	0,11010		1951	$\beta^+ \approx 100: \alpha = 0.0022.6$	
$^{147}\mathrm{Eu}^m$	-76919.5	2.6	625.27	0.05		765	ns	15	$11/2^{-}$	09			1970	IT=100	
¹⁴⁷ Gd	-75356.9	2.0				38.06	h	0.12	$7/2^{-}$	09			1957	$\beta^{+}=100$	
$^{147}\mathrm{Gd}^m$	-66769.1	2.1	8587.8	0.5		510	ns	20	$(49/2^+)$	09			1982	IT=100	
¹⁴⁷ Tb	-70743	8				1.64	h	0.03	$(1/2^+)$	-09			1969	$\beta^{+}=100$	
$^{147}\mathrm{Tb}^m$	-70692	8	50.6	0.9		1.87	m	0.05	11/2-#	09	93A103	Т	1987	$\beta^{+}=100$	*
¹⁴⁷ Dy	-64196	9				67	s	7	$(1/2^+)$	09			1975	$\beta^+=100; \beta^+p\approx 0.05$	
¹⁴⁷ Dy ^m	-63446	9	750.5	0.4		55.2	s	0.5	$(11/2^{-})$	09			1976	$\beta^+=68.9\ 23;\ IT=31.1\ 23$	
¹⁴⁷ Dy ⁿ	-60789	9	3407.2	0.8		400	ns	10	$(27/2^{-})$	09			1985	IT=100	
^{14/} Ho	-55757	5				5.8	s	0.4	$(11/2^{-})$	09			1982	$\beta^{+}=100$	
¹⁴ /Ho ^m	-53070	5	2687.1	0.4		315	ns	30	$(27/2^{-})$	09		_	1982	IT=100	
¹⁴ 'Er	-46610	40	1000		*	3.2	s	1.2	$(1/2^+)$	09	10Ma27	Т	1992	$\beta^{+}=100; \beta^{+}p=?$	
$^{14'}Er^{m}$	-46510#	60#	100#	50#	*	1.6	s	0.2	$(11/2^{-})$	09	10Ma27	Т	1982	$\beta^+=100; \beta^+p=?$	*
147 m	-35974	7	(2)	F		580	ms	30	$\frac{11}{2^{-}}$	09			1982	p = 85 5; p = 15 5	
1 m''	-35913	/	62	5	р	360	μs	40	3/2	09			1984	p=100	

^{14/}Tm ¹⁴⁷Tm^m *¹⁴⁷Xe *¹⁴⁷Cs^m *¹⁴⁷Tb^m *¹⁴⁷Er^m

** ** ** **

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

			Table	1. The root	DASE2010	tanı	e (contin	ucu, Enj			140	te on pag	(e 10)	
Nuclide	Mass ex	cess	E	xcitation		Half-	life	J^{π}	Ens	Referenc	e	Year of	Decay modes and	
	(kev	()	ene	ergy (kev)								discovery	intensities (%)	
148 Ye		300#			100#	me	(>400 ns)	0^+	14	100502	т	2010	$\beta^{-} 2 \beta^{-} n - 10 \# \beta^{-} 2 n - 0 \#$	
¹⁴⁸ Cs	-36000π -46911	13			145	ms	(2400 lls) 4	0	14	16Wn A	т	1978	β^{-} :, β^{-} ii=10#, β^{-} 2ii=0# β^{-} = 100: β^{-} n=25 1 25: β^{-} 2n=0#	*
$^{148}Cs^{m}$	-46866	13	45.2	0.1	4.8	115	0.2	4-#	14	15YaZW	TD	2015	p = 100, p = 123.123, p = 21-00 IT=100	*
¹⁴⁸ Ba	-57590	60	10.2	0.1	620	ms	5	0+	14	16Wn A	т	1979	$\beta^{-}=100; \beta^{-}n=0.4.3$	*
¹⁴⁸ La	-62709	19			1 35	s	0.04	(2^{-})	14	16Wu A	Ť	1969	$\beta^{-}=100; \beta^{-}=0.153$	*
¹⁴⁸ Ce	-70398	11			56.8	s	0.3	0+	14	10114111	•	1964	$\beta^{-}=100$	
¹⁴⁸ Pr	-72535	15			2.29	m	0.02	1-	14			1964	$\beta^{-}=100$	
148 Pr ^m	-72458	15	76.80	0.20	2.01	m	0.07	(4)	14			1964	$\beta^{-}=64\ 10$: IT=36\ 10	
¹⁴⁸ Nd	-77408.0	2.1			STABLE		(>3.0 Ev)	0+	14	82Be20	Т	1937	IS=5.756 21: $2\beta^{-}$?: α ?	*
¹⁴⁸ Pm	-76866	6			5.368	d	0.007	1-	14		-	1947	$\beta^{-}=100$	
148 Pm ^m	-76728	6	137.9	0.3	41.29	d	0.11	56-	14			1951	$\beta^{-}=95.86$; IT=4.26	
¹⁴⁸ Sm	-79336.3	14	10710	015	63	Pv	13	0^{+}	14	16Ca 1	т	1933	$IS=11.24 \ 10^{\circ} \alpha = 100$	*
148Eu	-76299	10			54.5	d	0.5	5-	14	roeur		1951	$\beta^+=100$: $\alpha=9.4e-7.28$	
¹⁴⁸ Eu ^m	-75579	10	720.4	0.3	162	ns	8	9+	14			1980	IT=100	
¹⁴⁸ Gd	-76269.3	1.6			70.9	v	1.0	0^{+}	14	03Fu10	Т	1953	$\alpha = 100: 2\beta^+$?	*
¹⁴⁸ Tb	-70537	12			60	m	1	2-	14		-	1960	$\beta^{+}=100$	
$^{148}\text{Tb}^m$	-70447	12	90.1	03	2.20	m	0.05	$(\bar{9})^+$	14			1973	$\beta^{+}=100$	
$^{148}\text{Tb}^n$	-61918	12	8618.6	1.0	1 310	115	0.007	(27^+)	14			1980	T = 100	
148 Dv	-67860	9	001010	110	3 3	m	0.2	0+	14			1974	$\beta^{+}=100$	
$^{148}Dv^{m}$	-64941	9	2919-1	1.0	471	ns	20	10+	14			1978	F = 100	
148Ho	-57990	80	2)1).1	1.0	2.2	6	11	(1^+)	14			1970	$\beta^{+}-100$	
148 110	57740#	120#	250#	100#	0.40		0.12	(1) 5#(-)	14	02 4 102	т	1070	$\beta^{+} = 100$ $\beta^{+} = 100$; $\beta^{+} = -0.08$ 1	
1481101	-37/40#	120#	230#	100#	9.49	s	0.12	(10)+	14	95A105	1	1979	p = 100; p = p = 0.08 I	*
148 Г.	-57030#	10	940#	100#	2.50	ms	0.00	(10) ·	14			1964	R^{+}_{-100}	*
148 E.m	-514/9	10	2012.2	0.4	4.0	s	0.2	(10^{+})	14			1982	$p = 100; p = p \approx 0.15$	
148 T	-48500	10	2913.2	0.4	13	μs	3	(10^{+})	14			1982	$P_{\pm}^{\pm} = 100, P_{\pm}^{\pm} = 2$	
148 M	-38/65	10			700	ms	200	(10^{+})	14			1982	p = 100; p = p?	
148 C	-30330#	400#	1 1 4 4 (5) (DOD 01 140/1	250#	ms	CNV 17 100	0'					<i>p</i> + ?; <i>p</i> + p ?	
* ¹⁴⁸ C	1 : avera	ge 16Wi	1.A=144(5) 9	93Ru01=140(1	2) 86Hi08=158	8(7)8	6wa1/=130	J(10) and						**
* ¹⁴⁸ C m		8K029=	130(40)											**
* ¹⁴⁸ D	E : 16Ya	.A=45.20	(0.1)	0(1) 17 (20)	(5) 0 4 Cl 02 (0		000 04 0	20/50)						**
* ¹⁴⁸ Ba	T : avera	ge 16Wi	1.A=621(11)	86Wa17=620((5) 84Ch02=60	07(25)	82Ga24=6	30(50)						**
* ¹⁴⁸ La	T : unwe	aghed av	erage 16Wu	.A=1.2/(+0.10	-0.09) 86 Wal	/=1.4	0(0.02)							**
* ¹⁴⁸ La	T: 9	3Ru01=	1.428(0.012)	and 69W1.A=	1.29(0.08)									**
* ¹⁴⁸ Nd	T : lower	limit is	for 2β dec	ay										**
* ¹⁴⁸ Sm	T : symn	netrized	from 16Ca.1	=6.4(+1.2-1.3) Py									**
* ¹⁴⁸ Gd	T : 81Pr)6=74.6(3.0) unweig	hed not used										**
* ¹⁴⁸ Ho ^m	T : avera	ge 93Al	03=9.30(0.20)	3) 89 fall = 9.59	9(0.15)									**
* ¹⁴⁸ Ho ⁿ	E : 694.4	keV abo	ove ¹⁴⁰ Ho ^m ,	from ENSDF										**
149Cs	-43250#	400#			113	ms	8	3/2+#	04	16Wu A	TD	1979	$\beta^{-}=100^{\circ}\beta^{-}n=60^{\#}\beta^{-}2n=0^{\#}$	
¹⁴⁹ Ba	-53120	440			348	ms	4	$3/2^{-}$ #	04	16Wu A	Т	1993	$\beta^{-}=100; \beta^{-}n=0.43.12$	*
¹⁴⁹ La	-60220	200			1.07	s	0.02	$(3/2^{-})$	07	16Wu A	Т	1979	$\beta^{-}=100; \beta^{-}=1.43.28$	*
¹⁴⁹ Ce	-66670	10			4 94	s	0.02	$3/2^{-}$ #	04	96Ya A	Ť	1974	$\beta^{-}=100$, $\beta^{-}=100$	
149 Pr	-71039	10			2.26	m	0.07	$(5/2^+)$	04	<i>y</i> 010.11	•	1964	$\beta^{-}=100$	
149 Nd	_74375 5	21			1 728	h	0.001	5/2-	04			1938	β^{-100}	
149 Pm	-76064.3	2.1			53.08	h	0.001	$\frac{3}{2^+}$	04			1947	$\beta^{-}=100$ $\beta^{-}=100$	
$^{149}Pm^{m}$	-75824.1	2.5	240 214	0.007	35	116	3	$11/2^{-1}$	04			1966	F = 100	
149 Sm	77135 7	1.3	240.214	0.007	STADIE	μο	$(\sim 2 \mathbf{P}_{\rm V})$	7/2-	04			1033	IS-13 82 7: a 2	
149 Eu	-76441	1.5			03 1	А	(221y)	5/2+	04			1955	s=100	
149 Eum	75045	4	106 286	0.002	2.45	u uc	0.4	$\frac{3}{2}$	04			1959	E=100 IT=100	
149 G d	75127	2	490.580	0.002	0.29	µs d	0.05	7/2-	04			1901	$\beta^{+} - 100; \alpha - 4.3; 4.10$	
149Th	-73127	3			9.20	u h	0.10	$\frac{1}{2^+}$	04			1951	$\beta = 100, \alpha = 4.56 = 4.10$ $\beta^{+} = 82.2, 17; \alpha = 16.7, 17$	
149 Th m	-/1469	4	25 70	0.12	4.110		0.025	$\frac{1}{2}$	04			1950	$\beta = 65.5 17, \alpha = 10.7 17$ $\beta^+ \approx 100, \alpha = 0.022.2$	
149 D-1	-/1455	4	33.76	0.15	4.10	m	0.04	$\frac{11}{2}$	04	00 4 1-02	т	1902	$p \approx 100, \alpha = 0.022.5$	
149 D-m	-0/090	9	2001 1	0.4	4.20	m	0.14	$(27/2^{-})$	04	88An02	J	1958	p = 100	
149 x x	-65035	9	2661.1	0.4	490	ms	15	(21/2)	04			1976	11=99.33; p = 0.73	*
149 xx m	-61647	12	10.00	0.00	21.1	s	0.2	(11/2)	04			1979	$\beta^{+}=100$	
149 Hom	-61598	12	48.80	0.20	56	s	3	$(1/2^+)$	04			1988	$\beta^+ = 100$	
149 5 m	-53/42	28	741.0	0.0	4	s	2	$(1/2^{+})$	04			1984	p'=100; p'p=7/2	
149 Er"	-53000	28	/41.8	0.2	8.9	s	0.2	$(11/2^{-})$	04			1984	$p = 96.5 7$; IT=3.5 7; $\beta^{+}p=0.18 7$	
149 Er"	-51131	28	2611.1	0.3	610	ns	80	$(19/2^{+})$	04			1987	11=100	
¹⁴⁹ Er ^p	-50470	30	3272	20	4.8	μs	0.1	$(27/2^{-})$	04			1987	11=100	*
149Tm	-43880#	200#			900	ms	200	$(11/2^{-})$	04	o e	_	1987	$\beta^+=100; \beta^+p=0.2615$	*
149Yb	-33200#	300#			700	ms	200	$(1/2^+)$	04	05Xu04	J	2001	$\beta^+=100; \beta^+p\approx 100$	*
* ¹⁴⁹ Ba	T : avera	ge 16Wi	1.A=352(6) 9	93Ru01=324(1	8) 86Wa17=34	-6(6)								**
* ¹⁴⁹ La	T : avera	ge 16Wı	1.A=1.11(0.0	04) 93Ru01=1.0	066(0.034) 86	Wa17	=1.04(0.04)							**
$*^{149}$ Dy ^m	T : other	03Li42=	=11(1) s for c	$q=66^+$ (bare io	n)									**
$*^{149}$ Er ^p	E:3242	.7 + 30(2	20) keV											**
* ¹⁴⁹ Tm	D : symr	netrized	from $\beta^+ p=0$	0.2(+0.2-0.1)%	,									**
* ¹⁴⁹ Yb	$J:(1/2^+)$,3/2 ⁺) in	ENSDF2004	4 and 1/2 in 05	Xu04; 06Xu07	=(1/2	⁻) however	,						**
* ¹⁴⁹ Yb	J: no	o 1/2 [−] 91	cound-state c	r isomer for e-	-o in this regio	n								**

 149 Yb J: no $1/2^{-}$ ground-state or isomer for e-o in this region

Chinese Physics C Vol. 41, No. 3 (2017) 030001

			Tabl	e I. The	NUD	ASEZ	2010 12	inte	(contin	ueu, Explana		TOT TAL	ne c	in page 1	0)	
Nuclide	Mass ex	cess	0	Excitation	2		ŀ	lalf-	life	J^{π}	Ens	Referen	ce	Year of	Decay modes and	
	(KC V)	U.	nergy (ke v)									discovery	intensities (<i>n</i>)	
¹⁵⁰ Cs	-38170#	400#					84.4	ms	8.2		13	16Wu.A	TD	1979	$\beta^{-}=100; \beta^{-}n=80\#; \beta^{-}2n=2\#$	
¹⁵⁰ Ba	-49900#	300#					259	\mathbf{ms}	5	0^{+}	13	16Wu.A	Т	1994	$\beta^{-}=100; \beta^{-}n=1#$	
¹⁵⁰ La	-56130	440					504	\mathbf{ms}	15	(3^{+})	13	16Wu.A	Т	1993	$\beta^{-}=100; \beta^{-}n=2.73$	*
¹⁵⁰ Ce	-64847	12					6.05	s	0.07	0^+	13	15Ko23	Т	1970	$\beta^{-}=100$	
¹⁵⁰ Pr	-68300	9					6.19	s	0.16	1-	13	15Ko23	J	1970	$\beta^{-}=100$	*
¹⁵⁰ Nd	-73679.8	1.3					8.2	Ey	0.9	0+	13	15Ba11	Т	1937	IS=5.638 28; $2\beta^{-}=100$	*
¹⁵⁰ Pm	-73597	20					2.698	h	0.015	(1^{-})	13			1952	$\beta^{-}=100$	
¹⁵⁰ Sm	-77051.1	1.3					STABLE			0+	13			1934	IS=7.38 1	
¹⁵⁰ Eu	-74792	6					36.9	У	0.9	5(-#)	13			1950	$\beta^{+}=100$	
¹⁵⁰ Eu ^m	-74750	6	41.7	1.0			12.8	h	0.1	0-	13			1953	$\beta^{-}=892; \beta^{+}=112; \text{IT} \le 5e-8$	
¹⁵⁰ Gd	-75764	6					1.79	My	0.08	0+	13			1953	$\alpha = 100; 2\beta^+?$	
¹⁵⁰ Tb	-71106	7		27			3.48	h	0.16	$(2)^{-}$	13			1959	$\beta^+ \approx 100; \alpha < 0.05$	
150 Tbm	-70645	26	461	27	MD		5.8	m	0.2	9 ⁺	13			1993	$\beta^+ \approx 100; 11^{-2}$	
150 Llo	-09310	4					76.9	m	0.05	$(2)^{-}$	13	02 4 102	т	1959	$p = 04.5; \alpha = 30.5$ R = -100	
150 Hom	-01940	14 50	0	50	PD	*	70.0	s	1.0	$\binom{(2)}{(0)^+}$	12	95A105	1	1905	$\beta^{+}=100$ $\beta^{+}=100$	*
150 Hon	-01950	50	-0	50	вр	*	23.3	5	26	$(9)^{-}$	13			2006	p^{-100}	
150 Er	-57831	17	7900	50			18.5	115	0.7	(28)	13			1082	$B^{+}-100$	*
150 Erm	-55035	17	2796 5	0.5			2 55	5	0.10	10 ⁺ #	13			1984	p = 100 IT-100	
¹⁵⁰ Tm	-46490#	200#	2190.5	0.5		* &	2.55	μ3 8	0.10	(1+)	15	88Ni02	T	1982	$\beta^{+}=100$	
$^{150}\text{Tm}^{m}$	-46350#	240#	140#	140#		* &	2 20	s	0.06	(f ⁻)	13	0011102	5	1981	$\beta^{+}=100; \beta^{+}=123$	
$^{150}\text{Tm}^{n}$	-45680#	240#	810#	140#		u	5.2	ms	0.00	10+#	13			1984	p = 100, p = 1.2.5 IT=100	*
¹⁵⁰ Yb	-38640#	300#	010#	110//			700#	ms	(>200 ns)	0^{+}	13			2000	$\beta^+ 2$	
¹⁵⁰ Lu	-24640#	300#					45	ms	3	(56-)	13	00Gi01	J	1993	$p = ?: \beta^+ = 29\#$	
$^{150}Lu^{m}$	-24620#	300#	22	5	p		40	us	7	$(1^+, 2^+)$	13	00Gi01	J	1998	p=100	*
* ¹⁵⁰ La	T : avera	ige 16Wi	u.At=510(+1	10-22) 950)k02=5	510(30)			())					I to	**
* ¹⁵⁰ Pr	T : also	15Ko23=	=8.2 s (no un	c.) is "app	arent"	value o	, direct+gr	owth	from 150	Ce						**
* ¹⁵⁰ Nd	T : and 1	5Ba11=	120(+30-20) to first ex	c. 0 ⁺	state	U									**
* ¹⁵⁰ Ho	T : avera	ige 93Al	03=78(2) 82	No08=72(-	4)											**
*150Hon	E:7912	.1(2.3) k	eV above th	e (9)+ ison	ner											**
$*^{150}$ Tm ⁿ	E:671.3	3(1.0) ke	V above 1507	Γm ^m , from	Ensd	F										**
$*^{150}Lu^{m}$	T : symr	netrized	from 03Gi1	0=39(+8-6)											**
151 Ce	-34230#	500#					60	me	26	3/2+#	00	16Wn A	тр	1070	$\beta^{-} = 100 \cdot \beta^{-} = 00 \# \cdot \beta^{-} 2 = 0.4 \#$	
151 P.o	-34230#	300 # 400#					167	ma	20	$3/2^{+}$ #	09	16Wu.A	TD	1979	$\beta = 100, \beta = 1 = 90\%, \beta = 21 = 0.4\%$	
151 La	-53310	400#					465	me	24	5/2 #	09	16Wu.A	TD	1994	$\beta = 100, \beta = 1 = 7 \#$ $\beta^{-} = 100; \beta^{-} = n = 6 \#$	4
151 Ce	-61225	18					1 76	ins c	0.06	$(3/2^{-})$	09	10WU.A	ID	1994	$\beta = 100, \beta = 100, \beta$	*
¹⁵¹ Pr	-66780	12					18.90	s	0.00	$(3/2^{-})$	09	105105	5	1990	$\beta^{-}=100$	Ŧ
151 Pr ^m	-66745	12	35 10	0.10			50	115	8	$(7/2^+)$	09	12Ma03	т	2006	F = 100	
¹⁵¹ Nd	-70943.0	13	55.10	0.10			12 44	m	0.07	$\frac{(7/2)}{3/2^+}$	09	12101000	•	1938	$\beta^{-}=100$	
¹⁵¹ Pm	-73386	5					28.40	h	0.04	$\frac{5}{2^+}$	09			1952	$\beta^{-}=100$	
¹⁵¹ Sm	-74576.3	1.3					90	v	8	$5/2^{-}$	09			1947	$\beta^{-}=100$	
$^{151}Sm^{m}$	-74315.2	1.3	261.13	0.04			1.4	лу ЦS	0.1	$(11/2)^{-}$	09			1973	IT=100	
¹⁵¹ Eu	-74652.9	1.3					4.6	Ev	1.2	5/2+	09	14Ca13	Т	1933	IS=47.81 6; α =100	
$^{151}\mathrm{Eu}^m$	-74456.7	1.3	196.245	0.010			58.9	иs	0.5	$11/2^{-}$	09			1958	IT=100	
¹⁵¹ Gd	-74189	3					123.9	d	1.0	$7/2^{-}$	09			1950	$\epsilon = 100; \alpha = 1.0e - 6.6$	*
¹⁵¹ Tb	-71624	4					17.609	h	0.001	$1/2^{(+)}$	09			1953	$\beta^+ \approx 100; \alpha = 0.0095 15$	
¹⁵¹ Tb ^m	-71524	4	99.53	0.05			25	s	3	$(11/2^{-})$	09			1978	IT=93.4 20; β^+ =6.6 20	
¹⁵¹ Dv	-68752	3					17.9	m	0.3	$7/2^{(-)}$	09			1959	$\beta^{+}=?: \alpha=5.64$	
151 Ho	-63623	8					35.2	s	0.1	$11/2^{(-)}$	09	87Ne.A	J	1963	$\beta^{+}=?: \alpha=22.3$	
¹⁵¹ Ho ^m	-63582	8	41.0	0.2			47.2	8	1.3	$1/2^{(+)}$	09	87Ne.A	J	1963	$\alpha = 77.18; \beta^+?$	*
¹⁵¹ Er	-58266	16					23.5	8	2.0	$(7/2^{-})$	09		-	1970	$\beta^{+}=100$	
$^{151}Er^{m}$	-55680	16	2586.0	0.5			580	ms	20	$(27/2^{-})$	09			1980	IT=95.3 3: β^+ =4.7 3	*
151 Er ⁿ	-47979	16	10286.6	1.0			420	ps	50	$(65/2^{-}.61/2^{+})$	09	09Fu05	J	1990	IT=100	
¹⁵¹ Tm	-50773	19		1.0			4 17	8	0.11	$(11/2^{-})$	09			1982	$\beta^{+}=100$	
$^{151}\text{Tm}^{m}$	-50679	20	94	6	AD		6.6	s	2.0	$(1/2^+)$	09			1987	$\beta^{+}=100$	
$^{151}\text{Tm}^{n}$	-48117	19	2655 67	0.22			451	ns	34	$(27/2^{-})$	09			1982	IT=100	
¹⁵¹ Yh	-41540	300	2000.07	0.22			16	8	0.5	$(1/2^+)$	09	86To12	т	1985	$\beta^{+}=100; \beta^{+}p=?$	*
¹⁵¹ Yb ^m	-40790#	320#	750#	100#			1.6	s	0.5	$(11/2^{-})$	09	86To12	Ť	1986	$\beta^+ \approx 100; \beta^+ p = ?: \text{IT}=0.4#$	*
151 Yb ⁿ	-39000#	580#	2540#	500#			2.6	μs	0.7	19/2-#	09		-	1993	IT=100	*
¹⁵¹ Yb ^p	-39090#	580#	2450#	500#			20	μs	1	27/2-#	09			1987	IT=100	*
4-gro	un is contini	ued on n	evt nage	2000			20	<i>μ</i> 0	•		57				100	

1 111	-30079	20	94	0	лD	
¹⁵¹ Tm ⁿ	-48117	19	2655.67	0.22		
¹⁵¹ Yb	-41540	300				
151 Yb ^m	-40790#	320#	750#	100#		
151 Yb ⁿ	-39000#	580#	2540#	500#		
151 Yb ^p	-39090#	580#	2450#	500#		
A-gro	up is contin	ued on	next page			

			Table	I. The Nu	UBA	se2	016 tab l	le (o	continued	, Explanat	tion	of Tabl	le or	1 page 18)	
Nuclide	Mass ex (keV	xcess V)	ei	Excitation hergy (keV)			I	Half-	life	J^{π}	Ens	Reference	ce	Year of discovery	Decay modes and intensities (%)	
4	n continuo	a														
¹⁵¹ Lu	-30110#	300#					78.4	ms	0.9	$(11/2^{-})$	09	15Ta12	ΤI	1982	$p=2^{-1}\beta^{+}=37^{+}$	*
$^{151}Lu^{m}$	-30060#	300#	53	4	p		16.5	us	0.7	$(3/2^+)$	09	15Ta12	TJ	1998	p=100	*
* ¹⁵¹ La	T : sym	netrized	from 457(+30	-18)				•		())					1	**
* ¹⁵¹ Ce	T : avera	age 16W	u.A=1.71(0.09) 06Ko25=1	1.76 (0.06)										**
* ¹⁵¹ Ce	I : isome	er with T	=1.02(0.06) s	uggested in	Ensd	F200	9 not truste	ed by	y NUBASE							**
* ¹⁵¹ Gd	D : sym	metrized	from $\alpha = 0.8(+$	-0.8-0.4)e-6	5%											**
* ¹⁵¹ Ho ^m	D : sym	metrized	from $\alpha = 80(+$	15-20)%												**
* ¹⁵¹ Er ^m	T : other	r 03Li42:	=19(3) s for q=	=68+ (bare i	on)											**
* ¹⁵¹ Yb	T: deriv	ed from	1.6(0.1), for n	inxture of gr	ound	-state	and isome	r wi	th almost sar	ne half-life						**
* ¹⁵¹ Yb ⁿ	E: /40#	estimate	a in 90Ak01	see ENSDF	(09)		(CDE'00)									**
* 10 * ¹⁵¹ Yb ^p	E . 2000	keV abo	$^{1.2}$ KeV level	e ENSDE'Q	0 (SC 7)	EL	(SDF 09)									**
* ¹⁵¹ Lu	D · n=63	34(09)	h in ENSDE'0	based on t	,, predic	ted f	3 ⁺ decay h	alf-li	fe≈220 ms							**
* ¹⁵¹ Lu	T : avera	age 15Ta	12=78(1) 99B	i14=80(2)		p										**
$*^{151}Lu^m$	T : avera	age 15Ta	12=17(1) 99B	i14=16(1)												**
152 C s		500#					30#	me							$\beta^{-} 2 \beta^{-} \beta^$	
¹⁵² Ba	-41710#	400#					139	ms	8	0^{+}	13	16Wu.A	TD	2010	$\beta^{-}=100; \beta^{-}n=5#$	
¹⁵² La	-49290#	300#					287	ms	16	2	13	16Wu.A	TD	1994	$\beta^{-}=100; \beta^{-}n=50\#$	*
¹⁵² Ce	-58980#	200#					1.42	s	0.02	0^{+}	13	16Wu.A	Т	1990	$\beta^{-}=100$	
¹⁵² Pr	-63758	19					3.57	s	0.11	4+	13	99To04	J	1983	$\beta^{-}=100$	*
152 Pr ^m	-63643	19	114.8	0.2			4.1	μs	0.1	(3^+)	13			1990	IT=100	
¹⁵² Nd	-70149	24					11.4	m	0.2	0^{+}	13			1969	$\beta^{-}=100$	
¹⁵² Pm	-71254	26				*	4.12	m	0.08	1^{+}	13			1958	$\beta^{-}=100$	
¹⁵² Pm ^m	-71110	80	140	90	BD	*	7.52	m	0.08	4-	13			1971	$\beta^{-}=100$	
¹⁵² Pm ⁿ	-71000#	150#	250#	150#		*	13.8	m	0.2	(8)	13			1971	$\beta^{-} \approx 100; \text{ IT}=?$	*
152 Sm	-74/62.6	1.2					STABLE	••	0.000	0	13			1933	$1S=26.75 \ 16$ $B=-27.02 \ 12$	
152 Eu	- 12888.3	1.5	45 5008	0.0004			0.2116	y h	0.009	3 0 ⁻	13			1958	p' = /2.08 13; p = 2/.92 13 $\beta^{-} - 73 2; \beta^{+} - 27 2$	
$152 Eu^n$	-72823.0	1.5	45.5998	0.0004			9.5110	II ne	0.0015 80	1-	13			1938	p = 73.3; p = 27.5	
$152 Eu^p$	-72823.0 -72810.1	1.3	78 2331	0.0004			165	ns	10	1+	13			1978	IT=100 IT=100	
$^{152}Eu^q$	-72798.5	1.3	89.8496	0.0004			384	ns	10	4^{+}	13			1970	IT=100	
¹⁵² Eu ^r	-72740.4	1.3	147.86	0.10			95.8	m	0.4	8-	13	15Hu02	Т	1963	IT=100	
¹⁵² Gd	-74706.9	1.2					108	Ty	8	0^{+}	13			1938	IS=0.20 1; α =100; 2 β^+ ?	
¹⁵² Tb	-70720	40					17.5	h	0.1	2^{-}	13			1959	$\beta^{+}=100; \alpha < 7e-7$	
$^{152}\text{Tb}^m$	-70380	40	342.15	0.16			960	ns	10	5-	13			1972	IT=100	
¹⁵² Tb ⁿ	-70220	40	501.74	0.19			4.2	m	0.1	8+	13			1971	IT=78.9 6; β^+ =21.1 6	
¹⁵² Dy	-70118	5					2.38	h	0.02	0+	13			1958	$\varepsilon \approx 100; \alpha = 0.1007$	
¹⁵² Ho	-63605	13	160	1			161.8	s	0.3	$2^{-}_{0^{+}}$	13			1963	$\beta^+=883; \alpha=123$	
152 Hom 152 Hom	-63445	13	160	1			49.8	s	0.2	9 ⁺	13			1963	β =89.2 17; α =10.8 17	
152 Er	-00585	13	3019.59	0.19			8.4 10.2	μs	0.5	19 0 ⁺	13			1997	n = 100 $\alpha = 00.4; B^{\pm} = 10.4$	
152 Tm	-51720	50				÷	8.0	5	1.0	$(2^{\#})^{-}$	13			1905	$\beta^{+} = 100$	
$^{152}\text{Tm}^{m}$	-51720 -51820	240	-100	250		*	5.0	5	0.6	$(2\pi)^+$	13			1980	$\beta^{+}=100$	
$^{152}\text{Tm}^n$	-49060#	140#	2665#	130#			294	ns	12	(17^+)	13			1986	IT=100	*
¹⁵² Yb	-46270	150					3.03	s	0.06	0+	13			1982	$\beta^{+}=100$	
152 Yb ^m	-43530	150	2744.5	1.0			30	μs	1	(10^{+})	13			1995	IT=100	
¹⁵² Lu	-33420#	200#					650	ms	70	$(4^{-}, 5^{-}, 6^{-})$	13	88Ni02	Т	1987	$\beta^+=100; \beta^+p=157$	*
* ¹⁵² La	T : sym	netrized	from 298(+6-	23)												**
* ¹⁵² Pr	T : avera	age 90Ar	n31=3.7(0.2) 8	5Br08=3.8(0.2) 8	3Hi0	05=3.24(0.1	19)								**
$*^{152}$ Pm ⁿ	E : Ensi	DF: "Pro	bably feeds 7.	52 m level"	at 140) keV	r									**
* ¹⁵² Tm ⁿ	E : 2555	.05(0.19) above ¹⁵² Tm	_m												**
* ¹³² Lu	T : avera	age 88Ni	02=600(100)	871602=700)(100))										**
¹⁵³ Ba	-36470#	400#					116	ms	52	5/2-#		16Wu.A	TD	2016	$\beta^{-}=100; \beta^{-}n=3\#; \beta^{-}2n=0\#$	
¹⁵³ La	-46060#	300#					245	ms	18	5/2+#	06	16Wu.A	TD	1994	$\beta^{-}=100; \beta^{-}n=50\#$	
¹⁵³ Ce	-54910#	200#					865	ms	25	$3/2^{-}$ #	06	16Wu.A	TD	1994	$\beta^{-}=100; \beta^{-}n=0.01\#$	
¹⁵³ Pr	-61568	12					4.28	s	0.11	5/2-#	06			1987	$\beta^{-}=100; \beta^{-}n=0.02\#$	
¹⁵³ Nd	-67330.3	2.7					31.6	s	1.0	$(3/2)^{-}$	06			1987	$\beta^{-}=100$	
¹⁵³ Nd ^m	-67138.6	2.9	191.7	1.0			1.10	μs	0.04	$(5/2^+)$	06	10Si03	TJ	1996	IT=100	*
¹⁵³ Pm	-70648	9					5.25	m	0.02	5/2-	06			1962	$\beta^{-}=100$	
153 Sm	-72559.7	1.2	00.27	0.10			46.284	h	0.004	$3/2^+$	06			1938	$\beta^{-}=100$	
153 Sm ^m	-72461.3	1.2	98.37	0.10			10.6	ms	0.3	$\frac{11}{2^{-}}$	06	100 1/	T	1971	11=100 IS 52.10 (
153 Em	-/336/.2	1.3	1771.0	0.4			STABLE	***	(>550 Py)	5/2 ' 10/2-	06	12Da16	Ľ	1933	15=52.19 6 IT=100	
A grou	-/1390.2	1.4 red on m	1//1.U ext nage	0.4			475	ns	10	19/2	00			2000	11=100	
A-giou	P is continu	acu on no	ent page													

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

N	M		Table		TO DA	1912	2010 ta	Lift	(Continu	<i>u</i> , Exp	1411 7	Deferre	1 14	Vers of	Berry made and	
Nuclide	Mass ex (keV	Cess	er	Excitation pergy (keV)			r	1an-1	ne	<i>J</i> ^{<i>n</i>}	Ens	Reference	ce	discovery	intensities (%)	
	(ite t)	ei	ieigy (ke v)										discovery	intensities (<i>ii</i>)	
A-grou	up continued	1														
¹⁵³ Gd	-72882.6	1.2					240.4	d	1.0	$3/2^{-}$	06			1947	<i>ε</i> =100	
$^{153}\text{Gd}^m$	-72787.4	1.2	95.1736	0.0008			3.5	μs	0.4	$9/2^{+}$	06			1979	IT=100	
153 Gd ⁿ	-72711.4	1.2	171.188	0.004			76.0	μs	1.4	$(11/2^{-})$	06			1967	IT=100	
¹⁵³ Tb	-71313	4					2.34	d	0.01	$5/2^{+}$	06			1957	$\beta^{+}=100$	
¹⁵³ Tb ^m	-71150	4	163.175	0.005			186	μs	4	$11/2^{-}$	06			1965	IT=100	
¹⁵³ Dy	-69143	4					6.4	h	0.1	$7/2^{(-)}$	06			1958	$\beta^+ \approx 100; \alpha = 0.0094 \ 14$	
¹⁵³ Ho	-65012	5					2.01	m	0.03	$11/2^{-}$	06			1963	$\beta^+ \approx 100; \alpha = 0.051 \ 25$	
¹⁵³ Ho ^m	-64943	5	68.7	0.3			9.3	m	0.5	$1/2^{+}$	06			1963	$\beta^+ \approx 100; \alpha = 0.18.8$	
¹⁵³ Ho ⁿ	-62240	11	2772	10			229	ns	2	$(31/2^+)$	06			1980	IT=100	
¹⁵³ Er	-60469	9					37.1	s	0.2	$7/2^{(-)}$	06	85Ah.A	J	1963	α =53 3; β ⁺ =47 3	*
$^{153}Er^{m}$	-57671	9	2798.2	1.0			373	ns	9	$(27/2^{-})$	06			1979	IT=100	
$^{153}{\rm Er}^{n}$	-55221	9	5248.1	1.0			248	ns	32	$(41/2^{-})$	06			1979	IT=100	
¹⁵⁵ Tm	-53973	12					1.48	s	0.01	$(11/2^{-})$	06			1964	$\alpha = 913; \beta^+ = 93$	
¹⁵⁵ Tm ^m	-53930	12	43.2	0.2			2.5	s	0.2	$(1/2^+)$	06			1988	$\alpha = 923; \beta^+ = ?$	
¹⁵⁵ Yb	-47210#	200#	2700	100			4.2	s	0.2	7/2-#	06	88W105	D	1977	$\beta^+=?; \alpha=50\#; \beta^+p=0.008\ 2$	
153 Y b ^m	-44510#	220#	2700	100			15	μs	1	27/2=	06	077.01		1989	11=100	*
¹⁵⁵ Lu	-38370	150		-			900	ms	200	11/2	06	9/Ir01	D	1989	β^+ ?; $\alpha = ?; p = 0$	*
¹⁵⁵ Lu ^m	-38290	150	80	5			1#	s		1/2	06	9/lr01	ED	1997	β ?; α =?; 11=?; p=0	
153 Lun	-35870	150	2502.5	0.4			> 100	ns	2	23/2	06			1993	11=100 ITL 100	
153 Lu ^p	-35/40	150	2632.9	0.5			15	μs	3 (> 200)	27/2	06	000-11	т	1993	11=100 0+2	
153 HI	-27300#	300#	7504	100//			400#	ms	$(>200{\rm ns})$	1/2'#	00	005011	1	2000		
153 HIm	-26550#	320#	/50#	100#	000	05)	500#	ms		11/2 #					p ?;11 ?	
* INU 153 En	I avera		05=1.17(0.07) 90 1 a 1 2 = 1	.00(0.	.03)										**
* LI * 153 Vbm	F in Ex	SOLA	78 2 ± x													**
* 10 * ¹⁵³ Lu	$D \cdot p = 00$	6 decay	$70.2 \pm x$)1												**
* Lu	D.p=07	o uccay	18 110111 97110	/1												**
¹⁵⁴ Ba	-32820#	500#					53	ms	48	0^{+}		16Wu.A	TD	2016	$\beta^{-}=100$	
¹⁵⁴ La	-41530#	300#					161	ms	15			16Wu.A	TD	2016	$\beta^{-}=100; \beta^{-}n=20\#; \beta^{-}2n=0.1\#$	
¹⁵⁴ Ce	-52220#	200#					722	ms	14	0^{+}	09	16Wu.A	TD	1994	$\beta^{-}=100; \beta^{-}n=0.1\#$	
¹⁵⁴ Pr	-58100	110					2.3	s	0.1	(3^+)	09			1988	$\beta^{-}=100; \beta^{-}n=0.2\#$	
¹⁵⁴ Nd	-65820	50					25.9	s	0.2	0+	09			1970	$\beta^{-}=100$	
154 Nd ^m	-64520	50	1297.9	0.4			3.2	μs	0.3	(4^{-})	09	09Si21	ETJ	1970	IT=100	*
¹⁵⁴ Pm	-68510	50				*	2.68	m	0.07	(4+)	09	12So10	J	1958	$\beta^{-}=100$	
154 Pm ^m	-68490	40	20	12		*	1.73	m	0.10	(1^{-})	09	12So10	J	1958	$\beta^{-}=100$	
¹⁵⁴ Sm	-72455.2	1.5					STABLE		(>2.3 Ey)	0^{+}	09			1933	IS=22.75 29; $2\beta^{-}$?	
¹⁵⁴ Eu	-71738.1	1.3					8.601	У	0.010	3-	09			1947	$\beta^{-} \approx 100; \epsilon = 0.018 \ 12$	
$^{154}Eu^m$	-71669.9	1.3	68.1702	0.0004			2.2	μs	0.1	2^{+}	09			1964	IT=100	
¹⁵⁴ Eu ⁿ	-71592.8	1.3	145.3	0.3			46.3	m	0.4	(8^{-})	09			1975	IT=100	
¹⁵⁴ Gd	-73706.0	1.2					STABLE			0^{+}	09			1938	IS=2.18 3	
¹⁵⁴ Tb	-70160	50				*	21.5	h	0.4	$0^{(+\#)}$	09			1950	$\beta^+ \approx 100; \beta^- < 0.1$	
$^{154}\text{Tb}^m$	-70150	50	12	7		*	9.994	h	0.039	3-	09	09Gy01	Т	1972	$\beta^+=78.27$; IT=21.87; $\beta^-<0.1$	*
$^{154}\text{Tb}^n$	-69960#	160#	200#	150#		*	22.7	h	0.5	7-	09			1972	$\beta^+=98.2$ 6; IT=1.8 6	
$^{154}\text{Tb}^{p}$	-62160#	900#	8000#	900#			513	ns	42		09			1982	IT ?	
¹⁵⁴ Dy	-70394	7					3.0	My	1.5	0^+	09			1961	$\alpha = 100; 2\beta^+$?	
¹⁵⁴ Ho	-64639	8					11.76	m	0.19	2^{-}	09			1966	$\beta^+ \approx 100; \alpha = 0.0195$	
¹⁵⁴ Ho ^m	-64397	27	243	28	AD		3.10	m	0.14	8+	09			1968	$\beta^+=100; \alpha < 0.001; \text{IT} \approx 0$	
¹⁵⁴ Er	-62605	5					3.73	m	0.09	0^{+}	09			1963	$\beta^+ \approx 100; \alpha = 0.47 \ 13$	
¹⁵⁴ Tm	-54427	14				*	8.1	s	0.3	(2^{-})	09			1964	$\alpha = 545; \beta^+ = 465$	
$^{154}\text{Tm}^{m}$	-54350	50	70	50	BD	*	3.30	s	0.07	(9+)	09			1964	$\alpha = 585; \beta^+ = 425; \text{IT}?$	*
¹³⁴ Yb	-49932	17					409	ms	2	0+	09			1964	$\alpha = 92.6 \ 12; \ \beta^+ = 7.4 \ 12$	
¹³⁴ Lu	-39720#	200#					1#	s		(2^{-})	09			1981	β^+ ?	
¹⁵⁴ Lu ^m	-39660#	200#	60	12	AD		1.12	s	0.08	(9^+)	09	88V102	D	1981	$\beta^+ \approx 100; \beta^+ p = ?; \beta^+ \alpha = ?; \alpha = 0.002 = 100$	ŧ *
¹⁵⁴ Lu ⁿ	-3/000#	220#	2720#	100#			35	μs	3	(17+)	09			1990	11=100	*
154 Hf	-32670#	300#		20.11			2	s	1	(10^{+})	09			1981	$\beta \approx 100; \alpha \approx 0$	
154 MI ^m	-29960#	300#	2/10#	30#	. ,	000.	9	μs	4	(10^{+})	09			1989	11=100	*
* ¹⁵⁴ Nd ^m	E : from	a least-s	squares fit to	γ-ray energi	es in (0981	21									**
***'10''' 154 mm	E : estim	ated by	INUBASE IFO	ш /зва20<	25 Ke	v										**
* 1 m ^m	$D: \Pi de$	cay has	not been obs	served	1:02	$\rho +$:- 0	061 4							**
***'Lu''' .154 r "	$D: \beta p$	and β^{-}	α modes obs	1541m	v102;	p p	confirmed	1n 9	USh.A							**
***'Lu" .154110"	E:2431	.3 + 130 9 at -	24 + z, above	Lu" ; z e	estima	ited 1	100#100									**
***'Ht‴	E:42#2	s above	20/1 level, s	ee ENSDF'()	19											**
155 L o	_37030#	400#					101	me	28	5/2+#		16Wn A	TD	2016	$\beta^{-} = 100 \cdot \beta^{-} n = 60 \# \cdot \beta^{-} 2 n = 0 \#$	
155 Ce	_47780#	300#					312	me	20 7	5/2 # 5/2-#	05	16Wn A	TD	1994	$\beta^{-100}, \beta^{-1-00\pi}, \beta^{-21-0\pi}$ $\beta^{-100}, \beta^{-}n=0.2^{\pm}$	
155 pr	-55415	17					1 47	5	03	5/2-#	05	16Wn Δ	TD	1992	$\beta^{-}=100; \beta^{-}n=0.2$	
155 Nd	-62284	9					80	5	0.2	$3/2^{-}$ #	05	10 . u .A	10	1986	$\beta^{-}=100$	
¹⁵⁵ Pm	-66940	5					41.5	s	0.2	$(5/2^{-1})$	05			1982	$\beta^{-}=100$	
								-		×,)	-				•	

Chinese Physics C Vol. 41, No. 3 (2017) 030001

$ \begin{array}{c} 0.4 \text{ every minimation} \\ \hline 0.4 e$	Nuclide	Mass ex	cess		Excitatio	n	Η	Half-li	fe	J^{π}	Ens	Referenc	e	Year of	Decay modes and	
$ \begin{array}{c} 1.4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		(keV	')		energy (ke	eV)								discovery	intensities (%)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-grou	p continued .														
	¹⁵⁵ Sm	-70190.8	1.5				22.3	m	0.2	$3/2^{-}$	05			1951	$\beta^{-}=100$	
	¹⁵⁵ Sm ^m	-70174.3	1.6	16.5	0.5		2.8	μs	0.5	$5/2^{+}$		10Si03	ETJ	2010	IT=100	
	$^{155}Sm^{n}$	-69652.2	1.7	538.6	0.7		1.00	μs	0.08	$11/2^{-}$		10Si03	ETJ	2010	IT=100	
	¹⁵⁵ Eu	-71818.1	1.4				4.741	У	0.009	$5/2^+$	05	14Un01	Т	1947	$\beta^{-}=100$	*
$ \begin{array}{c} 100 \\ 100 $	¹⁵⁵ Gd	-72069.9	1.2	101.05	0.10		STABLE		0.07	3/2-	05			1933	IS=14.80 12	
	155 Gdm 155 Th	-/1948.8	1.2	121.05	0.19		5 22	ms	0.27	$\frac{11/2}{2/2^+}$	05			1967	11=100 c=100	
	155 DV	-/1250	10				5.32	d h	0.06	$\frac{3}{2^{-1}}$	05			1957	$\mathcal{E}=100$ $\mathcal{B}^+=100$	
	¹⁵⁵ Dv ^m	-68922	10	234 33	0.03		9.9	11	0.2	$(11/2^{-})$	05			1958	p = 100 IT=100	
	¹⁵⁵ Ho	-66040	17	201.00	0.05		48	m	1	$5/2^+$	05			1959	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁵ Ho ^m	-65898	17	141.97	0.11		880	μs	80	$(11/2^{-})$	05			1984	IT=100	
	¹⁵⁵ Er	-62209	6				5.3	m	0.3	$(7/2^{-})$	05			1969	$\beta^+ \approx 100; \alpha = 0.0227$	
	¹⁵⁵ Tm	-56626	10				21.6	s	0.2	$(11/2^{-})$	05			1971	$\beta^+=99.11\ 24;\ \alpha=0.89\ 24$	
	¹⁵⁵ Tm ^m	-56585	12	41	6		45	s	3	$1/2^{+}$	05	FGK12a	J	1990	$eta^+>$ 92; $lpha<$ 8	*
	¹⁵⁵ Yb	-50503	17				1.793	s	0.019	$(7/2^{-})$	05			1964	$\alpha = 894; \beta^+ = 114$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁵ Lu	-42545	19				68.6	ms	1.6	$(11/2^{-})$	05			1965	$\alpha = 902; \beta^+?$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁵ Lu ^m	-42524	20	21	4	AD	138	ms	8	$(1/2^+)$	05			1967	$\alpha = 76 \ 16; \beta^+$?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155 Lu ⁿ	-40/64	19	1781.0	2.0	AD	2.69	ms	0.03	25/2 #	05	110-50	т	1981	$\alpha \approx 100; 11'?$	
	155 To	-34170#	300#				840	ms	30 1 2	1/2 = (11/2)	05	115a59	1	2007	$p \approx 100; \alpha$?	.1.
	155 En	-23930# T: average	300# aa (yalua	e in dave) 1/	4Up01-17	30 1 (3 5)	5.2 08\$;12=1730(9	2)	1.5	(11/2)	07			2007	p=100	**
* ¹⁵⁵ Ta T: symmetrized from 2.3(+1.3-1.1) I: NUBASE expects 1/2 ⁺ 30#20 below ¹⁵⁶ La -33050# 400# 84 ms 78 16WuA TD 2016 $\beta^{-1}00; \beta^{-1}n' \beta^{-1}00; \beta^{-1}n' \beta^{-1}0; \beta^{-1}n' $	$*^{155}$ Tm ^m	I · favore	d α deca	v from ¹⁵⁹ L	$1/2^+$	50.1(5.5)	903112=1739(0	5)								**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ¹⁵⁵ Ta	T : symm	etrized fi	rom $2.9(+1.3)$	5-1.1)	I : N	UBASE expects	$1/2^{+}$	30#20 belc	w						**
		1.091111	iounicou n	212(11))		e brieb enpeets	1/2	20 20 2010							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁶ La ¹⁵⁶ Ce	-33050# -44820#	400# 300#				84 233	ms ms	78 9	0^{+}		16Wu.A 16Wu A	TD TD	2016 2016	$\beta^{-}=100; \beta^{-}n?$ $\beta^{-}=100; \beta^{-}n=1#$	
	156Pr	-51570#	200#				444	ms	6	0		16Wu.A	TD	1992	$\beta^{-}=100; \beta^{-}n=0.7\#$	
	¹⁵⁶ Nd	-60470	200				5.06	s	0.13	0^+	12	07Sh05	Т	1987	$\beta^{-}=100$	*
	$^{156}Nd^m$	-59040	200	1431.3	0.4		365	ns	145	(5-)	12	09Si21	ET	1998	IT=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁶ Pm	-64164	4				27.2	s	0.50	4+	12	16Ko.A	TJ	1986	$\beta^{-}=100$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁶ Pm ^m	-64014	4	150.3	0.1		5.6	s	0.6	1^{+}	12	16Ko.A	TJD	2007	IT \approx 98; $\beta^-=2\#$	
	¹⁵⁶ Sm	-69360	9				9.4	h	0.2	0^+	12			1951	$\beta^{-}=100$	
	156 Sm ^m	-67962	9	1397.55	0.09		185	ns	7	5-	12			1974	IT=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	156 Eu	- /0083	4				15.19	a	0.08	0+	12			1947	p = 100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	156 C dm	- 12534.9	1.2	2127 60	0.05		STABLE 1 2		0.1	7-	12			1955	IS=20.479 IT=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁶ Tb	-70091	1.2	2137.00	0.05		5 35	μs d	0.1	3-	12			1909	$\beta^+ \approx 100; \beta^- 2$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{156}\text{Tb}^{m}$	-70037	5	54	3		24.4	h	1.0	(7^{-})	12			1970	$p \approx 100, p$. IT=100	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{156}\mathrm{Tb}^n$	-70003	4	88.4	0.2		5.3	h	0.2	(0^+)	12			1950	IT=?; β^+ =?	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁶ Dy	-70529.0	1.2				STABLE		(>1 Ey)	0^{+}	12	58Ri23	Т	1948	IS=0.056 3; α ?; $2\beta^+$?	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁶ Ho	-65480	60				56	m	1	4^{-}	12			1957	$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁶ Ho ^m	-65430	60	52.37	0.30		9.5	s	1.5	1^{-}	12			1995	IT \approx 100; β^+ ?	*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁶ Ho ⁿ	-65304	28	170	70	MD	7.6	m	0.3	(9^+)	12			1975	$\beta^{+}=75;$ IT ?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁵⁰ Er	-64212	25				19.5	m	1.0	0^{+}	12			1967	$\beta^+=100; \alpha=17e-64$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	156 Tm	-56835	14	400#	200#		83.8	S	1.8	2^{-}	12			1971	$\beta^+ \approx 100; \alpha = 0.064 \ 10$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	156 Tm ⁿ	-30440#	200#	400#	200#	DN	400	ns	2	(11)	12	017-09	т	1985	11=100	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	156 Yh	-53266	9	non ex	listent	N IN	26.1	s c	07	9 0+	12	911008	1	1970	$\beta^{+}-90.2:\alpha-10.2$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	156 L II	-33200 -43700	50				* 494	me	12	$(2)^{-}$	12			1970	$p^{-2} \beta^{+} - 5^{\pm}$	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	¹⁵⁶ Lu ^m	-43680	240	20	250		* 198	ms	2	$(2)^{+}$	12	96Pa01	D	1979	$\alpha = 94.6; \beta^{+}.2$	*
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	¹⁵⁶ Hf	-37820	150				23	ms	1	0+	12	96Pa01	D	1979	$\alpha = 973; \beta^+?$	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{156}\mathrm{Hf}^m$	-35860	150	1959.0	1.0	AD	480	μs	40	8+	12	96Pa01	Т	1979	<i>α</i> =100	*
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	¹⁵⁶ Ta	-25860#	300#				106	ms	4	(2^{-})	12			1992	p=71 3; β+=29 3	
* ¹⁵⁶ Nd T: others 89Ok.A=5.51(0.10) 87Gr12=5.47(0.11), see discussion in 07Sh05 * ¹⁵⁶ Pm T: unweighed average 16Ko.A=27.78(0.07) 87Gr12=26.70(0.10) * ¹⁵⁶ Db ^m E: derived from E3 24h to 4 ⁺ 49.630 level and $E(IT) < B(L)=9$ keV * ¹⁵⁶ Dy T: lower limit is for α decay * ¹⁵⁶ D ^m E: Error not given, estimated by NUBASE * ¹⁵⁶ Tm ^m E: 203.6 keV above unknown level * ¹⁵⁶ Tm ⁿ I: see also the discussion in ENSDF'03 * ¹⁵⁶ Hf D: derived from original α =98(9)% * ¹⁵⁶ Hf D: derived from original α =100(6)% * ¹⁵⁶ Hf ^m T: average 96Paol 1=520(10) 88 Ho A=444(17)	156 Ta ^m	-25770#	300#	94	8	AD	360	ms	40	(9^{+})	12			1993	β ⁺ =95.8 9; p=4.2 9	
* ¹⁵⁰ Pm T : unweighed average 16Ko.A=27.78(0.07) 87Gr12=26.70(0.10) * ¹⁵⁶ D ^m E : derived from E3 24h to 4 ⁺ 49.630 level and $E(IT) < B(L)=9$ keV * ¹⁵⁶ D ⁿ T : lower limit is for α decay * ¹⁵⁶ D ^m E : Error not given, estimated by NUBASE * ¹⁵⁶ Tm ^m E : 203.6 keV above unknown level * ¹⁵⁶ Tm ⁿ I : see also the discussion in ENSDF'03 * ¹⁵⁶ Lu ^m D : derived from original α =98(9)% * ¹⁵⁶ Hf D : derived from original α =100(6)% * ¹⁵⁶ Hf T : average 96Pa01=520(10) 81Ho A=444(17)	* ¹⁵⁶ Nd	T : others	890k.A	=5.51(0.10)	87Gr12=5	5.47(0.11), see discussion	n in 07	7Sh05							**
**** 15° E : derived from E3 24h to 4 ⁺ 49.630 level and $E(11) < B(L) = 9 \text{ keV}$ * ¹⁵⁶ Dy T : lower limit is for α decay * ¹⁵⁶ Ho ^m E : Error not given, estimated by NUBASE * ¹⁵⁶ Tm ⁿ E : 203.6 keV above unknown level * ¹⁵⁶ Tm ⁿ I : see also the discussion in ENSDF'03 * ¹⁵⁶ Lu ^m D : derived from original $\alpha = 98(9)\%$ * ¹⁵⁶ Hf D : derived from original $\alpha = 100(6)\%$ * ¹⁵⁶ Hf T : average 96Pa01=520(10) 81 Ho $\Delta = 444(17)$	* ¹⁵⁶ Pm	T : unwei	ighed ave	rage 16Ko.	A=27.78(0	.07) 87G	r12=26.70(0.10)								**
****>Dy 1:10wer limit is for α decay *156Ho ^m E: Error not given, estimated by NUBASE *156Tm ^m E: 203.6 keV above unknown level *156Tm ⁿ I: see also the discussion in ENSDF'03 *156Lu ^m D: derived from original α =98(9)% *156Hf D: derived from original α =100(6)% *156Hf ^m T: average 96Pa01=\$20(10) 81Ho A=444(17)	* ¹⁵⁰ Tb ^m	E : derive	ed from E	3 24h to 4 ⁺	49.630 le	vel and E	$\mathcal{E}(\Gamma\Gamma) < B(L) = 9 \mathrm{k}$	κeV								**
* ¹⁵⁶ Tm ^m E: Error not given, estimated by NUBASE * ¹⁵⁶ Tm ^m E: 203.6 keV above unknown level * ¹⁵⁶ Tm ⁿ I: see also the discussion in ENSDF'03 * ¹⁵⁶ Lu ^m D: derived from original α =98(9)% * ¹⁵⁶ Hf D: derived from original α =100(6)% * ¹⁵⁶ Hf ^m T: average 96Pa01=\$20(10) 81Ho A=444(17)	*150Dy	T: lower	limit is f	or α decay	1 NT											**
* If $L : 2000 \text{ KeV}$ above unknown rever * ¹⁵⁶ Tm ⁿ I: see also the discussion in ENSDF'03 * ¹⁵⁶ Lu ^m D: derived from original $\alpha = 98(9)\%$ * ¹⁵⁶ Hf D: derived from original $\alpha = 100(6)\%$ * ¹⁵⁶ Hf ^m T: average 96Pa01=520(10) 81Ho A=444(17)	* ¹⁵⁶ Tm ^m	E : Error E · 202 4	hot given	i, estimated	UY INUBAS	5E										**
* ¹⁵ Lu ^m D: derived from original α =98(9)% * ¹⁵ Hf D: derived from original α =100(6)% * ¹⁵ Hf T: average 96Pa01=\$20(10) 81Ho A=444(17)	* 1111 * ¹⁵⁶ Tm ⁿ	E: 203.0 L: 666 als	the die	ve ulkliown	NSDF'02											**
* ¹⁵⁶ Hf ^m D: derived from original $\alpha = 100(6)\%$ * ¹⁵⁶ Hf ^m T: average 96Pa01=520(10) 81Ho A=444(17)	* ¹⁵⁶ Lu ^m	D : derive	ed from o	original $\alpha=9$)8(9)%											**
$*^{156}$ Hf ^m T · average 96Pa01=520(10) 81Ho A=444(17)	* ¹⁵⁶ Hf	D : derive	ed from o	riginal $\alpha = 1$.00(6)%											**
······································	$*^{156}Hf^m$	T : averas	ge 96Pa0	1=520(10) 8	81Ho.A=44	44(17)										**

D : derived from original $\alpha = 38(9)\%$ D : derived from original $\alpha = 100(6)\%$ T : average 96Pa01=520(10) 81Ho.A=444(17) *¹⁵⁶Hf *¹⁵⁶Hf^m

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Nuclide	Mass ex	cess		Excitation		Ha	lf-life		J^{π}	Ens	Referenc	e	Year of	Decay modes and	
	(keV	Ŋ()	e	nergy (keV	Ŋ								discovery	intensities (%)	
¹⁵⁷ Ce	-39930#	400#				175	ms	41	7/2+#		16Wu.A	TD	2016	$\beta^{-}=100; \beta^{-}n=2\#$	
¹⁵⁷ Pr	-48540#	300#				307	ms	21	5/2-#		16Wu.A	TD	2016	$\beta^{-}=100; \beta^{-}n=6\#$	*
¹⁵⁷ Nd	-56462	25				1.15	s	0.03	5/2-#	16	16Wu.A	TD	1992	$\beta^{-}=100$	
¹⁵⁷ Pm	-62297	7				10.56	s	0.10	$(5/2^{-})$	16			1987	$\beta^{-}=100$	
¹⁵⁷ Sm	-66678	4				8.03	m	0.07	3/2-#	16			1973	$\beta^{-}=100$	
¹⁵⁷ Eu	-69459	4				15.18	h	0.03	$5/2^+$	16			1951	$\beta^{-}=100$	
¹⁵⁷ Gd	-70823.5	1.2				STABLE			$3/2^{-}$	16			1933	IS=15.65 2	
157 Gd ^m	-70759.6	1.2	63.916	0.005		460	ns	40	$5/2^+$	16			1964	IT=100	
157 Gdn	-70397.0	1.2	426.539	0.023		18.5	μs	2.3	$11/2^{-}$	16			1961	IT=100	
¹⁵⁷ Tb	-70763.4	1.2				71	y	7	$3/2^+$	16			1960	ε=100	
¹⁵⁷ Dy	-69425	5				8.14	ĥ	0.04	$3/2^{-}$	16			1953	$\beta^{+}=100$	
¹⁵⁷ Dy ^m	-69263	5	161.99	0.03		1.3	μs	0.2	$9'/2^+$	16			1974	IT=100	
¹⁵⁷ Dy ⁿ	-69226	5	199.38	0.07		21.6	ms	1.6	$11/2^{-}$	16			1970	IT=100	
¹⁵⁷ Ho	-66833	23				12.6	m	0.2	$7/2^{-}$	16			1966	$\beta^{+}=100$	
¹⁵⁷ Er	-63414	27				18.65	m	0.10	$3/2^{-}$	16			1966	$\beta^{+}=100$	
$^{157}\mathrm{Er}^m$	-63259	27	155.4	0.3		76	ms	6	$9/2^+$	16			1971	IT=100	
¹⁵⁷ Tm	-58709	28				3.63	m	0.09	$1/2^+$	16			1974	$\beta^{+}=100$	
¹⁵⁷ Yb	-53422	11				38.6	s	1.0	$7'/2^{-}$	16			1970	$\beta^{+}=99.5; \alpha=0.5$	
¹⁵⁷ Lu	-46441	12				6.8	s	1.8	$(1/2^{+}, 3/2^{+})$	16			1977	β^+ ?; $\alpha=?$	*
$^{157}Lu^m$	-46420	12	20.9	2.0	AD	4.79	s	0.12	$(11/2^{-})$	16			1972	$\beta^{+}=?; \alpha=62$	
¹⁵⁷ Hf	-38900#	200#				115	ms	1	$(7/2^{-})$	16			1965	$\alpha = 944; \beta^+ = 149$	
¹⁵⁷ Ta	-29590	150				10.1	ms	0.4	$1/2^{+}$	16			1979	$\alpha = ?; p = 3.4 \ 12; \beta^+ = 1\#$	
157 Ta ^m	-29570	150	22	5	AD	4.3	ms	0.1	$11/2^{-}$	16			1996	$\alpha = ?; \beta^+ = 1\#; p = 0$	
¹⁵⁷ Ta ⁿ	-28000	150	1593	9	AD	1.7	ms	0.1	25/2-#	16			1996	$\alpha = 100$	
^{157}W	-19470#	400#				275	ms	40	$(7/2^{-})$	16	10Bi03	D	2010	$\beta^{+}=100; \alpha=0$	
$^{157}W^{p}$	-19150#	400#	320	30	AD				$(9/2^{-})$	16			2010	IT ?	
∗ ¹⁵⁷ Pr	T : symn	netrized f	from 295(+29	-11)					(-7)						**
¹⁵⁷ Lu	T : ENSE	F'16 ave	erage of confl	icting 91To	009=5.7(0)).5) 91Le15=9)2Po1	4=9.60	0.8)						**

¹⁵⁸Ce -36660# 400# 99 ms 93 0^{+} 16Wu.A TD 2016 $\beta^{-}=100; \beta^{-}n?$ 158Pr 181 $\beta^{-}=100; \beta^{-}n=10\#$ -44330#300# ms 14 16Wu.A TD 2016 ¹⁵⁸Nd 0^{+} $\beta^{-}=100$ -54060#200# 810 ms 30 13 16Wu.A TD 1992 ¹⁵⁸Pm $\beta^{-}=100$ -5908904 1987 13 48 S 0.5 ¹⁵⁸Pm^m -58940# 15YoZX TD IT=100 150# 50# 50# > 16μs 2015 ¹⁵⁸Sm m 0.03 -652505 5.30 0^{+} 04 1970 $\beta^{-}=100$ ¹⁵⁸Sm^m -63971 1279.1 IT=100 5 115 (5^{-}) (1^{-}) 04 1973 1.8 ns 18 158Eu 45.9 04 -6725510 1951 $\beta^{-}=100$ 0.2 m ¹⁵⁸Gd -70689.5 0+ 04 1933 , IS=24.84 7 1.2 STABLE ¹⁵⁸Tb $\beta^+=83.47; \beta^-=16.67$ -69470.7 11 04 1957 1.4 180 у 3-¹⁵⁸Tb^m -69360.4 110.3 10.70 0-1957 IT \approx 100; $\beta^- < 0.6$; $\beta^+ < 0.01$ 1.8 1.2 0.17 04 s 158 Tbⁿ -69082.3 2.3 388.4 (7^{-}) 1961 IT=100 1.8 400 04 μs 40 ¹⁵⁸Dy -70407.3 0^{+} IS=0.095 3; α ?; $2\beta^+$? 2.4 STABLE 04 1938 ¹⁵⁸Ho 27 5+ $\beta^+ \approx 100; \alpha$? -6618811.3 0.4 04 1961 m ¹⁵⁸Ho^m -6612127 67.199 0.010 28 2 2-04 1960 IT>81; $\beta^+ < 19$ m ¹⁵⁸Hoⁿ -66010# 80# 2.3 (9^+) 1970 $\beta^+>93;$ IT<7# 180# 70# 21.3 04 m ¹⁵⁸Er -65304 25 2.29 0.06 0+ ε=100 h 07 1961 ¹⁵⁸Tm -5870325 3.98 2^{-} 1970 $\beta^{+}=100$ m 0.06 04 $^{158}\mathrm{Tm}^{m}$ -58650# 100# 50# 100# 20 ns (5^+) 04 81Dr07 Т 1981 IT ? ¹⁵⁸Yb -560101.49 0.13 0+ 1967 $\beta^+ \approx 100; \alpha \approx 0.0021 12$ 8 04 m ¹⁵⁸Lu -4721215 10.6 0.3 2^{-} 04 95Ga.A J 1979 $\beta^+=99.09\ 20;\ \alpha=0.91\ 20$ s ¹⁵⁸Hf -42102 17 0.99 s 0.03 0^+ 04 15Li24 Т 1965 $\beta^+=55.7\ 19;\ \alpha=44.3\ 19$ ¹⁵⁸Ta -31170# 200# 49 ms 8 (2^{-}) 04 97Da07 TD 1979 $\alpha = 964; \beta^+?$ 158 Ta^m $\alpha = 955; \beta^+?; IT?$ -31030# 200# 141 11 AD 36.0 ms 0.8 (9+) 04 97Da07 ETJ 1979 ¹⁵⁸Taⁿ -28360# 200# 2805 16 AD 6.1 μs 0.1 (19^{-}) 14Ca03 TJD 2014 IT=98.6 2; α=1.4 2 * ¹⁵⁸W 0^+ -23630# 300# 1.25 ms 0.21 06 1981 *α*=100 $^{158}W^m$ -21740#300# 1889 8 AD 143 μs 19 (8^+) 06 1995 α=100 *¹⁵⁸Nd T : symmetrized from 820(+15-36) ** * 1.__ *¹⁵⁸Tm^m I : $T \approx 20$ s in 81Dr07 was a typo. Value in Fig. 2 was correct. See 96Dr.A **

*¹³⁶Tm⁴⁷ 1: $T \approx 20$ s in 81Dr07 was a typo. Value in Fig. 2 was correct. See 96Dr.A *¹⁵⁸Ta T : average 97Da07=72(12) 96Pa01=46(4) with Birge ratio B=2

*¹⁵⁸Ta D: derived from original $\alpha \approx 100(8)\%$

* 158 Tam T : average 97Da07=37.7(1.5) 96Pa01=35(1) 79Ho10=36.8(1.6)

 $*^{158}$ Taⁿ E : 14Ca03=2668 above 9⁺ isomer

**

**

**

Nuclide	Mass ex (keV	(cess ()		Excitatio energy (ke	n V)		ł	Half-l	ife	J^{π}	Ens	Reference	e	Year of discovery	Decay modes and intensities (%)	
159 D	41000#	400#					124	-	12	5/2-#		16W/0 A	TD	2016	$\beta^{-} = 100; \beta^{-} = 20#$	
159 N.d	-41090#	400# 300#					500	me	45 30	$\frac{3}{2} + \frac{3}{2}$	13	16Wu A	TD	2010	$\beta = 100; \beta = 1 = 50 \#$ $\beta = -100; \beta = n = 0.02 \#$	4
159 D m	- 56554	10					1 40	6	0.13	5/2-#	12	16Wu A	т	1008	$\beta^{-}=100, \beta^{-}=100$	*
¹⁵⁹ Pm ^m	-55089	10	1465.0	0.5			1.49	5	0.13	5/2 #	12	15VoZX	I FTD	2015	p = 100 IT-100	*
159 Sm	-62208	6	1405.0	0.5			11 37	μs	0.17	$5/2^{-}$	12	13 102A	EID	1986	$B^{-}-100$	
159 Sm ^m	-60931	6	1276.8	0.5			11.57	ne	8	$(11/2^{-})$	12	09Ur04	FT	2009	p = 100 IT = 100	
159 Eu	-66043	4	1270.0	0.5			18.1	m	01	5/2+	12	070104	LI	1961	$\beta^{-}=100$	
159Gd	-68561.4	12					18 479	h	0.004	$3/2^{-}$	12			1949	$\beta^{-}=100$ $\beta^{-}=100$	
¹⁵⁹ Th	-69532.4	1.2					STABLE		0.001	$\frac{3}{2^+}$	12	12Vi10	T	1933	IS=100	*
¹⁵⁹ Dv	-69167.1	1.5					144 4	d	0.2	$3/2^{-}$	12	12,1110	5	1951	$\epsilon = 100$	
159 Dv ^m	-68814.3	1.5	352.77	0.14			122	цs	3	$\frac{11}{2^{-1}}$	12			1965	IT=100	
¹⁵⁹ Ho	-67330	3					33.05	m	0.11	7/2-	12			1958	$\beta^{+}=100$	
159 Ho ^m	-67124	3	205.91	0.05			8.30	s	0.08	$1/2^+$	12			1966	, IT=100	
¹⁵⁹ Er	-64561	4					36	m	1	$3/2^{-}$	12			1962	$\beta^{+}=100$	
¹⁵⁹ Er ^m	-64378	4	182.602	0.024			337	ns	14	$9'/2^+$	12			1971	IT=100	
159 Ern	-64132	4	429.05	0.03			590	ns	60	$11/2^{-}$	12			1971	IT=100	
¹⁵⁹ Tm	-60570	28					9.13	m	0.16	$5/2^+$	12			1971	$\beta^{+}=100$	
¹⁵⁹ Yb	-55839	18					1.67	m	0.09	$5/2^{(-)}$	12			1975	$\beta^{+}=100$	
¹⁵⁹ Lu	-49710	40				*	12.1	s	1.0	$1/2^+$	12	FGK12a	J	1980	$\beta^{+} \approx 100; \alpha = 0.1 \#$	*
¹⁵⁹ Lu ^m	-49610#	90#	100#	80#		*	10#	s		$11/2^{-}$ #					β^{+} ?; IT ?; α ?	
¹⁵⁹ Hf	-42853	17					5.20	s	0.10	$7'/2^{-}$	12	96Pa01	Т	1973	$\beta^+=657; \alpha=357$	
¹⁵⁹ Ta	-34439	20					1.04	s	0.09	$1/2^+$	12	97Da07	Т	1979	β^+ ?; $\alpha=34.5$	*
¹⁵⁹ Ta ^m	-34375	19	64	5	AD		560	ms	60	$11/2^{-}$	12			1994	$\alpha = 55 1; \beta^+$?	
¹⁵⁹ W	-25300#	300#					8.2	ms	0.7	$7/2^{-}$ #	12	96Pa01	TD	1981	$\alpha = 82.16; \beta^+?$	*
¹⁵⁹ Re	-14750#	310#					40#	μs		$1/2^{+}$ #				2006	p ?; α ?	
159 Re ^m	-14540#	300#	210#	50#			21.6	μs	3.3	$11/2^{-}$	12	07Pa27	Т	2006	p=?; α=7.5 35	*
* ¹⁵⁹ Nd	T : symn	netrized fi	rom 485(+39	9–20)												**
* ¹⁵⁹ Pm	T : avera	ge 16Wu.	A=1.48(0.18	8) 05Ic02=1	.5(0.2)											**
* ¹⁵⁹ Tb	J : 3/2 co	nfirmed b	by a novel tee	chnique in 1	12Vi10	(see te:	xt)									**
* ¹⁵⁹ Lu	J : favore	d α deca	y from ¹⁶³ Ta	ı 1/2 ⁺												**
* ¹⁵⁹ Ta	T : avera	ge 97Da0	07=0.83(0.18	3) 96Pa01=1	.10(0.1	0)										**
$*^{159}W$	D : deriv	ed from c	original α=92	2(23)%												**
* ¹³⁹ Re ^m	T : avera	ge 07Pa2	7=23(6) 06Jo	010=21(4)												**
¹⁶⁰ Pr	-36520#	400#					170	ms	140			16Wu.A	TD	2016	$\beta^{-}=100$	
¹⁶⁰ Nd	-47130#	300#					439	ms	37	0^{+}	13	16Wu.A	TD	1985	$\beta^{-}=100; \beta^{-}n=0.08\#$	*
¹⁶⁰ Pm	-53000#	200#					725	ms	57	0-#	13	16Wu.A	TD	2012	$\beta^{-}=100; \beta^{-}n=0.03\#$	
¹⁶⁰ Sm	-60235	6					9.6	s	0.3	0+	05			1986	$\beta^{-}=100$	
160 Sm ^m	-58874	6	1361.3	0.4			120	ns	46	(5^{-})		09Si21	ETJ	2009	, IT=100	
160 Sm ⁿ	-57478	6	2757.3	0.4			1.8	μs	0.4	(11^+)		16Pa01	ETJ	2016	IT=100	
¹⁶⁰ Eu	-63480	10					42.4	s	0.2	(5-)	05	16Ha.A	TJ	1973	$\beta^{-}=100$	
160 Eu ^m	-63400	12	80	7			29.9	s	0.3	(1 ⁻)	05	16Ha.A	ETJ	2016	$\beta^{-}=100$	
¹⁶⁰ Gd	-67941.7	1.3					STABLE		(>31 Ey)	0+	05	01Da22	Т	1933	$IS=21.86\ 19;\ 2\beta^{-}$?	
¹⁶⁰ Tb	-67836.3	1.3					72.3	d	0.2	3-	05			1943	$\beta^{-}=100$	
¹⁶⁰ Dy	-69672.7	0.8					STABLE			0^{+}	05			1938	IS=2.329 18	
¹⁶⁰ Ho	-66383	15					25.6	m	0.3	5^{+}	05			1950	$\beta^{+}=100$	
160 Ho ^m	-66323	15	59.98	0.03			5.02	h	0.05	2^{-}	05			1955	IT=73 3; $\beta^+=27$ 3	
160 Ho ⁿ	-66186	22	197	16			3	s		(9^+)	05	GAu	Е	1988	IT=100	*
¹⁶⁰ Er	-66064	24					28.58	h	0.09	0+	05			1954	ε=100	
¹⁶⁰ Tm	-60300	30					9.4	m	0.3	1^{-}	05			1970	$\beta^{+}=100$	
160 Tm ^m	-60230	40	70	20			74.5	s	1.5	(5^{+})	05			1983	IT=85 5; $\beta^+=15$ 5	
160 Tm ⁿ	-60200#	60#	100#	50#			200	ns		(8)	05			1986	IT=100	*
¹⁶⁰ Yb	-58163	7					4.8	m	0.2	0+	05			1967	$\beta^{+}=100$	
¹⁶⁰ Lu	-50270	60				*	36.1	s	0.3	2^{-} #	05			1979	$\beta^{+}=100; \alpha < 1e-4$	
$^{160}Lu^m$	-50270#	120#	0#	100#		*	40	s	1		05			1980	$\beta^+\approx 100; \alpha$?	
¹⁶⁰ Hf	-45939	10					13.6	s	0.2	0^+	05			1973	$\beta^+=99.32; \alpha=0.72$	
¹⁶⁰ Ta	-35820	50				&	1.70	s	0.20	(2^{-})	05	96Pa01	JD	1979	β^+ ?; α =?	*
160 Ta ^m	-35710	240	110	250		&	1.55	s	0.04	(9)+	05	96Pa01	TJ	1979	$\beta^{+}=66\#; \alpha=?$	*
^{160}W	-29330	150	-	-			90	ms	5	0+	05	96Pa01	TD	1979	$\alpha = 87.8; \beta^+?$	*
¹⁶⁰ Re	-16740#	300#					611	μs	7	(4^{-})	05	11Da12	TJD	1992	p=89 1; α =11 1	*
160 Re ^m	-16560#	300#	182	16			2.8	μs	0.1	(9+)		11Da01	JT	2011	IT=100	
∗ ¹⁶⁰ Nd	I : first se	en in 858	Si25 in the th	ermal fissic	on of ²⁵²	² Cf: 12	Ku26>300r	is	~	(~)						**
¹⁶⁰ Ho ⁿ	E : less fl	han 55 ke	V above 169	.61 level fr	om EN	SDF		·								**
^{∗160} Tm ⁿ	E: 98.2 -	+ x, x esti	imated 0#50													**
.160 To	J : from	α correlat	tion with 1561	Lu line												**
* 1a				-												
$*^{160}$ Ta ^m	J : from	α correlat	tion with 1561	Lu ^m line												**

*¹⁶⁰Re J : protons from $d_{3/2}$ orbital; 92Pa05=(2⁻)

Chinese Physics C Vol. 41, No. 3 (2017) 030001

			Table	I. The	NUB	ASE	2016 tal	ble (conti	ued, Expl	anat	ion of Ta	ble o	on page 18	3)	
Nuclide	Mass ex	(cess	e	Excitatio	n V)]	Half-I	life	J^{π}	Ens	Reference	e	Year of discovery	Decay modes and intensities (%)	
	(110)	/	, i	inergy (ne	,									discovery	intensities (70)	
161 N.d	_42590#	400#					215	me	76	1/2 ^{-±}	13	16Wu A	TD	2012	$\beta^{-} = 100; \beta^{-} = 0.6 $	
161 pm	-50240#	300#					1.05	6	0.15	5/2 ⁻ ±	13	16Wu Δ	TD	2012	$\beta^{-}=100; \beta^{-}=0.0\%$ $\beta^{-}=0.0\%$	
161 Pm ^m	-49270#	300#	966.0	0.5			0.89	us.	0.09	$(13/2^+)$) 12	15YoZX	ETI	2012	F = 100, F = 100, m = 0.1	
¹⁶¹ Sm	-56672	7	200.0	0.5			4.8	s s	0.05	7/2+#	′ 11	10 102/1	215	1998	$\beta^{-}=100$	
¹⁶¹ Eu	-61792	10					26.2	s	2.3	5/2+#	11	16Wu.A	Т	1986	$\beta^{-}=100$	*
¹⁶¹ Gd	-65505.8	1.6					3.646	m	0.003	5/2-	11	94It.A	T	1949	$\beta^{-}=100$	
¹⁶¹ Tb	-67461.6	1.4					6.89	d	0.02	$3/2^+$	11			1949	$\beta^{-}=100$	
¹⁶¹ Dv	-68055.8	0.8					STABLE	-		$5/2^+$	11			1934	IS=18.889 42	
161 Dv ^m	-67570.2	0.8	485.56	0.16			760	ns	170	$11/2^{-1}$	11	12Sw01	Т	2012	IT=100	
¹⁶¹ Ho	-67197.3	2.2					2.48	h	0.05	7/2-	11			1954	ε=100	
161 Ho ^m	-66986.2	2.2	211.15	0.03			6.76	s	0.07	$1/2^+$	11			1965	IT=100	
¹⁶¹ Er	-65202	9					3.21	h	0.03	$3'/2^{-}$	11			1954	$\beta^{+}=100$	
$^{161}\mathrm{Er}^m$	-64806	9	396.44	0.04			7.5	μs	0.7	$11/2^{-1}$	11			1969	IT=100	
¹⁶¹ Tm	-61899	28					30.2	m	0.8	$7/2^+$	11			1959	$\beta^{+}=100$	
161 Tm ^m	-61891	28	7.51	0.24			5#	m		$(1/2^{+})$	11			1981	β^{+} ?; IT ?	
¹⁶¹ Tm ⁿ	-61821	28	78.20	0.03			110	ns	3	7/2-	11			1981	IT=100	
¹⁶¹ Yb	-57839	15					4.2	m	0.2	$3/2^{-}$	11			1974	$\beta^{+}=100$	
¹⁶¹ Lu	-52562	28					77	s	2	$1/2^+$	11			1973	$\beta^{+}=100$	
$^{161}Lu^{m}$	-52388	28	174	4			7.3	ms	0.4	$(9/2^{-})$	11			1973	IT=100	*
¹⁶¹ Hf	-46315	23					18.4	s	0.4	$(7/2^{-})$	15			1973	$\beta^+ \approx 100; \alpha < 0.13$	
161 Hf ^m	-45986	23	329.0	0.5			4.8	μs	0.2	$(13/2^+)$) 15			2014	IT=100	
¹⁶¹ Ta	-38779	24				*	3#	s		$(1/2^+)$	11			1979	β^+ ?; α ?	
161 Ta ^m	-38718	12	61	23	AD	*	3.08	s	0.11	$(11/2^{-})$) 11	12Th13	D	1979	β^+ ?; $\alpha=7(3)$	
¹⁶¹ W	-30560#	200#					409	ms	16	7/2-#	11	96Pa01	Т	1973	$\alpha = 73 3; \beta^+ = 27 3$	*
¹⁶¹ Re	-20840	150					440	μs	1	$1/2^+$	11	06La16	Т	1979	p \approx 100; α <1.4	
161 Re ^m	-20720	150	123.7	1.3			14.7	ms	0.3	$11/2^{-}$	11			1979	α=93.0 3; p=7.0 3	
¹⁶¹ Os	-9980#	400#					640	μs	60	$(7/2^{-})$	11			2010	$\alpha \approx 100$	
* ¹⁰¹ Eu	T : avera	ge 16Wu.	A=30.1(9.0	0) 90An3	1=24(4) 86M	a12=27(3))								**
$*^{101}Lu^{m}$	E : 166.5	(0.8) keV	above $(3/2)$	2 ⁺) level a	at x<1.	5 keV										**
* ¹⁰¹ W	T : avera	ge 96Pa0	1=409(18)	79Ho10=	410(40)										**
¹⁶² Nd	-39550#	400#					310	ms	200	0^{+}		16Wu.A	TD	2012	$\beta^{-}=100$	
¹⁶² Pm	-46370#	300#					630	ms	180	6-#	13	16Wu.A	TD	2012	$\beta^{-}=100; \beta^{-}n=0.8\#$	
¹⁶² Sm	-54530#	200#					2.7	s	0.3	0^{+}	07	16Wu.A	Т	2005	$\beta^{-}=100$	
¹⁶² Eu	-58700	40					11	s		(1^+)	07	16Wu.A	Т	1987	$\beta^{-}=100$	
162 Eu ^m	-58540	40	157	5			7.5	s	0.6	(6^+)	07	16Ko.A	ETJ	2016	$\beta^{-}=100$	
¹⁶² Gd	-64280	4					8.4	m	0.2	0^{+}	07			1967	$\beta^{-}=100$	

¹⁶²Tb -6568040 7.60 0.15 (1^{-}) 1965 $\beta^{-}=100$ m 16 ¹⁶²Dy -68181.5 0.8 STABLE 0+ 07 1934 IS=25.475 36 162 Dy^m -65993.4 2188.1 0.3 0.3 8^+ 11Sw02 ETD 2011 IT=100 0.9 8.3 μs ¹⁶²Ho -66042 3 15.0 1.0 1^{+} 07 1957 $\beta^{+}=100$ m $^{162}\mathrm{Ho}^m$ -65936 3 105.87 0.06 67.0 0.7 6-07 1961 IT=62; β^+ =38 m ¹⁶²Er -66334.50.8 STABLE (>140 Ty) 0^+ 07 56Po16 Т 1938 IS=0.139 5; α ?; $2\beta^+$? $^{162}\mathrm{Er}^{m}$ -64308.52026.01 $7^{(-)}$ 07 12Sw01 1974 IT=100 0.8 0.13 88 16 TJ ns ¹⁶²Tm -6147821.70 0.19 1-07 1963 $\beta^{+}=100$ 26 m $^{162}\mathrm{Tm}^m$ IT ?; $\beta^+=194$ -6135050 130 40 24.3 1.7 5+ 07 GAu Е 1974 s 162 Yb -5982615 18.87 m 0.19 0^+ 07 1963 $\beta^{+}=100$ ¹⁶²Lu -52830 80 1.37 0.02 $1^{(-)}$ 07 1978 $\beta^{+}=100$ m $^{162}Lu^m$ -52710# 220# 120# 200# 1.5 4^{-} # 07 1980 $\beta^+ \approx 100$; IT ? m * $^{162}Lu^n$ -52530# 220# 300# 200# 1.9 07 1980 $\beta^+ \approx 100$; IT ? m ¹⁶²Hf ¹⁶²Ta -49169 9 39.4 0.9 0^+ 07 1982 $\beta^+ \approx 100; \alpha = 0.008 1$ s -3978050 3.57 s 0.12 7^{+} # 16 1985 $\beta^+ \approx 100; \alpha = 0.074 \ 10; \beta^+ p ?$ ^{162}W -33999 18 1.19 s 0.12 0^+ 16 1973 β^+ ?; α =45.2 16 ¹⁶²Re -22500# 200# 107 ms 13 (2^{-}) 07 1979 $\alpha = 94.6; \beta^+?$ 162 Re^m -22330# 200# 175 9 AD 77 ms 9 (9⁺) 07 1979 $\alpha = 91.5; \beta^+?$ ¹⁶²Os -14440#300# $2.1 \ ms \ 0.1$ 0^{+} 07 1989 $\alpha = 100$ *¹⁶²Eu T: 16Wu.A=11.8(1.4) 87Gr12=10.6(1.0) but values include both ground-state and isomer ** * Eu *¹⁶²Eu J : from 16Ko.A, conf p5/2[413]n7/2[633],Kp=1+ **

*¹⁶²Er T : lower limit is for α decay

*¹⁶²Tm^m E : above 66.90 level and less than 192 keV, from ENSDF

**

N. 1.1				E is si				10.1.0	,	1	F	D.C.		N C	D 1 1	
Nuclide	Mass ex (keV	(cess ()		energy (keV)		На	ulf-life	9	J^{π}	Ens	Referenc	e	Year of discovery	intensities (%)	
163 D	42250#	400#					420		250	5 /2-#	12	1004- 4	TD	2012	$\rho = 100, \rho = -14$	
163 Pm	-43250#	400#					430	ms	350	5/2 #	13	16WU.A	TD	2012	p = 100; p = n = 1 # $\beta^{-} = 100$	
163 Eu	-56480	500# 70					1.5	s	0.5	$\frac{1}{2} + \frac{5}{2+4}$	10	10 wu.A	т	2012	$\beta = 100$ $\beta^{-} = 100$	
¹⁶³ Gd	-61314	8					68	ь с	3	$\frac{3}{2} \pi$ $\frac{7}{2+4}$	10	080802	1	1982	$\beta^{-}=100$ $\beta^{-}=100$	
$^{163}Gd^{m}$	-61176	8	137.8	1.0			23.5	s	10	$1/2^{-}$ #	10	14Ha38	ETD	2014	$\beta^{-}=100$	
¹⁶³ Tb	-64596	4	10,10	110			19.5	m	0.3	$3/2^+$	10	1111100	212	1966	$\beta^{-}=100$	
¹⁶³ Dy	-66381.2	0.8					STABLE			$5/2^{-}$	10			1934	IS=24.896 42	
¹⁶³ Ho	-66378.3	0.8					4.570	ky	0.025	$7/2^{-}$	10			1957	ε=100	*
163 Ho ^m	-66080.4	0.8	297.88	0.07			1.09	s	0.03	$1/2^{+}$	10			1957	IT=100	
¹⁶³ Ho ⁿ	-64268.9	0.9	2109.4	0.4			800	ns	150	$(23/2^+)$		12Sw01	ETJ	2012	IT=100	
¹⁶³ Er	-65168	5					75.0	m	0.4	$5/2^{-}$	10			1953	$\beta^{+}=100$	
163 Er ^m	-64723	5	445.5	0.6			580	ns	100	$(11/2^{-})$	10			1974	IT=100	
¹⁶³ Tm	-62729	6					1.810	h	0.005	$1/2^+$	10			1959	$\beta^{+}=100$	
$^{163}\text{Tm}^{m}$	-62642	6	86.92	0.05			380	ns	30	$(7/2)^{-}$	10			1975	IT=100	
163 Y b	-59299	15					11.05	m	0.35	$3/2^{-}$	10			1967	$\beta^+ = 100$	
163 Lu	-54/91	28					3.97	m	0.13	$\frac{1}{2^{(+)}}$	10			1979	p = 100 $R^{\pm} = 100$, $r_{\rm c} < 0.0001$	
163 To	-49204	25 40					40.0	s	0.0	(5/2)	10	ECV12	т	1982	$\beta^{+} = 100; \alpha < 0.0001$ $\beta^{+} \sim 100; \alpha \sim 0.2$	
163 Tom	-42330	40	140#	18#			10.0	5	1.0	$(0/2^{-})$	10	FGK12a	J	1965	$\beta^+ \approx 100, \alpha \approx 0.2$ $\beta^+ 2, \alpha 2, \text{ IT } 2$	*
163 W	-42390#	40 # 50	140#	10#	AD		2.63	s c	0.09	7/2-	10	FUK12a	J	1973	β^{+} 2; α^{-14} 2	*
$^{163}W^{m}$	-34430	50	480.3	0.7			154	ns	3	$13/2^+$	10			2010	J = 1, u = 1 + 2 JT = 100	
¹⁶³ Re	-26002	19	100.5	0.7			390	ms	70	$1/2^+$	10			1979	β^{+} 2: α =32.3	
$^{163}\text{Re}^m$	-25882	19	120	5	AD		214	ms	5	$11/2^{-}$	10			1979	$\alpha = 664; \beta^+?$	
163 Os	-16190#	300#					5.5	ms	0.6	$7/2^{-}$	10	13Dr06	J	1981	$\alpha \approx 100; \beta^+$?	
* ¹⁶³ Sm	T : symn	netrized f	from 16Wu.A:	=1.23(+0.51-	-0.47)					'					× 1	**
* ¹⁶³ Ho	T: other:	92Ju01	=47(+5-4) d f	or $q=66^+$ (ba	are ion)											**
* ¹⁶³ Ta	J : favore	d a-deca	y from 1/2 ⁺ i	somer in ¹⁶⁷ F	Re											**
$*^{163}$ Ta ^m	J : favore	d a-deca	y from (9/2 ⁻)	ground-state	e in ¹⁶⁷ R	Re										**
164 pm	38870#	400#					200#	me							$\beta^{-} \gamma \beta^{-} \eta \gamma$	
164 Sm	-38870# -48100#	300#					1 43	e nus	0.24	0^+	15	16Wu Δ	TD	2012	$\beta^{-1}, \beta^{-1}, \beta^{-$	
$^{164}Sm^{m}$	-46620#	300#	1485 5	12			600	ns	140	(6^{-})	15	10000.21	ID	2012	F = 100, F = 100, T	
¹⁶⁴ Eu	-53380#	110#	1105.5	1.2			4.15	s	0.19	0-#	08	16Wu.A	т	2007	$\beta^{-}=100$	
¹⁶⁴ Gd	-59770#	100#					45	s	3	0^{+}	06			1988	$\beta^{-}=100$	
¹⁶⁴ Tb	-62080	100					3.0	m	0.1	(5^+)	01			1968	$\beta^{-}=100$	
¹⁶⁴ Dy	-65968.0	0.8					STABLE			0+	01			1934	IS=28.260 54	
¹⁶⁴ Ho	-64981.5	1.5					29	m	1	1^{+}	01			1938	ϵ =60 5; β^{-} =40 5	
¹⁶⁴ Ho ^m	-64841.7	1.5	139.77	0.08			36.4	m	0.3	6-	01	08Ha21	Т	1966	IT=100	*
¹⁶⁴ Er	-65942.9	0.8					STABLE			0+	01		-	1938	IS=1.601 3; α ?; $2\beta^+$?	
164 m	-62566.8	1.4	3376.1	1.1			68	ns	2	(12^{+})	01	12Sw02	Т	1980	11=100	*
164 Tron M	-61904	24	10	6		*	2.0	m	0.1	1 ' 6-	01	CAN	Б	1900	$E=011; e^{-}=391$	
164 Vb	-61017	15	10	0		*	5.1 75.8	m	1.7	0+	01	GAu	Е	19/1	$r \approx 80; p \approx 20$	*
164 L H	-54642	28					3 14	m	0.03	1(-)	07			1900	$\beta^{+}-100$	
¹⁶⁴ Hf	-51819	16					111	s	8	0+	01			1981	$\beta^{+}=100$	
¹⁶⁴ Ta	-43283	28					14.2	s	0.3	(3^+)	08			1982	$\beta^{+}=100$	
¹⁶⁴ W	-38236	10					6.3	s	0.2	0+	01			1973	$\beta^{+}=96.2\ 12:\ \alpha=3.8\ 12$	
¹⁶⁴ Re	-27470	50				*	719	ms	161	(2^{-})	01	09Ha42	TD	1979	$\alpha = ?: \beta^+ = 42\#$	*
$^{164}\text{Re}^m$	-27520	240	-50	250		*	890	ms	130	(9+)		09Ha42	TD	2009	β^{+} ?; $\alpha = 3.1$	*
¹⁶⁴ Os	-20420	150					21	ms	1	0+	01			1981	$\alpha = ?; \beta^+ = 2\#$	
¹⁶⁴ Ir	-7340#	310#					1#	ms		2^{-} #	06				p ?; α ?; β^+ ?	
164 Ir ^m	-7080#	300#	260#	100#			70	μs	10	(9^+)	06	14Dr02	TD	2001	p=?; α =4 2; β^+ ?	
* ¹⁶⁴ Eu	T : avera	ge 16Wu	I.A=3.80(0.56) 08Os02=4.	2(0.2)											**
$*^{164}$ Ho ^m	T : other	66Jo07=	37.5(+1.5-0.5	5)												**
$*^{164} \text{Er}^{m}$	T : Ense	of'2001	>170 ns													**
* ¹⁶⁴ Tm ^m	E : less th	han 20 ke	eV, from ENSI	DF				~~ ~								**
* ¹⁶⁴ Re ^m	T : avera	ge 09Ha	42=848(+140- from 864(±15)	-105) 96Pa0. D-110)	1=380(1	60) 8	1Ho10=880)(240)							**
* KU	I . synn	icuizeu i	1011 804(+15	5-110)												**
¹⁶⁵ Sm	-43810#	400#					980	ms	210	5/2-#	13	16Wu.A	TD	2012	$\beta^{-}=100; \beta^{-}n=0.02\#$	
¹⁶⁵ Eu	-50720#	140#					2.53	s	0.25	5/2+#	08	16Wu.A	Т	2007	$\beta^{-}=100; \beta^{-}n=0.2\#$	*
¹⁶⁵ Gd	-56450#	120#					11.0	s	0.9	$1/2^{-}$ #	06	16Wu.A	Т	1998	$\beta^{-}=100$	*
¹⁶⁵ Tb	-60570#	100#					2.11	m	0.10	3/2+#	06			1983	$\beta^{-}=100$	
¹⁶⁵ Dy	-63612.6	0.8					2.334	h	0.001	$7/2^+$	06			1935	$\beta^{-}=100$	
165 Dy ^m	-63504.4	0.8	108.1552	0.0013			1.257	m	0.006	$1/2^{-}$	06			1963	IT=97.76 11; β ⁻ =2.24 11	
¹⁶⁵ Ho	-64899.0	1.0					STABLE			$7/2^{-}$	06			1934	IS=100.	
¹⁶⁵ Ho ^m	-64537.3	1.0	361.675	0.011			1.512	μs	0.004	$3/2^{+}$	06			1958	IT=100	
¹⁶⁵ Ho ⁿ	-64183.7	1.0	715.33	0.02			< 100	ns		$7/2^{+}$	06			1958	IT=100	
¹⁶⁵ Er	-64521.6	1.0					10.36	h	0.04	$5/2^{-}$	06			1950	ε=100	
$^{165}\text{Er}^{m}$	-63970.3	1.2	551.3	0.6			250	ns	30	$11/2^{-}$	06			1970	IT=100	
$^{105}\mathrm{Er}^{n}$	-62698.6	1.2	1823.0	0.6			370	ns	40	(19/2)		12Sw01	EJT	2012	IT=100	
A-grou	p is continue	ed on nex	t page													

030001-89

			Table I	. The NU	BAS	E201	6 table (con	tinued	, Explanatio	on of	Table o	n pag	ge 18)		
Nuclide	Mass ex (keV	(cess ()	(Excitation energy (keV)		Ha	alf-lif	e	J^{π}	Ens	Referenc	e	Year of discovery	Decay modes and intensities (%)	
4																
A-grou							20.06	h	0.02	1/2+	06			1052	B+-100	
165 Tm ^m	-02929.0	1.7	80.37	0.06			50.00	11	2	$\frac{1}{2^+}$	00			1955	p^{-100}	
165Tm^{n}	-02849.2	1.7	160.37	0.00			00	μς	0.5	$\frac{7}{2}$	00			1907	IT=100 IT=100	
165 Vb	-60205	27	100.47	0.00			9.0	μs	0.3	5/2-	00			1908	$B^+ - 100$	
165 Vhm	-00293	27	126.80	0.00			9.9 200	m	20	$\frac{3}{2}$	06			1904	p^{-100}	
165 L II	-56442	27	120.80	0.09			10.74	m	0.10	$\frac{9}{2^+}$	00			1980	$B^{\pm} - 100$	
165 Hf	-51636	27					76		4	$(5/2^{-})$	06			1975	$\beta^{+}=100$ $\beta^{+}=100$	
165 Ta	-45848	14					31.0	с	15	$(1/2^+ 3/2^+)$	06	EGK12a	т	1082	$\beta^{+}=100$ $\beta^{+}=100$	4
165 Tom	-45823	17	24	18	٨D		30#	с	1.5	(1/2, 3/2) $(0/2^{-})$	00	FGK12a	J	1982	$\beta^{+} 2 \alpha^{2}$	*
165 W	-38861	25	24	10	ΠD		51	5	0.5	$(5/2^{-})$	06	101(12a	3	1975	$\beta^+ \approx 100$: $\alpha < 0.2$	Ŧ
165 Re	-30660	24				*	2 62	6	0.14	$(1/2^+)$	15	058c22	т	1981	$\beta^+ ? \alpha - 14.8$	¥
$^{165}Re^{m}$	-30632	12	27	22	AD	*	1 74	s	0.06	$(11/2^{-})$	15	0000022	•	1978	$\beta^{+} ?: \alpha = 13.1$	
¹⁶⁵ Os	-21800#	200#	27				71	ms	3	$(7/2^{-})$	14			1978	$\alpha = 902; \beta^+?$	
¹⁶⁵ Ir	-11590#	160#					50#	ns	<1 µs	$1/2^+ #$	06	97Da07	I		$p?:\alpha?$	
165 Ir ^m	-11410	150	180#	50#			325	us	33	$(11/2^{-})$	06	14Dr02	TD	1996	$p=87.4; \alpha=12.2$	*
* ¹⁶⁵ Eu	T : avera	ge 16Wu	.A=2.14(0.45	080s02=2	.7(0.3)									1,	**
* ¹⁶⁵ Gd	T : unwe	ighed av	erage 16Wu.A	=12.5(1.3)	98Ic02	2=9.3(2.3) and 11	.2(0.3	3)							**
* ¹⁶⁵ Ta	J : favore	$d \alpha deca$	ty from 169 Re	$m (J = (1/2^+))$	3/2+))		. ,		<i>.</i>							**
$*^{165} Ta^{m}$	J : favore	d α deca	y from 169 Re	$(J=(9/2^{-}))$												**
* ¹⁶⁵ Re	T : symn	netrized f	From 05Sc22=	2.614(+0.14	42-0.1	28); a	lso 12Th13:	=1.6(0.6)							**
$*^{165}$ Ir ^m	T : avera	ge 14Dr(02=340(40) 97	7Da07=290((60)											**
		-														
¹⁶⁶ Sm	-40730#	400#					800	ms	630	0^{+}		16Wu.A	TD	2016	$\beta^{-}=100$	
¹⁶⁶ Eu	-47210#	360#					1.24	s	0.12	6-#	14	16Wu.A	Т	2007	$\beta^{-}=100; \beta^{-}n=0.6\#$	*
¹⁶⁶ Gd	-54530#	200#					5.1	s	0.8	0^{+}	15	16Wu.A	Т	2005	$\beta^{-}=100$	*
166 Gd ^m	-52930#	200#	1601.5	1.1			950	ns	60	(6^{-})	15			2014	IT=100	
¹⁶⁶ Tb	-57880	70					27.1	s	1.5	(2^{-})	08	16Wu.A	Т	1996	$\beta^{-}=100$	*
¹⁶⁶ Dy	-62584.8	0.9					81.6	h	0.1	0^{+}	08			1949	$\beta^{-}=100$	
¹⁶⁶ Ho	-63071.3	1.0					26.824	h	0.012	0^{-}	08			1936	$\beta^{-}=100$	
¹⁶⁶ Ho ^m	-63065.3	1.0	5.969	0.012			1.133	ky	0.05	7-	08	12Ne05	Т	1952	$\beta^{-}=100$	
¹⁰⁰ Ho ⁿ	-62880.4	1.0	190.9021	0.0020			185	μs	15	3+	08			1960	IT=100	
¹⁰⁰ Er	-64926.0	1.2					STABLE			0+	08			1934	IS=33.503 36	
¹⁰⁰ Tm	-61888	12					7.70	h	0.03	2+	08			1948	$\beta^{+}=100$	
100 Tm ^m	-61771	13	117	5			348	ms	21	(6^{-})	08	96Dr07	Т	1996	IT=100	*
100 Tm ⁿ	-61649	13	239	5			2	μs	1	(6-)	08	96Dr07	EDT	1995	IT=100	*
¹⁰⁰ Yb	-61596	7					56.7	h	0.1	0+	08			1954	$\varepsilon = 100$	
100 Lu	-56021	30					2.65	m	0.10	6-	08			1969	$\beta^{+}=100$	
166 Lum	-55990	30	34.37	0.22			1.41	m	0.10	3(-)	08			1974	$\beta^+=585; TT=425$	
166 Lu"	-55980	30	43.0	0.4			2.12	m	0.10	0-	08			1974	$\beta^+>80; \text{IT}<20$	
100 Hf	-53859	28					6.77	m	0.30	0^+	08			1965	$\beta^+=100$	
166 Ta	-46098	28					34.4	S	0.5	(2)	08			1977	$\beta^+ = 100$	
166 D -	-41888	70					19.2	s	0.6	(7^+)	08	0214-10	т	1975	$\beta^+ \approx 100; \alpha = 0.035 12$	
166 Re	-31890	/0	150#	501			2.25	s	0.21	(7)	08	92Me10	J	1978	$p = 2; \alpha = 52$	*
166 Rep	-31/40#	90#	150#	50#			212		-	5 # 0 ⁺	08			1077	ar 72.12, 8± 29.12	
166 La	-25452	18					215	ms	22	(2^{-})	10			1977	$\alpha = 12.13; p^{-1} = 28.13$	
166 J.m	-13550#	200#	171	6			10.5	ma	2.2	$\binom{(2^{+})}{(0^{+})}$	08			1981	$\alpha = 93.5$; $p = 7.5$ $\alpha = 08.2.6$; $p = 1.8.6$	
166 D+	-13180#	200#	1/1	0	Р		200	1115	100	(9)	00			1990	$\alpha = 98.2 \text{ 0}, p = 1.8 \text{ 0}$	
166 En	-+/30# T · exem	JUU# hetrized f	From 16Wu A	-1 27(±0.00	0_0 14	`	500	μs	100	0.	00			1990	u=100	ب ب
* Eu * ¹⁶⁶ G4	T · overo	op 16W/m	$\Delta = 5 4(1.2) 0$	-1.27(±0.05	s Δ=4	, 8(1 0)									** **
* 00 * ¹⁶⁶ Th	T : avera	ge 16Wu ge 16Wu	$\Delta = 28 3(2.0)$	05Ic02=00A	δ.Λ-4. Δο Δ-΄	25 6(2	2)									**
* ¹⁶⁶ Tm ^m	E : less f	han 16 ke	V above 109	338 level	13.71-	25.0(2										**
$*^{166}$ Tm ^m	T : avera	oe 3400	5) (34.4keV)	v-time) 370/	(40) (7	49ke	V v-time)									**
$*^{166}$ Tm ⁿ	E · 121 7	10 keV 4	bove the 340	ms isomer	(10) (7	/ KU	· / unc)									**
$*^{166}$ Tm ⁿ	T: other	02Ca46-	=36(2) ns ado	nted in ENSI	DF'08											**
* ¹⁶⁶ Re	D · from	$2\% < \alpha$	< 8% as disc	ussed in EN	ISDE		I · 92Me10	β^+ to	5.6^+ state	<u>,</u>						**
w ne	D . Hom	270 < 00		usseu in Er	0001		5.9200010	pu	5 0 State	-						
167	440102	400#					1.22	_	0.51	5 /2+#	10	1611-	TD	2012	R=_100, P=_ 2#	
167 C 1	-44010#	400#					1.33	s	0.51	5/2'#	13	16Wu.A	TD TD	2012	$p = 100; \beta = n=3#$	
167	-30810#	200#					4.2	s	0.3	$\frac{3}{2} + \frac{3}{2}$	13	16WLA		2012	$\rho = 100$ $\beta = -100$	*
167 D	-33930#	200#					18.9	S	1.0	$3/2^{+}$ #	00	10wu.A	1	1999	$\rho = 100$ $\beta = -100$	*
167 TT -	-39930	00					0.20	m 1.	0.08	(1/2)	00			1900	$\rho = 100$ $\beta = -100$	
167 TT - m	-02281	5	250.24	0.11			5.1	n	0.1	1/2 2/2+	00			1933	$\rho = 100$	
167 E.	-02022	5	239.34	0.11			0.0 STAR	μs	1.0	$\frac{3}{2}$	00			1977	11=100	
167 E.m	-03291.2	1.2	207 001	0.005			STABLE	~	0.007	1/2	00			1934	13=22.809 9 IT-100	
167 m	-03083.4	1.2	207.801	0.005			2.269	S	0.006	1/2	00			1980	11=100	
167 m	-02543.6	1.3	170 400	0.010			9.25	d 	0.02	$\frac{1}{2}$	00			1948	ε=100 IT-100	
167 m "	-62364.1	1.3	1/9.480	0.019			1.16	μs	0.06	$(1/2)^{-1}$	00			1964	11=100 IT-100	
···· I'm"	-62250.8	1.3	292.820	0.020			0.9	μs	0.1	7/2	00			1965	11=100	
A-grou	ip is continue	on nex	a page													

Table I. The NUBASEZUTO Lable (continued, Explanation of Table on Dage	етъ
--	-----

			Table I.	. The NU	BASE	2016	table	(con	tinued, E	xplanati	ion (of Table	on p	age 18)		
Nuclide	Mass ex (keV	(cess ()	е	Excitation nergy (keV)				Half-l	life	J^{π}	Ens	Reference	ce	Year of discovery	Decay modes and intensities (%)	
4	un continued															
¹⁶⁷ Yb	up continuea -60591	4					17.5	m	0.2	$5/2^{-}$	00			1954	$\beta^{+}=100$	
$^{167}Yh^{m}$	-60019	4	571 548	0.022			180	ns	0.2	$(11/2)^{-}$	00			1976	JT = 100	
¹⁶⁷ Lu	-57500	30	0711010	0.022	*		51.5	m	1.0	$7/2^+$	06			1958	$\beta^{+}=100$	
$^{167}Lu^{m}$	-57500#	40#	0#	30#	*		> 1	m		$1/2^{(-\#)}$	06			1998	IT ?: β^+ ?	
¹⁶⁷ Hf	-53468	28					2.05	m	0.05	$(5/2)^{-}$	00			1969	$\beta^{+}=100$	
¹⁶⁷ Ta	-48351	28					1.33	m	0.07	$(3/2^+)$	00			1982	$\beta^{+}=100$	
^{167}W	-42098	18					19.9	s	0.5	3/2-#	00			1985	$\beta^+=99.961; \alpha=0.041$	*
¹⁶⁷ Re	-34830#	40#				&	3.4	s	0.4	$(9/2^{-})$	00	10An01	J	1992	$lpha pprox 100; eta^+$?	
167 Re ^m	-34700	40	128#	13#		&	5.9	s	0.3	$1/2^+$	00	11Ko.B	EJ	1984	$\beta^+\approx 99; \alpha\approx 1$	
¹⁶⁷ Os	-26500	70	105.1				839	ms	5	$7/2^{-}$	09	10Sc02	TJD	1977	$\alpha = 51.4; \beta^+?$	*
167 L	-26060	10	435.1	1.0			6/2	ns	7	$(13/2^+)$	09	10Sc02	E	2009	11=100	*
167 Ir 167 I.m	-1/0/2	18	175 5	2.1			29.3	ms	0.0	1/2'	02	055C22	TD	1981	$\alpha = 43.2; p = 39.3.13; p = ?$	*
167 Dt	-10897	10	175.5	2.1	р		23.7	ms	0.8	$\frac{11}{2}$	02	04Ke00	T	1995	$\alpha = 90.3; p = 2; p = 0.42.8$	*
* ¹⁶⁷ Gd	T · symn	netrized t	from 4 26(+0 1	18-0.32)			800	μs	100	1/2 m	00	041000	1	1990	u =100	**
* ¹⁶⁷ Tb	T : avera	ge 16Wu	A=18.6(2.0)	99As03=19.	4(2.7)											**
$*^{167}W$	J: lowes	t observe	d state in 92T	h06 is 13/2+												**
* ¹⁶⁷ Os	D : avera	ige 10Sc	02=51(5)% 96	Pa01=49(7)	% 81Ho	010=58	8(12)%									**
$*^{167}Os^m$	E : also 1	10Sc02=4	434.3(1.1), und	c. estimated	by eval	uator,	based on	Table	eΠ							**
* ¹⁶⁷ Ir	T : from	p-decay;	α-decay 05So	22=30.9(1.3	3) 97Da	a07=35	5.2(2.0) n	ot use	ed							**
$*^{107}$ Ir ^m	T: other	not used	05Sc22=28.7	(3.3) from 0	e-decay	and 2	8.8(1.3) f	rom p	o-decay							**
* ^{10/} Ir ^m	T: 9	7Da07=3	30.0(0.6) confl	icting, not u	sed	D	: p from ()5Sc2	22							**
* ¹⁰⁷ Pt	T : avera	ge 04Ke	06=900(+300-	-200) 96B10	/=/00(200)										**
¹⁶⁸ Eu	-39740#	500#					200	ms	100	2+#	13	16Wu.A	TD	2012	$\beta^{-}=100; \beta^{-}n=10\#$	
¹⁶⁸ Gd	-48360#	400#					3.03	s	0.16	0+	13	16Wu.A	TD	1985	$\beta^{-}=100$	*
¹⁶⁸ Tb	-52720#	300#					9.4	s	0.4	(4-)	10	16Wu.A	Т	1999	$\beta^{-}=100$	
$^{168}\mathrm{Tb}^m$	-52510#	300#	211	2			0.71	μs	0.03	(6^+)		16Gu.A	ETJ	2016	IT=100	
¹⁶⁸ Dy	-58560	140					8.7	m	0.3	0+	10			1982	$\beta^{-}=100$	
¹⁶⁸ Ho	-60060	30					2.99	m	0.07	3+	10			1960	$\beta^{-}=100$	
¹⁶⁸ Ho ^m	-60000	30	59	1			132	S	4	(6^{+})	10	90Ch37	Е	1990	IT \approx 100; $\beta^- < 0.5$	
¹⁶⁸ Ho ⁿ	-59920	30	143.43	0.17			>4	μs		(1)-	10			1990	IT=100	
¹⁰⁸ Ho ^p	-59870	30	192.57	0.20			108 ~	ns	11	1+	10			1990	IT=100	
168 Er	-62991.2	1.2	1004 0292	0.0016			STABLE		0.7	0+	10			1934	IS=26.978 18	
168 T.m	-0189/.2	1.2	1094.0383	0.0016			109.0	ns	0.7	4 2+	10			19/4	R^+_{a} 100, R^{a} 0.010.7	
¹⁶⁸ Vh	-61581.9	1.7					STABLE	u	(>130 Ty)	0 ⁺	10	56Po16	т	1949	$p \approx 100, p = 0.0107$ IS=0.123.3: $\alpha \ge 2\beta^+ \ge 2$	¥
¹⁶⁸ Lu	-57070	40					5 IADEE 5 5	m	(>150 Iy) 01	6(-)	10	501010	1	1960	$\beta^+=100$	÷
$^{168}Lu^{m}$	-56870	40	202.81	0.12			6.7	m	0.4	3+	10			1960	$\beta^+ > 99.64$; IT<0.8	
¹⁶⁸ Hf	-55361	28					25.95	m	0.20	0^+	10			1961	$\varepsilon \approx 98; e^+ \approx 2$	
¹⁶⁸ Ta	-48394	28					2.0	m	0.1	$(2^{-}, 3^{+})$	10			1969	$\beta^{+}=100$	*
¹⁶⁸ W	-44893	13					50.9	s	1.9	0^+	10			1971	$\beta^+ \approx 100; \alpha = 0.0032 \ 10$	
¹⁶⁸ Re	-35790	30					4.4	s	0.1	(7^+)	10			1992	$\beta^+ \approx 100; \alpha \approx 0.005$	
108 OS	-29995	10					2.1	s	0.1	0^+	10			1977	$\beta^+=574; \alpha=434$	
168 r m	-18670	60	50	250			230	ms	50	(2^{-})	10	0011 42	TD	1978	$\alpha \approx 100; \beta^+ ?; \beta^+ p ?$	*
168 D+	-18620	240	50	250			163	ms	10	(9') 0+	10	09Ha42	TD	1996	$\alpha = //9; p^+?; \beta^+p?$	*
* ¹⁶⁸ Gd	- 11010 L · firet ea	130 200 in 85	Si25 via therm	nal fission of	²⁵² Cf		2.02	1115	0.10	0	10			1701	$u \sim 100, p^{-1} = 0.2 \#$	**
* ¹⁶⁸ Th	T: avera	ge 16Wu	.A=9.49(0 39)	99As03=8	2(1.3)		J : 16Gu	A=(4	-)							**
* ¹⁶⁸ Yb	T : lower	limit is	for α decay	,	_(1.5)		oou.		,							**
* ¹⁶⁸ Ta	T : other	: 02At01	=5.2(0.7) for a	$q=73^+$ (bare	ion)											**
* ¹⁶⁸ Ir	T : symn	netrized f	from 09Ha42=	222(+60-40)) ´											**
* ¹⁶⁸ Ir	J: from	correlatio	ons between α	's depopulat	ing (2 ⁻) isom	ers down	to ¹⁵²	² Tm							**
$*^{168}$ Ir ^m	T : avera	ge 09Ha	42=160(+30-2	20) 09Ha42=	153(+4	40–30)	(indept) 9	96Pa0	1=161(21)							**
* ¹⁶⁸ Ir ^m	J: from	correlatio	ons between α	's depopulat	ing (9 ⁺) isom	ers down	to ¹⁵²	² Tm							**
¹⁶⁹ Gd	-44150#	500#					750	ms	210	7/2=#	13	16Wu A	TD	2012	$\beta^{-}=100; \beta^{-}n=0#$	
¹⁶⁹ Tb	-50330#	300#					5.13	s	0.32	3/2+#	13	16Wu.A	TD	2012	$\beta^{-}=100; \beta^{-}n=0.01\#$	
¹⁶⁹ Dv	-55600	300					39	s	8	$(5/2)^{-}$	08		-	1990	$\beta^{-}=100$	
¹⁶⁹ Ho	-58797	20					4.72	m	0.10	7/2-	08			1963	$\beta^{-}=100$	
169 Ho ^m	-57411	20	1386.2	0.4			118	μs	6	$(19/2^+)$		10Dr05	ETJ	2010	IT=100	
¹⁶⁹ Er	-60923.1	1.2					9.392	d	0.018	$1/2^{-}$	08			1956	$\beta^{-}=100$	
169 Er ^m	-60831.1	1.2	92.05	0.10			285	ns	20	$(5/2)^{-}$	08			1969	IT=100	
169 Er ⁿ	-60679.4	1.2	243.69	0.17			200	ns	10	$7/2^+$	08			1969	IT=100	
¹⁶⁹ Tm	-61275.2	0.8		0.000			STABLE			$1/2^+$	08			1934	IS=100.	
169 YZ	-60959.1	0.8	316.1463	0.0001			659.9	ns	2.3	$7/2^+$	08			1950	11=100	*
169 Y b	-60377.6	1.2	24 1000	0.0017			52.018	d	0.005	1/2+	08			1946	E=100	
169 J	-00333.4	1.2	24.1999	0.0016			46 37 06	S h	2 0.05	$\frac{1}{2}$	08			1949	$\beta^{+}=100$	
169 Lum	-58055	3	29.0	0.5			54.00 160	п с	10	$(1/2^{-})$	08			1955	$\mu = 100$ IT=100	
Lu	20020	2		5.5			100		· ·	(1/4)	00					

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Nuclide	Mass ex (keV	kcess 7)	er	Excitation hergy (keV)]	Half-	life	J^{π}	Ens	Reference	e	Year of discovery	Decay modes and intensities (%)	
A-grou	ip continued					2.24		0.04	(5 (0-)	00			10/0	8+ 100	
169 m	-54/1/	28				3.24	m	0.04	(5/2)	08	0.071.02		1969	$\beta^+ = 100$	
169 Ta	-50290	28				4.9	m	0.4	(5/21)	08	98Zh03	J	1969	$\beta^{+}=100$	
169 W	-44918	15				74	s	6	5/2-#	08		-	1985	$\beta^+=100$	
¹⁰⁹ Re	-38409	11				8.1	s	0.5	$(9/2^{-})$	15	92Me10	D	1978	$\beta^+=?; \alpha=0.005 3$	*
$^{169}\text{Re}^{m}$	-38234	14	175	13	AD	15.1	s	1.5	$(1/2^+, 3/2^+)$) 15		_	1984	β^+ ?; $\alpha \approx 0.2$; IT ?	
¹⁶⁹ Os	-30723	25				3.46	s	0.11	$(5/2^{-})$	08	96Pa01	Т	1972	$\beta^+=86.3 8; \alpha=13.7 8$	*
¹⁶⁹ Ir	-22094	23				353	ms	4	$(1/2^+)$	08	12Th13	D	1978	$\alpha = 537; \beta^+?$	*
169 Ir ^m	-21941	12	153	22	AD	280	ms	1	$(11/2^{-})$	08	12Th13	TD	1984	α =79 5; β^+ ?; p ?	*
¹⁶⁹ Pt	-12510#	200#				6.99	ms	0.09	$(7/2^{-})$	08	09Go16	Т	1981	$\alpha = ?; \beta^+ = 1#$	*
¹⁶⁹ Au	-1790#	300#				150#	μs		$1/2^{+}$ #					p ?; α ?; β ⁺ ?	
$*^{169}$ Tm ^m	E : Ensdf2	2008=316.	14633 (0.000)11)											**
* ¹⁶⁹ Re	D: $\alpha = 0.00$	05(3)% der	ived from ori	ginal α=0.	001% - 0	.01%									**
* ¹⁶⁹ Re	J : favored	α decay fr	rom (11/2 ⁻) 1	73Ir to (11	(2^{-}) leve	l at 136.2 ke	eV								**
* ¹⁶⁹ Os	T : average	96Pa01=3	3.6(0.2) 95Hi	02=3.2(0.3)) 84Sc06:	=3.5(0.2) 82	2En03	3=3.4(0.2)							**
* ¹⁶⁹ Ir	T : also 12	Th13=570	(30)												**
* ¹⁶⁹ Ir	D : average	e of 12Th1	3=57(9)% 05	Sc22=42(1	5)% 99P	009=50(18)	%								**
$*^{169}$ Ir ^m	D : average	e 12Th13=	78(6)% 99Po	09=84(8)%	6 96Pa01=	=72(13)%; ()5Sc2	22=59(4)% a	t						**
$*^{169}$ Ir ^m	D: var	iance, not	used												**
* ¹⁶⁹ Pt	T : average	: 09Go16=	6.99(0.10) 04	Ke06=7.0	(0.2)										**
¹⁷⁰ Gd	-41380#	600#				420	ms	130	0^{+}	13	16Wu.A	TD	2012	$\beta^{-}=100; \beta^{-}n=0\#$	
¹⁷⁰ Tb	-46720#	400#				960	ms	68	2-#	13	16Wu.A	TD	2012	$\beta^{-}=100; \beta^{-}n=0.01\#$	
¹⁷⁰ Dv	-53660#	200#				54.9	s	8.0	0+	10	16Wu.A	TD	2010	$\beta^{-}=100$	
170 Dy ^m	-52020#	200#	1643.92	0.22		0.94	ЦS	0.16	(6^+)		16So.A	ETJ	2016	IT=100	*
¹⁷⁰ Ho	-56240	50			*	2.76	m	0.05	6+#	02			1960	$\beta^{-}=100$	
$^{170}Ho^{m}$	-56140	60	100	80	BD *	43	s	2	(1^+)	02			1960	$\beta^{-}=100$	
¹⁷⁰ Er	-60108.7	1.5				STABLE		(>320 Pv)	0+	02	96De60	Т	1934	$IS=14.910 36: 2\beta^{-} 2: \alpha^{2}$	
¹⁷⁰ Tm	-59795.9	0.8				128.6	d	0.3	1-	02		-	1936	$\beta^{-} \approx 100; \epsilon = 0.131, 10$	
170 Tm ^m	-59612.7	0.8	183 197	0.004		4 12	115	0.13	$(3)^+$	02			1967	IT=100	
¹⁷⁰ Yb	-60763 919	0.010	1001177	0.001		STABLE	μο	0.12	0+	02			1938	IS=2.982.39	
170 Yb ^m	-59505.46	0.14	1258.46	0.14		370	ns	15	4-	02			1981	IT=100	
170Lu	-57306	17	1200110	0.1.1		2.012	d	0.020	0+	02			1951	$\beta^{+}=100$	
¹⁷⁰ Lu ^m	-57213	17	92.91	0.09		670	ms	100	$(4)^{-}$	02			1965	IT=100	
¹⁷⁰ Hf	-56254	28				16.01	h	0.13	0+	06			1961	$\varepsilon = 100$	
¹⁷⁰ Ta	-50138	28				6.76	m	0.06	$(3)^{(+\#)}$	02			1969	$\beta^{+}=100$	
^{170}W	-47291	13				2.42	m	0.04	0+	02			1971	$\beta^+ \approx 100^{\circ} \alpha < 1\#$	
¹⁷⁰ Re	-38913	23				9.2	s	0.2	(5^+)	02			1974	$\beta^{+} \approx 100; \alpha < 0.01 \#$	
170 Os	-33926	10				7 37	s	0.18	0+	08			1972	$\beta^{+}=2^{\circ}\alpha=95.10$	
¹⁷⁰ Ir	-23360#	90#				910	ms	150	(3^{-})	08			1977	β^{+} 2: $\alpha = 5.2.17$	*
170 Ir ^m	-23200	70	160#	50#		811	ms	18	(8^+)	08			1977	$\alpha = 36 \ 10^{\circ} \ \beta^+ \ 2^{\circ} \ \text{IT} \ 2^{\circ}$	
170 Pt	-16299	18	1000	2011		13 93	ms	0.16	0+	02	04Ke06	т	1981	$\alpha = 2^{\circ} \beta^{+} = 2^{\#}$	*
170 Au	-3750#	200#				290	115	50	(2^{-})	02	04Ke06	TD	2002	$p=89\ 10^{\circ}\ \alpha=11\ 10$	*
$^{170}Au^{m}$	-3470#	200#	280	13	p	620	ЦS.	50	(9^+)	02	04Ke06	TD	2002	$p=585: \alpha=425$	*
$*^{170}$ Dv ^m	T : symmet	trized from	16So.A=0.9	1(+0.18-0)	.13)				(-)					1	**
* ¹⁷⁰ Ir	T : symmet	trized from	870(+180-1	20)	/										**
* ¹⁷⁰ Pt	T : average	04Ke06=	14.0(0.2) 988	Gi20=13.50	0.3) 96Bi	07 = 14.7(0.5)	5)								**
* ¹⁷⁰ Au	T : symmet	trized from	286(+50-40	0	,		<i>′</i>								**
$*^{170}Au^m$	T:04Ke06	=617(+50	-40); other 02	2Ma61=57	0(+310-1	50)	D : a	nd 02Ma61=	75(15)%						**
171	44020#	500#				1.00	-	0.10	2/2+#	12	1607-	TD	2012	R^{-}_{-100} , R^{-}_{-10} , 14	
171 m	-44030#	500#				1.23	s	0.10	3/2*#	13	16Wu.A	TD TD	2012	$p = 100; \beta n = 1#$	*
171 Dy	-50190#	300#				4.07	s	0.40	7/2 #	13	16Wu.A	TD	2012	$\beta = 100$	
171 Ho	-54520	600				53	S	2	7/2 #	02			1989	$\beta = 100$	
171 Er	-57/19.0	1.6	100 6			7.516	h	0.002	5/2	02			1938	$\beta = 100$	
171 Er‴	-5/520.4	1.6	198.6	0.1		210	ns	10	1/2	02			1969	11=100	
171 Tm	-59210.3	1.0	101 0	0.001-		1.92	У	0.01	$1/2^+$	02			1948	$\beta = 100$	
171 Tm ^m	-58785.3	1.0	424.9560	0.0015		2.60	μs	0.02	7/2-	02	0.011 0 -		1948	II=100	
171 Tm ⁿ	-57535.8	1.0	1674.5	0.3		1.7	μs	0.2	19/2+	~ -	09Wa06	ETJ	2009	11=100	
171 Yb	-59306.810	0.013	0.5.000	0.000		STABLE		0.04	1/2-	02			1934	IS=14.09 14	
171 Yb ^m	-59211.528	0.013	95.282	0.002		5.25	ms	0.24	7/2+	02			1968	TT=100	
171-Yb"	-59184.394	0.013	122.416	0.002		265	ns	20	5/2-	02			1968	ff=100	
171-Lu	-57828.4	1.9		0.07		8.24	d	0.03	7/2+	02			1951	$\beta = 100$	
¹⁷¹ Lu ^m	-57757.3	1.9	71.13	0.08		79	S	2	1/2-	02	0.087.7.7		1965	ff=100	
1/1Hf	-55431	29				12.1	h	0.4	7/2+	02	00Ye02	J	1951	$\beta^{+}=100$	
$^{1/1}$ Hf ^m	-55409	29	21.93	0.09		29.5	s	0.9	1/2-	02	00Ye02	J	1997	$\Gamma \approx 100; \beta^+$?	
171Ta	-51720	28				23.3	m	0.3	$(5/2^{-})$	02			1969	$\beta^{+}=100$	
1/1W	-47086	28				2.38	m	0.04	$(5/2^{-})$	02			1983	$\beta^{+}=100$	
^{1/1} Re	-41250	28				15.2	S	0.4	$(9/2^{-})$	02			1987	$B^{+}=100$	

 171 Re -41250 28 ... A-group is continued on next page ...

		Т	able I. T	he Nuba	.se2016 t	able (con	tinu	ed, Ex	planatio	on of	Table o	n pa	ge 18)		
Nuclide	Mass ex (keV	cess)		Excitation energy (ke	n V)	Ha	alf-life	e	J^{π}	Ens	Referenc	e	Year of discovery	Decay modes and intensities (%)	
4	a continued														
171 Os		18				83	c	0.2	$(5/2^{-})$	02			1972	$\beta^+ 2 \alpha - 1.80.21$	
¹⁷¹ Ir	-34302 -26410	40				3.1	5	0.2	$\frac{(3/2)}{1/2^+}$	02	11Ko B	тι	1972	β^{+} ?: $\alpha = 15.2$	*
171 Ir ^m	-26250#	40#	167#	12#		1 47	s	0.06	$(11/2^{-})$	02	11Ko B	Т	1967	$\alpha = 54.5 \cdot \beta^+ \cdot p^2$	*
171 Pt	-17470	70	107.0	120		45.5	ms	2.5	7/2-	10	10Sc02	J	1981	$\alpha = 90.7; \beta^+?$	
¹⁷¹ Pt ^m	-17060	70	412.6	1.0		901	ns	9	$13/2^+$	10	FGK128	J	2010	IT=100	*
¹⁷¹ Au	-7562	21				22.3	μs	2.4	$(1/2^+)$	02	04Ke06	Т	1997	$p\approx 100; \alpha$?	*
$^{171}\mathrm{Au}^m$	-7308	18	255	10	р	1.036	ms	0.016	$11/2^{-1}$	02	04Ke06	TD	1996	$\alpha = 60.028; p = 40.028$	*
¹⁷¹ Hg	3480#	300#			1	70	μs	30	3/2-#	04			2004	$\alpha \approx 100; \beta^{+}=0.01\#$	*
* ¹⁷¹ Tb	T : symmet	rized from	1.24(+0.09-	0.10)					,						**
* ¹⁷¹ Ir	T : other 02	Ro17=3.2(+1.3-0.7)	D:13	An10=15(2)										**
$*^{171}$ Ir ^m	D : average	10An01=5	3(5)% 96Pa	01=58(11)%	, b										**
$*^{171}$ Ir ^m	T : average	11Ko.B=1.	50(0.07) 10.	An01=1.40(0.10)										**
$*^{171}$ Pt ^m	J : M2 to 9/	2-													**
* ¹⁷¹ Au	T : average	04Ke06=22	2(+3-2) 99P	009=17(+9-	-5)										**
* ¹⁷¹ Au	T : other 03	Ba20=37(+	-7-5) conflic	ting, not us	ed										**
$*^{171}$ Au ^m	T : average	04Ke06=1.	09(0.03) 03	Ba20=1.014	(0.019)										**
$*^{171}$ Au ^m	D : average	04Ke06=3	4(4)% 97Da	07=46(4)%	; Birge ratio	B=2.1									**
* ¹⁷¹ Hg	T : symmet	rized from :	59(+36–16)												**
¹⁷² Tb	-39850#	500#				760	ms	190	6+#	13	16Wu.A	TD	2012	$\beta^{-}=100; \beta^{-}n=1#$	
¹⁷² Dv	-48010#	300#				3.4	s	0.2	0+	13	16Wa19	TD	2012	$\beta^{-}=100$	
$^{172}Dy^{m}$	-46730#	300#	1278	1		710	ms	50	(8^{-})		16Wa19	ETJ	2016	$\beta^{-}=193$; IT=813	
¹⁷² Ho	-51480#	200#				25	s	3	0+#	15			1991	$\beta^{-}=100$	
¹⁷² Er	-56484	4				49.3	h	0.5	0^{+}	15			1956	$\beta^{-}=100$	
$^{172}{\rm Er}^{m}$	-54983	4	1500.9	0.3		579	ns	62	(6^+)	15	10Dr02	ETJ	2006	IT=100	
¹⁷² Tm	-57374	6				63.6	h	0.3	2-	15			1956	$\beta^{-}=100$	
$^{172}\text{Tm}^{m}$	-56898	6	476.2	0.2		132	μs	7	(6^+)	15			2008	IT=100	
¹⁷² Yb	-59255.446	0.014				STABLE			0^+	95			1934	IS=21.68 13	
172 Yb ^m	-57705.02	0.06	1550.43	0.06		3.6	μs	0.1	6-	95			1969	IT=100	
¹⁷² Lu	-56736.0	2.3				6.70	d	0.03	4-	95			1951	$\beta^{+}=100$	
$^{172}Lu^m$	-56694.1	2.3	41.86	0.04		3.7	m	0.5	1-	95			1962	IT=100; $\beta^+ < 0.18$	
$^{172}Lu^n$	-56670.2	2.3	65.79	0.04		332	ns	20	$(1)^+$	95			1965	IT=100	
$^{172}Lu^{p}$	-56626.6	2.3	109.41	0.10		440	μs	12	$(1)^+$	95			1965	IT=100	
$^{172}Lu^{q}$	-56522.4	2.3	213.57	0.17		150	ns		(6^{-})	95			1974	IT=100	
¹⁷² Hf	-56402	24				1.87	У	0.03	0+	95			1951	$\varepsilon = 100$	
¹⁷² Hf ^m	-54396	24	2005.84	0.11		163	ns	3	(8-)	95			1976	IT=100	
¹⁷² Ta	-51330	28				36.8	m	0.3	(3+)	15			1964	$\beta^{+}=100$	
172 W	-49097	28				6.6	m	0.9	0^+	95			1964	$\beta^+=100$	
172 Re	-41540	40	0.11	100//	*	15	s	3	(5)	16			1972	$\beta^+ = 100$	
172 Rem	-41540#	110#	0#	100#	*	55	s	5	(2)	16	0511:02	D	1977	$\beta^+ = 100$	
172 US	-37244	13				19.2	s	0.9	(2 - 4 -)	95	95Hi02	D	19/1	$\beta^{+}=?; \alpha=1.12$	
172 I.m	-27380	30	120	10		4.4	s	0.5	(3,4)	16			1967	p^+ ?; $\alpha = 2$ β^+ 2; $\alpha = 0.5.11$	
172 Dt	-27240	30 10	139	10	AD	2.19	s	0.07	(/·) 0 ⁺	10	104-02	D	1967	p^+ ?; $\alpha = 9.5 11$ $\alpha = 07.2$; $\beta = 2$	
172 A 11	-21107	60				97.0	ma	1.5	(2^{-})	10	10All02	D	1901	$\alpha = 97.5, \mu$	
172 Aum	-9320	240	160	250		11.0	me	10	(2) (0^+)	10	00Ho42	т	1993	$\alpha = 2; p < 2; p = 2$	*
172 Hg	-1060	150	100	250		231	115	0	0+	10	0911442	1	1995	$\alpha \approx 100: \beta^+ = 0.1 \#$	*
* ¹⁷² Au	T · symmetr	rized from	09Ha42=22((+6-4)		251	μο		0	10			1777	a. 100, p =0.11	**
* ¹⁷² Au	I · from cor	relations be	etween α 's d	epopulating	(2^{-}) isomer	rs down to 15	² Tm								**
$*^{172} Au^{m}$	T : average	09Ha42=9	(+2-1) 09Ha	42=8(+5-2)) (independe	nt measurem	ents)								**
$*^{172}Au^m$	T: others 9	6Pa01=6.3	1.5) 93Se09	=4(1)	, <u>.</u>		,								**
173-	120.10.1	400."						0.00	0 /2+ "	10	1000	T	2012	0- 100	
173 Dy	-43940#	400#				1.43	s	0.20	9/2 ⁺ #	13	16Wu.A	TD	2012	p = 100	
173 F	-49350#	300#				6.90	S	0.48	$1/2^{-}$ #	13	16Wu.A	TD	2012	p = 100	
173 Er	-53650#	200#				1.434	m	0.017	$(1/2^{-})$	95	94lt.A	1	1972	p = 100	
173 m	-56256	4	217 72	0.20		8.24	h	0.08	$(1/2^+)$	95	1211-10	тт	1961	p = 100	
173 mn	-33938	4	31/./3 1005 7	0.20		10.7	μs	1./	1/2	95	12Hu10	IJ ETT	1972	11=100 IT-100	*
173 mn	-34330	4	1905.7	0.4		250	ns	29	19/2	95	12Hu10	EIJ	2012	11=100 IT-100	
173 x/1	-52208	4	4047.9	0.5		121 Smini	ns	28	5/2	95	12Hu10	EIJ	2012	11=100 IS=16 102 62	
173 x71.m	-5/551.225	0.011	200.0	0.5		STABLE		0.1	5/2	95			1954	15=10.103 03 IT-100	
173 x	-3/132.3	0.5	398.9	0.5		2.9	μs	0.1	$\frac{1}{2}$	95			1903	11=100	
173 rm	-30880.9	1.0	102 (72	0.012		1.57	У	0.01	5/2-	95			1951	ε=100 IT-100	
173 TTC	-30/5/.2	1.0	125.672	0.013		/4.2	μs	1.0	5/2	95			1962	$R^{+}-100$	
173 T Lem	-33412	28 28	107.14	0.05		25.6	n	0.1	1/2	06			1951	p = 100	
173 🖬 👘	-33303	∠0 28	107.10	0.05		180	ns	0 40	$\frac{3}{2}$	00			1973	II=100 IT-100	
A_arou	-33213	∠0 on next pag	17/.4/ e	0.10		100	ns	40	1/2	00			19/3	11-100	
A-giou	P is continued (on next pag	• • • • •												

Chinese Physics C Vol. 41, No. 3 (2017) 030001

			Table I.	The N	UBASE2	016 tabl	e (c	ontinu	ed, Explanation	on o	f Table	on pa	age 18)		
Nuclide	Mass e (ke	excess V)	l er	Excitatio ergy (ke	n V)	ŀ	Ialf-	life	J^{π}	Ens	Reference	e	Year of discovery	Decay modes and intensities (%)	
A-grou	up continued.														
¹⁷³ Ta	-52397	28				3.14	h	0.13	$5/2^{-}$	95			1960	$\beta^{+}=100$	
¹⁷³ Ta ^m	-52224	28	173.10	0.21		225	ns	15	9/2-	95	95Ca27	Е	1977	IT=100	*
173 Ta ⁿ	-50678	28	1719.4	1.0		132	ns	3	$21/2^{-}$		06Th07	ETJ	2006	IT=100	
^{173}W	-48727	28				7.6	m	0.2	5/2-	95			1963	$\beta^{+}=100$	
¹⁷³ Re	-43554	28				2.0	m	0.3	$(5/2^{-})$	95			1986	$\beta^{+}=100$	
173Os	-37438	15				22.4	s	0.9	$5/2^{-}$	15			1971	$\beta^+ \approx 100; \alpha = 0.42$	
¹⁷³ Ir	-30268	11				9.0	s	0.8	$(1/2^+, 3/2^+)$	15	01Ko44	J	1967	$\beta^+>93; \alpha<7$	*
173 Ir ^m	-30042	11	226	9	AD	2.20	s	0.05	$(11/2^{-})$	15	01Ko44	J	1967	$\beta^+=881; \alpha=121$	*
¹⁷³ Pt	-21940	60				382	\mathbf{ms}	2	$(5/2^{-})$	15			1966	$\alpha = 864; \beta^+?$	
¹⁷³ Au	-12832	23				25.5	\mathbf{ms}	0.8	$(1/2^+)$	15	12Th13	Т	1983	$\alpha = 86\ 13; \beta^+ = 6\#$	*
$^{173}Au^{m}$	-12619	12	214	21	AD	12.2	ms	0.1	$(11/2^{-})$	15	99Po09	D	1984	$\alpha = 89 11; \beta^+ = 4\#$	
¹⁷³ Hg	-2710#	200#				800	μs	80	3/2-#	15			1999	$\alpha = 100$	*
$*^{173}$ Tm ^m	T : average	e 12Hu10=	=11.1(2.8) 72	Pu02=10	0.4(2.1)										**
$*^{173}$ Ta ^m	T : other r	ecent 06Tl	h07=163(2), c	conflictin	ig, not use	d									**
* ¹⁷³ Ir	J : favored	α decay f	from (1/2 ⁺ ,3/	$2^+)^{177}$ A	u ground-	state									**
$*^{173}$ Ir ^m	J : favored	α decay f	from $(11/2^{-})$	¹⁷⁷ Au is	omer										**
* ¹⁷³ Au	T : average	e 12Th13=	=26.3(1.2) 991	Po09=25	(1)										**
* ¹⁷⁵ Au	D : from 9	9Po09=94	4(+6–19)%; ai	nd for iso	omer ¹⁷³ A	u^m 92(+8–13	5)%								**
*1/3Hg	J:12Od0	1=(7/2 ⁻) b	based on α ch	ain, not t	rusted										**

¹⁷⁴ Dy	-41370#	500#				1#	s	(>300 ns)	0^{+}	13	12Ku26	I	2012	β^{-} ?; β^{-} n=0#	
¹⁷⁴ Ho	-45690#	300#				3.2	s	1.1	8-#	13	16Wu.A	TD	2012	$\beta^{-}=100$	
¹⁷⁴ Er	-51950#	300#				3.2	m	0.2	0^{+}	99			1989	$\beta^{-}=100$	
${}^{174}{\rm Er}^{m}$	-50840#	300#	1111.6	1.1		3.9	s	0.3	8-		16Wu.A	Т	2006	IT=100	*
¹⁷⁴ Tm	-53860	40				5.4	m	0.1	$(4)^{-}$	99			1960	$\beta^{-}=100$	
$^{174}\text{Tm}^m$	-53610	40	252.4	0.5		2.29	s	0.01	(0^{+})		06Ch10	TJD	2006	$T > 98.5; \beta^- < 1.5$	*
¹⁷⁴ Yb	-56944.512	0.011				STABLE			0^{+}	99			1934	IS=32.026 80	
174 Yb ^m	-55426.364	0.017	1518.148	0.013		830	μs	40	6^{+}	99			1964	IT=100	
174 Yb ⁿ	-55179.3	0.5	1765.2	0.5		256	ns	11	7-		05Dr05	EJT	2005	IT=100	
¹⁷⁴ Lu	-55570.2	1.6				3.31	v	0.05	1^{-}	99	98Ge13	J	1951	$\beta^{+}=100$	
$^{174}Lu^m$	-55399.4	1.6	170.83	0.05		142	d	2	6-	99	98Ge13	J	1960	IT=99.38 2; ε =0.62 2	
$^{174}Lu^n$	-55329.4	1.6	240.818	0.004		395	ns	15	(3^{+})	99			1980	IT=100	
$^{174}Lu^p$	-55205.0	1.6	365.183	0.006		145	ns	3	(4 ⁻)	99			1980	IT=100	
$^{174}Lu^q$	-53714.5	1.7	1855.7	0.5		194	ns	24	13+		09Ko19	ETJ	2009	IT=100	
$^{174}Lu^r$	-49720.6	1.8	5849.6	0.9		242	ns	19	(26^{-})		09Ko19	ETJ	2009	IT=100	
¹⁷⁴ Hf	-55844.5	2.3				2.0	Py	0.4	0+	04			1939	IS=0.16 1; α =100; 2 β ⁺ ?	
$^{174}\text{Hf}^m$	-54295.2	2.9	1549.3	1.8		138	ns	4	6+	04	FGK129	J	1976	IT=100	*
174 Hf ⁿ	-54047.0	2.9	1797.5	1.8		2.39	μs	0.04	8-	04	FGK129	J	1974	IT=100	
174 Hf ^p	-52532.8	2.9	3311.7	1.8		3.7	μs	0.2	14^{+}	04	FGK129	J	1974	IT=100	
¹⁷⁴ Ta	-51741	28				1.14	'n	0.08	3+	99			1960	$\beta^{+}=100$	
^{174}W	-50227	28				33.2	m	2.1	0^{+}	99			1964	$\beta^{+}=100$	
$^{174}W^m$	-48555	28	1672.0	0.5		> 187	ns			99			1976	IT=100	
174 W ⁿ	-48307	28	1919.7	0.5		187	ns	25		99			1976	IT=100	
$^{174}W^{p}$	-47959	28	2267.8	0.4		158	ns	3	8-		06Ta13	ETJ	2006	IT=100	*
$^{174}W^{q}$	-46711	28	3515.6	0.4		128	ns	8	12^{+}		06Ta13	ETJ	2006	IT=100	*
¹⁷⁴ Re	-43673	28				2.40	m	0.04	3+#	99			1972	$\beta^{+}=100$	
174 Re ^m	-43570#	60#	100#	50#		1#	m	$(>1 \mu s)$	7+#		12Gu14	Т	2012	IT ?: β^+ ?	
174Os	-39995	10				44	s	4	0^{+}	99			1971	$\beta^+ \approx 100; \alpha = 0.0247$	*
¹⁷⁴ Ir	-30863	24				7.9	s	0.6	(3^{+})	99			1967	$\beta^+=99.53; \alpha=0.53$	
174 Ir ^m	-30671	23	192	11	AD	4.9	s	0.3	(7 ⁺)	99			1992	$\beta^+=97.53; \alpha=2.53$	
¹⁷⁴ Pt	-25318	10				889	ms	17	0^{+}	99			1966	$\alpha = 76 8; \beta^+$?	
¹⁷⁴ Au	-14240#	90#				139	ms	3	low	99	02Ro17	TD	1983	$\alpha = 90.6; \beta^+?$	*
174 Au ^m	-13990	70	250#	50#		171	ms	29	high		96Pa01	TJ	1995	$\alpha = ?; \beta^+ ?$	
¹⁷⁴ Hg	-6641	19				2.0	ms	0.4	0^+	99	99Se14	Т	1997	$\alpha \approx 100; \beta^+ = 0.4\#$	*
$*^{174}$ Er ^m	T : average	16Wu.A=3	3.37(0.73) 0	9Dr06=4.	02(0.35)									× 1	**
$*^{174}$ Er ^m	E : uncertai	inty estimat	ted by NUB	ASE	. ,										**
$*^{174}$ Tm ^m	E : uncertai	inty estimat	ted by NUB	ASE											**
$*^{174}$ Hf ^m	J : multiple	decay bran	iches, transi	tion mult.	, magnetic	e moment;	also 1	n and p							**
$*^{174}W^{p}$	E : derived	from least-	squares fit to	ο γ-ray er	nergies	,									**
$*^{174}W^{q}$	E : derived	from least-	squares fit to	ο γ-rav er	nergies										**
* ¹⁷⁴ Os	D : symme	trized from	71Bo06 α=	0.020(+1	0-4)%										**
* ¹⁷⁴ Au	T: others 9	6Pa01=171	1(29) 83Sc24	4=120(20)										**
* ¹⁷⁴ Hg	T : symmet	rized from	1.9(+0.4-0.	3)	·										**
0				<i>,</i>											

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I.	The NUB	ASE2016 tabl	e (continued.	Explanation of	Table on nage 1	18)
Table 1.	THE NUB	A3E2010 tabl	c (continucu,	Explanation of	Table on page	10)

Nuclide	Mass e	xcess		Excitation	1]	Half-	life	J^{π}	Ens	Referenc	e	Year of	Decay modes and	
	(keV	(V)	e	nergy (ke	V)								discovery	intensities (%)	
¹⁷⁵ Ho	-43200#	400#				1.88	s	0.55	7/2 ⁻ #	13	16Wu.A	TD	2012	$\beta^{-}=100; \beta^{-}n=0#$	
¹⁷⁵ Er	-48650#	400#				1.2	m	0.3	9/2+#	04			1996	$\beta^{-}=100$	
¹⁷⁵ Tm	-52310	50				15.2	m	0.5	1/2+#	± 04			1961	$\beta^{-}=100$	
$^{175}\text{Tm}^{m}$	-51870	50	440.0	1.1		319	ns	35	$7/2^{-}$	04	12Hu10	ETJ	2012	IT=100	
$^{175}\text{Tm}^{n}$	-50790	50	1517.7	1.2		21	μs	14	$23/2^+$	04	12Hu10	ETJ	2012	IT=100	
¹⁷⁵ Yb	-54695.55	0.07				4.185	d	0.001	$7/2^{-}$	04	12Fl05	J	1945	$\beta^{-}=100$	
175 Yb ^m	-54180.68	0.07	514.866	0.004		68.2	ms	0.3	$1/2^{-}$	04			1972	IT=100	
¹⁷⁵ Lu	-55165.6	1.2				STABLE			$7/2^+$	04			1934	IS=97.401 13	
$^{175}Lu^{m}$	-54812.1	1.2	353.48	0.13		1.49	μs	0.07	$5/2^{-}$	04			1965	IT=100	
$^{175}Lu^n$	-53773.4	1.3	1392.2	0.6		984	μs	30	$19/2^{+}$	04	98Wh02	J	1998	IT=100	
¹⁷⁵ Hf	-54481.7	2.3				70.65	d	0.19	$5/2^{(-)}$	04	12Fa07	Т	1949	€=100	
$^{175}Hf^{m}$	-54355.8	2.3	125.89	0.12		53.7	μs	1.5	$1/2^{-}$	04			1964	IT=100	
175 Hf ⁿ	-53048.3	2.3	1433.41	0.12		1.10	μs	0.08	$19/2^+$	04	95Gj01	J	1990	IT=100	
¹⁷⁵ Hf ^p	-51466.1	2.3	3015.6	0.4		1.21	μs	0.15	35/2-	04	95Gj01	J	1980	IT=100	
$^{175}Hf^{q}$	-49845.5	2.6	4636.2	1.2		1.9	μs	0.1	$45/2^+$	04	04Ko.A	JT	1990	IT=100	
¹⁷⁵ Ta	-52409	28				10.5	h	0.2	$7/2^+$	04			1960	$\beta^{+}=100$	
$^{175}\text{Ta}^{m}$	-52278	28	131.41	0.17		222	ns	8	9/2-	04	96Ko17	JT	1972	IT=100	
175 Ta ⁿ	-52070	28	339.2	1.3		170	ns	20	$(1/2^+)$) 04			1969	IT=100	
175 Ta ^p	-50841	28	1567.6	0.3		1.95	μs	0.15	21/2-	04	96Ko17	JT	1996	IT=100	
¹⁷⁵ W	-49633	28				35.2	m	0.6	$(1/2^{-})$) 04			1963	$\beta^{+}=100$	
$^{175}W^{m}$	-49398	28	234.96	0.15		216	ns	6	$(7/2^+)$) 04			1978	IT=100	
¹⁷⁵ Re	-45288	28				5.89	m	0.05	5/2-#	04			1967	$\beta^{+}=100$	
¹⁷⁵ Os	-40105	12				1.4	m	0.1	$(5/2^{-})$) 04			1972	$\beta^{+}=100$	
¹⁷⁵ Ir	-33395	12				9	s	2	5/2 ⁻ #	± 04			1967	$\beta^+=99.15\ 28;\ \alpha=0.85\ 28$	
¹⁷⁵ Pt	-25713	18				2.43	s	0.04	$(7/2^{-})$) 04	14Pe02	Т	1966	α =64 5; β^+ ?	
¹⁷⁵ Au	-17400	40				202	ms	6	$1/2^+$	04	13An10	TJD	1975	$\alpha = 88.3; \beta^+?$	*
175 Au ^m	-17240#	40#	167#	11#	AD	134	ms	4	$(11/2^{-1})$) 04	11Ko.B	TD	1975	α =75 4; β^+ ?	*
¹⁷⁵ Hg	-7970	70				10.6	ms	0.4	$(7/2^{-})$) 09			1983	$\alpha = ?; \beta^+ = 1#$	
$^{175}\text{Hg}^m$	-7480	70	494	2		340	ns	30	$(13/2^+)$) 09			2009	IT=100	
* ¹⁷⁵ Au	T : average	e 13An10=	207(7) 11Ko.	B=188(12	2)			_							**
* ¹⁷⁵ Au	J : favored	α decay to	o 1/2 ⁺ states i	in ¹⁷¹ Ir an	d ¹⁶⁷ Re an	d from $1/2^+$	in 17	⁹ Tl							**
* ¹⁷⁵ Au	D : average	e 13An10=	90(7) 11Ko.H	3=87(4)											**
* ¹⁷⁵ Au	D: $\alpha = 87(4)$	4) from 111	Ko.B, after co	prrection f	or $\alpha = 64(5)$	5) of ¹⁷⁵ Pt da	ughte	er							**
$*^{175}$ Au ^m	T : average	e 11Ko.B=	124(8) 10An()1=138(5)	; the form	er supersede:	s 01k	Ko44=14	3(8)						**
$*^{1/5}$ Au ^m	T : others (02Ro17=15	58(3) 96Pa01	=185(30)	83Sc24=2	00(22) for m	ixtur	e ground	l-state and m						**
* ¹⁷⁵ Au ^m	J : favored	α decay to	$(11/2^{-})$ exc	ited isome	$r^{171}Ir^{m}$										**
$*^{175}$ Au ^m	D: $\alpha = 75(4)$	4)% from 1	1Ko.B, after	correction	the for $\alpha = 64$	(5)% of ¹⁷⁵ F	Pt dau	ghter							**

¹⁷⁶ Ho	-39290#	500#					2#	s	(>300 ns)		13	12Ku26	Ι	2012	β^{-} ?; β^{-} n=0.1#	
¹⁷⁶ Er	-46630#	400#					20#	s	(>300 ns)	0^+	13	12Ku26	Ι	2012	β^- ?	
¹⁷⁶ Tm	-49370	100					1.85	m	0.03	(4^{+})	06	94It.A	Т	1961	$\beta^{-}=100$	
¹⁷⁶ Yb	-53491.314	0.015					STABLE		(>160 Py)	0+	06	96De60	Т	1934	IS=12.996 83; $2\beta^-$?; α ?	
176 Yb ^m	-52441.5	0.6	1049.8	0.6			11.4	s	0.3	8-	06			1967	IT=?; $\beta^- < 10\#$	
¹⁷⁶ Lu	-53382.2	1.2					36.84	Gy	0.18	7^{-}	06	14Hu07	Т	1935	IS=2.599 13; $\beta^{-}=100$	*
$^{176}Lu^{m}$	-53259.4	1.2	122.845	0.004			3.664	h	0.019	1^{-}	06			1935	$\beta^{-} \approx 100; \epsilon = 0.095 \ 16$	
$^{176}Lu^n$	-51867.7	1.3	1514.5	0.5			312	ns	69	12^{+}	06			2000	IT=100	
$^{176}Lu^{p}$	-51794.7	1.6	1587.5	1.1			40	μs	3	14^{+}	06	FGK128	J	2000	IT=100	*
¹⁷⁶ Hf	-54576.3	1.5					STABLE			0^+	06			1934	IS=5.26 7	
${}^{176}\text{Hf}^{m}$	-53243.2	1.5	1333.07	0.07			9.6	μs	0.3	6^{+}	06			1964	IT=100	
$^{176}\text{Hf}^n$	-53017.0	1.5	1559.31	0.09			9.9	μs	0.2	8-	06			1967	IT=100	
$^{176}\text{Hf}^p$	-51710.5	1.7	2865.8	0.7			401	μs	6	14^{-}	06			1975	IT=100	
$^{176}Hf^{q}$	-49712.8	2.2	4863.5	1.6			43	μs	4	22^{-}	06	10Mu13	JT	1976	IT=100	
¹⁷⁶ Ta	-51370	30					8.09	h	0.05	$(1)^{-}$	06			1948	$\beta^{+}=100$	
¹⁷⁶ Ta ^m	-51270	30	103.0	1.0			1.08	ms	0.07	(7^{+})	06	78Du06	ET	1971	IT=100	*
¹⁷⁶ Ta ⁿ	-49900	30	1474.0	1.4			3.8	μs	0.4	14-	06			1978	IT=100	*
¹⁷⁶ Ta ^p	-48500	30	2874.0	1.4			970	μs	70	20^{-}	06			1994	IT=100	*
^{176}W	-50642	28					2.5	h	0.1	0^+	06			1950	<i>ε</i> =100	
¹⁷⁶ Re	-45063	28					5.3	m	0.3	(3^{+})	06			1967	$\beta^{+}=100$	
176Os	-42098	28					3.6	m	0.5	0^+	06			1970	$\beta^{+}=100$	
¹⁷⁶ Ir	-33878	17					8.7	s	0.5		06			1967	$\beta^+=96.96; \alpha=3.16$	
¹⁷⁶ Pt	-28934	13					6.33	s	0.15	0^{+}	06			1966	β^+ ?; α =40 2	
¹⁷⁶ Au	-18520	30				*	1.05	s	0.01	$(3^-, 4^-)$	06	14An10	J	1975	$\alpha = 75 8; \beta^+$?	*
$^{176}Au^{m}$	-18380	30	139	13	AD	*	860	ms	160	(7^{+})	06	02Ro17	Т	2002	$\alpha = ?; \beta^+ ?$	*
A-grou	up is continued	on next pa	ge													

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

			Table 1.	The NU	BASEZ	JIO LADIE	COI	tinueu, E		<u>- 10</u>	able on	page	e 10)		
Nuclide	Mass ex (keV	Cess	P	Excitation	D	1	Half-	iife	JA	Ens	Referenc	e	rear of	intensities (%)	
	(KC V)	c	neigy (kev	()								uiscovery	intensities (%)	
A-grou	in continued .														
¹⁷⁶ Hg	-11785	11				20.3	ms	1.4	0^+	06			1983	$\alpha = 90.9; \beta^+?$	*
176 TI	580	80				6.2	ms	2.3	$(3^{-}, 4^{-}, 5^{-})$	09			2004	$p\approx 100; \alpha ?; \beta^+ ?$	*
* ¹⁷⁶ Lu	T : averag	e 14Hu07	=37.22(0.29)	13Ko20=	36.40(0.35	5) 06Lu03=35	.6(0.7	7)	(-))-)					I ···/··/	**
* ¹⁷⁶ Lu	T: 03	Ni11=36.	77(0.75) 92D	a03=37.3(0.5) 65Br2	25=36.8(6)		<i>,</i>							**
* ¹⁷⁶ Lu ^p	J:73.0γ	(E2) to 12	+ state												**
$*^{176}$ Ta ^m	T : averag	e 78Du06	$=1.05(0.10)^{2}$	71Go21=1	.1(0.1)	J : from 9	8Ko)9							**
$*^{176}$ Ta ⁿ	E: 1371(1) keV abo	ove ¹⁷⁶ Ta ^m												**
$*^{176}$ Ta ^p	E: 2771(1) keV abo	ove ¹⁷⁶ Ta ^m												**
* ¹⁷⁶ Au	D : α=75	s as quote	ed in 14An10												**
$*^{176}Au^m$	T : symme	etrized fro	m 840(+170-	-140)	J : from	α decay to ¹⁷	72 Ir ^m								**
* ¹⁷⁶ Hg	$D: \alpha$ sym	metrized	from 99Po09	=94(+6-12	2)%	2									**
* ¹⁷⁶ Tl	T : symme	etrized fro	om 5.2(+3.0-	.4)											**
	-														
¹⁷⁷ Er	-42860#	500#				3#	s	(>300 ns)	$1/2^{-}$ #	13	12Ku26	Ι	2012	β^- ?	
¹⁷⁷ Tm	-47470#	300#				90	s	6	$(7/2^{-})$	03			1989	$\beta^{-}=100$	
¹⁷⁷ Yb	-50986.40	0.22				1.911	h	0.003	$9/2^{+}$	03	12F105	J	1945	$\beta^{-}=100$	
177 Yb ^m	-50654.9	0.4	331.5	0.3		6.41	s	0.02	$1/2^{-}$	03	12F105	J	1962	IT=100	
¹⁷⁷ Lu	-52383.8	1.2				6.6457	d	0.0026	$7/2^{+}$	03	12Ko24	Т	1945	$\beta^{-}=100$	*
¹⁷⁷ Lu ^m	-52233.4	1.2	150.3967	0.0010		130	ns	3	$9/2^{-}$	03			1949	IT=100	
¹⁷⁷ Lu ⁿ	-51814.1	1.2	569.7068	0.0016		155	μs	7	$1/2^{+}$	03			1965	IT=100	
$^{177}Lu^{p}$	-51413.6	1.2	970.1750	0.0024		160.44	d	0.06	$23/2^{-}$	03			1962	$\beta^{-}=78.68$; IT=21.48	
$^{177}Lu^{q}$	-49612.2	1.4	2771.6	0.7		625	ns	62	$33/2^+$		04Dr06	ETJ	2004	IT=100	
¹⁷⁷ Lu ^r	-48853.5	1.4	3530.3	0.7		6	μs	2	$39/2^{-}$	03	11Ko.A	Т	2003	IT=100	*
¹⁷⁷ Hf	-52880.6	1.4				STABLE			$7/2^{-}$	03			1934	IS=18.60 9	
${}^{177}Hf^{m}$	-51565.1	1.4	1315.4504	0.0008		1.09	s	0.05	$23/2^+$	03			1966	IT=100	
177 Hf ⁿ	-51538.2	1.4	1342.38	0.20		55.9	μs	1.2	$(19/2^{-})$	03			1976	IT=100	
${}^{177}Hf^{p}$	-50140.6	1.4	2740.02	0.15		51.4	m	0.5	$37/2^{-}$	03			1971	IT=100	*
¹⁷⁷ Ta	-51715	3				56.56	h	0.06	$7/2^+$	03			1948	$\beta^{+}=100$	
177 Ta ^m	-51642	3	73.36	0.15		410	ns	7	$9/2^{-}$	03			1973	IT=100	
¹⁷⁷ Ta ⁿ	-51529	3	186.15	0.06		3.62	μs	0.10	$5/2^{-}$	03			1971	IT=100	
¹⁷⁷ Ta ^p	-50360	3	1355.01	0.19		5.31	μs	0.25	$21/2^{-}$	03			1971	IT=100	
¹⁷⁷ Ta ^q	-47059	3	4656.3	0.5		133	μs	4	$49/2^{-}$	03			1994	IT=100	
^{177}W	-49702	28				132	m	2	$1/2^{-}$	03			1950	$\beta^{+}=100$	
¹⁷⁷ Re	-46269	28				14	m	1	$5/2^{-}$	03			1957	$\beta^{+}=100$	
177 Re ^m	-46184	28	84.71	0.10		50	μs	10	$5/2^{+}$	03			1972	IT=100	
¹⁷⁷ Os	-41956	15				3.0	m	0.2	$1/2^{-}$	03			1970	$\beta^{+}=100$	
¹⁷⁷ Ir	-36047	20				30	s	2	$5/2^{-}$	03			1967	$\beta^+ \approx 100; \alpha = 0.061$	
¹⁷⁷ Pt	-29370	15				10.6	s	0.4	$5/2^{-}$	03			1966	$\beta^+=94.35; \alpha=5.75$	
177 Pt ^m	-29223	15	147.4	0.4		2.2	μs	0.3	$1/2^{-}$	03			1979	IT=100	
¹⁷⁷ Au	-21545	10				1.46	s	0.03	$(1/2^+, 3/2^+)$	03	01Ko44	TJ	1968	$\alpha = 40.6; \beta^+?$	*
$^{177}Au^{m}$	-21356	10	189	8	AD	1.180	s	0.012	$11/2^{-}$	03	01Ko44	ETJ	1975	$\alpha = 66\ 10; \beta^+$?	*
¹⁷⁷ Hg	-12780	80				127.3	ms	1.8	$(7/2^{-})$	03	05Ca43	J	1975	$\alpha = 85; \beta^+ = 15$	*
177 Hg ^m	-12460	80	323	1		1.50	μs	0.15	$(13/2^+)$		03Me20	ETJ	2003	IT=100	
¹⁷⁷ Tl	-3341	22				18	ms	5	$(1/2^+)$	03			1999	α=73 13; p=27 13	
${}^{177}\text{Tl}^{m}$	-2534	12	807	18	р	180	μs	60	$(11/2^{-})$	03	04Ke06	TD	1997	p=51 8; α=49 8	*
* ¹⁷⁷ Lu	T : averag	e 12Ko24	=6.639(0.009) 11Po07=	6.6465(0.	0032) 01Sc23	8=6.6	46(0.005)							**
$*^{177}Lu^{r}$	E : derived	i by NUB	ASE from lea	st-squares	fit to γ-ray	energies									**
$*^{177}Lu^{r}$	T:04A104	4=7(2) m,	not trusted												**
$*^{177}$ Hf ^p	T : other 0	4A104=7	6(+16–9) from	n decay gr	owth										**
* ¹⁷⁷ Au	T : averag	e 09An14	=1.53(0.07))1Ko44=1.	46(0.03)	D : from	m 09.	An14							**
$*^{177}$ Au ^m	D : from 0	9An14													**
* ¹⁷⁷ Hg	J : also 09	An20													**
$*^{1/7} Tl^{m}$	T : 04Ke0	6=160(+7	/0-40)	D : also 0	4Ke06=55	5(20)%									**
178 -	10260#	600#				1.4	~	(\200)	0 +	12	128.24	T	2012	$\beta^{-} 2 \beta^{-} n - 0^{+}$	
178 T	-40200#	400#				1# 20#	s	(>300 IIS)	0	13	12KU20	т Т	2012	$\beta^{-1}, \beta^{-1} = 0 $	
178 v/L	-44120#	400# 10				30# 74	5	(>500 ns)	0^+	11	073110	1	2008 1072	β^{-100}	
178 T	-49093	2.2				74 20 4	111	0.2	1(+)	09			1973	$\beta^{-}=100$ $\beta^{-}=100$	
178 rm	-30337.8	2.3	122.0	26	DO	28.4	m	0.2	D (-)	09	090-12	т	1951	$\mu = 100$ $\beta = -100$	
178 TTC	-50214	5	125.8	2.0	кQ	23.1	m	0.5	9. /	09	98Ge13	J	1951	p = 100 15-27.28.7	
178 x x cm	-52435.2	1.4	1147 414	0.007		STABLE	-	0.2	0	09			1934	15=2/.28 / IT-100	
178 TTCn	-51287.8	1.4	1147.410	0.006		4.0	S	0.2	8 17+	09			1900	11=100 IT-100	
178 TTCD	-49989.1	1.4	2440.09	0.08		51	У	1	10'	09			1908	11=100 IT-100	
178 T-	-49802.8	1.4	2372.4	0.3		08	μs L	2 0.09	14 7-#	09			1977	$\beta_{\pm}^{\pm} = 100$	
178 m-m	-30000#	3U# 15	100#	50#	*	2.36	n	0.08	/ # 1+#	09	061-12	Б	1950	$p^{+}=100$ $R^{+}=100$	
178 m.n	-30498	13	100#	JU# 0.14	*	9.31	m	0.03	1'#	09	90K013	E ETI	1930	p = 100	*
178 m. p	-49130#	50#	1407.82	0.10		200	ms	5 12	15	09	90K013	EIJ ETI	19/9	11=100 IT-100	*
1ar A orres	-4//00#	JU#	2901.9	0.7		290	ins	12	21	09	90 N 013	сIJ	1990	11=100	*
A-grot	ip is continued	aon next	page												

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Nuclide	Mass ex	cess		Excitation			Half-	life	<u>μ</u> π	Ens	Reference	'e	Year of	Decay modes and	
riaenae	(keV	0		energy (keV)					Ū	2110	10101010		discoverv	intensities (%)	
		/													
A-grou	up continued	1													
^{178}W	-50407	15				21.6	d	0.3	0^{+}	09			1950	ε=100	
$^{178}W^{m}$	-43834	15	6572.7	0.3		220	ns	10	25^{+}	09			1998	IT=100	
¹⁷⁸ Re	-45653	28				13.2	m	0.2	(3+)	09			1957	$\beta^{+}=100$	
178Os	-43544	14				5.0	m	0.4	0^{+}	09			1967	$\beta^{+}=100$	
¹⁷⁸ Ir	-36252	20				12	s	2		09			1972	$\beta^{+}=100$	
¹⁷⁸ Pt	-31998	10				20.7	s	0.7	0^{+}	09			1966	$\beta^+=92.3$ 3; $\alpha=7.7$ 3	
¹⁷⁸ Au	-22304	10				2.6	s	0.5		09			1968	$\beta^+ < 60; \alpha > 40$	
$^{178}Au^{m}$	-22115	10	189	14		> 1	s				15Ma.A	ET	2015	β^+ ?; α ?	
$^{178}Au^{p}$	-21939	24	365	21	AD										
¹⁷⁸ Hg	-16316	11				266.5	ms	2.4	0^{+}	09	12Ve04	D	1971	$\alpha = 89.4; \beta^+?$	
¹⁷⁸ Tl	-4790#	90#				255	ms	9	$(4^{-}, 5^{-})$	09	13Li49	TJD	1997	α =62 2; β ⁺ =38 2; β ⁺ SF=0.15 6	*
¹⁷⁸ Pb	3574	24				230	μs	150	0^+	09	01Ro.B	Т	2001	$\alpha \approx 100; \beta^+$?	*
$*^{178}$ Ta ^m	$E:1^{+}$ st	ate (p9/	/2 ⁻ [514]+r	n7/2 ⁻ [514]) is	s expecte	ed 104 keV	abo	ve the 7	ground-state,						**
$*^{178}$ Ta ^m	E: b	ased or	n E=220 ke	V for 8 ⁺ (p9/	2-[514]	$+n7/2^{-}[51]$	4]) a	and resid	dual energy						**
$*^{178}$ Ta ^m	E: sl	hift of £	50 keV froi	m known Gall	lagher-M	loszkowsk	i spl	itting en	ergy						**
* ¹⁷⁸ Ta ⁿ	E : from	least-so	quares fit to	ο γ-rays in 96	Ko13										**
* ¹⁷⁸ Ta ⁿ	T : avera	ge 96K	lo13=58(4)	79Du02=60((5)										**
* ¹⁷⁸ Ta ^p	E : from	least-so	quares fit to	ο γ-rays in 96	Ko13										**
* ¹⁷⁸ Tl	T : avera	ge 13L	i49=252(2	0) 02Ro17=2	54(+11-	9)									**
* ¹⁷⁸ Pb	T : two e	vents a	t 202 and 1	147 μs, see 84	Sc13										**

-41600#	500#			20#	s	(>300 ns)	$1/2^{+}$ #	13	12Ku26	Ι	2012	β^{-} ?: β^{-} n=0#	
-46540#	200#			8.0	m	0.4	$(1/2^{-})$	09			1982	$\beta^{-}=100$	
-49059	5			4.59	h	0.06	7/2+	09			1961	$\beta^{-}=100$	
-48467	5	592.4	0.4	3.1	ms	0.9	$1/2^+$	09			1982	IT=100	
-50462.9	1.4			STABLE			$9/2^+$	09			1934	IS=13.62 2	
-50087.9	1.4	375.0352	0.0025	18.67	s	0.04	$1/2^{-}$	09			1962	IT=100	
-49357.2	1.4	1105.74	0.16	25.05	d	0.25	$25/2^{-}$	09			1970	IT=100	
-46687.7	2.5	3775.2	2.1	15	μs	5	$(43/2^+)$	09			2000	IT=100	
-50357.3	1.5			1.82	У	0.03	$7/2^{+}$	09			1950	ε=100	
-50326.6	1.5	30.7	0.1	1.42	μs	0.08	9/2-	09			1964	IT=100	
-49837.1	1.5	520.23	0.18	280	ns	80	$1/2^{+}$	09	FGK128	J	1974	IT=100	
-49104.7	1.5	1252.60	0.23	322	ns	16	$21/2^{-}$	09	97Ko13	J	1982	IT=100	
-49040.1	1.6	1317.2	0.4	9.0	ms	0.2	$25/2^+$	09	97Ko13	J	1982	IT=100	
-49029.3	1.6	1328.0	0.4	1.6	μs	0.4	$23/2^{-}$	09	97Ko13	J	1982	IT=100	
-47718.0	1.6	2639.3	0.5	54.1	ms	1.7	$37/2^+$	09	97Ko13	J	1982	IT=100	
-49295	15			37.05	m	0.16	$7/2^{-}$	09			1950	$\beta^{+}=100$	
-49073	15	221.91	0.03	6.40	m	0.07	$1/2^{-}$	09			1950	IT \approx 100; $\beta^+=0.294$	
-47663	15	1631.90	0.08	390	ns	30	$21/2^+$	09	94Wa05	J	1978	IT=100	
-45947	15	3348.41	0.14	750	ns	80	$35/2^{-}$	09	94Wa05	J	1978	IT=100	
-46584	25			19.5	m	0.1	$5/2^{+}$	09			1960	$\beta^{+}=100$	
-46519	25	65.35	0.09	95	μs	25	$(5/2^{-})$	09			1972	IT=100	
-44760	60	1822	50	408	ns	12	$(23/2^+)$	09			1972	IT=100	*
-41176	25	5408.0	0.5	466	μs	15	$(47/2^+, 49/2^+)$	09			1989	IT=100	
-43019	17			6.5	m	0.3	$1/2^{-}$	09			1968	$\beta^{+}=100$	
-42874	17	145.41	0.12	500	ns		$(7/2)^{-}$	09			1983	IT=100	
-42776	17	243.0	0.8	783	ns	14	$(9/2)^+$	09			1983	IT=100	
-38082	10			79	s	1	$(5/2)^{-}$	09			1992	$\beta^{+}=100$	
-32268	8			21.2	s	0.4	1/2-	09			1966	$\beta^+ \approx 100; \alpha = 0.243$	
-24989	12			7.1	s	0.3	$(1/2^+, 3/2^+)$	09			1968	$\beta^+=78.09; \alpha=22.09$	
-24900	12	89.5	0.5	328	ns	2	$(3/2^{-})$		11Ve01	ETD	2011	IT=100	*
-16928	27			1.05	s	0.03	7/2-	09	12Ve04	D	1970	$\alpha = 754; \beta^+?; \beta^+p \approx 0.15$	
-16757	27	171.4	0.4	6.4	μs	0.9	$13/2^+$	09	02Je09	J	2002	IT=100	
-8270	40			265	ms	10	$1/2^+$	09	13An10	TJD	1983	$\alpha = 602; \beta^+?$	*
-7440#	40#	825#	10#	1.41	ms	0.03	$(11/2^{-})$	09	11Ko.B	TJ	1983	$\alpha \approx 100$; IT ?; β^+ ?	*
2050	80			3.9	ms	1.1	$(9/2^{-})$	10	10An01	TDJ	2010	$\alpha = 100$	*
E: x keV	/ above	1772.20(0.22) level; x esti	mated 50(50) by	/ NU	BASE							**
E : uncer	rtainty e	stimated by N	NUBASE										**
E:44(15	5) above	89.5 keV lev	el	-									**
T: other	s 11Ko.	B=489(21)02	2Ro17=415(5	5)									**
$J: \alpha dec$	ay to 1/	2' in '''Au	. .		· · · ·	77 181 183							**
J : from	α decay	to "Au"	E : estir	nated from TNN	1n '	,101,105 [.] []							**
I : avera	ge IIKo	S.B=1.36(0.04)	4) $10An01=1$.46(0.04)									**
1 : symn	netrized	110m 3.3(+1.	4–0.8)										**
	-41600# -46540# -49059 -48467 -50462.9 -50087.9 -49357.2 -46687.7 -50357.3 -50357.3 -50326.6 -49837.1 -49104.7 -49040.1 -49029.3 -47718.0 -49295 -49073 -477663 -45947 -46584 -46519 -44760 -41176 -38082 -32268 -24989 -24900 -16928 -16757 -8270 -7440# 2050 E : x keV E : uncet E : 44(1) T : other T : other T : a vera T : symm	-41600# 500# -46540# 200# -49059 5 -48467 5 -50462.9 1.4 -49357.2 1.4 -46687.7 2.5 -50326.6 1.5 -49040.1 1.6 -49029.3 1.6 -49040.1 1.6 -49040.3 1.6 -49029.3 1.5 -49040.3 1.6 -49295 1.5 -49047 1.5 -49043 1.6 -49295 1.5 -49073 1.5 -45947 1.5 -466319 2.5 -44760 60 -41176 2.5 -43019 17 -32026 8 -24989 12 -16928 27 -16757 27 -8270 40 -7440# 40# 2050 80 E : x keV above	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-41600# 500# -46540# 200# -49059 5 -48467 5 -50462.9 1.4 -50087.9 1.4 -50087.9 1.4 -50357.2 1.4 1105.74 0.16 -46687.7 2.5 -50357.3 1.5 -50357.3 1.5 -50357.3 1.5 -50326.6 1.5 -49040.1 1.6 -47718.0 1.6 -49029.3 1.6 -49073 1.5 -49073 1.5 -44063 15 -44071 5 -44763 15 -449073 1.5 -44519 2.5 -44519 2.5 -44519 2.5 -44519 2.5 -44176 6.0 -82268 8 -24989 12 -24980 12 -24980	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I. The NUB	ASE2016 table (co	ontinued,	Explana	ation of Ta	able on pa	ge 18)

Nuclide	Mass ex (keV	(cess	E ene	xcitation ergy (keV)	H	Ialf-	life	J^{π}	Ens	Reference	ce	Year of discovery	Decay modes and intensities (%)	
180-	``````````````````````````````````````	·		0,	,										
¹⁸⁰ Tm	-37920#	500#				5#	s	(>300 ns)		15			2012	$\beta^{-}?;\beta^{-}n=0#$	
180 Y b	-44600#	300#				2.4	m	0.5	0+	15			1987	$\beta^{-}=100$	
180 Lu	-46680	70	12.0	0.0		5.7	m	0.1	5-	15	0514.00		1971	$\beta^{-}=100$	
180 Lum	-46670	70	13.9	0.3		1	s		3	15	95Me03	JT	1995	β ?; IT ?	
180 Lun	-46060	70	624.0	0.5		2 > 1	ms		(9)	15			2001	11=100	
180 x cm	-49/79.3	1.4		0.015		STABLE		0.02	0	15			1934	IS=35.08 16	
180 Mfm	-48637.7	1.4	1141.552	0.015		5.53	h	0.02	8	15			1951	$11 \approx 100; \beta = 0.31.8$	
180 Mfn	-48404.9	1.4	13/4.36	0.04		570	μs	20	(4)	15			1990	11=100	*
180 MfP	-4/293.8	1.5	2485.5	0.5		940	ns	110	12	15			2000	11=100	
180 m	-46181.8	1.7	3597.5	1.0		90	μs	10	(18)	15			1999	11=100	
180 m	-48932.9	1.9			DO	8.154	h	0.006	1'	15			1938	$\varepsilon = 85 3; \beta = 15 3$	
180 Tam	-48857.5	1.4	75.3	1.4	RQ	STABLE		(>7.1 Py)	9	15			1940	$IS=0.0120132; \beta$?	
180 Tan	-4/480.5	1.9	1452.39	0.22		31.2	μs	1.4	15-	15			1996	11=100	
180 Tap	-45254.0	2.1	36/8.9	1.0		2.0	μs	0.5	(22^{-})	15	0.01111.04		2000	11=100	
180 Ta4	-44/60./	2.5	41/2.2	1.6		1/	μs	5	(24 ')	15	00wn04	EJ	2000	11=100 IS 0.12.1 100.28+3	
180 W	-49636.1	1.4	1500.05	0.04		1.8	Ey	0.2	0	15			1937	IS=0.12 1; $\alpha \approx 100; 2p$?	*
180 W m	-48107.0	1.4	1529.05	0.04		5.47	ms	0.09	8	15			1978	II=100	
180 W //	-463/1.2	1.4	3264.9	0.3		2.3	μs	0.2	14	15			1966	11=100	
180 D - M	-43837	21	00#	20#		2.40	m	0.03	(1)	15	055110	т	1955	p = 100	
180 D - "	-45/50#	40#	90#	30# 20#		> 1	μs	0.7	(4',5')) 15	05E110	J	2005	$11 \approx 100; p^{-1}$	
180 Q-	-42280#	40#	3301#	30#		9.0	μs	0.7	(21)	15	05EII0	IJL	1067	R^{+} 100	*
180 US	-44358	10				21.5	m	0.4	0' (5+)	15			1907	$\beta^{+}=100$ $\beta^{+}=100$	
180 Dt	-5/9/8	11				1.5	m	0.1	(3)	15			1972	p = 100 $R^{+} = 100$, $m = 0.2$	
180 A	-34430	11 E				20	s	3	0.	15			1900	$\beta^+\approx 100; \alpha\approx 0.3$	
180 I I	-25626	3				8.4	s	0.6	0 ⁺	15			1977	$p^+ < 98.2; \alpha > 1.8$	
180 ml	-20250	13				2.59	s	0.01	0· 4(-)	15	100. 4	Ŧ	1970	$p^+=52.2; \alpha=48.2$	
180 pt	-9390	60				1.09	s	0.01	4	15	12B1.A	J	1987	β =94 4; α =6 4; β SF=0.0032 2	
180 LCn	-1941	12	5 9(1 0) 15	(5) (1)	a+)	4.1	ms	0.5	0.	15			1996	$\alpha = 100$	
* ¹⁸⁰ HI	T : 150me	r at 242	25.8(1.0) 15	$(5) \mu s (10)$	J ·) repo	orted then i	retra	icted by autr	iors						**
* ¹⁸⁰ W	T : 03Da	109 > 80	Py for $2p$	decay	- 4 1 1 1			1 1 - 04	0#2011	,					**
****Re	E: 34/1	.8(0.6)	above (5^{+})	level, mo	st likely	isomer, es	sum	ated to be 90	0#30 Ke v						**
¹⁸¹ Tm	-35170#	600#				5#	s	(>300 ns)	$1/2^{+}$ #	13	12Ku26	T	2012	β^{-} ?: β^{-} n=0.4#	
¹⁸¹ Yb	-41090#	300#				1#	m	(>300 ns)	$3/2^{-}$ #	13	09St16	Ť	2000	β^{-2}	
¹⁸¹ Lu	-44800	130				3.5	m	03	$7/2^+$ #	06	.,	•	1982	$\beta^{-}=100$	

¹⁸¹ Lu	-44800	130			3.5	m	0.3	7/2+#	06			1982	$\beta^{-}=100$	
¹⁸¹ Hf	-47402.8	1.4			42.39	d	0.06	$1/2^{-}$	06			1935	$\beta^{-}=100$	
$^{181}\mathrm{Hf}^m$	-46807.5	1.4	595.27	0.04	80	μs	5	$9/2^+$	06	01Sh36	Т	2001	IT=100	
$^{181}\mathrm{Hf}^n$	-46359.3	1.6	1043.5	0.8	100	μs		$(17/2^+)$	06			2001	IT=100	
$^{181}\mathrm{Hf}^{p}$	-45660.9	1.9	1741.9	1.3	1.5	ms	0.5	$(25/2^{-})$	06			2001	IT=100	
¹⁸¹ Ta	-48438.3	1.4			STABLE			$7/2^{+}$	06			1932	IS=99.98799 32	
181 Ta ^m	-48432.1	1.4	6.237	0.020	6.05	μs	0.12	$9/2^{-}$	06			1979	IT=100	
¹⁸¹ Ta ⁿ	-47823.1	1.4	615.19	0.03	18	μs	1	$1/2^+$	06			1948	IT=100	
¹⁸¹ Ta ^p	-47010	14	1428	14	140	ns	36	$(19/2^+)$	06			1998	IT=100 *	
181 Ta q	-46954.9	1.4	1483.43	0.21	25.2	μs	1.8	$21/2^{-1}$	06	98Wh02	Т	1998	IT=100 *	
¹⁸¹ Ta ^r	-46210.4	1.7	2227.9	0.9	210	μs	20	$29/2^{-}$	06	98Wh02	J	1998	IT=100	
^{181}W	-48233.8	1.4			121.2	d	0.2	$9/2^+$	06			1947	ε=100	
${}^{181}W^{m}$	-47868.3	1.4	365.55	0.13	14.59	μs	0.15	$5/2^{-}$	06			1968	IT=100	
$^{181}W^n$	-46580.7	1.5	1653.1	0.6	140	ns	20	$21/2^+$	06			1973	IT=100	
¹⁸¹ Re	-46517	13			19.9	h	0.7	$5/2^{+}$	06			1957	$\beta^{+}=100$	
181 Re ^m	-46254	13	262.91	0.11	156.7	ns	1.9	$9/2^{-}$	06			1967	IT=100	
181 Re ⁿ	-44861	13	1656.37	0.14	250	ns	10	$21/2^{-}$	06			1974	IT=100	
$^{181}\mathrm{Re}^{p}$	-44636	13	1880.57	0.16	11.5	μs	0.9	$25/2^+$	06			2000	IT=100	
$^{181}\mathrm{Re}^{q}$	-42648	13	3869.40	0.18	1.2	μs	0.2	$(35/2^{-})$	06			2000	IT=100	
¹⁸¹ Os	-43550	25			105	m	3	$1/2^{-}$	06			1966	$\beta^{+}=100$	
$^{181}\mathrm{Os}^m$	-43501	25	49.20	0.14	2.7	m	0.1	$7/2^{-}$	06			1966	$\beta^{+}=100$	
¹⁸¹ Os ⁿ	-43393	25	156.91	0.15	262	ns	6	$9/2^{+}$	06			1974	IT=100	
¹⁸¹ Ir	-39463	5			4.90	m	0.15	$5/2^{-}$	06			1972	$\beta^{+}=100$	
181 Ir ^m	-39174	5	289.33	0.13	298	ns		$5/2^{+}$	06			1992	IT=100	
181 Ir ⁿ	-39097	5	366.30	0.22	126	ns	6	$9/2^{-}$	06			1992	IT=100	
¹⁸¹ Pt	-34382	14			52.0	s	2.2	$1/2^{-}$	06	95Bi01	D	1966	$\beta^+ \approx 100; \alpha = 0.074 \ 10$	
181 Pt ^m	-34265	14	116.65	0.08	> 300	ns		$(7/2)^{-}$	06			1992	IT=100	
¹⁸¹ Au	-27871	20			13.7	s	1.4	$(3/2^{-})$	06			1968	$\beta^{+}=?; \alpha=2.75$	
¹⁸¹ Hg	-20661	15			3.6	s	0.1	$1/2^{(-\#)}$	06			1969	$\beta^+=732; \alpha=272; \beta^+p=0.0133; \beta^+\alpha=9e-66$	
$^{181}Hg^{m}$	-20450	50	210	50	480	μs	20	$13/2^+$	06	09An17	Т	2009	IT ?	
A-gro	up is continu	ued on r	next page					,						

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Nuclide	Mass ex	cess		Excitation			Half-	life		Ens	Reference	e	Year of	Decay modes and	
	(keV	7)	eı	nergy (keV)								discovery	intensities (%)	
A-grou	un continue	đ													
¹⁸¹ Tl	-12799	9				3.2	s	0.3	$1/2^{+}$	09	09An14	J	1996	β^+ ?; $\alpha < 10$	*
¹⁸¹ Tl ^m	-11963	9	835.9	0.4		1.40	ms	0.03	$(9/2^{-})$	09	09An14	J	1984	IT=99.60 4; α =0.40 6; β^+ ?	
¹⁸¹ Pb 181 phm	-3120	80	non a	victort	DN	39.0	ms	0.8	$(9/2^{-})$ 13/2+#	06	09An20	TJ	1989	$\alpha = ?; \beta^{+} = 2 \#$	*
* ¹⁸¹ Ta ^p	E : x keV	/ above	1403.2(0.6)	level: x<	KIN 50				13/2.#		901001	1			**
$*^{181}$ Ta ^q	T : avera	ige 98W	h02=25(2)	98Dr09=23	3(+6-2)	1									**
* ¹⁸¹ Tl	T : avera	ige 98To	014=3.2(0.3) 92Bo.D=	3.4(0.6)									**
* ¹⁰¹ Pb	T : avera	ige 09A	n20=36(2) (J5Ca.A=39	.6(0.9)										**
¹⁸² Yb	-38820#	400#				10#	s	(>300 ns)	0^+	15	12Ku26	Ι	2012	β^- ?	
¹⁸² Lu 18211£	-41880#	200#				2.0	m Mu	0.2	1 ⁻ #	15			1982	$\beta^{-}=100$	
182 Hfm	-40050	6	1172.87	0.18		8.90	m	0.09	$(8)^{-}$	15	EGK 128	T	1901	$\beta = 100$ $\beta^{-} - 54.2$: IT-46.2	4
$^{182}Hf^{n}$	-44077 -43479	6	2571 3	1.2		40		1.5	(0) (13^+)	15	FUK120	J	1971	p = 542, 11 = 462 IT=100	*
¹⁸² Ta	-46429.9	1.4				114.74	d	0.12	3-	15			1938	$\beta^{-}=100$	
182 Ta ^m	-46413.6	1.4	16.273	0.004		283	ms	3	5^{+}	15			1968	IT=100	
¹⁸² Ta ⁿ	-45910.3	1.4	519.577	0.016		15.84	m	0.10	10-	15			1947	IT=100	
182 W	-48246.1	0.7	2220 (5	0.14		STABLE		(>7.7 Zy)	(10^{+})	15			1930	IS=26.50 16; α ?	
182 Re	-46015.5 -45450	100	2230.65	0.14	4		µs h	0.1	(10.)	15			1969	$\beta^{+} = 100$ $\beta^{+} = 100$	
$^{182}\text{Re}^m$	-45386	20	60	100	BD *	14.14	h	0.45	2^{+}	15			1950	$\beta^{+}=100$ $\beta^{+}=100$	
$^{182}\mathrm{Re}^{n}$	-45150	140	300	100		585	ns	30	$(2)^{-}$	15			1969	IT=100	*
$^{182}\text{Re}^{p}$	-44930	140	520	100		780	ns	90	(4-)	15			1984	IT=100	*
¹⁸² Os	-44609	22	1021 4	0.2		21.84	h	0.20	0^+	15			1950	$\varepsilon = 100$	
182 Os ^m	-42778	22	1831.4	0.3		/80	μs	70 10	(8) (25 ⁺)	15			1966	II=100 IT-100	
¹⁸² Ir	-37300 -39052	21	/049.3	0.4		150	m	1.0	(23 ⁺) 3 ⁺	15			1988	$\beta^{+}=100$	
$^{182}Ir^{m}$	-38981	21	71.02	0.17		170	ns	40	(5+)	15			1990	IT=100	
182 Ir ⁿ	-38876	21	176.4	0.3		130	ns	50	(6-)	15			1990	IT=100	
¹⁸² Pt	-36168	13				2.67	m	0.12	0+	15			1963	$\beta^+ \approx 100; \alpha = 0.0382$	
¹⁸² Au 182 Aun	-28301	20	120	40		15.5	s	0.4	(2+) hiah	15			1970	$\beta^+ \approx 100; \alpha = 0.135$	
182 Hg	-28180 -23577	30 10	120	40		10.83	s	0.06	nign 0+	15	71Ho07	D	1968	$\beta^+=86.2.9$; $\alpha=13.8.9$; $\beta^+n<1e-5$	
¹⁸² Tl	-13328	12			×	1.9	s	0.1	(2^{-})	10	16Va01	TJD	1991	$\beta^{+} \approx 100; \alpha < 0.49; \beta^{+} \text{SF} < 3.4\text{e} - 6$	
${}^{182}\text{Tl}^{m}$	-13280#	50#	50#	50#	×	3#	s		(7^+)		91Bo22	J			
$^{182}\text{Tl}^{p}$	-12830#	100#	500#	100#				_	(10^{-})						
¹⁸² Pb 182 LLFm	-6825	12 •+				55	ms	5	0^+	15			1986	$\alpha = ?; \beta^+ = 2\#$	
$*^{182}Re^{n}$	E · 235 7	8 732(0.02	2) above ¹⁸	$^{2}Re^{m}$											**
$*^{182}$ Re ^p	E : 461.3	3(0.1) at	pove ¹⁸² Re ^m	ite											**
¹⁸³ Yb	-35100#	400#				3#	s	$(>300\mathrm{ns})$	$3/2^{-}$ #	16	12Ku26	T	2012	β^{-2}	
¹⁸³ Lu	-39720	80				58	s	4	$(7/2^+)$	16	1211020	•	1983	$\beta^{-}=100$	
¹⁸³ Hf	-43280	30				1.018	h	0.002	$(3/2^{-})$	16			1956	$\beta^{-}=100$	
$^{183}Hf^{m}$	-41820	70	1464	64		40	S	30	27/2-#	16	10Re07	ETJ	2010	IT<100; β^- ?	*
183 Tam	-45292.8	1.4	72 164	0.014		5.1	d	0.1	$7/2^+$	16			1950	$\beta^{-}=100$	
183 Tan	-43219.0	1.4	1336	15		900	ns	300	(9/2) $(19/2^+)$	16	09Sh17	FTI	2009	IT=100 IT=100	*
¹⁸³ W	-46365.6	0.7	1550	15		STABLE	115	(>670 Ey)	$1/2^{-}$	16	0)0117	115	1930	$IS=14.314; \alpha$?	
$^{183}W^m$	-46056.1	0.7	309.492	0.004		5.30	s	0.08	$11/2^+$	16			1961	IT=100	
¹⁸³ Re	-45810	8				70.0	d	1.4	$5/2^{+}$	16			1950	ε=100	
$^{183}\text{Re}^{m}$	-43903	8	1907.21	0.15		1.04	ms	0.04	$(25/2^+)$	16			1966	IT=100	
183 Osm	-43000 -43490	50 50	170 73	0.07		13.0	n h	0.5	9/21	10			1950	$\beta^{+}=100$ $\beta^{+}=85.2$ IT=15.2	
¹⁸³ Ir	-40203	24	170.75	0.07		58	m	5	$5/2^{-}$	16	61Di04	Т	1961	β^{-352}, π^{-152} $\beta^{+} \approx 100; \alpha = 0.05 \#$	*
¹⁸³ Pt	-35772	16				6.5	m	1.0	$1/2^{-}$	16			1963	$\beta^+ \approx 100; \alpha = 0.00965$	
183 Pt ^m	-35737	16	34.74	0.07		43	s	5	7/2-	16			1979	$\beta^+ \approx 100$; IT=3.1 8; $\alpha < 3e-4$	
183 Pt ⁿ	-35576	16	195.90	0.10		> 150	ns	1.0	$(9/2)^+$	16	045		1990	IT=100	
183 Aum	-30191	9	72.2	0.4		42.8	S	1.0	$5/2^{-}$	16	94Pa37	J	1968	$p \approx 100; \alpha = 0.55 25$	
¹⁸³ Au ^p	-29960	9	230.6	0.4		> l ~ 1	μs		$(1/2)^{-1}$ $(11/2)^{-1}$	10			1984	IT=100 IT=100	
¹⁸³ Hg	-23805	7	250.0	0.0		9.4	s S	0.7	$1/2^{-}$	16			1969	$\beta^+=88.3\ 20;\ \alpha=11.7\ 20;\ \beta^+p=2.6e-4\ 8$	
$^{183}\mathrm{Hg}^{m}$	-23601	13	204	14	AD	> 8#	μs		13/2+#		81Mi12	Ι		β^+ ?	*
¹⁸³ Tl	-16587	9				6.9	s	0.7	$1/2^{(+)}$	16	13Ba41	J	1980	$\beta^{+}=?; \alpha=2\#$	
¹⁸³ Tl ^m 1837D1 ⁿ	-15959	9	628.7	0.5		53.3	ms	0.3	$(9/2^{-})$	16			1980	IT=?; α =1.5 3; β^+ ?	*
-στοι 4-στοι	-15612	9 Jed on r	9/5.01 ext page	0.23		1.48	μs	0.10	$(13/2^{+})$	16			2001	11=100	
11-5100	ar is continu		en page	•											

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

			Table		NUBAS	E2010	aD	ie (continue	a, 1	xpian	au	on	of Tab	le on	page 10)	
Nuclide	Mass ex (keV	(cess ()	e	Excitation energy (keV))		Н	alf-l	life		J^{π}	Eı	ns	Referenc	e	Year of discovery	Decay modes and intensities (%)	
A-grou ¹⁸³ Pb ¹⁸³ Pb ^m * ¹⁸³ Hf ^m	up continued -7575 -7481 T : for q	1 28 28 =71 ⁺ (H	94 I+ like ion); s	8 symmetrized	AD I from 10	5 4 0(+48–5)	35 15	ms ms	30 20		3/2 ⁻ 13/2 ⁺		16 16	09Se13 09Se13] J	1980 1980	α =?; β ⁺ =10# α ≈100; β ⁺ ?; IT ?	**
$*^{183}$ Ta ⁿ	E : less t	han 501	keV above 13	10.16 level														**
* ¹⁸³ Ir	T : avera	ge 61D	i04=55(7) 61	La05=60(6)														**
$*^{183}$ Hg ^m	I : lack c	of $E(a) =$	6073-γ coinc	$18^{18}/\text{Pb}^m$	decay; n	o isomer se	en i	in 0	1Sc41									**
$*^{183}$ Tl ^m	E : uncer	rtainty e	stimated by I	NUBASE	D :	IT from 11	Ve.	A										**
184 Vb	32540#	500#					1#	6	$(>300\mathrm{ns})$		0^+		13	12Ku26	T	2012	β^{-2}	
184 L H	-32340# -36410#	300#					20	5	(>300 lls)		(3^+)		10	95Kr04	т	1080	β^{-1}	
¹⁸⁴ Hf	-41500	40				4.	12	h	0.05		0+		10	<i>y</i> 011 01	10	1973	$\beta^{-}=100$	
$^{184}\mathrm{Hf}^m$	-40230	40	1272.2	0.4			48	s	10		(8^{-})		10	12Re.A	D	1995	$IT=?; \beta^{-}=?$	*
$^{184}\mathrm{Hf}^n$	-39020	40	2477	10			16	m	7		15+#		10	10Re07	ET	2010	β^- ?; IT ?	*
¹⁸⁴ Ta	-42839	26				5	3.7	h	0.1		(5^{-})		10			1955	$\beta^{-}=100$	
^{184}W	-45705.4	0.7				Stab	LE		(>8.9 Zy)		0^{+}		10	04Co26	Т	1930	IS=30.64 2; α ?	
$^{184}W^m$	-44420.4	0.7	1284.997	0.008		8.	33	μs	0.18		5-		10			1969	IT=100	
$^{184}W^n$	-41842.2	2.6	3863.2	2.5		1	88	ns	38	(14	-,15,17	-)	10			2004	IT=100	
¹⁸⁴ Re	-44220	4				35	5.4	d	0.7		$3^{(-)}$		10			1940	$\beta^{+}=100$	
$^{184}\text{Re}^m$	-44032	4	188.0463	0.0017		1	69	d	8		$8^{(+)}$		10			1964	IT=74.5 8; ε=25.5 8	
¹⁸⁴ Os	-44252.5	0.8				Stab	LE		(>56 Ty)		0^+		10			1937	IS=0.02 1; α ?; $2\beta^+$?	*
¹⁸⁴ Ir	-39611	28				3.	09	h	0.03		5-		10			1960	$\beta^{+}=100$	
184 Ir ^m	-39385	28	225.65	0.11		4	70	μs	30		3+		10			1988	IT=100	
184 Ir ⁿ	-39283	28	328.40	0.24		3	50	ns	90		$(7)^+$		10			1988	IT=100	
¹⁸⁴ Pt	-37334	16				17	7.3	m	0.2		0^{+}		10	95Bi01	D	1963	$\beta^+ \approx 100; \alpha = 0.00177$	
¹⁸⁴ Pt ^m	-35494	16	1840.3	0.8		1.	01	ms	0.05		8-		10			1966	IT=100	
¹⁸⁴ Au	-30319	22				20).6	S	0.9		5+		10			1969	$\beta^+ \approx 100; \alpha < 0.016$	
¹⁸⁴ Au ^m	-30251	22	68.46	0.04		47	7.6	S	1.4		2+		10			1969	$\beta^+=?;$ IT=30 10; $\alpha < 0.016$	
184 Hg	-26349	10				30.	87	s	0.26		0+		10			1969	$\beta^+=98.896; \alpha=1.116$	
184 TI	-16883	10	50	20	*	9).5 0.1	S	0.2		(2^{-})		10	16Va01	TJD	1976	$\beta^+=98.78\ 30;\ \alpha=1.22\ 30$	
184 TIM	-16930	30	-50	30	AD *	1	0#	s	0.7		(7^{+})		10	16Va01	JD	2016	β ?; 11 ?; α =0.0476	
184 ph	-16430	30	450	30	AD	4	0.1	ms	0.7		(10)		10	15 valu	TD D	1984	$11 \approx 100; \alpha = 0.089 19$	*
184 p;	-11052	13				4 ۶-	90 5.6	ms	25		0' 2+#		10	04An07	D	1980	$\alpha = 80.11; p^{-1}?$	*
184 Bim	1210#	80 130#	150#	100#	*	& C).0 13	me	1.5		5°# 10 #		10			2005	$\alpha = 2$	
$*^{184}Hf^{m}$	E · 10Re	150π 07=126	4(10)	T · 12Re19:	_113(+ 6	(0-47) for (15 1=70	2^{+}	² hare ion)		10 #		10			2002	u = :	**
$*^{184}$ Hf ⁿ	T : symr	netrized	from 12Re1	9=12(+8-6)	for $a=7$	2^+ : supers	a-, 2 edes	101	Re07=12(+)	10-4	1							**
* ¹⁸⁴ Os	T : lower	r limit is	for α decay	; 13Be07: 2	$\beta^+>25$	Py Py												**
$*^{184}$ Tl ⁿ	E: 506.1	(0.1) ke	V above ¹⁸⁴ 7	Г1 ^т		5												**
* ¹⁸⁴ Pb	D : avera	ige 04A	n07=80(15)9	% 03Va16=8	0(15)%													**
		0																
¹⁸⁵ Yb	-28500#	500#				30	0#	ms	(>300 ns)		3/2-#		13	12Ku26	Ι	2012	β^- ?	
¹⁸⁵ Lu	-33890#	300#					6#	S	(>300 ns)		7/2+#		13	09St16	I	2009	β^- ?	
185 Hf	-38320	60				-	3.5	m	0.6		3/2-#	(06			1993	$\beta^{-}=100$	
¹⁸⁵ Ta	-41394	14	107			49).4	m	1.5		7/2*#	(06	0701.40		1950	$\beta^{-}=100$	
185 Tam	-40988	14	406	1		9	00	ns	300		$(3/2^+)$	(06	07Sh42	ETJ	2007	11=100	
185 Tan	-40121	14	1273.4	0.4		1.	1.8	ms	1.4		21/2	(06	09La17	EJT	1999	n = 100	
185 W	-4338/.8	0.7	107 292	0.022		/:	07	a	0.3		$\frac{3}{2}$		06	0.414 A	т	1940	p = 100	
185 D.o.	-43190.4	0.7	197.383	0.025		1.3	97	m	0.004		5/2+		06	94II.A	1	1950	11=100 IS-27.40.2	
185 D am	-43819.0	0.8	2122.8	1.1		SIAB	21	-	12		$\frac{3}{2}$		00			1951	IS=57.40 2 IT=100	
185 Oc	42805.0	0.9	2123.0	1.1		02	21 05	ns d	1.5		(21/2) 1/2-		00	121/-05	т	1997	r=100	
185 Oc ^m	42702.5	0.8	102.27	0.11		92.	20	u u	0.09		7/2-		00	12KI03	T	1947	E=100	
$185 \Omega e^{n}$	-42530.4	0.8	275 53	0.11			9.0 80	ns	50		$\frac{1}{11}$		00	10K120	J	1970	IT-100	*
¹⁸⁵ Ir	-40336	28	215.55	0.12		14	14	h	0.1		$5/2^{-}$	Ì	06			1958	$\beta^{+}=100$	
185 Irm	-38140	40	2197	23		1	20	ns	20		5/2	Ì	06			1979	JT=100	*
185 Pt	-36688	26	21)/	25		7(19	m	24		$(9/2^+)$	Ì	06			1960	$\beta^+ \approx 100^{\circ} \alpha = 0.0050.20$	*
¹⁸⁵ Pt ^m	-36585	26	103 41	0.05		3	3.0	m	0.8		$(1/2^{-})$	Ì	06			1970	$\beta^{+}=?$ IT < 2	
¹⁸⁵ Pt ⁿ	-36487	26	200.89	0.04		7	28	ns	20		5/2-	i	06			1996	IT=100	
¹⁸⁵ Au	-31858.1	2.6			*	4.	25	m	0.06		5/2-	(06			1960	$\beta^+ \approx 100; \alpha = 0.266$	
¹⁸⁵ Au ^m	-31760#	100#	100#	100#	*	(5.8	m	0.3		1/2+#	(06			1960	$\beta^+ < 100; \text{ IT } ?$	
¹⁸⁵ Hg	-26184	14				49	9.1	s	1.0		$1/2^{-}$	(06			1960	$\beta^{+}=94$ 1; $\alpha=6$ 1	
$^{185}\mathrm{Hg}^m$	-26080	14	103.7	0.4		2	1.6	s	1.5		$13/2^+$	(06	13Sa43	Е	1970	IT=54 10; β^+ =46 10; $\alpha \approx 0.03$	
¹⁸⁵ Tl	-19758	21				19	9.5	s	0.5		$1/2^{(+\#)}$	(06	13Ba41	J	1976	$\beta^+=?;\alpha?$	
${}^{185}\text{Tl}^{m}$	-19303	21	454.8	1.5		1.	93	s	0.08		$9/2^{(-\#)}$	(06	13Ba41	J	1976	IT \approx 100; α =?; β ⁺ ?	
¹⁸⁵ Pb	-11541	16			*	(5.3	s	0.4		$3/2^{-}$	(06			1975	$\alpha = 34\ 25;\ \beta^+$?	
¹⁸⁵ Pb ^m	-11470	50	70	50	AD *	4.	07	s	0.15		$13/2^{+}$	(06	02An15	Т	1975	α =50 25; β^+ ?	*
A-grou	ip is continu	ued on n	ext page															

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I. The NUBASE2016 table (continued, Explanation of Table on page
--

Nuclide	Mass ex	cess		Excitation				Half-	life	 	Ens	Reference	e	Year of	Decay modes and	
	(keV	')		energy (keV	7)		_							discovery	intensities (%)	
A-grou	up continued	۱														
¹⁸⁵ Bi	-2240#	80#				* 8	& 2#	ms		9/2-#		96Da06	J	1996	p?;α?	*
${}^{185}\text{Bi}^{m}$	-2156	13	80#	80#		* 6	& 58	μs	4	$1/2^+$	06			1996	p=90 2; α=10 2	
¹⁸⁵ Bi ⁿ	-2060#	100#	180#	60#	EU		50	μs	10	$13/2^+$ #		04An07	ITD	2004	p=?; α=?	*
* ¹⁰⁵ Os ^m	J: E1 from F	$m 9/2^{+}$	2157 2/0	5) 11												**
*185 Dt	$E: X < \delta U$ D: if the	AAAA(1)	(0) keV $\alpha line$	is from gro	und et	ata. c	therwise a-	-0.00	10(4)% from	n isomer						**
* ¹⁸⁵ Pb ^m	T · avera	oe 02 At	15=43(0.2)	80Sc09=3.7	73(0.24	ale, () (ex	cluding the	-0.00 6.1 s	activity)	II ISOIIICI						**
* ¹⁸⁵ Bi	T : estim	ated fro	$m 9/2^{-}$ isom	ers in odd B	i and T	'l iso	topes	0.1 5	uctivity)							**
* ¹⁸⁵ Bi ⁿ	E:100 k	eV abov	ve ¹⁸⁵ Bi ^m	T : simil	lar to 1	⁸⁵ Bi ⁿ	1									**
¹⁸⁶ Lu	-30210#	400#					2#	s	(>300 ns)		13	12Ku26	T	2012	B ⁻ 2	
¹⁸⁶ Hf	-36420	50					2.6	m	1.2	0^{+}	03	1211020		1998	$\beta^{-1}=100$	
$^{186}\mathrm{Hf}^m$	-33450	70	2968	43			> 20	s		17+#		10Re07	ET	2010	β^- ?; IT ?	*
¹⁸⁶ Ta	-38610	60					10.5	m	0.3	$(2^-, 3^-)$	03			1955	$\beta^{-}=100$	
186 Ta ^m	-38270	60	336	20			1.54	m	0.05	9+#		04Xu08	Т	2010	β^{-} ?; IT ?	*
¹⁸⁶ W	-42508.5	1.2					STABLE		(>4.1 Ey)	0^+	03	03Da09	Т	1930	IS=28.43 19; $2\beta^-$?; α ?	*
186 M/m	-40991.3	1.3	1517.2	0.6			18	μs	1	7-	03	12La.A	J	1998	IT=100	
186 D -	-38965.7	2.4	3542.8	2.1			2.0	S	0.2	16	03	12La.A	TJ	1998	$\Pi = 100$ R = 0.0252, 10; c = 7,47,10	
186 R e	-4192/.1	0.8	148.2	0.5			3./183	d lav	0.0011	1 (9+)	03	15Mo60	Б	1939	$\beta = 92.53 \ 10; \epsilon = 7.47 \ 10$	
186 Os	-41778.9 -42999.9	0.9	140.2	0.5			200	ку Pv	11	(8) 0 ⁺	03	15101400	Е	1972	II = 1, p < 10 IS=1.59.3: $\alpha = 100$	
¹⁸⁶ Ir	-39172	17					16.64	h	0.03	5+	03			1958	$\beta^{+}=100$	
186 Ir ^m	-39171	17	0.8	0.4			1.92	h	0.05	2-	03	91Be25	ET	1962	$\beta^+ \approx 75$; IT ≈ 25	*
¹⁸⁶ Pt	-37864	22					2.08	h	0.05	0^+	03			1961	$\beta^{+}=100; \alpha \approx 1.4e-4$	
¹⁸⁶ Au	-31715	21					10.7	m	0.5	3-	03			1960	$\beta^+=100; \alpha=0.0008 2$	
$^{186}Au^{m}$	-31487	21	227.77	0.07			110	ns	10	2+	03			1983	IT=100	
¹⁸⁰ Hg	-28539	12	2217.2	0.4			1.38	m	0.06	0^+	03			1960	$\beta^+ \approx 100; \alpha = 0.0165$	
186 TI	-26322	12	2217.3	0.4			82	μs	2	(8)	03	011/204	т	1984	11=100 R^{+} 2	
186 T1m	-1988/	22	20	40		* (x 40#	s	1.0	(2) 7(+)	03	91 va04	I T	1975	p^{+} ? $\beta^{+} \sim 100; \alpha \sim 0.006$	*
186 T1n	-19800 -19490	30	400	40	MD	* (27.5 29	8 6	0.2	10(-)	03	13Da41 13Ba41	J	1975	$p \approx 100, a \approx 0.000$	¥
¹⁸⁶ Pb	-14682	11	400	40	MD		4 82	s	0.03	0+	03	15041	J	1972	$\beta^{+} ? \alpha = 40.8$	*
¹⁸⁶ Bi	-3146	17				*	14.8	ms	0.7	(3^+)	03	13La02	D	1997	$\alpha \approx 100; \beta^+=0.6\#; \beta^+SF=0.011$	*
$^{186}\mathrm{Bi}^m$	-2980#	100#	170#	100#		*	9.8	ms	0.4	(10^{-})	03	13La02	D	1984	$\alpha \approx 100; \beta^+=0.6\#; \beta^+$ SF=0.011	*
¹⁸⁶ Po	4101	18					34	μs	12	0^+	13	13An13	Т	2005	<i>α</i> ≈100; p ?	*
$*^{186}$ Hf ^m	T : for q	=72 ⁺ (b	are ion) in 10	Re07												**
* ¹⁸⁰ Ta ^m	T : 12Re	19=3.0(+1.5-0.8) q=	72 ⁺ (H+ like	e ion);	supe	sedes 10Re	07=3	3.4(+2.4–1.4))						**
* ¹⁸⁶ W	I : given	limit is	10r 2p dec	ay 8 2 7 02 D	-05 - 1	70 5	. 02C=01>	77 E	07Ca15>	5 5 5						**
* vv * 186 Jrm	T · avera	ore 01Re	25-1 90(0 0	5) 70Fi Δ-2	0(0.1)	JUE	y, 05Ce01>.	27 E	y, 9/0e15/0	5.5 Ey						**
$*^{186}$ Ir ^m	E:E is r	ositive a	and below 1.	5 keV	.0(0.1)											**
* ¹⁸⁶ Tl	I : identi	fied as d	lecay level fro	om 190 Bi in	91Va04	4										**
$*^{186}$ Tl ⁿ	E: 374.0	(0.2) ke	V above 1867	I ^m J	: also 1	2Bi.	A									**
* ¹⁸⁶ Bi	T : avera	ge 03Aı	n27=14.8(0.8) 97Ba21=1	5.0(1.7)										**
* ¹⁸⁶ Bi	D : 13La	02=0.02	22 13 for both	1 isomers												**
* ¹⁸⁰ Bi ^m	T : from	03An27	c 101 1	2 20(-16.6	~											**
* ¹⁰⁰ P0	1 : symn	netrized	from 13An1	3=28(+16-6)											**
¹⁸⁷ Lu	-27580#	400#					1#	s	(>300 ns)	7/2+#	13	12Ku26	Ι	2012	β^- ?	
¹⁸ /Hf	-32820#	300#	500"	200."			30#	s	(>300 ns)	$3/2^{-}\#$	09	99Be63	I	1999	β^{-2}	
¹⁰ /Hf ^m 187m	-32320#	420#	500#	300#		*	270	ns	80	$9/2^{-}#$	00	09A130	TD	2009	TT = 100	
187 Ta 187 Tam	-36900	60	1790	12			2.3	m	6	7/2*#	09	10Re07	Т	1999	β ? $\beta = 2$, IT 2	
187 Tan	-33070	60	2035	13			> 5	s	9	$\frac{21}{2} #$		10Re07	EI FT	2010	p_{β} (11) β^{-2} (17)	*
¹⁸⁷ W	-39904 0	12	2755	14			24 000	h	0.004	$\frac{1}{2}$	09	10100/	ы	1940	$\beta^{-1} = 100$	*
$^{187}W^m$	-39493.9	1.2	410.06	0.04			1.38	μs	0.07	$(11/2^+)$	09			2008	IT=100	
¹⁸⁷ Re	-41216.5	0.7					43.3	Gy	0.07	5/2+	09			1931	IS=62.60 2; $\beta^{-}=100$; $\alpha < 0.0001$	*
187 Re ^m	-41010.3	0.7	206.2473	0.0010			555.3	ns	1.7	9/2-	09			1949	IT=100	
187 Re ⁿ	-39534.5	0.9	1682.0	0.6			354	ns	62	$21/2^+$	09	16Re02	ETJ	2003	IT=100	
¹⁸⁷ Os	-41218.9	0.7					STABLE			$1/2^{-}$	09			1931	IS=1.96 2	
^{18/} Os ^m	-41118.5	0.7	100.45	0.04			112	ns	6	7/2-	09			1964	IT=100	
¹⁰ /Os ⁿ	-40961.8	0.7	257.10	0.07			231	μs	2	$\frac{11}{2^+}$	09			1964	T = 100	
187 r.m	- 39549	28	196 16	0.04			10.5	h	0.5	5/2 ⁺ 0/2 ⁻	09			1958	p = 100	
187 I.n	-39303	28 29	180.10	0.04			30.3	ms	0.0 12	9/2	09			1903	11=100 IT-100	
187 Irp	-37061	∠o 28	455.75	0.00			132	115	0.5	$\frac{11}{20}$	09	10Mo09	БЛ1	2010	IT=100 IT=100	
¹⁸⁷ Pt	-36685	20	2-101.1	0.4			2.35	μs h	0.03	$\frac{29}{2}^{2}$	09	10101009	L) I J	1961	$\beta^{+}=100$	
187 Pt ^m	-36511	24	174.38	0.22			311	μs	15	$(11/2^+)$	09			1976	IT=100	
A-grou	up is continu	ed on n	ext page							(<i>, =)</i>						

Nuclide	Mass ex	cess		Excitation	n		F	Ialf-	life	J^{π}	Ens	Referen	ce	Year of	Decay modes and	
	(keV)	e	nergy (ke'	V)									discovery	intensities (%)	
A-grou	up continued	1														
¹⁸⁷ Au	-33028	22					8.3	m	0.2	$1/2^{(+)}$	- 09			1955	$\beta^+ \approx 100; \alpha = 0.003 \#$	
$^{187}Au^m$	-32908	22	120.33	0.14			2.3	s	0.1	$9/2^{(-)}$	- 09			1983	IT=100	
¹⁸⁷ Hg	-28118	14					1.9	m	0.3	$3/2^{(-)}$	09	70Ha18	TD	1960	$\beta^+=100; \alpha>1.2e-4$	*
$^{187}\text{Hg}^m$	-28059	19	59	16	MD		2.4	m	0.3	$13/2^{+}$	09	70Ha18	D	1970	$\beta^+=100; \alpha>2.5e-4$	*
¹⁸⁷ Tl	-22445	8					51	s		$(1/2^+)$	- 09			1976	$\beta^+ < 100; \alpha = 0.03 \#$	
${}^{187}\text{Tl}^{m}$	-22111	8	334	3	AD	1	5.60	s	0.12	$9/2^{(-)}$	- 09	13Ba41	J	1976	IT=?; β^+ ?; α =0.15 5	
${}^{187}\text{Tl}^{n}$	-20970	50	1480	50			1.11	μs			- 09			2000	IT=100	*
187 Tl ^p	-19863	8	2582.5	0.3			690	ns	40	$(25/2^{-}, 27/2, .)$) 09			2000	IT=100	
¹⁸⁷ Pb	-14987	5			*	<	15.2	s	0.3	$3/2^{-}$	09	09Se13	J	1972	β^+ ?; α =9.5 20	
¹⁸⁷ Pb ^m	-14968	11	19	10	MD *	<	18.3	s	0.3	$13/2^+$	09	09Se13	J	1972	β^+ ?; α =12 2	
¹⁸⁷ Bi	-6383	10					37	ms	2	9/2-#	09			1999	$\alpha = 100$	
¹⁸⁷ B1 ^m	-6275	12	108	8	AD		370	μs	20	$1/2^+ \#$	09			1984	$\alpha = 100$	
187 D	-6131	21	252	18			1 40	μs	5	$(13/2^+)$	09	02Hu14	EIJ	2002	11=100	*
187 p.m	2830	30	4	27	* ۸D	¢	1.40	ms	0.25	(1/2, 3/2)	09	06 4 = 11	ETD	2005	$\alpha \approx 100; \beta^+ ?$	
187 Tom	2030 T : for a	-73+ (h	+ are ion) in 1	27 0Pe07	AD *	,	0.5	ms		13/2 #		UOAIITT	EID	2000	$\alpha = 2, \beta = 2$	بلد بلد
* ¹⁸⁷ Ta ⁿ	$T \cdot for a$	=73+ (b =73+ (b	are ion) in 1	0Re07												**
* ¹⁸⁷ Re	T : other	: 96Bo3	7=32.9(2.0)	v for $a=7$	5 ⁺ (bare	ion)										**
* ¹⁸⁷ Hg	T : from	70Ha18	3:98Ru04=2	.4 m. not o	documer	ited, no u	ncerta	intv	given							**
$*^{187}$ Hg ^m	T : from	70Ha18	3; 98Ru04=2	.2 m, not o	documer	nted, no u	ncerta	inty	given							**
$*^{187}$ Tl ⁿ	E : x abc	ve 1433	3.23(0.19) le	vel; x=50(50) keV	estimated	d by N	JUB/	ASE							**
$*^{187}$ Bi ⁿ	T : symn	netrized	from 3.2(+7	7.6–2.0)			-									**
199 -															0	
188 Lu	-23790#	500#					300#	ms	(>300 ns)	0+	13	12Ku26	I	2012	β^{-2}	
188 T-	-30880#	300#					20#	s	(>300 ns)	0	02	99Be63	I TD	1999	β ?	
188 Tom	-33610	50	202.4	0.2			19.6	S	2.0		02	09AI30	ID ET	1999	p = 100	
188 W/	-33320	30	292.4	0.2		4	3.0 (0.79	μs	0.4	0+	02	05Ca02	EI	2005	$\beta^{-} = 100$	*
188 Wm	-36739	3	1020.3	16		1	09.78	u ne	3.5	8-	02	101 216	FTI	2010	p = 100 IT-100	
¹⁸⁸ Re	-39016.8	07	1727.5	1.0		17	0040	h	0.0022	1-	02	102410	LIJ	1939	$\beta^{-}=100$	
188Re^m	-388447	0.7	172.069	0.009		17.	8 59	m	0.04	$(6)^{-}$	02			1953	T = 100	
188 Os	-41137.2	0.7	1/2/00/	01009		STA	BLE		0.01	0+	02			1931	IS=13.24 8	
¹⁸⁸ Ir	-38345	9					41.5	h	0.5	1-	02			1950	$\beta^{+}=100$	
188 Ir ^m	-37380	30	970	30			4.2	ms	0.2	11^{-} #	02	GAu	Е	1971	IT $\approx 100; \beta^+$?	*
¹⁸⁸ Pt	-37821	5					10.2	d	0.3	0^{+}	02			1954	ϵ =100; α =2.6e-5 3	
¹⁸⁸ Au	-32371.3	2.7					8.84	m	0.06	$1^{(-)}$	02			1955	$\beta^{+}=100$	
¹⁸⁸ Hg	-30202	12					3.25	m	0.15	0^{+}	02			1960	$\beta^+=100; \alpha=3.7e-5.8$	
188 Hg ^m	-27478	12	2724.3	0.4			134	ns	15	(12^+)	02			1983	IT=100	*
¹⁸⁸ Tl	-22336	30			*	<	71	s	2	(2^{-})	02			1970	$\beta^{+}=100$	
188 Tl ^m	-22308	9	30	30	MD *	¢	71	s	1	7(+)	02	13Ba41	J	1970	$\beta^{+}=100$	
$^{188}Tl^{n}$	-22030	40	310	30			41	ms	4	(9 ⁻)	02		_	1981	IT \approx 100; β^+ ?	*
¹⁰⁰ Pb	-17815	11					25.1	s	0.1	0+	02	03Va16	D	1972	$\beta^+=?; \alpha=9.3.8$	*
¹⁸⁸ Pb ^m	-15237	11	2578.2	0.7			1.15	μs	0.03	(8^{-})	02	04Dr04	T	1999	IT=100	
188 pt. n	-15105	11	2709.7	0.3			427	ns	12	(12^{+})	02	04Dr04	EJ	2004	II=100	*
188 B;	-15052	11	4/65.2	0.5		8-	457	me	33	(19)	02	13L 202	TD	1080	$\alpha = 2$; $\beta^+ = 1$ 1#; β^+ SE=0.0016	*
188 Bim	-7130	30	66	30	AD	c.	> 5	115	J	5 # 7+#	02	15La02 06 Δ n04	FT	1984	$\alpha_{-1}, \rho_{-1,1\pi}, \rho_{-31-0.0010}$	*
188 Bin	-7040	30	153	30	AD	&	265	μs ms	10	(10^{-})	02	13L a02	TD	1984	$\alpha = ? \beta^+ = 4.9 \# \beta^+ \text{SF} = 0.0016$	*
¹⁸⁸ Po	-544	20		20		~	275	us	30	0+	02	03Va16	T	1999	$\alpha = ?; \beta^+ ?$	
* ¹⁸⁸ Ta ^m	T : avera	ge 11St	21=3.5(0.4)	09A130=4	.4(1.0):	other 050	Ca02=	5(2)		-					· · · ·	**
$*^{188}$ Ir ^m	E : less t	han 100	keV above	923.5 leve	l, from I	Ensdf		. /								**
$*^{188}$ Hg ^m	T : other	04G104	=270(51)													**
$*^{188}$ Tl ⁿ	E:268.8	s(0.2) ke	V above 188	Tl ^m , from	91Va04											**
* ¹⁸⁸ Pb	D : also	03Va16	=8.0(0.6)%													**
100	T : lifetin	ne 99D	r10=136(18)	ns												**
* ¹⁸⁸ Pb ⁿ	T : lifetii	ne $\tau=63$	30(80) ns													**
$*^{188}$ Pb ⁿ $*^{188}$ Pb ^p		02 supe	rsedes 06An	04=66(6)	03An26	=60(3)										**
* ¹⁸⁸ Pb ⁿ * ¹⁸⁸ Pb ^p * ¹⁸⁸ Bi	T : 13La		137 16 for b	oth beta-de	elayed fi	ssion ison	mers									**
* ¹⁸⁸ Pb ⁿ * ¹⁸⁸ Pb ^p * ¹⁸⁸ Bi * ¹⁸⁸ Bi	T : 13La D : 13La	02=0.00	152 10 101 00	o	a) a c :	DC DCEL	(5) of	sam	e group							**
* ¹⁸⁸ Pb ⁿ * ¹⁸⁸ Pb ^p * ¹⁸⁸ Bi * ¹⁸⁸ Bi * ¹⁸⁸ Bi	T : 13La D : 13La T : 13La	02=0.00 02 supe	rsedes 06An	04=280(2	0) 03An	26=265(1										
* ¹⁸⁸ Pb ⁿ * ¹⁸⁸ Pb ^p * ¹⁸⁸ Bi * ¹⁸⁸ Bi * ¹⁸⁸ Bi	T : 13La D : 13La T : 13La	02=0.00 02 supe	rsedes 06An	04=280(2	0) 03An	26=265(1										
* ¹⁸⁸ Pb ⁿ * ¹⁸⁸ Pb ^p * ¹⁸⁸ Bi * ¹⁸⁸ Bi * ¹⁸⁸ Bi ⁿ	T : 13La D : 13La T : 13La -27160#	02=0.00 02 supe 300#	rsedes 06An	04=280(2	0) 03An	26=265(1	2#	c	(>300 ne)	3/2-#	12	09A130	I	2009	β ⁻ 2	
* ¹⁸⁸ Pb ⁿ * ¹⁸⁸ Pb ^p * ¹⁸⁸ Bi * ¹⁸⁸ Bi * ¹⁸⁹ Bi ⁿ	T: 13La D: 13La T: 13La -27160# -31830#	02=0.00 02 supe 300# 200#	rsedes 06An	04=280(2	0) 03An	26=265(1	2# 3#	s s	(>300 ns) (>300 ns)	3/2 ⁻ # 7/2 ⁺ #	12 03	09A130 99Be63	I I	2009 1999	$egin{array}{cccc} eta^-?\ B^-? \end{array} \end{array}$	
* ¹⁸⁸ Pb ⁿ * ¹⁸⁸ Pb ^p * ¹⁸⁸ Bi * ¹⁸⁸ Bi * ¹⁸⁸ Bi ⁿ ¹⁸⁹ Hf ¹⁸⁹ Ta ¹⁸⁹ Ta	T: 13La D: 13La T: 13La -27160# -31830# -30230#	02=0.00 02 supe 300# 200# 450#	1600#	04=280(2) 400#	0) 03An	26=265(1	2# 3# 1.6	s s µs	(>300 ns) (>300 ns) 0.2	3/2 ⁻ # 7/2 ⁺ #	12 03	09A130 99Be63 09A130	I I TD	2009 1999 2009	$\beta^{-}?$ $\beta^{-}?$ IT=100	*
* ¹⁸⁸ Pb ⁿ * ¹⁸⁸ Pb ^p * ¹⁸⁸ Bi * ¹⁸⁸ Bi * ¹⁸⁸ Bi ⁿ ¹⁸⁹ Hf ¹⁸⁹ Ta ¹⁸⁹ Ta ¹⁸⁹ Ta	T: 13La D: 13La T: 13La -27160# -31830# -30230# -35620	02=0.00 02 supe 300# 200# 450# 40	1600#	04=280(2) 400#	0) 03An	26=265(1	2# 3# 1.6 10.7	s s µs m	(>300 ns) (>300 ns) 0.2 0.5	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ #	12 03 03	09A130 99Be63 09A130	I I TD	2009 1999 2009 1963	β^{-2} β^{-2} IT=100 β^{-100}	*

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Nuclide	Mass ex	cess		Excitation	1]	Half-l	ife	,	J^{π}	Ens	Reference	e	Year of	Decay modes and	
	(keV	')	6	energy (keV	/)										discovery	intensities (%)	
A-grou	up continued																
¹⁸⁹ Re	-37979	8					24.3	h	0.4		$5/2^+$	03			1963	$\beta^{-}=100$	
$^{189}\text{Re}^{m}$	-36208	8	1770.9	0.6			223	μs	14		$29/2^+$	03	16Re02	ETJ	2016	IT=100	
¹⁸⁹ Os	-38986.7	0.7					STABLE				$3/2^{-}$	03			1931	IS=16.15 5	
¹⁸⁹ Os ^m	-38955.9	0.7	30.812	0.015			5.81	h	0.06		9/2-	03			1960	IT=100	
¹⁸⁹ Ir	-38450	13					13.2	d	0.1		$3/2^{+}$	03			1955	$\varepsilon = 100$	
189 Ir ^m	-38078	13	372.17	0.04			13.3	ms	0.3		$11/2^{-}$	03			1960	IT=100	
189 Ir ⁿ	-36117	13	2333.2	0.5			3.7	ms	0.2		$(25/2)^+$	03			1975	IT=100	
¹⁸⁹ Pt	-36469	10					10.87	h	0.12		$3/2^{-}$	03			1955	$\beta^{+}=100$	
¹⁸⁹ Pt ^m	-36296	10	172.80	0.06			464	ns	25		$9/2^{-}$	03			1970	IT=100	
189 Pt ⁿ	-36278	10	191.5	0.7			143	μs	5		$(13/2^+)$	03			1976	IT=100	
¹⁸⁹ Au	-33582	20					28.7	m	0.3		$1/2^{+}$	03			1955	$\beta^{+}=100; \alpha < 3e-5$	
189 Au ^m	-33335	20	247.23	0.16			4.59	m	0.11		$11/2^{-}$	03			1966	$\beta^+ \approx 100$; IT=?	
189 Au ⁿ	-33257	20	325.11	0.16			190	ns	15		$9/2^{-}$	03			1975	IT=100	
$^{189}Au^{p}$	-31027	20	2554.7	1.2			242	ns	10		$31/2^+$	03			1975	IT=100	
¹⁸⁹ Hg	-29630	30					7.6	m	0.1		$3/2^{-}$	03			1955	$\beta^{+}=100; \alpha < 3e-5$	
$^{189}Hg^{m}$	-29548	18	80	30	MD		8.6	m	0.1		$13/2^+$	03			1966	$\beta^+=100; \alpha < 3e-5$	
¹⁸⁹ Tl	-24616	8					2.3	m	0.2		$(1/2^+)$	11			1972	$\beta^{+}=100$	
$^{189}\text{Tl}^{m}$	-24331	8	285	6	AD		1.4	m	0.1		$9/2^{(-)}$	11	85Bo46	J	1972	$\beta^+\approx 100; \text{IT} < 4$	*
¹⁸⁹ Pb	-17844	14				*	39	s	8		$3/2^{-}$	11	09Sa09	Т	1972	$\beta^+ \approx 100; \alpha \approx 0.4$	*
189 Pb ^m	-17804	14	40	4	AD	*	50.5	s	2.1		$13/2^+$	11	09Sa09	Т	2009	$\beta^+ \approx 100; \alpha < 1; \text{IT } ?$	*
189 Pb ⁿ	-15370#	30#	2475#	30#			26	μs	5		$(31/2^{-})$	11			2005	IT=100	*
¹⁸⁹ Bi	-10065	21					658	ms	47		$(9/2^{-})$	11			1973	$\alpha \approx 100$	
$^{189}\text{Bi}^m$	-9881	21	184	5	AD		4.9	ms	0.3		$(1/2^+)$	11	03An26	Т	1984	$\alpha > 50; \beta^+ < 50$	*
189Bin	-9707	21	357.6	0.5			880	ns	50		$(13/2^+)$	11			2001	IT≈100	
¹⁸⁹ Po	-1422	22					3.8	ms	0.4		$(5/2^{-})$	07	05Va04	Т	1999	$\alpha \approx 100; \beta^+$?	*
$*^{189} Ta^{m}$	T : other	11St21=	=0.58(0.22), p	ossibly a d	ifferen	t isom	er				(-/ /						**
$*^{189} Tl^{m}$	J : also 1	3Ba41=	9/2														**
* ¹⁸⁹ Pb	J:09Se1	3: α to	¹⁸⁵ Hg 26.1 le	vel													**
$*^{189} Pb^{m}$	T : average	ge 09Sa	09=50(3)720	a27=51(3)													**
$*^{189} Pb^{m}$	J:09Se1	3: from	α decay from	1 ¹⁹³ Po ^m													**
$*^{189}Pb^{n}$	E · 2434	50(0.18)	keV above ¹³	⁸⁹ Ph ^m (13/	2+)												**
$*^{189}$ Pb ⁿ	T : from	lifetime	$05Ba51 \tau = 32$	$2(+10-2)\mu$	$\frac{1}{s}$ or T	=22.20	+69-14										**
* ¹⁸⁹ Bi ^m	T : avera	ge 03An	26=49(0.5)	3Ke08=4	5(+0.8)	-06)9	7An09=4	8(0.5)									**
* ¹⁸⁹ Bi ^m	T: ar	nd 97W	05=52(0.5)	95Ba75=7	0(0.2)	confli	icting not u	sed									**
* ¹⁸⁹ Po	T: avera	oe 05Va	04=35(05)	9An52=50	1)	J · f	avored dec	av to	$(5/2^{-})$	level							**
	1	5- 00 M			- /	0.1			(2) =)								

¹⁹⁰ Hf	-25030#	400#					2#	s	(>300 ns)	0^+	13	12Ku26	Ι	2012	β^- ?	
¹⁹⁰ Ta	-28510#	200#				*	5.3	s	0.7	(3)	10	09A130	TJD	2009	$\beta^{-}=100$	
190 Ta ^m	-28310#	250#	200#	150#		*	42	ns	7	. ,	10	09A130	TD	2009	IT=100	
^{190}W	-34380	40					30.0	m	1.5	0^+	03			1976	$\beta^{-}=100$	
${}^{190}W^{m}$	-32640	40	1742.0	2.0			111	ns	17	8^{+}		10La16	ETJ	2010	IT=100	
$^{190}W^{n}$	-32540	40	1839.0	2.2			166	μs	6	10^{-}	03	10La16	ETJ	2000	IT=100	*
¹⁹⁰ Re	-35640	70					3.1	m	0.3	$(2)^{-}$	03			1955	$\beta^{-}=100$	
$^{190}Re^{m}$	-35440	70	204	10			3.2	h	0.2	(6^{-})	03	12Re19	Е	1962	$\beta^{-}=54.4\ 20;\ \text{IT}\ ?$	
¹⁹⁰ Os	-38707.8	0.6					STABLE			0^{+}	03			1931	IS=26.26 2	
$^{190}Os^{m}$	-37002.4	0.6	1705.4	0.2			9.86	m	0.03	10^{-}	03	12Kr05	Т	1950	IT=100	*
¹⁹⁰ Ir	-36753.5	1.4					11.78	d	0.10	4-	03			1947	$\beta^+=100; e^+<0.002$	
190 Ir ^m	-36727.4	1.4	26.1	0.1			1.120	h	0.003	(1^{-})	03			1964	IT=100	
¹⁹⁰ Ir ⁿ	-36717.3	1.4	36.154	0.025			> 2	μs		$(4)^+$	03			1996	IT=100	
¹⁹⁰ Ir ^p	-36377.1	1.4	376.4	0.1			3.087	h	0.012	$(11)^{-}$	03			1950	$\beta^+=91.42$; IT=8.62	
¹⁹⁰ Pt	-37306.5	0.7					650	Gy	30	0^{+}	03			1949	IS=0.012 2; α =100; 2 β ⁺ ?	
¹⁹⁰ Au	-32834	3				*	42.8	m	1.0	1^{-}	03			1959	$\beta^{+}=100; \alpha < 1e-6$	
¹⁹⁰ Au ^m	-32630#	150#	200#	150#		*	125	ms	20	11^{-} #	03			1982	IT \approx 100; β^+ ?	
¹⁹⁰ Hg	-31371	16					20.0	m	0.5	0^{+}	03			1959	$\epsilon \approx 100; e^+ < 1; \alpha < 3.4e^{-7}$	
¹⁹⁰ Tl	-24372	8				*	2.6	m	0.3	$2^{(-)}$	03			1970	$\beta^{+}=100$	
${}^{190}\text{Tl}^{m}$	-24289	6	83	10	MD	*	3.7	m	0.3	7 ^(+#)	03			1970	$\beta^{+}=100$	
¹⁹⁰ Tl ⁿ	-24080 #	70#	290#	70#			750	μs	40	(8^{-})	03			1981	IT=100	*
¹⁹⁰ Tl ^p	-23960#	70#	410#	70#			> 1	μs		9-	03	91Va04	ET	1991	IT ?	*
¹⁹⁰ Pb	-20417	13					71	s	1	0^{+}	03			1972	β^+ ?; α =0.40 4	
$^{190}\text{Pb}^m$	-17802	13	2614.8	0.8			150	ns	14	10^{+}	03	01Dr05	J	1998	IT=100	*
¹⁹⁰ Pb ⁿ	-17799	24	2618	20			24.3	μs	2.1	(12^{+})	03			1998	IT ?	*
¹⁹⁰ Pb ^p	-17759	13	2658.2	0.8			7.7	μs	0.3	11-	03	01Dr05	JT	1985	IT=100	*
A-grou	p is continue	ed on nex	at page													

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

			Tuble	I. THE I	10 DA	.512		. (00	minucu,	Explanation	1.01	Tuble 0	r pus	c 10)		
Nuclide	Mass ex	cess		Excitation	1		1	Half-l	ife	J^{π}	Ens	Reference	e	Year of	Decay modes and	
	(keV)	e	nergy (ke	V)									discovery	intensities (%)	
A grou	n continued															
190 B;							63	6	0.1	(3+)	03	01V204	т	1072	$\alpha = 77.21 \cdot B^{+} = 2$	ч.
190 Bim	-10000	30	130	40	۵D		6.2	s 6	0.1	(10^{-})	03	91 Va04	J	1972	$\alpha = 7721, p^{-1} = 2$ $\alpha = 70.9; B^{+}2; B^{+}p2$	*
190 Bin	-10479	27	121	15	лD		175	o ne	8	(10^{-})	05	004 n11	ј FT	2009	$T = 100$, p^{-1} , p^{-1} , p^{-1}	*
190 Bip	-10200	50	404	40			13	115	0.8	(3^{-})	03	09An11	EIT	2009	IT-100	* *
190 Po	-4564	13	404	40			2 46	μs me	0.05	(8) 0+	03	094111	LJI	1996	$\alpha \approx 100 \cdot B^+ - 0.1 \#$	*
*190Wn	T : others	115t21	=108(9) 09A	130=106(1	8) 115 (05Ca0	2.40	(-30)	0.05 UIS 00Po26	< 3 1ms	05			1770	$u \sim 100, p = 0.1$	**
*190 Wn	E : other	00Po26=	=2381	150=100(1	0) µ 3 (Jocao	2=00(1150	0-50)	μ3 001 020	< 5.11115						**
* ¹⁹⁰ Os ^m	$I \cdot M2 + 1$	$F3 to 8^+$	member of t	the ground	l-state	hand										**
* ¹⁹⁰ Tl ⁿ	E · 161 9	keV abc	ve $^{190}Tl^m$	ine ground	suite	ound										**
* ¹⁹⁰ Tl ^p	E : 236.2	keV abc	ove ${}^{190}\text{T}\text{I}^{m}$													**
$*^{190}$ Pb ^m	T : uncer	tainty fro	om 12Dr.A													**
$*^{190}$ Pb ⁿ	E : above	¹⁹⁰ Pb ^m .	see 01Dr05	Т:	uncert	ainty	from 12Dr./	4								**
$*^{190}$ Pb ^p	T : average	ge 01Dr	05=7.2(0.6) 8	5St16=7.9	$\theta(0.4)$											**
* ¹⁹⁰ Bi	D : symn	netrized	from $\alpha = 90(+$	-10-30)%	. ,	T : al	so 13Ny01=	=7.7(-	+1.0–0.8) no	t used						**
$*^{190}$ Bi ^m	T : also 1	3Ny01=	5.9(+1.0-0.8) not used			2									**
* ¹⁹⁰ Bi ⁿ	J:E1 and	1 M1(+E	(2) γ s in case	ade to (3 ⁺), abse	nce of	f direct γ to	(3^{+})								**
* ¹⁹⁰ Bi ^p	E:274(1) keV ab	ove the (10^{-})) isomer]	I:E2	to (10 ⁻)									**
* ¹⁹⁰ Bi ^p	T : symm	etrized f	from 09An11	=1.0(+1.0	-0.5)											**
101																
¹⁹¹ Ta	-26490#	300#					3#	s	(>300 ns)	7/2+#	11	09St16	I	2009	β^- ?	
¹⁹¹ W	-31180	40				*	45#	s	(>300 ns)	3/2-#	07	99Be63	I	1999	β^- ?	
¹⁹¹ W ^m	-30950	60	235	50		*	340	ns	14			11St21	ETD	2009	IT=100	*
¹⁹¹ Re	-34350	10					9.8	m	0.5	$(3/2^+, 1/2^+)$	07			1963	$\beta^{-}=100$	*
¹⁹¹ Re ^m	-32749	10	1601.5	0.4			51	μs	3	25/2-	07	16Re02	EJT	2011	IT=100	
¹⁹¹ Os	-36395.2	0.7	74.202	0.002			14.99	d	0.02	9/2-	07	12Kr05	T	1940	$\beta^{-}=100$	
191 Usm	-36320.8	0.7	/4.382	0.003			13.10	n	0.05	$\frac{3}{2}$	07	12Kr05	1	1952	11=100	*
191 I.m	-30/08.8	1.5	171.20	0.04			A 800		0.022	$\frac{3}{2}$	07			1955	IS=37.32 IT-100	
191 In	-30337.3	1.5	2101.0	0.04			4.699	s	0.025	(11/2) 21/2(+)	07	120-02	ETI	1955	II=100 IT-100	
191 Dt	-34007.8	1.0	2101.0	0.9			2.7	8 - 4	0.4	31/200	07	12DI02	EIJ	1979	r = 100	*
191 Dtm	-35098	4	100 663	0.020			2.05	u	0.02	$(0/2)^{-}$	07			1940	E=100 IT=100	
191 Dtn	-35540	4	149.035	0.020			05	μs	5	(9/2) $(13/2)^+$	07			1970	IT-100	
191 A II	-33708	4	149.035	0.022			3 18	µs b	0.08	(13/2) $3/2^+$	07			1907	$\beta^{+}-100$	
191 Aum	-33532	5	266.2	0.7			920	me	110	$(11/2^{-})$	07			1954	p = 100 IT-100	
¹⁹¹ Au ⁿ	-31308	5	2489.6	0.9			402	ns	20	(11/2) $(31/2^+)$	07			1985	IT=100 IT=100	
¹⁹¹ Hg	-30592	22	2109.0	0.9			49	m	10	$3/2^{(-)}$	07	8611102	T	1954	$\beta^+=100: \alpha < 5e-6$	
¹⁹¹ Ho ^m	-30460	30	128	22			50.8	m	15	$\frac{3}{2}$ $\frac{2}{13}$	07	01Sc41	F	1954	$\beta^{+}=100; \alpha < 5e-6$	*
¹⁹¹ TI	-26283	7	120	22			20#	m	1.5	$\frac{10/2}{1/2^{(+)}}$	07	13Ba41	ī	1974	$\beta^{+} = 100, \alpha < 50^{-1}$	
¹⁹¹ TI ^m	-25986	, 7	297	7	BD		5 22	m	0.16	$9/2^{(-)}$	07	150411	5	1970	$\beta^{+}=100$	
¹⁹¹ Pb	-20230	40	277	,	50	*	1 33	m	0.08	$(3/2^{-})$	07	10Co13	ID	1974	$\beta^{+} \approx 100^{\circ} \alpha = 0.51.5$	
¹⁹¹ Pb ^m	-20231	28	0	50	MD	*	2.18	m	0.08	$\frac{(3/2)}{13/2^{(+)}}$	07	88Me A	I	1975	$\beta^+ \approx 100; \alpha \approx 0.02$	
191 Pb ⁿ	-17610	60	2620	50			180	ns	80	$(33/2^+)$	07	0000000	0	1999	IT=100	*
¹⁹¹ Bi	-13239	7					11.7	s	0.4	$(9/2^{-})$	16	13Nv01	Т	1972	$\alpha = 51 \ 10; \ \beta^+$?	
$^{191}\mathrm{Bi}^m$	-12997	9	242	4	AD		114	ms	6	$(1/2^+)$	16	13Ny01	Т	1981	$\alpha = 685$; IT=325; B?	
¹⁹¹ Bi ⁿ	-12809	7	429.7	0.5			562	ns	10	13/2+#	16	2		2001	IT=100	
¹⁹¹ Bi ^p	-11364	26	1875	25			400	ns	40		16			2016	IT=100	*
¹⁹¹ Po	-5069	7					22	ms	1	$(3/2^{-})$	07			1993	$\alpha = ?; \beta^+ = 1#$	
¹⁹¹ Po ^m	-5008	12	61	11	AD		93	ms	3	$(13/2^+)$	07			1999	$\alpha = ?; \beta^+ = 4\#$	
¹⁹¹ At	3864	16					2.1	ms	0.8	$(1/2^+)$	07			2003	$\alpha \approx 100; \beta^+$?	*
$^{191}At^{m}$	3922	18	58	20	AD		2.2	ms	0.4	$(7/2^{-})$	07			2003	$\alpha \approx 100; \beta^+$?	*
* ¹⁹¹ W ^m	T : averag	ge 11St2	1=360(20)0	9A130=32	0(20) n	IS	E : 68 +	167 k	eV γ-rays							**
* ¹⁹¹ Re	I : also ar	i isomer	with $T=77(3$	(3) μ s deca	aying b	y g of	f 444, 419, 2	225, 1	39 keV							**
* ¹⁹¹ Os ^m	T: other	12Kr05=	=13.6(0.2) fro	om the dec	ay gro	wth	J : M3	5 + E4	to $9/2^{-1}$							**
* ¹⁹¹ Ir ⁿ	T : averag	ge 12Dr(32=5.8(0.6) 7	'9Lu01=5.	5(0.7)	100	0.0.1 1									**
* ¹⁷¹ lr ⁿ	E : from	least-squ	tares fit to γ -i	ay energie	es usin	g 12D	r02 level sc	neme								**
* ¹⁹¹ Hg ^m	E : origin	al uncer	tainty (8 ke V) increased) for g	s+m lines ii	1 trap	0.50)							**
**** PD" 191 n:n	E: 2002.	of(0.24)	225 1 1 1	v_50#	: sym	metriz	Leu from 15	0(+1(10-30)							**
* ¹⁹¹ A+	E: x kev	above 1	825.1 level; 2	x=30#												**
* At 191 A m	T : symm	etrized 1	from $2.1(10.0)$	1 0 3												**
* 'Al''	ı : symm	eu ized i	10111 2.1(+0.4	+-0.3)												**
¹⁹² Ta	-23060#	400#					22	s	07	(2)	12			2009	$\beta^{-}=100$	
¹⁹² W	-29650#	200#					1#	m	(>300 ns)	0+	12			1999	β^- ?	
¹⁹² Re	-31590	70					16.0	s	0.9	~	12	12A105	Т	1965	$\beta^{-}=100$	*
$^{192}\text{Re}^m$	-31430	70	159	1			88	μs	8		12	11St21	ETD	2005	IT=100	*
$^{192}\text{Re}^n$	-31320	70	267	10			70	s	30		12	12Re19	ET	2012	$\beta^-=?;$ IT=?	*
A-grou	p is continue	d on nex	kt page													

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Nuclide	Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)															
	Mass ex (keV	cess)	(Excitatio energy (ke	n V)		Ι	Half-	life	J^{π}	Ens	Referen	ce	Year of discovery	Decay modes and intensities (%)	
															. ,	
192 Os	ip continued						STADIE		$(>53 \mathrm{Fy})$	0+	12	13Be07	т	1031	$15-40.78 \ 10.28^{-2} \ \alpha^{2}$	<u>ب</u>
$^{192}Os^{m}$	-33866.8	2.3	2015 40	0.11			5 1ABLE	s	(255 Ey) 0 1	10-	12	13Dr05	I	1965	$II > 87 \cdot \beta^{-} < 13$	*
$^{192}Os^n$	-31301.9	2.5	4580.3	1.0			204	ns	7	(20^+)	12	13Dr05	ETJ	2004	IT=100	
¹⁹² Ir	-34835.6	1.3					73.830	d	0.015	4+	12	14Un01	Т	1937	$\beta^{-}=95.244; \epsilon=4.764$	
192 Ir ^m	-34778.9	1.3	56.720	0.005			1.45	m	0.05	1-	12			1937	IT \approx 100; $\beta^{-}=0.0175$	
192 Ir ⁿ	-34667.5	1.3	168.14	0.12			241	У	9	(11^{-})	12			1959	IT=100	
¹⁹² Pt	-36288.5	2.6					STABLE			0+	12			1935	IS=0.782 24	
192 Ptm 192 A	-34116.1	2.6	2172.37	0.13			272	ns	23	(10)-	12			1976	$\Pi = 100$ R^{+} 100	
192 Au	-32112	16	125 41	0.25			4.94	n	0.09	1 5#+	12			1948	$\beta = 100$	
192 Aun	-32037 -32340	16	431.6	0.25			160	ms	20	(11^{-})	12			1976	IT=100	
¹⁹² Hg	-32012	16	10110	010			4.85	h	0.20	0+	12			1952	$\epsilon = 100: \alpha < 4e - 6$	
¹⁹² Tl	-25870	30					9.6	m	0.4	$2^{(-)}$	12	13Ba41	J	1961	$\beta^+=100$	
$^{192}\text{Tl}^m$	-25730	50	138	45			10.8	m	0.2	$7^{(+)}$	12	13Ba41	J	1961	$\beta^{+}=100$	
$^{192}\text{Tl}^n$	-25480	50	388	45			296	ns	5	(8^{-})	12			1980	IT=100	
$^{192}\text{Tl}^p$	-25695	25	180	40	AD					(3+)	12	91Va04	Е	1991	<i>α</i> =100	
¹⁹² Pb	-22556	13					3.5	m	0.1	0+	12			1974	$\beta^+ \approx 100; \alpha = 0.00597$	
¹⁹² Pb ^m	-19975	13	2581.1	0.4			166	ns	6	10+	12	07Io03	J	1985	IT=100	
¹⁹² Pb ⁿ	-19931	13	2625.1	1.1			1.09	μs	0.04	12+	12	071003	J	1979	IT=100	
192 p;	-19813	13	2743.5	0.4			/50	ns	14	(2^+)	12	0/1003	J	1991	$R^+ - 885$ $\alpha - 125$	
192 Bim	-13398	30	140	30	MD		39.6	s	0.9	(3^{-})	12			19/1	$\beta^{+}=88.5; \alpha=12.5$ $\beta^{+}=90.3; \alpha=10.3$	
¹⁹² Po	-8071	11	140	50	MD		32.2	ms	0.4	0+	12			1900	$\beta = 90.3, \alpha = 10.3$ $\alpha = 2.6 \beta^{+} = 0.5 \#$	
¹⁹² Po ^m	-5776	11	2294.6	1.0			580	ns	100	(11^{-})	12			1999	IT=100	
¹⁹² At	2926	28				* &	11.5	ms	0.6	3+#	12	13An03	D	2006	$\alpha = 100; \beta^+ = 0.6\#; \beta^+ \text{SF} = 0.21$	*
$^{192}At^m$	2926	28	0	40	AD	* &	88	ms	6	$(9^{-}, 10^{-})$	12	13An03	D	2006	$\alpha = 100; \beta^+ = 4.6\#; \beta^+ \text{SF} = 0.21$	
* ¹⁹² Re	T : average	ge 12Al	05=16(2) 79	Ka.B=16(1)											**
$*^{192}$ Re ^m	T : avera	ge 11St2	21=85(10) 09	9A130=93	(15); a	lso 050	Ca02=120(-	+210	–50) μs							**
$*^{192}$ Re ^m	E : 159.3	keV γ a	ind X rays se	en only ir	111St2	21										**
* ¹⁹² Re ⁿ	T : symm	ietrized	from 12Rel	9=61(+40	-20) s	for q=	5'									**
* Os	T : 10wer	02 H 151	for pp deca	y 5 1 3) e	T = 10	5(+1.0	0.0) e									**
* 03 * ¹⁹² Ir	T : DAK	02 11-11	$L = 15.1(\pm 1)$		I = 10	J(T1.0	-11-21-5									~~~
		ge 14Ur	01 = 73.8310	0 074) 921	No06=	73 84(0.05) and 7	3 81	4(0.017)							**
* ¹⁹² Ir	T: 8	ge 14Ur 0Ho17=	01=73.831(73.831(0.07	0.074) 92 4) 72La14	Wo06=	73.84(2(0.06)	0.05) and 7	3.81	4(0.017)							** ** **
* ¹⁹² Ir * ¹⁹² Ir	T: 8 T: 8	ge 14Ur 0Ho17= nal unc c	01=73.831(0 73.831(0.07 of 80Ho17=0	0.074) 92 4) 72La14 0.008 incre	Wo06= =74.0 ased t	73.84(2(0.06) 0 0.1%	0.05) and 7 by evaluat	3.81 or	4(0.017)							** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At	T : 80 T : 81 T : origin D : 13An	ge 14Ur 0Ho17= nal unc c 103=0.42	01=73.831(0 73.831(0.07 of 80Ho17=0 2 9 for both i	0.074) 92 4) 72La14 0.008 incre somers	Wo06= =74.0 ased t	73.84(2(0.06) 0 0.1%	0.05) and 7	3.81 or	4(0.017)							** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At	T : 80 T : origin D : 13An	ge 14Ur 0Ho17= nal unc c 103=0.42	01=73.831(0 73.831(0.07 of 80Ho17=0 2 9 for both i	0.074) 92V 4) 72La14 0.008 incre somers	Wo06= =74.0 ased t	73.84(2(0.06) o 0.1%	0.05) and 7	3.814 or	4(0.017)							** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At	T : 80 T : origin D : 13An	ge 14Ur 0Ho17= nal unc c 103=0.42	01=73.831(0 73.831(0.07 of 80Ho17=0 2 9 for both i	0.074) 92 4) 72La14 0.008 incre somers	Wo06= =74.0 eased t	73.84(2(0.06) 0 0.1%	0.05) and 7	3.814 or	4(0.017)							** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At	T : 80 T : 80 T : origin D : 13An	ge 14Ur 0Ho17= nal unc c 103=0.42	01=73.831(0 73.831(0.07 of 80Ho17=0 2 9 for both i	0.074) 92 4) 72La14 0.008 incre somers	Wo06= =74.0 ased t	73.84(2(0.06) 0 0.1%	0.05) and 7	3.814 or	4(0.017)							** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At	-20870#	ge 14Ur 0Ho17= nal unc c 03=0.42 400#	101=73.831(0 73.831(0.07 of 80Ho17=0 2 9 for both i	0.074) 92 4) 72La14 0.008 incre somers	Wo06= =74.0 eased t	73.84(2(0.06) 0 0.1%	0.05) and 7 by evaluat	3.814 or ms	4(0.017) (>300 ns)	7/2+#	13	12Ku26	I	2012	β^{-} ?; β^{-} n=0.7#	** ** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At	-20870# -26290#	ge 14Ur 0Ho17= nal unc c 03=0.42 400# 200#	01=73.831(0 73.831(0.07 of 80Ho17=0 2 9 for both i	0.074) 92V 4) 72La14 0.008 incre somers	Wo06= =74.0 eased t	73.84(2(0.06) 0 0.1%	5005) and 7 by evaluate 500# 3#	3.81 or ms s	4(0.017) (>300 ns) (>300 ns)	7/2 ⁺ # 3/2 ⁻ #	13 11	12Ku26 09St16	I I	2012 2009	$\beta^{-}_{\beta^{-}_{2}}?;\beta^{-}n=0.7#$ $\beta^{-}_{2}?$	** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At	-20870# -20230	ge 14Ur 0Ho17= aal unc c 03=0.42 400# 200# 40	01=73.831(0 73.831(0.07 of 80Ho17=0 2 9 for both i	0.074) 92V 4) 72La14 .008 incre somers	Wo06= =74.0 ased t	73.84(2(0.06) 0 0.1%	5005) and 7 by evaluat 500# 3# 20#	or ms s	(>300 ns) (>300 ns) (>300 ns) (>300 ns)	7/2+# 3/2-# 5/2+#	13 11 06	12Ku26 09St16 99Be63	I I I	2012 2009 1999	$\beta^{-}_{-}?; \beta^{-}n=0.7#$ $\beta^{-}_{-}?$ $\beta^{-}?$	** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At	-20870# -20870# -26290# -30230 -30080	ge 14Ur 0Ho17= aal unc c 03=0.42 400# 400# 40 40	101=73.831(0 73.831(0.07 of 80Ho17=0 2 9 for both i 146.0	0.074) 92V 4) 72La14 .008 incre somers 0.2	Wo06= =74.0: ased t	73.84(2(0.06) 0 0.1%	5005) and 7 by evaluat 500# 3# 20# 69	3.814 or s s μs	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6	7/2+# 3/2-# 5/2+# (9/2-)	13 11 06 06	12Ku26 09St16 99Be63 11St21	I I ETJ	2012 2009 1999 2005	$\beta^{-} ?; \beta^{-} n=0.7#$ $\beta^{-} ?$ $\beta^{-} ?$ IT=100	** ** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At	-20870# -20870# -26290# -30230 -30080 -33394.3	ge 14Ur 0Ho17= al unc c 03=0.42 400# 40 40 40 2.3	101=73.831(0 73.831(0.07) of 80Ho17=0 2 9 for both i 146.0	0.074) 92 4) 72La14 0.008 incre somers 0.2	Wo06= =74.0: ased t	73.84(2(0.06) o 0.1%	500# 500# 3# 20# 69 29.830	3.81 or s μs h	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018	7/2+# 3/2-# 5/2+# (9/2 ⁻) 3/2 ⁻	13 11 06 06	12Ku26 09St16 99Be63 11St21 12Kr05	I I ETJ T	2012 2009 1999 2005 1940	$\beta^{-2}; \beta^{-n=0.7\#}$ $\beta^{-2}; \beta^{-n=0.7\#}$ $\beta^{-2}; TT=100$ $\beta^{-1}=100$	** ** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Os ^m	-20870# -20870# -26290# -30230 -30080 -33394.3 -33152.3	ge 14Ur 0Ho17= al unc c 03=0.42 400# 40 40 2.3 2.4	101=73.831(0 73.831(0.07 of 80Ho17=0 2 9 for both i 146.0 242.0	0.074) 92 4) 72La14 0.008 incre somers 0.2 0.5	Wo06= =74.0 eased t	73.84(2(0.06) o 0.1%	500# 500# 3# 29.830 132	ms s s h ns	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29	7/2+# 3/2-# 5/2+# (9/2-) 3/2- 2/2+	13 11 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21	I I ETJ T ETD	2012 2009 1999 2005 1940 2011 1925	$\beta^{-}?; \beta^{-}n=0.7\#$ $\beta^{-}?$ $\beta^{-}?$ IT=100 $\beta^{-}=100$ IT=100 ID=100	** ** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Os ¹⁹³ Os ¹⁹³ Os	-20870# -20870# -26290# -30230 -30080 -33394.3 -33152.3 -3456.0	ge 14Ur 0Ho17= aal unc c 03=0.42 400# 40 2.3 2.4 1.3 1.3	146.0 242.0 80 230	0.074) 92V 4) 72La14 0.008 increases somers 0.2 0.5 0.006	Wo06= =74.0 eased t	73.84(2(0.06) o 0.1%	500# 500# 500# 69 29.830 132 STABLE	ms s s μs h ns	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04	7/2 ⁺ # 3/2 ⁻ # 5/2 ⁺ # (9/2 ⁻) 3/2 ⁻ 3/2 ⁺	13 11 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21	I I ETJ T ETD	2012 2009 1999 2005 1940 2011 1935 1957	$\beta^{-}?; \beta^{-}n=0.7#$ $\beta^{-}?$ $\beta^{-}?$ IT=100 $\beta^{-}=100$ IT=100 IS=62.7 2 IT=100	** ** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Os ¹⁹³ Os ¹⁹³ Os ¹⁹³ Ir ¹⁹³ Ir ^m	-20870# -20870# -26290# -30230 -30080 -33394.3 -33152.3 -34536.2 -34456.0 -32258.7	ge 14Ur 0Ho17= ial unc c 03=0.42 400# 40 2.0 40 40 2.3 2.4 1.3 1.6	101=73.831(0 73.831(0.07 of 80Ho17=0 2 9 for both i 146.0 242.0 80.239 2277 5	0.074) 92Y 4) 72La14 .008 incre somers 0.2 0.5 0.006	Wo06= =74.0	73.84(2(0.06) o 0.1%	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124 &	ms s s μ s h ns d	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2 1	$7/2^+#$ $3/2^-#$ $(9/2^-)$ $3/2^-$ $3/2^+$ $11/2^-$ $31/2^+$	13 11 06 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21	I I ETJ ETD	2012 2009 1999 2005 1940 2011 1935 1957 2012	β^{-} ?; β^{-} n=0.7# β^{-} ? β^{-} ? IT=100 β^{-} =100 IT=100 IS=62.7 2 IT=100 IT=100	** ** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At ¹⁹³ Ta ¹⁹³ W ¹⁹³ W ¹⁹³ W ¹⁹³ Re ^m ¹⁹³ Os ¹⁹³ Os ^m ¹⁹³ Ir ¹⁹³ Ir ⁿ ¹⁹³ Ir ⁿ	- 20870# - 20870# - 26290# - 30080 - 33394.3 - 33152.3 - 34536.2 - 34456.0 - 32258.7 - 34479.6	ge 14Ur 0Ho17= ial unc c 03=0.42 400# 40 2.0 40 40 2.3 2.4 1.3 1.3 1.6 1.4	146.0 242.0 80.239 2277.5	0.074) 92Y 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0	Wo06= =74.0 ased t	73.84(2(0.06) 0 0.1%	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 500	ms s s μ s h ns d μ s v	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6	7/2+# 3/2-# 5/2+# (9/2 ⁻) 3/2 ⁻ 3/2+ 11/2- 31/2+ 1/2-	13 11 06 06 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02	I I ETJ T ETD ETJ	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948	β^{-} ?; β^{-} n=0.7# β^{-} ? β^{-} ? IT=100 β^{-} =100 IT=100 IS=62.7 2 IT=100 IT=100 ξ^{-} =100	* * * * * * * *
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At ¹⁹³ Ta ¹⁹³ W ¹⁹³ W ¹⁹³ Re ¹⁹³ Os ¹⁹³ Os ¹⁹³ Os ¹⁹³ Ir ¹⁹³ Ir ⁿ ¹⁹³ Ir ⁿ ¹⁹³ Pt ^m	- 20870# - 20870# - 26290# - 30080 - 33394.3 - 33152.3 - 34536.2 - 34456.0 - 32258.7 - 34479.6 - 34329.8	ge 14Ur 0Ho17= aal unc c 03=0.42 400# 200# 40 2.3 2.4 1.3 1.3 1.3 1.4 1.4	101=73.831(0 73.831(0.07) of 80Ho17=0 2 9 for both i 146.0 242.0 80.239 2277.5 149.78	0.074) 92V 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0 0.04	Wo06= =74.0 assed t	73.84(2(0.06) o 0.1%	500# 500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33	ms s s µs h ns d µs y d	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03	7/2+# 3/2-# 5/2+# (9/2 ⁻) 3/2 ⁻ 3/2+ 11/2- 31/2+ 1/2- 13/2+	13 11 06 06 06 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02	I I ETJ T ETD ETJ	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949	$\beta^{-}?; \beta^{-}n=0.7\#$ $\beta^{-}?$ $\beta^{-}?$ IT=100 $\beta^{-}=100$ IT=100 IT=100 IT=100 IT=100 $\epsilon=100$ $\epsilon=100$ IT=100	* * * * * *
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At ¹⁹³ Ta ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Os ^m ¹⁹³ Os ^m ¹⁹³ Ir ¹⁹³ Ir ^m ¹⁹³ Ir ² ¹⁹³ Pt ^m ¹⁹³ Au	- 20870# - 20870# - 26290# - 30230 - 30080 - 33394.3 - 34536.2 - 34456.0 - 32258.7 - 34479.6 - 34329.8 - 33405	ge 14Ur 0Ho17= aal unc c 03=0.42 400# 40 40 40 2.3 2.4 1.3 1.6 1.4 1.4 9	146.0 242.0 80.239 2277.5 149.78	0.074) 92V 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0 0.04	W006= =74.0 rased t	73.84(2(0.06) o 0.1%	500) by evaluat 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65	ms s s h ns d µs y d h	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15	$7/2^+ #$ $3/2^- #$ $5/2^+ #$ $(9/2^-)$ $3/2^-$ $3/2^-$ $3/2^+$ $11/2^-$ $12/2^-$ $13/2^+$ $13/2^+$ $3/2^+$	13 11 06 06 06 06 06 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02	I I ETJ T ETD ETJ	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948	β^{-} ?; β^{-} n=0.7# β^{-} ? β^{-} ? IT=100 β^{-} =100 IT=100 IS=62.7 2 IT=100 IT=100 ϵ^{-} 100 IT=100 β^{+} =100; $\alpha < 1e-5$	* * * * * * *
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At ¹⁹³ Ta ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Os ¹⁹³ Os ^m ¹⁹³ Os ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Pt ^m ¹⁹³ Pt ^m ¹⁹³ Pt ^m ¹⁹³ Au ^m	- 20870# - 26290# - 26290# - 30230 - 30080 - 33394.3 - 3456.0 - 34456.0 - 32258.7 - 34479.6 - 34429.8 - 33405 - 33115	ge 14Ur 0Ho17= aal une c 003=0.42 400# 40 40 2.3 2.4 1.3 1.3 1.6 1.4 1.4 9 9	146.0 242.0 80.239 2277.5 149.78 29.19	0.074) 92Y 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0 0.04 0.03	W006= =74.0 rased t	73.84(2(0.06) 0 0.1%	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.9	ms s s h ns d h s	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.3	7/2+# 3/2=# 5/2+# (9/2 ⁻) 3/2 ⁻ 3/2+ 11/2- 31/2+ 1/2- 13/2+ 1/2- 13/2+ 11/2-	13 11 06 06 06 06 06 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02	I I ETJ T ETD ETJ	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948 1955	$\beta^{-2}; \beta^{-n=0.7\#}$ $\beta^{-2}; \beta^{-n=0.7\#}$ $\beta^{-2}; \pi^{-100}$ π^{-100} π^{-100} π^{-100} π^{-100} π^{-100} π^{-100} $\beta^{+100}; \alpha < 1e^{-5}$ $\pi^{-100}; \beta^{+} \approx 0.03$	* * * * * * *
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At ¹⁹³ Ta ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Os ¹⁹³ Os ^m ¹⁹³ Os ^m ¹⁹³ Jr ^m ¹⁹³ Jr ^m ¹⁹³ Pt ^m ¹⁹³ Pt ^m ¹⁹³ Au ^m ¹⁹³ Au ⁿ	- 20870# - 20870# - 26290# - 30230 - 30080 - 33394.3 - 3455.2 - 34456.0 - 32258.7 - 34479.6 - 3429.8 - 33405 - 33115 - 30919	ge 14Ur 0Ho17= aal une c 003=0.42 400# 40 40 2.3 2.4 1.3 1.3 1.6 1.4 1.4 9 9 9	146.0 242.0 80.239 2277.5 149.78 29.19 2486.5	0.074) 92V 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0 0.04 0.03 0.6	Wo06= =74.0 assed t	73.84(2(0.06) 0 0.1%	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.9 150	ms s s μ s h ns d μ s y d h s ns	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.3 50	$7/2^+ \#$ $3/2^- \#$ $(9/2^-)$ $3/2^-$ $3/2^+$ $11/2^-$ $31/2^+$ $1/2^-$ $13/2^+$ $3/2^+$ $11/2^-$ $31/2^+$ $31/2^+$	13 11 06 06 06 06 06 06 06 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02 07Ok05	I I ETJ T ETD ETJ	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948 1955 1985	$\beta^{-2}; \beta^{-n=0.7\#}$ $\beta^{-2}; \beta^{-n=0.7\#}$ $\beta^{-2}; \beta^{-2}; \beta^{-2}; \beta^{-1}=100$ $\beta^{-100}; \beta^{-100}; \beta^{-10}; \beta^{-100}; \beta^{-10}; \beta$	* * * * * * *
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹³ Ta ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Os ¹⁹³ Br ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Ir ⁿ ¹⁹³ Pt ^m ¹⁹³ Au ¹⁹³ Au ^m ¹⁹³ Au ^m	- 20870# - 20870# - 26290# - 30230 - 30380 - 33394.3 - 34536.2 - 34456.0 - 32258.7 - 34479.6 - 34479.6 - 34329.8 - 33405 - 33115 - 30919 - 31062	ge 14Ur 0Ho17= aal une c 003=0.42 400# 40 40 2.3 2.4 1.3 1.3 1.6 1.4 1.4 9 9 9 16	146.0 242.0 80.239 2277.5 149.78 290.19 2486.5	0.074) 92V 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0 0.04 0.03 0.6	Wo06= =74.0 assed t	73.84(2(0.06) 0 0.1%	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.9 150 3.80	ms s s h ns d h s ns h s ns h	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.3 50 0.15	$7/2^+ \#$ $3/2^- \#$ $5/2^+ \#$ $(9/2^-)$ $3/2^-$ $3/2^+$ $11/2^-$ $13/2^+$ $1/2^-$ $13/2^+$ $11/2^-$ $3/2^+$ $11/2^-$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^-$ $3/2^-$	$ \begin{array}{r} 13 \\ 11 \\ 06 \\$	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02 07Ok05	I I ETJ ETD ETJ	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948 1955 1985 1952	$\beta^{-2}; \beta^{-n=0.7\#}$ $\beta^{-2}; \beta^{-n=0.7\#}$ $\beta^{-2}; TT=100$ $\beta^{-1}=100$ TT=100 TT=100 TT=100 $\tau T=100$ $\beta^{+1}=100; \beta^{+1}=0.03$ TT=100 $\beta^{+1}=100$ $\beta^{+1}=100$	* * * * * * *
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Os ^m ¹⁹³ Os ^m ¹⁹³ Ir ⁿ ¹⁹³ Ir ⁿ ¹⁹³ Ir ⁿ ¹⁹³ Pt ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Au ^m	-20870# -20870# -26290# -30230 -30080 -33394.3 -34556.0 -34456.0 -32258.7 -34479.6 -34329.8 -33405 -33115 -30919 -31062 -30921	ge 14Ur 0Ho17= aal une c 003=0.42 400# 40 40 2.3 2.4 1.3 1.3 1.3 1.4 1.4 9 9 16 16	146.0 242.0 80.239 2277.5 149.78 290.19 2486.5 140.76	0.074) 92V 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0 0.04 0.6 0.05	Wo06= 74.0 assed t	.73.84(2(0.06) o 0.1%	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.9 150 3.80 11.8	ms s s s h ns d µs y d h s ns h h	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.3 50 0.15 0.2	$7/2^+ #$ $3/2^- #$ $5/2^+ #$ $(9/2^-)$ $3/2^-$ $3/2^+$ $1/2^-$ $13/2^+$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^-$ $13/2^+$ $3/2^{(-)}$ $13/2^{(+)}$	13 11 06 06 06 06 06 06 06 06 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02 07Ok05	I I ETJ ETD ETJ	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948 1949 1948 1955 1955 1955 1952 1973	$\beta^{-}?; \beta^{-}n=0.7\# \\ \beta^{-}? \\ \beta^{-}? \\ TT=100 \\ \beta^{-}=100 \\ TT=100 \\ TT=100 \\ TT=100 \\ \epsilon=100 \\ TT=100 \\ \beta^{+}=100; \alpha < 1e-5 \\ TT\approx 100; \beta^{+}\approx 0.03 \\ TT=100 \\ \beta^{+}=100 \\ \beta^{+}=100 \\ \beta^{+}=92.8 5; TT=7.2 5 $	* * * * *
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At ¹⁹³ Ta ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Os ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Pt ¹⁹³ Pt ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Hg ^m ¹⁹³ Tl	-20870# -20870# -20290# -30230 -30080 -33394.3 -34536.2 -34456.0 -32258.7 -34479.6 -34329.8 -33405 -33115 -30919 -31062 -30921 -27477	ge 14Ur 0Ho17= al une c 003=0.42 400# 40 40 2.3 2.4 1.3 1.3 1.3 1.3 1.4 1.4 9 9 9 16 16 7	01=73.831(0 73.831(0.07) of 80Ho17=0 2 9 for both i 2 9 for both i 2 42.0 80.239 2277.5 149.78 290.19 2486.5 140.76	0.074) 92V 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0 0.04 0.03 0.6 0.05	Wo06=74.0 =74.0 aased t	.73.84(2(0.06) o 0.1%	500# 500# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.9 150 3.80 11.8 21.6	ms s s h ns d h s ns h h s ns h h m	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.3 50 0.15 0.2 0.8	$\begin{array}{c} 7/2^+ \# \\ 3/2^- \# \\ 5/2^+ \# \\ (9/2^-) \\ 3/2^- \\ 3/2^+ \\ 1/2^- \\ 3/2^+ \\ 3/2^+ \\ 3/2^- \\ 3/2^{(-)} \\ 3/2^{(+)} \\ 3/2^{(+)} \\ 1/2^{(\#)} \end{array}$	13 11 06 06 06 06 06 06 06 06 06 06 06	12Ku26 99St16 99Be63 11St21 12Kr05 11St21 12Dr02 07Ok05	I I ETJ ETD J	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948 1949 1948 1955 1955 1955 1955 1973 1960	$\beta^{-}?; \beta^{-}n=0.7\# \\ \beta^{-}? \\ \beta^{-}? \\ IT=100 \\ \beta^{-}=100 \\ IT=100 \\ IT=100 \\ \epsilon=100 \\ IT=100 \\ \epsilon=100 \\ IT=100 \\ \beta^{+}=100; \alpha < 1e-5 \\ IT\approx 100; \beta^{+}\approx 0.03 \\ IT=100 \\ \beta^{+}=100 \\ \beta^{+}=100 \\ \beta^{+}=92.8 5; IT=7.2 5 \\ \beta^{+}=100 \\ IT=100 $	* * * * *
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At ¹⁹³ Ta ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Os ^m ¹⁹³ Re ^m ¹⁹³ Os ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Pt ¹⁹³ Pt ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Hg ^m ¹⁹³ Tl ^m ¹⁹³ Tl ^m	- 20870# T: 80 T: origin D: 13An - 20870# - 26290# - 30230 - 30080 - 33394.3 - 34536.2 - 34456.0 - 32258.7 - 34479.6 - 34329.8 - 33405 - 33115 - 30919 - 31062 - 30921 - 27477 - 27105 - 2027	ge 14Ur 0Ho17= al une c 003=0.42 400# 40 40 2.3 2.4 1.3 1.3 1.6 1.4 1.4 9 9 16 16 7 8	01=73.831(0 73.831(0.07) of 80Ho17=0 2 9 for both i 2 9 for both i 2 42.0 80.239 2277.5 149.78 290.19 2486.5 140.76 372	0.074) 92V 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0 0.04 0.03 0.6 0.05 4	Wo06=74.0	.73.84(2(0.06) 0 0.1%	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.9 150 3.80 11.8 21.6 2.11	ms s s μ s h ns d μ s y d h s ns h h h m m	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.2 0.8 0.15	$7/2^+ \#$ $5/2^+ \#$ $(9/2^-)$ $3/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^$	13 11 06 06 06 06 06 06 06 06 06 06 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02 07Ok05	I I ETJ ETJ J	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948 1949 1948 1955 1955 1955 1955 1973 1960 1963	$\beta^{-}?; \beta^{-}n=0.7\#$ $\beta^{-}?$ $\beta^{-}?$ IT=100 $\beta^{-}=100$ IT=100 s=62.72 IT=100 r=100 $\beta^{+}=100; \alpha < 1e-5$ IT=100 $\beta^{+}=100; \beta^{+}\approx 0.03$ IT=100 $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{-}=100$	* * * * * *
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ^m ¹⁹³ Os ¹⁹³ Os ¹⁹³ Os ¹⁹³ Os ¹⁹³ Ir ¹⁹³ Ir ¹⁹³ Ir ¹⁹³ Pt ¹⁹³ Au ¹⁹³ Au ^m ¹⁹³ Au ^m	- 20870# - 20870# - 26290# - 30230 - 30080 - 33394.3 - 33152.3 - 34536.2 - 34456.0 - 32258.7 - 34479.6 - 34329.8 - 33405 - 33405 - 33405 - 33115 - 30919 - 31062 - 30921 - 27477 - 27105 - 22190 - 22190 - 22060#	ge 14Ur 0Ho17= al une c 03=0.42 400# 40 40 40 2.3 2.4 1.3 1.3 1.6 1.4 9 9 9 16 16 7 8 50 004	01=73.831(0 73.831(0.07) of 80Ho17=0 2 9 for both i 2 9 for both i 2 42.0 80.239 2277.5 149.78 290.19 2486.5 140.76 372	0.74) 92V 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0 0.04 0.03 0.6 0.05 4	W006= =74.0 ased t	.73.84(2(0.06) 0 0.1%	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.9 150 3.80 11.8 21.6 2.11 57	ms s s µs h ns d µs y d h s ns h h m m	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.3 50 0.15 0.2 0.8 0.15	$7/2^+\#$ $3/2^-\#$ $5/2^+\#$ $(9/2^-)$ $3/2^-$ $3/2^+$ $1/2^-$ $1/2^-$ $1/2^+$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $1/2^{(-)}$ $1/2^{(+\#)}$ $9/2^{(-)}$ $1/2^{(-)}$	13 11 06 06 06 06 06 06 06 06 06 06 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02 07Ok05 13Ba41 GAu	I I ETJ ETD ETJ J J	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948 1949 1948 1955 1955 1955 1955 1952 1973 1960 1963 1974	$\beta^{-}?; \beta^{-}n=0.7\#$ $\beta^{-}?$ $\beta^{-}?$ $\Gamma^{-}100$ $\Gamma^{-}100$ $\Gamma^{-}100$ $\Gamma^{-}100$ $\Gamma^{-}100$ $\epsilon^{-}100$ $\Gamma^{-}100$ $\beta^{+}=100; \alpha < 1e-5$ $\Gamma^{-}100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\Gamma^{-}75; \beta^{+}=25$ $\beta^{+}?$ $\beta^{+}=100$	* * * * * * * * *
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² Ir * ¹⁹³ Ta ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Re ^m ¹⁹³ Os ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Au ^m ¹⁹³	- 20870# - 20870# - 26290# - 30230 - 30080 - 33394.3 - 33152.3 - 34536.2 - 34456.0 - 32258.7 - 34479.6 - 34329.8 - 33405 - 33405 - 33405 - 33115 - 30919 - 31062 - 30921 - 27477 - 27105 - 22190 - 222600# - 100564	ge 14Ur 0Ho17= al unc c 03=0.42 400# 40 40 2.3 2.4 1.3 1.3 1.6 1.4 1.4 9 9 9 16 16 7 8 50 90#	146.0 242.0 80.239 2277.5 149.78 290.19 2486.5 140.76 372 130# 271.2*	0.74) 92Y 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0 0.04 0.03 0.6 0.05 4 80#	Wo06= =74.0 aased t	*****	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.9 150 3.80 11.8 21.6 6.2.11 5#	ms s s µs h ns d µs y d h h s ns h h m m m	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.3 50 0.15 0.2 0.8 0.15 0.2 15	$7/2^+ \#$ $3/2^- \#$ $9/2^-)$ $3/2^-$ $3/2^+$ $11/2^-$ $31/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $3/2^-$ 3/2	13 11 06 06 06 06 06 06 06 06 06 06 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02 07Ok05 13Ba41 GAu 91Du02	I I ETJ T ETD J J J J	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948 1955 1985 1952 1973 1960 1963 1974 1974	$\beta^{-}?; \beta^{-}n=0.7\#$ $\beta^{-}?$ $\beta^{-}?$ IT=100 $\beta^{-}=100$ IT=100 IT=100 IT=100 $\beta^{+}=100; \alpha < 1e-5$ IT $\approx 100; \beta^{+}\approx 0.03$ IT=100 $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=92.85; IT=7.25$ $\beta^{+}=100$ IT=75; $\beta^{+}=25$ $\beta^{+}?$ $\beta^{+}=100$ IT=100	***************************************
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² At ¹⁹³ Ta ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Os ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Pt ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Hg ^m ¹⁹³ Hg ^m ¹⁹³ Tl ^m ¹⁹³ Pb ^m ¹⁹³ Pb ^m ¹⁹³ Pb ^m	- 20870# - 20870# - 26290# - 30230 - 30080 - 33394.3 - 34536.2 - 34456.0 - 34258.7 - 34479.6 - 34456.0 - 32258.7 - 34479.6 - 34479.6 - 34329.8 - 33405 - 33115 - 30919 - 31062 - 30921 - 27477 - 27105 - 22190 - 22060# - 19450# - 1945	ge 14Ur 0Ho17= al unc c 03=0.42 400# 200# 40 40 2.3 2.4 1.3 1.3 1.6 1.4 1.4 9 9 9 16 16 7 8 50 90# 90#	146.0 242.0 80.239 2277.5 149.78 290.19 2486.5 140.76 372 130# 2742#	0.74) 92Y 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0 0.04 0.03 0.6 0.05 4 80# 80#	Wo06= =74.0 aased t	.73.84(2(0.06) o 0.1%	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.9 150 3.80 11.8 21.6 2.16 2.16 2.16 2.16 2.16 2.16 2.16	ms s s h ns d μ s y d h s ns h h m m m s s	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.3 50 0.15 0.2 0.8 0.15 0.2 15 0.2 15	$7/2^+ \#$ $3/2^- \#$ $9/2^-)$ $3/2^-$ $3/2^+$ $11/2^-$ $31/2^+$ $1/2^-$ $3/2^+$ $11/2^-$ $31/2^+$ $3/2^-(-)$ $13/2^+$ $3/2^{(-)}$ $13/2^{(+)}$ $9/2^{(-)}$ $(3/2^-)$ $13/2^+$ $3/2^+$ $(9/2^-)$	13 11 06 06 06 06 06 06 06 06 06 06 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02 07Ok05 13Ba41 GAu 91Du07 04Io01	I I ETJ T ETD J J J J J J J J	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1955 1955 1985 1955 1985 1955 1985 1952 1973 1960 1963 1974 1974	$\beta^{-2}; \beta^{-n=0.7\#}$ $\beta^{-2}; \beta^{-n=0.7\#}$ $\beta^{-2}; 1T=100$ β^{-100} T=100 IT=100 IT=100 $\beta^{+100; \alpha < 1e-5}$ IT=100 $\beta^{+100; \beta^{+} \approx 0.03}$ IT=100 $\beta^{+100; \beta^{+} \approx 0.03}$ IT=100 $\beta^{+200; \beta^{+25; \beta^$	* * * * * * * * * * * *
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹³ Ta ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Os ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Ir ⁿ ¹⁹³ Ir ⁿ ¹⁹³ Pt ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Hg ^m ¹⁹³ Tl ^m ¹⁹³ Tl ^m ¹⁹³ Pb ^m ¹⁹³ Bi ¹⁹³ Bi ¹⁹³ Bi	- 20870# - 20870# - 26290# - 30230 - 30380 - 33394.3 - 34536.2 - 34456.0 - 32258.7 - 34479.6 - 34329.8 - 33405 - 33115 - 30919 - 31062 - 30921 - 27477 - 27105 - 22190 - 22060# - 19450# - 15885 - 15885	ge 14Ur 0Ho17= aal une c 003=0.42 400# 40 40 2.3 2.4 1.3 1.3 1.6 1.4 1.4 9 9 9 16 16 16 7 8 50 90# 90# 8 9	146.0 242.0 80.239 2277.5 149.78 290.19 2486.5 140.76 372 130# 2742# 305	0.74) 92Y 4) 72La14 .008 incres somers 0.2 0.5 0.006 1.0 0.04 0.03 0.6 0.05 4 80# 80# 6	4D	73.84(2(0.06) 0 0.1%	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.9 150 3.80 11.8 21.6 2.11 5# 5.8 180 6.6 3.07	ms s s h ns d μ s y d h s ns h h h m m m s s s	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.3 50 0.15 0.2 0.8 0.15 0.2 0.8 0.15 0.2 0.2 15 3.0 0.13	$7/2^+ \#$ $3/2^- \#$ $5/2^+ \#$ $(9/2^-)$ $3/2^-$ $3/2^+$ $1/2^-$ $13/2^+$ $1/2^-$ $3/2^+$ $1/2^-$ $3/2^+$ $1/2^{(-)}$ $13/2^+$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$ $3/2^+$ $3/2^-$	13 11 06 06 06 06 06 06 06 06 06 06 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02 07Ok05 13Ba41 GAu 91Du07 04Io01 15He27	I I ETJ T ETD J J J J J J J J J J J J	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948 1955 1955 1955 1955 1955 1955 1973 1960 1963 1974 1974 1974	$\beta^{-2}; \beta^{-n=0.7\#}$ $\beta^{-2}; \beta^{-n=0.7\#}$ $\beta^{-2}; TT=100$ $\beta^{-1}=100$ TT=100 TT=100 TT=100 $\beta^{+100}; \alpha < 1e-5$ $TT\approx 100; \beta^{+}\approx 0.03$ TT=100 $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $TT=75; \beta^{+}=25$ $\beta^{+}=100$ $TT=75; \beta^{+}=25$ $\beta^{+}=100$ $TT=75; \beta^{+}=25$ $\beta^{+}=100$ TT=100 $\beta^{+}=2, \alpha = 3.5$ 15 $\alpha = 84$ $16; \beta^{+}=2$	***************************************
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹³ Ta ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Os ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Au ^m ¹⁹³ Bi ^m ¹⁹³ Bi ^m ¹⁹³ Bi ^m	- 20870# - 20870# - 26290# - 30230 - 30080 - 33394.3 - 33152.3 - 34536.2 - 34456.0 - 34258.7 - 34479.6 - 34329.8 - 33405 - 33115 - 30919 - 31062 - 30921 - 27477 - 27105 - 22190 - 22060# - 19450# - 15580 - 15580 - 15580 - 15580	ge 14Ur 0Ho17= aal une c 003=0.42 400# 40 40 40 2.3 2.4 1.3 1.3 1.6 1.4 1.4 9 9 16 16 7 8 50 90# 8 90# 8 9	146.0 242.0 80.239 2277.5 149.78 290.19 2486.5 140.76 372 130# 2742# 305 605 5	0.74) 92Y 4) 72La14 .008 incres somers 0.2 0.5 0.006 1.0 0.04 0.03 0.6 0.05 4 80# 80# 6 0.5	AD	73.84(2(0.06) 0 0.1%	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.9 150 3.80 11.8 21.6 2.11 5# 5.8 180 63.6 3.07 153	3.81 or ms s s s μ s h ns d μ s ns h h h m m m s s s s s ns	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.3 50 0.15 0.2 0.8 0.15 0.2 15 3.0 0.13 10	$\begin{array}{c} 7/2^+ \# \\ 3/2^- \# \\ 5/2^+ \# \\ (9/2^-) \\ 3/2^- \\ 3/2^+ \\ 11/2^- \\ 31/2^+ \\ 1/2^- \\ 3/2^+ \\ 1/2^- \\ 31/2^+ \\ 3/2^{(-)} \\ 1/2^{(+\#)} \\ 9/2^{(-)} \\ (3/2^+) \\ 13/2^+ \\ (9/2^-) \\ (1/2^+) \\ (1/2^+) \end{array}$	13 11 06 06 06 06 06 06 06 06 06 06 06 06 06	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02 07Ok05 13Ba41 GAu 91Du07 04Io01 15He27	I I ETJ ETJ J J J J J J J J J	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948 1955 1952 1973 1960 1963 1974 1974 1971 1971 1970 2004	$\beta^{-2}; \beta^{-n=0.7\#} \\ \beta^{-2}; \beta^{-n=0.7\#} \\ \beta^{-2}; \\ TT=100 \\ \beta^{-1}=100 \\ TT=100 \\ TT=100 \\ r=100 \\ \beta^{-1}=100 \\ \beta^{+1}=100 \\ TT=75; \beta^{+1}=25 \\ \beta^{+2}; \beta^{+1}=100 \\ TT=100 \\ \beta^{+2}; \alpha=3.5 \\ TT=100 \\ \beta^{-1}; \beta^{+2}: \\ TT=100 \\ \beta^{-1}; \beta^{-1}=100 \\ TT=100 \\ TT$	***** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² Ir * ¹⁹³ Ta ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ¹⁹³ Re ^m ¹⁹³ Os ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Ir ^m ¹⁹³ Pt ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Au ^m ¹⁹³ Hg ^m ¹⁹³ Hg ^m ¹⁹³ Tl ^m ¹⁹³ Tl ^m ¹⁹³ Pb ^m ¹⁹³ Bi ^m ¹⁹³ Bi ⁿ ¹⁹³ Bi ⁿ ¹⁹³ Bi ⁿ	- 20870# - 20870# - 20870# - 26290# - 30230 - 30080 - 33394.3 - 33152.3 - 34456.0 - 32258.7 - 34479.6 - 34329.8 - 33405 - 33115 - 30919 - 31062 - 30921 - 27477 - 27105 - 22190 - 22060# - 19450# - 15580 - 15580 - 15580 - 13535	ge 14Ur 0Ho17= al une c 003=0.42 400# 40 40 2.3 2.4 1.3 1.3 1.3 1.3 1.4 1.4 9 9 16 16 7 8 50 90# 8 9 90# 8 9 9	01=73.831(0 73.831(0.07) of 80Ho17=0 2 9 for both i 2 9 for both i 2 2 9 for both i 2 42.0 80.239 2277.5 149.78 290.19 2486.5 140.76 372 130# 2742# 305 605.5 2350	0.74) 92Y 4) 72La14 .008 incres somers 0.2 0.5 0.006 1.0 0.04 0.03 0.6 0.05 4 80# 80# 6 0.5 5	AD	***************************	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.9 150 3.80 11.8 21.6 2.11 5# 5.88 180 63.6 3.07 153 85	3.81 or mss s s μs h ns d μs y d h s ns h h m m m s s s s us	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.2 0.8 0.15 0.2 0.8 0.15 0.2 15 3.0 0.13 10 3	$\begin{array}{c} 7/2^+ \# \\ 3/2^- \# \\ 5/2^+ \# \\ (9/2^-) \\ 3/2^- \\ 3/2^+ \\ 1/2^- \\ 3/2^+ \\ 3/2^+ \\ 3/2^+ \\ 3/2^- \\ 1/2^{(+\#)} \\ 9/2^{(-)} \\ 1/2^{(+\#)} \\ 9/2^{(-)} \\ 13/2^+ \\ 3/2^+ \\ (9/2^-) \\ (1/2^+) \\ (1/2^+) \\ (29/2^+) \end{array}$	13 11 06 06 06 06 06 06 06 06 06 06 06 06 06	12Ku26 99St16 99Be63 11St21 12Kr05 11St21 12Dr02 07Ok05 13Ba41 GAu 91Du07 04Io01 15He27 15He27	I I ETJ ETJ J J J J T T EJT	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948 1955 1955 1955 1955 1955 1955 1973 1960 1963 1974 1971 1971 1970 2004 2004	$\beta^{-2}; \beta^{-n=0.7\#} \\ \beta^{-2}; \beta^{-n=0.7\#} \\ \beta^{-2}; \beta^{-1} \\ \Pi^{-100} \\ \Pi^{-100} \\ \Pi^{-100} \\ \Pi^{-100} \\ \epsilon^{-100} \\ \Pi^{-100} \\ \beta^{+100}; \alpha < 1e^{-5} \\ \Pi^{-100}; \beta^{+} \approx 0.03 \\ \Pi^{-100} \\ \beta^{+100} \\ \beta^{+100} \\ \beta^{+100} \\ \beta^{+100} \\ \beta^{+100} \\ \beta^{+100} \\ \Pi^{-15}; \beta^{+25} \\ \beta^{+100} \\ \Pi^{-15}; \alpha^{-3.5} \\ \Pi^{-100} \\ \Pi^{$	***** ** ** **
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² Ir * ¹⁹³ Ta ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ^m ¹⁹³ Os ¹⁹³ Os ¹⁹³ Os ¹⁹³ Ir ¹⁹³ Ir ¹⁹³ Ir ¹⁹³ Ir ¹⁹³ Pt ¹⁹³ Au ¹⁹³ Au ^m ¹⁹³ Bi ^m ¹⁹³ Bi ⁿ ¹⁹³ Bi ⁿ ¹⁹³ Bi ⁿ ¹⁹³ Bi ⁿ ¹⁹³ Bi ⁿ	- 20870# T: 80 T: origin D: 13An - 20870# - 26290# - 30230 - 30280 - 33394.3 - 34536.2 - 34456.0 - 34329.8 - 34456.0 - 34329.8 - 34456.0 - 34329.8 - 34459.6 - 34329.8 - 34459.6 - 34329.8 - 34459.0 - 32258.7 - 34459.0 - 34329.8 - 33405 - 33115 - 30919 - 31062 - 30921 - 27477 - 27105 - 22190 - 22060# - 15280 - 15280 - 15280 - 15355 - 13480	ge 14Ur 0Ho17= al une c 003=0.42 400# 40 40 2.3 2.4 1.3 1.3 1.6 1.4 1.4 9 9 16 16 7 8 50 90# 90# 8 9 9 8 9 9	01=73.831(0 73.831(0.07) of 80Ho17=0 2 9 for both i 2 9 for both i 2 42.0 80.239 2277.5 149.78 290.19 2486.5 140.76 372 130# 2742# 305 605.5 2350 2405	0.074) 92V 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0 0.04 0.03 0.6 0.05 4 80# 80# 6 0.5 5 5 5	W006= =74.0 .ased t	*****	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.99 150 3.80 11.8 21.6 2.11 5# 5.8 180 63.6 3.07 153 85 3.02	3.81 or msssshns hnsd μ s ydhsnshh hmmmmssssns μ s μ s	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.2 0.8 0.15 0.2 0.8 0.15 0.2 15 3.0 0.13 10 3 0.08	$\begin{array}{c} 7/2^+ \# \\ 3/2^- \# \\ 5/2^+ \# \\ 5/2^- \# \\ 1/2^- \\ 3/2^- \\ 3/2^+ \\ 1/2^- \\ 3/2^+ \\ 3/2^- \\ 1/2^{(+\#)} \\ 9/2^{(-)} \\ 1/2^{(+\#)} \\ 9/2^{(-)} \\ 1/2^{(+\#)} \\ 9/2^{(-)} \\ 1/2^+ \\ (9/2^-) \\ (1/2^+) \\ (13/2^+) \\ (29/2^-) \\ (29/2^-) \end{array}$	13 11 06 06 06 06 06 06 06 06 06 06 06 06 06	12Ku26 99Be63 11St21 12Kr05 11St21 12Dr02 07Ok05 13Ba41 GAu 91Du07 04Io01 15He27 15He27	I I ETJ ETJ J J J T T ETJ	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948 1949 1948 1955 1952 1973 1960 1963 1974 1971 1971 1970 2004 2004 2004	$\beta^{-2}; \beta^{-n=0.7\#} \\ \beta^{-2}; \beta^{-n=0.7\#} \\ \beta^{-2}; \beta^{-1} \\ \Gamma = 100 \\ \beta^{+} = 100; \alpha < 1e-5 \\ \Gamma \approx 100; \beta^{+} \approx 0.03 \\ \Gamma = 100 \\ \beta^{+} = 100 \\ \beta^{+} = 100 \\ \beta^{+} = 100 \\ \beta^{+} = 100 \\ \Gamma = 75; \beta^{+} = 25 \\ \beta^{+} ? \\ \beta^{+} = 100 \\ \Gamma = 175; \beta^{+} = 25 \\ \beta^{+} ? \\ \beta^{+} = 100 \\ \Gamma = 100 $	***************************************
* ¹⁹² Ir * ¹⁹² Ir * ¹⁹² Ir * ¹⁹³ Ta ¹⁹³ Ta ¹⁹³ W ¹⁹³ Re ^m ¹⁹³ Os ¹⁹³ Os ¹⁹³ Os ¹⁹³ Os ¹⁹³ Ir ¹⁹³ Ir ⁿ ¹⁹³ Ir ⁿ ¹⁹³ Pt ¹⁹³ Au ¹⁹³ Au ^m ¹⁹³ Bi ^m ¹⁹³ Bi ⁿ ¹⁹³ Bi ⁿ ¹⁹³ Bi ^q ¹⁹³ Bi ^q	- 20870# T: 80 T: origin D: 13An D: 13An -20870# -30230 -30080 -33394.3 -34536.2 -34456.0 -32258.7 -34479.6 -34329.8 -33405 -33115 -30919 -31062 -30921 -27477 -27105 -22190 -22060# -19450# -15885 -15280 -13535 -13480 -8325	ge 14Ur 0Ho17= al unc c 03=0.42 400# 40 40 20.3 2.4 1.3 1.3 1.6 1.4 9 9 9 16 16 16 7 8 50 90# 90# 8 9 9 8 9 9 15	01=73.831(0 73.831(0.07) of 80Ho17=0 2 9 for both i 2 9 for both i 2 2 9 for both i 2 2 9 for both i 2 42.0 80.239 2277.5 149.78 290.19 2486.5 140.76 372 130# 2742# 305 605.5 2350 2405	0.74) 92V 4) 72La14 .008 incre somers 0.2 0.5 0.006 1.0 0.04 0.03 0.6 0.05 4 80# 80# 6 0.5 5 5	W006= =74.0 .ased t	*****	500# 500# 3# 20# 69 29.830 132 STABLE 10.53 124.8 50 4.33 17.65 3.9 150 3.80 11.8 21.6 2.11 5# 5.8 180 063.6 3.07 153 85 3.02 3.88	3.81 or ms s s μ s h ns h s ns h h m m m m s s s ns μ s ms	(>300 ns) (>300 ns) (>300 ns) (>300 ns) 6 0.018 29 0.04 2.1 6 0.03 0.15 0.2 0.8 0.15 0.2 0.8 0.15 0.2 0.8 0.15 0.2 15 3.0 0.13 10 3 0.08 40	$\begin{array}{c} 7/2^+ \# \\ 3/2^- \# \\ 5/2^+ \# \\ (9/2^-) \\ 3/2^- \\ 3/2^- \\ 1/2^- \\ 3/2^+ \\ 3/2^+ \\ 3/2^- \\ 3/2^- \\ 1/2^{(+\#)} \\ 9/2^{(-)} \\ (3/2^-) \\ 13/2^+ \\ (9/2^-) \\ (1/2^+) \\ (29/2^-) \\ (1/2^+) \\ (29/2^-) \\ (3/2^-) \\ (3/2^-) \end{array}$	$\begin{array}{c} 13\\ 11\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06$	12Ku26 09St16 99Be63 11St21 12Kr05 11St21 12Dr02 07Ok05 13Ba41 GAu 91Du07 04Io01 15He27 15He27 13Se03	I I ETJ ETD J J J J T EJT ET J	2012 2009 1999 2005 1940 2011 1935 1957 2012 1948 1949 1948 1949 1948 1955 1952 1973 1960 1963 1974 1974 1971 1970 2004 2004 2004 2004	$\beta^{-2}; \beta^{-n=0.7\#} \\ \beta^{-2}; \beta^{-n=0.7\#} \\ \beta^{-2}; \beta^{-2} \\ \Pi^{-100} \\ \Pi^{-100} \\ \Pi^{-100} \\ \kappa^{-100} \\ \Pi^{-100} \\ \kappa^{-100}; \alpha < 1e^{-5} \\ \Pi^{-100}; \beta^{+}=0.03 \\ \Pi^{-100} \\ \beta^{+}=100 \\ \beta^{+}=100 \\ \beta^{+}=100 \\ \beta^{+}=100 \\ \beta^{+}=100 \\ \Pi^{-75}; \beta^{+}=25 \\ \beta^{+}; \alpha^{-100} \\ \beta^{+}; \alpha^{-3.5} \\ \Pi^{-100} \\ \Pi^{-100} \\ \Pi^{-100} \\ \Pi^{-100} \\ \Pi^{-100} \\ \mu^{-2}; \beta^{+}=5\# $	***** ** ** **

-8325 -8225 15 100 ... A-group is continued on next page ...

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

Nualida	Mass excess Excitation				1010 tai	Jolf	life		Enc	Deference		Voor of	Decay modes and			
Nuclide	(keV	(Cess	é	energy (keV))		г	1411-	line	<i>J</i>	EIIS	Kelefend	e	discovery	intensities (%)	
	(110)	,		lineigj (ite v j	,									uiseevery	Intensities (76)	
A-grou	p continued	۱														
¹⁹³ At	-67	22				*	29	ms	5	$1/2^+$ #	06			2003	$\alpha \approx 100$	*
¹⁹³ At ^m	-59	21	8	9	AD	*	21	ms	5	7/2-#	06			1995	$\alpha \approx 100$	
$^{195}At^{n}$	-25	21	42	9	AD		28	ms	4	13/2+#	06	064.06	TD	2003	$\alpha = 24 \ 10; \ IT = 76 \ 10$	*
¹⁹³ Rn	9043 E	25	145 2(0.5)	00 4 120 1 4	C 1/0	2) 1X	1.15	ms	0.27	3/2-#	07	06An36	TD	2006	$\alpha \approx 100$	
* ¹⁹³ Re ^m	$E:a\gamma or T:a\gamma or T$	(115121 ao 115t	=145.2(0.5) 21-65(0).00	09AI30=14	0.1(0.	2) Ke v 05Ca(1° 1s observ 2° -75(+44		$0) \mu_s$							**
* Ke * ¹⁹³ Os	T : avera	92An13	$3=30\ 11(0\ 0)$	A150=72(0). 1): large syst		due to)2=73(+4.) large dea	d_tir	ο)μs ne effect							**
* ¹⁹³ Os	I : also a	n isome	r with $T=13$	2(29) decavi	ng via	a 24	2 keV ν-ra	v	ne enreet							**
* ¹⁹³ Tl ^m	E : less t	han 13 k	eV above 30	65.2 level, fr	om E	NSDF		.,								**
* ¹⁹³ Pb	J: from	α decay	from 197Po													**
* ¹⁹³ Pb	T: T=4.0	0 m repo	orted in Karl	sruhe charts	1981	and 1	995. Not t	race	able							**
$*^{193}$ Pb ⁿ	E:2612.	.5(0.5) a	bove ¹⁹³ Pb ⁿ	1												**
* ¹⁹³ Bi	D: $\alpha = 3$.	5 15 is f	from ENSDF	'98, wrongly	y attri	buted	in Ensdf	200	6 to NUBA	SE						**
* ¹⁹³ At	T : symn	netrized	from 28(+5-	-4)												**
$*^{193}$ At ⁿ	T : symn	netrized	from 27(+4	-3)												**
¹⁹⁴ Ta	-17300#	500#					300#	me	(>300 ns)	13	12Ku26	T	2012	β^{-} 2: β^{-} n=0.02#	
¹⁹⁴ W	_24530#	300#					5#	5	(>300 ns)	0+	11	121xu20	1	2012	β^{-1} , β^{-1}	
¹⁹⁴ Re	-27240#	200#					5	s	1	$(0^+, 1)$	14	12A105	Т	1999	$\beta^{-}=100$	*
¹⁹⁴ Re ^m	-26960#	200#	285	40			25	s	8	(11^{-})	14	12Re19	Ē	2012	$\beta^{-}=100$	*
$^{194}\text{Re}^n$	-26410#	200#	833	33			100	s	10	()	14	12Re19	Е	2012	$\beta^{-}=100$	
¹⁹⁴ Re ^p	-26140#	200#	1100#	1000#			45	μs	18		14	11St21	TD	2011	IT=100	*
$^{194}\text{Re}^{q}$	-25240#	200#	2000#	1000#			38	μs	37		14			2005	IT=100	*
¹⁹⁴ Os	-32435.1	2.4					6.0	у	0.2	0^{+}	06			1951	$\beta^{-}=100$	
¹⁹⁴ Ir	-32531.7	1.3					19.28	h	0.13	1-	06			1937	$\beta^{-}=100$	
194 Ir ^m	-32384.6	1.3	147.072	0.002			31.85	ms	0.24	4+	06			1959	IT=100	
¹⁹⁴ Ir ⁿ	-32160	70	370	70	BD		171	d	11	$(10,11)^{(-\#)}$	06			1968	$\beta^{-}=100$	
¹⁹⁴ Pt	-34760.1	0.5					STABLE			0+	06			1935	IS=32.86 40	
¹⁹⁴ Au	-32211.9	2.1	107.4	0.5			38.02	h	0.10	1 ⁻	06			1948	$\beta^{+}=100$	
194 An	-32104.5	2.2	107.4	0.5			600	ms	8	(5)	06			1975	11=100 IT 100	
19411a	-31/30.1	2.2	4/5.8	0.6			420	ms	10	(11)	06	15De01	т	1953	11=100	
194 TI	- 32183.9	2.9					33.0	y	20	2-	06	15D001	1	1962	$\beta^{+}=100$	*
194 T1m	-20937	14	260	14	MD		33.0	m	0.5	$\frac{2}{7(+)}$	00	13Ba/1	T	1960	$\beta = 100, \alpha < 10 - 7$ $\beta^+ - 100$	
¹⁹⁴ Ph	-20077 -24208	17	200	14	MD		10.7	m	0.2	0+	06	150441	J	1960	$\beta^{+}=100$ $\beta^{+}=100$: $\alpha=7$ 3e=6.29	
¹⁹⁴ Pb ^m	-21580	17	2628.1	0.4			370	ns	13	12+	06	FGK128	J	1972	J = 100, u = 7.50, 0.25 IT=100	*
194 Pb ⁿ	-21275	17	2933.0	0.4			133	ns	7	11-	06	1 011120	0	1986	IT=100	*
¹⁹⁴ Bi	-16029	6				*	95	s	3	(3^{+})	06			1971	$\beta^+ \approx 100; \alpha = 0.4625$	
¹⁹⁴ Bi ^m	-15880	50	150	50	MD	*	125	s	2	$(6^+, 7^+)$	06			1976	$\beta^+ \approx 100; \alpha$?	
¹⁹⁴ Bi ⁿ	-15849	8	180	10	AD		115	s	4	(10^{-})	06			1988	$\beta^+ \approx 100; \alpha = 0.207$	
¹⁹⁴ Po	-11005	13					392	ms	4	0^+	06			1967	$lpha pprox 100; eta^+$?	
¹⁹⁴ Po ^m	-8480	13	2525.2	0.8			15	μs	2	(11 ⁻)	06			1999	IT=100	
¹⁹⁴ At	-720	25	20	10			286	ms	7	$(4^{-}, 5^{-})$	06	13An03	TD	2009	$\alpha \approx 100; \beta^+ = 8.3\#; \beta^+ SF = 0.032$	*
194 D	-740	30	-20	40	AD		323	ms	1(0	(9,10)	06	13An03	Т	1984	$\alpha \approx 100; \beta^+ = 8.3\#; \beta^- \text{SF} = 0.032$	*
194 P.o	J/25 Tiothor	1/	2 - 1.0(0.5) m	ithdrown by	outh	re in	/80 14Ku22	μs	100	0.	07			2006	$\alpha \approx 100; p \in \mathbb{N}$	
* KC * ¹⁹⁴ P o ^m	T : from	12 \ 105	5=1.0(0.5) w	mare with 2	5(8) e	100(1	14Ku 23	d ha	exchanged							**
$*^{194}Re^{p}$	D · only	86 3 keV	$V \gamma$ is seen 1	but not those	seen	in ¹⁹⁴	Re^q	u be	exenangeo							**
$*^{194}$ Re ^q	I : decavi	ing by d	elaved v-ray	/s of 464. 14	8. 128	3	ite									**
* ¹⁹⁴ Hg	T : avera	ge 81H	518 = 477(32)	79Pr15=35	8(55)	value	es correcte	d in	15Do01 fc	r						**
* ¹⁹⁴ Hg	T: tł	ne new t	branching in	tensity of the	328.	5 g ra	у.									**
$*^{194}$ Pb ^m	J : E2 to	10 ⁺ ; ma	agnetic mon	nent			•									**
$*^{194}$ Pb ⁿ	J : E2 to	9 ; mag	gnetic mome	ent												**
* ¹⁹⁴ At	T : 13An	03 supe	rsedes 09Ar	11=253(10)		D :	13An03=0	0.065	58 for both	n isomers						**
* ¹⁹⁴ At	J : favore	ed α -dec	cay to (5^{-}) is	somer in ¹⁹⁰	Bi											**
$*^{194} At^{m}$	T : 13An	03=323	(7) supersed	les 09An11=	310(8); oth	er 13Ny01	1=30	0(+50-40)							**
$*^{194}$ At ^m	J : favore	ed α -dec	cay to (10^{-})	isomer in 19	^o Bi											**
¹⁹⁵ W	-21010#	300#					3#	8	(>300 ps	$5/2^{-}$ #		12Ku26	I	2012	β^{-} ?	
¹⁹⁵ Re	-25580#	300#					6	s	1	5/2+#	14		-	2008	$\beta^{-}=100$	
¹⁹⁵ Os	-29510	60					6.5	m	1.1	3/2-#	14			2004	β^{-} ?	
¹⁹⁵ Os ^m	-29060	60	454	10			2.0	h	1.7	13/2+#	14	12Re19	ED	2012	$\beta^{-}=?;$ IT=?	*
¹⁹⁵ Ir	-31692.3	1.3					2.29	h	0.17	$3/2^+$	14			1952	$\beta^{-}=100$	
195 Ir ^m	-31592	5	100	5			3.67	h	0.08	$1\dot{1}/2^{-}$	14			1968	$\beta^{-}=95$ 5; IT=5 5	
195 Ir ⁿ	-29338	6	2354	6			4.4	μs	0.6	$(27/2^+)$		11St21	ETJ	2011	IT=100	*
195Pt	-32793.8	0.5					STABLE			$1/2^{-}$	14			1935	IS=33.78 24	
¹⁹⁵ Pt ^m	-32534.7	0.5	259.077	0.023			4.010	d	0.005	$13/2^+$	14			1960	IT=100	
A-grou	ip is continu	ied on n	ext page													

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

			140		CINUD.	ASEZUIC	la		mucu, I	лрі	anation	. 01		page 10)	
Nuclide	Mass ex (keV	Mass excess (keV)		Excitation energy (keV)			Half-life			Ens	Reference	e	Year of discovery	Decay modes and intensities (%)	
A-grou	ip continued	۱													
¹⁹⁵ Au	-32567.0	1.1				186.01	d	0.06	$3/2^{+}$	14			1948	ε=100	
$^{195}Au^m$	-32248.4	1.1	318.58	0.04		30.5	s	0.2	$11/2^{-}$	14			1952	IT=100	
195 Au ⁿ	-30067	20	2500	20		12.89	ШS	0.21	$31/2^{(-)}$	14	13Dr01	ET	2013	IT=100	*
¹⁹⁵ Hø	-31013	23	2000	20		10.69	h	0.16	$1/2^{-}$	14	15Do01	Т	1952	$\beta^{+}=100$	*
¹⁹⁵ Ho ^m	-30837	23	176.07 0.04		41.60	h	0.10	$13/2^+$	14	15Do01	Ť	1951	F = 100 IT=54.2.20: $\beta^+=45.8.20$	*	
195 TI	-28155	11	170.07	0.01		1.00	h	0.05	$\frac{10}{2}$	14	150001		1955	$\beta^+ - 100$	
195 T1m	20133	11	182 63	0.17		3.6	п с	0.05	0/2-	14			1057	F = 100	
195 ph	23708	19	462.05	0.17		5.0	5	0.4	2/2-	14			1957	$\beta_{\pm}^{\pm} - 100$	
195 DLm	-23708	10	202.0	0.7		15 0	m	1.2	$\frac{3/2}{12/2(+)}$	14	010-12	Б	1957	$\beta = 100$ $\beta^{+} = 100$	
195 DL n	-23505	10	202.9	0.7		13.0	m	1.2	$(21/2^{-1})$	14	910112	Е	1937	p = 100	*
195 D :	-21949	10	1739.0	0.7		10.0	μs	0.7	(21/2)	14	C A 1 4h	т	1970	R^{\pm}_{\pm} , 100, cr. 0.02.2	
195 D.W	-18026	3	200	~	4.0	185	s	4	$9/2^{(1)}$	14	GAU140	J	1971	$\beta^+ \approx 100; \alpha = 0.032$	
195 B1m	-1/626	8	399	6	AD	8/	s	1	$(1/2^{+})$	14	GAu14b	J	1974	$\beta = 6/1/; \alpha = 331/$	*
¹⁹⁵ B1 ⁿ	-15631	5	2395.5	0.5		750	ns	50	$(29/2^{-})$	14	15Ro20	J	2003	IT=100	
¹⁹⁵ B1 ^p	-14690	5	3336	2		1.6	μs	0.1	$(31/2^{-})$	15	15Ro20	ETJ	2015	IT=100	*
¹⁹⁵ Po	-11060	40				4.64	s	0.09	$(3/2^{-})$	15	13Se03	J	1967	$\alpha = 944; \beta^+?$	
¹⁹⁵ Po ^m	-10965	28	90	50	AD	1.92	s	0.02	$(13/2^+)$	15	13Se03	J	1967	$\alpha \approx 90; \beta^+ \approx 10; \text{IT} < 0.01$	
195 At	-3470	10				290	ms	20	$1/2^{+}$	14			1999	$\alpha \approx 100; \beta^+$?	
$^{195}At^{m}$	-3441	8	29	7	AD	143	ms	3	$(7/2^{-})$	14			1995	$\alpha = ?;$ IT=12 4; β^+ ?	*
$^{195}At^{p}$	-3370#	40#	100#	40#					$(13/2^+)$		13Uu01	J		IT ?	*
¹⁹⁵ Rn	5050	50			*	7	ms	3	$3/2^{-}$	14			2001	$\alpha \approx 100$	*
¹⁹⁵ Rn ^m	5131	17	80	50	AD *	6	ms	3	$13/2^{+}$	14			2001	$\alpha \approx 100$	*
* ¹⁹⁵ Os ^m	T : symn	netrized	from 32(+1	54–16) m	for q=70	6+ (bare ior	1)								**
$*^{195}$ Ir ⁿ	E:268.4	, 404.4,	476.4, 537	.8, 566.7	ys in case	cade to 195 In	m								**
$*^{195}Au^n$	E : 13Dr	01=2460	0.9 + x, x = 4	0#(20#) e	estimated	by NUBAS	Е	$T: \tau=1$	18.6(0.3)						**
* ¹⁹⁵ Hg	T : avera	ge 15Do	01=10.84(0.03) 01L	i17=10.5	3(0.03), Bi	rge ra	atio <i>B</i> =7.3							**
$*^{195}Hg^{m}$	T : avera	ge 15Do	001=41.6(0)	2) 73Vi09	9=41.6(0	.8)	0								**
$*^{195}Pb^{m}$	J : same	as ¹⁹⁹ Po	^m and 203 R	n^{m} . from (α decav	,									**
* ¹⁹⁵ Bi ^m	J : spins	of grour	nd-state and	of isome	r derived	from α dec	av te	o daughter							**
* ¹⁹⁵ Bi ^p	E : uncer	tainty e	stimated by	NUBASE	aerriea		, aj c	duuginoi							**
* ¹⁹⁵ At ^m	E · ENSI	14=33	0(1.0) is e	rroneous											**
* ¹⁹⁵ AtP	E : estim	ated 70#	#(40#) abov	re ¹⁹⁵ Atm	· 13Nv01	estimated	unne	r limit is 13	0 keV						**
195 pn	T : cymn	atrized	from 01Uu	$01-6(\pm 3)$	2)	connaccu	uppe	1 111111 13 13	O KC V						~~~ ~~
$*^{195}$ Rn ^m	T : symn	netrized	from 01Uu	01=0(+3=0)	-2)										**
	5			,	·										
196 W	_18880#	400#				3#	c	(>300 ns)	0^+	13	12Ku26	т	2012	β^{-2}	
196 0	-18880#	200#				24	5	(2500 lis)	0	12	12Ku20	1	2012	β : $\beta = 2$	
196 p.om	-22340#	200#	120#	40#		2.4	5	1.5		15	118+21	т	2008	p : IT-100	*
19600	-22420#	40	120#	40#		24.0	μs	0.0	0 ⁺	07	113121	1	2009	R^{-}_{-100}	*
1961.	-28280	40				54.9	m	0.2	(0^{-})	07			19//	$\beta = 100$ $\beta = -100$	
196 x m	-29440	40	210	10	DD	52	s	1	(0)	07			1900	$\beta = 100$	
196 D	-29227	20	210	40	BD	1.40	n	0.02	(10,11) 07			1959	$\beta \approx 100; 11 < 0.3$	
196 A	-32644.5	0.5				STABLE		0.0007	0	07			1935	1S=25.2134	
196 Au	-31138.7	3.0				6.1669	d	0.0006	2-	07			1937	$\beta^+=92.8 8; \beta^-=7.2 8$	
¹⁹⁰ Au ^m	-31054	3	84.656	0.020		8.1	s	0.2	(5^+)	07			1971	IT=100	
¹⁹⁶ Au ⁿ	-30543	3	595.66	0.04		9.6	h	0.1	12-	07			1960	IT=100	
¹⁹⁶ Hg	-31825.9	2.9				STABLE		(>2.5 Ey)	0^{+}	07	90Bu28	Т	1930	IS=0.15 1; $2\beta^+$?	
¹⁹⁶ Tl	-27497	12				1.84	h	0.03	2-	07			1955	$\beta^{+}=100$	
${}^{196}\text{Tl}^{m}$	-27103	12	394.2	0.5		1.41	h	0.02	$7^{(+)}$	07	13Ba41	J	1960	$\beta^+=96.24$; IT=3.84	
¹⁹⁶ Pb	-25348	8				37	m	3	0^{+}	07			1957	$\beta^{+}=100; \alpha < 3e-5$	
$^{196}\text{Pb}^m$	-23610	8	1738.27	0.12		< 1	μs		4+	07			1973	IT=100	
196 Pb ⁿ	-23550	8	1797.51	0.14		140	ns	14	5-	07			1973	IT=100	
¹⁹⁶ Pb ^p	-22653	8	2694.6	0.3		270	ns	4	12+	07			1973	IT=100	
¹⁹⁶ Bi	-18009	24				51	m	0.2	(3^+)	07			1976	$\beta^+ \approx 100: \alpha = 0.00115.34$	
¹⁹⁶ Bi ^m	-17843	25	166.4	29	AD	0.6	\$	0.5	(7^+)	07			1987	$T=2^{\circ}\beta^+$ 2	
196 p;n	-17737	25	272	3		4.00	5 m	0.05	(10^{-})	07			1087	$\beta^{+} - 74225$ IT-25825 $\alpha - 0.0003810$	
196 p.	13/72	14	212	5	ΛD	4.00 5 5 4		0.00	0+	07	0511-02	т	1067	$\rho = 77.2 23, 11-23.8 23, \alpha = 0.00038 10$ $\alpha \sim 08.8^{+} \sim 2$	
196 p - m	-134/3	14	2402.0	0.4		3.30	S	0.09	11-	07	050002	1	1907	$u \approx 50; \mu \approx 2$	*
196 A	-109/9	14	2493.9	0.4		856	ns	1/	(2^+)	07	024 11	P	1995	11=100	
196 At	-3910	30	10	10	*	388	ms	1	(31)	07	93An11	D	1967	$\alpha = ?; p' = 5\#; \beta' SF = 0.088$	*
196 At"	-3950	18	-40	40	AD *	20#	ms	2	(10^{-1})	07	96En01	D	1996	$\alpha \approx 100$	*
190 Atn	-3750	30	157.9	0.1		11	μs	2	(5+)	07			2000	11=100	
¹⁹⁰ Rn	1971	14				4.7	ms	1.1	0^{+}	07			1995	$\alpha \approx 100; \beta^+=0.06\#$	*

*¹⁹⁶Re *¹⁹⁶Re^m

*¹⁹⁶Po

*¹⁹⁶Po *¹⁹⁶Po *¹⁹⁶At *¹⁹⁶At *¹⁹⁶At

** ** ** ** **

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table L	The	NUBAS	se2016	table	(continued.	Ext	nlanation d	of Table	on nage 18)
Table L.	Inc	TUDAL	562010	Lanc	(commucu,	L'A	planation v	JI IaDIC	un paze 10

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nuclide	clide Mass excess		Tuo	5620	10 000	Jolf 1	life	, ΠΑΡΙαι 1π	Ene	Peferenc		Vear of	Decay modes and			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(keV)		energy (keV)				Han-me			J	LIIS	Kelelelie	c	discovery	intensities (%)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107													_		0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	197 W	-15140#	400#					1#	s	(>300 ns)	5/2-#	13	12Ku26	Ι	2012	β^{-2}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁹⁷ Re	-20500#	300#					300#	ms	(>300 ns)	5/2+#	13			2009	β^{-} ?	
$ \begin{array}{c} \label{eq:constraints} \begin{array}{c} $	¹⁹⁷ Os	-25310#	200#					2.8	m	0.6	5/2-#	09			2003	$\beta^{-}=100$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁹⁷ Ir	-28264	20		_			5.8	m	0.5	$(3/2^{+})$	05			1952	$\beta^{-}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁹⁷ Ir ^m	-28149	21	115	5			8.9	m	0.3	$(11/2^{-})$	05		-	1976	$\beta^{-} \approx 100; \text{ IT}=0.25 \ 10$	
$ \begin{array}{c} 19 & -3049, j & 0.5 & 99.5 & 0 & 0.0019 & 1/2 & 0.5 & 1940 & 17-60, 7.4 & \beta = 3.3.4 \\ \hline mathematical and mathematical$	197 Ir"	-27860#	200#	400#	200#			30	μs	8	1 /2-	0.5	05Ca02	Т	2005	11=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁹⁷ Pt	-30419.7	0.5	200 50	0.00			19.8915	h	0.0019	1/2	05			1936	$\beta = 100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	197 Pt***	-30020.1	0.5	399.59	0.20			95.41	m	0.18	$13/2^{+}$	05			1941	11=96.74; p = 3.34	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	197 Am	-31139.7	0.5	400.15	0.09			STABLE		0.00	3/2	05			1935	IS=100.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	197 A un	-30730.0	0.5	409.15	0.08			1.75	s	0.00	27/2+#	05	0630100	ETI	2006	II=100 IT-100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	197 LLa	-28007.2	1.1	2552.5	1.0			64.04	ns h	5	27/2*#	05	011:17	EIJ	2006	n=100 a=100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19711~m	-30340	2	208 02	0.08			04.94	11	0.07	$\frac{1}{2}$	05	UILII/	1	1941	E = 100	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	197 TI	-30241	5 16	298.95	0.08			25.0	n h	0.1	$\frac{15}{2^+}$	05			1945	$\beta_{\pm}^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	197 T1m	-26542	16	608 22	0.08			2.64	m	10	$\frac{1}{2}$	05	12Po41	T	1955	$\mu^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	197 Dh	-21154	10	008.22	0.08			240 9 1	m	10	9/2 2/2-	05	13Da41	J	1955	$\beta_{\pm}^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	197 DLm	-24745	5	210 21	0.11			42.0	m	1.7	$\frac{3}{2}$	05			1955	$\beta^{+}=100$ $\beta^{+}=21.2$; IT=10.2	
$ {}^{97} {\rm Bi} = -6877 \ 8 \ 233 \ 0.20 \ 1.12 \ 0.50 \ 1.12 \ 0.50 \ 1.12 \ 0.50 \ 1.12 \ 0.51 \ 1.12 \ 1.12 \ 0.50 \ 1.12 \ 0.51 \ 1.12 \ 1.12 \ 0.50 \ 1.12 \ 1.12 \ 0.51 \ 1.12 \ 1.12 \ 0.51 \ 1.12 \$	197 phn	-24420	5	1014 10	0.11			42.9	111 11 e	0.9	$\frac{13}{2^{-1}}$	05			1957	$p^{-1} = -312, 11 = 192$	
	197 Bi	-10687	8	1914.10	0.25			0.33	m	0.20	$(0/2^{-})$	05			1978	$\beta^{+}_{-100} = \alpha^{-1}_{0} 4^{+}_{0}$	÷
	197 Bim	-19037	8	533	12	۸D		5.04	m	0.30	$(\frac{9}{2})$ $(\frac{1}{2^+})$	05			1971	$\beta = 100, \alpha = 10 - 4\pi$ $\alpha = 55.40; \beta^+ = 45.40; \text{ IT} < 0.3$	*
	197 Bin	_17284	14	2403	12	ΠD		263	ne	13	(1/2) (20/2)	05	86Cb01	TID	1986	IT = 100	~ *
$ {}^{197} {\rm Pp} - 13360 50 2205 0.0 (3/2^{-}) 60 933040 T 105 165 \beta^{+}; r; r=447 * * 197 0^{-} -13360 50 230 \# 80 \# 25.8 s 0.1 (13/2^{+}) 05 933040 T 1967 a =849; \beta^{+}; r; r=4.01 \# * 1967 a = 6355 8 * 388.2 ms 5.6 (9/2^{-}) 05 05De01 T 1967 a =849; \beta^{+}; r; r=3012 * a = 197 Ar^{a} - 6315 8 * 388 AD * 2.0 s 0.2 (1/2^{+}) 05 05De01 T 1967 a =8012; \beta^{+}; r; r=3012 * a = 197 Ar^{a} - 6414 8 310.7 0.2 13 \mu s 0.2 (13/2^{+}) 05 08An15 T 1995 a = 100; \beta^{+}; r; r=4.01 \# * 197 Ar^{a} - 6044 8 310.7 0.2 13 \mu s 0.2 (13/2^{+}) 05 08An05 T 1995 a = 100; \beta^{+}; r = 100 * * 197 Ar^{a} - 1004 + 3 310, 7 0.2 13 m 1.8 5 (3/2^{-}) 05 08An05 T 1995 a = 100; \beta^{+}; r = 100 * * 197 Ar^{a} - 100; \beta^{+}; r = 100 * 2.3 m 1.8 5 (2/2^{-}) 05 08An05 T 1995 a = 100; \beta^{+}; r = 100 * 1 12 1380 in 1281A * 10250 50 0 1010 Asse; see fig.3 in 86Ch01 * 113 1380 in 281A * 100 Asse; see fig.3 in 86Ch01 * * 197 Br^{i} 1 : not trusted by NUBASE; see fig.3 in 86Ch01 * * 198 Br^{i} T : more recent 952Bi36=252.6(38.7) outweighed, not used * * 198 Br^{i} 1 : a decay to 192 TI ground-state * 198 Br^{i} T : used 96Ta18=84(16) * 7 ray, see Fig.1 of 952Bi36 * * * * * * * * * * * * * * * * * * *$	197 Bip	-16758	8	2929 5	0.5			205	ne	30	(2)/2 (31/2 ⁻)	05	86Cb01	TID	1986	IT-100	Ŧ
	197 Po	-13360	50	2/2/.0	0.5			53.6	\$	0.9	$(3/2^{-})$	05	93Wa04	Т	1965	β^{+} 2: $\alpha = 44.7$	*
	$^{197}Po^{m}$	-13130#	90#	230#	80#			25.8	6	0.1	$(13/2^+)$	05	93Wa04	т	1967	$\alpha = 84.9$; β^+ 2: IT=0.01#	*
	¹⁹⁷ At	-6355	8	2501	001		*	388.2	ms	5.6	$(9/2^{-})$	05	05De01	т	1967	$\alpha = 96112$; $\beta^{+} = 3912$	*
	¹⁹⁷ At ^m	-6311	9	45	8	AD	*	2.0	s	0.2	$(1/2^+)$	05	052001	•	1985	$\alpha \approx 100$; β^+ ?: IT < 0.004; β^+ ?	*
	¹⁹⁷ At ⁿ	-6044	8	310.7	0.2		•	13	us	0.2	$(13/2^+)$	00	08An11	ETI	1999	IT=100	*
	¹⁹⁷ Rn	1510	16	01017	0.2			54	ms	6	$(3/2^{-})$	05	08An05	Т	1995	$\alpha \approx 100^{\circ} \beta^+ ?$	*
	197 Rn ^m	1709	16	199	11			25.6	ms	2.5	$(13/2^+)$	05	08An05	Т	1996	$\alpha \approx 100; \beta^+$?	*
*** *********************************	¹⁹⁷ Fr	10250	50					2.33	ms	1.88	$7/2^{-}$ #	14	13Ka16	Т	2013	$\alpha \approx 100$	*
*** *** *** *** *** *** *** ***	* ¹⁹⁷ Hg	T : 66El0)9=64.14	4(0.05) stro	ongly confliction	ng: Bir	ge rat	io would l	be B=	=9.3	. /						**
* ¹⁹⁷ Bi I: ENSDF'05 reported an isomer at 2129.3(0.4) keV, 204(18) ns, (23/2 ⁻), ** * ¹⁹⁷ Bi I: not trusted by NUBASE, see fig.3 in 86Ch01 ** *** * ¹⁹⁷ Bi' J: α decay to ¹⁹³ Tl ground-state ** *** *** *** *** *** *** ***	* ¹⁹⁷ Tl ^m	J : also ii	n 12Bi.A	Ń	0.	0	0										**
*** *** *** *** *** *** *** ***	* ¹⁹⁷ Bi	I : Ensd	F'05 rep	orted an is	omer at 2129.	3(0.4)1	keV, 2	04(18) ns,	(23/	2 ⁻),							**
*** *** *** **** *** *** *** **** *** **** *** **** *** **** *** **** *** **** *** **** *** **** *** ********	* ¹⁹⁷ Bi	I: no	ot trusted	i by Nuba	SE, see fig.3 in	1 86Ch	01										**
*** *** *** *** *** *** *** *** *** ***	$*^{197}Bi^{m}$	$J: \alpha dec$	ay to 193	Tl ground-	-state												**
	$*^{197}Bi^{n}$	T : more	recent 9	5Zh36=25	2.6(38.7) outw	eigheo	d, not	used									**
* ¹⁹⁷ Bi ⁿ E : but authors mis-assigned the 97 keV γ -ray, see Fig.1 of 95Zh36 ** * ¹⁹⁷ Po T : average 93Wa04=53(1) 71Ho01=60(6) 67Le21=58(3) 67Si09=52(4); other not ** * ¹⁹⁷ Po T : used 96Ta18=84(16) ** * ¹⁹⁷ Po ^m T : others not used 71Ho01=27(3) 67Le21=29(9) 67Si09=26(2); ** * ¹⁹⁷ Po ^m T : also 10He25=14.45(+14.45-4.9) ms for 3 events, strongly conflicting ** * ¹⁹⁷ At T : average 05De01=390(16) 99Sm07=388(6); also 14Ka23=354(+17-15) ** * ¹⁹⁷ At ^m T : also 14Ka23=2.8(+3.8-1.0) ** * ¹⁹⁷ Rn ^m T : other 99Sm07=5.5(1.4) ** * ¹⁹⁷ Rn ^m T : symmetrized from 08An05=53(+7-5) J : from α decay to ¹⁹³ Po ** * ¹⁹⁷ Rn ^m T : symmetrized from 08An05=53(+7-5) J : from α decay to ¹⁹³ Po ** * ¹⁹⁷ Rn ^m T : others 05Uu02=30(+150-15) 96En02=19(+8-4) 95Mo14=18(+9-5) ** * ¹⁹⁸ Re -17140# 400# 300# ms (>300m ms (>300 ns) 16 09St16 I 2009 β^{-} ?; β^{-} n=0# ** * ¹⁹⁸ Re -25820# 200# 1# m (>300 ms) 0 ⁺ 16 09Po02 I 2008 β^{-} ? **	$*^{197}Bi^{n}$	E : 95Zh	36=238	3.1 + x, wit	th x<40 keV; 8	6Ch0	1=236	0.4 + x is	the s	ame level							**
*** *** *** *** *** *** *** *** *** **	$*^{197}Bi^{n}$	E: b	ut autho	rs mis-assi	gned the 97 ke	Vγ-ra	y, see	Fig.1 of 9	5Zh3	36							**
*** *** *** *** *** *** *** *** *** ***	* ¹⁹⁷ Po	T : avera	ge 93Wa	a04=53(1)	71Ho01=60(6) 67Le	21=58	8(3) 67Si0	9=52	(4); other no	ot						**
* ¹⁹⁷ Po ^m T: others not used 71Ho01=27(3) 67Le21=29(9) 67Si09=26(2); ** * ¹⁹⁷ Po ^m T: also 10He25=14.45(+14.45-4.9) ms for 3 events, strongly conflicting ** * ¹⁹⁷ At T: average 05De01=390(16) 99Sm07=388(6); also 14Ka23=354(+17-15) ** * ¹⁹⁷ At ^m T: also 14Ka23=2.8(+3.8-1.0) ** * ¹⁹⁷ At ^m T: other 99Sm07=5.5(1.4) ** * ¹⁹⁷ Rn T: symmetrized from 08An05=53(+7-5) J: from α decay to ¹⁹³ Po ** * ¹⁹⁷ Rn ^m T: others 05Uu02=30(+150-15) 96En02=19(+8-4) 95Mo14=18(+9-5) ** * ¹⁹⁷ Fr T: symmetrized from 13Ka16=0.6(+30-3) ** * ¹⁹⁸ Re -17140# 400# 300# ms (>300 ms) 16 09St16 I 2009 β^- ?; β^- n=0# * * ¹⁹⁸ Pir -25820# 200# 1# m (>300 ms) 0 ⁺ 16 09Po02 I 2008 β^- ? **	* ¹⁹⁷ Po	T: u	sed 96T	a18=84(16)												**
*** *** * ¹⁹⁷ At T: also 10He25=14.45(+14.45-4.9) ms for 3 events, strongly conflicting *** * ¹⁹⁷ At T: average 05De01=390(16) 99Sm07=388(6); also 14Ka23=354(+17-15) *** * ¹⁹⁷ At ^m T: also 14Ka23=2.8(+3.8-1.0) *** * ¹⁹⁷ At ⁿ T: other 99Sm07=5.5(1.4) *** * ¹⁹⁷ Rn T: symmetrized from 08An05=53(+7-5) J: from α decay to ¹⁹³ Po *** * ¹⁹⁷ Rn ^m T: symmetrized from 08An05=25(+3-2) J: from α decay to ¹⁹³ Po *** * ¹⁹⁷ Rn ^m T: others 05Uu02=30(+150-15) 96En02=19(+8-4) 95Mo14=18(+9-5) *** * ¹⁹⁸ Re -17140# 400# 300# ms (>300# ms (>300 ns) 16 09St16 I 2009 β^- ?; β^- n=0# ** * ¹⁹⁸ Rr T: symmetrized from 13Ka16=0.6(+30-3) ***	$*^{197}$ Po ^m	T : other	s not use	ed 71Ho01	=27(3) 67Le21	=29(9) 67Si	i09=26(2)	;								**
*** *** *** *** *** *** *** *** *** **	* ¹⁹⁷ Po ^m	T: a	lso 10H	e25=14.45	(+14.45–4.9) n	is for 3	3 even	ts, strongl	у сог	nflicting							**
	* ¹⁹⁷ At	T : avera	ge 05De	$e^{01=390(16)}$	5) 99Sm07=38	8(6); a	lso 14	4Ka23=35	4(+1'	7–15)							**
*** *** *** *** *** *** *** *** *** **	$*^{197}At^{m}$	T : also 1	14Ka23=	=2.8(+3.8-	1.0)												**
* ¹⁹⁷ Rn T: symmetrized from 08An05=53(+7–5) J: from α decay to ¹⁹³ Po ** * ¹⁹⁷ Rn ^m T: symmetrized from 08An05=25(+3–2) J: from α decay to ¹⁹³ Po ^m ** * ¹⁹⁷ Rn ^m T: others 05Uu02=30(+150–15) 96En02=19(+8–4) 95Mo14=18(+9–5) ** * ¹⁹⁷ Fr T: symmetrized from 13Ka16=0.6(+30–3) ** ** ** ** ** ** ** ** ** **	$*^{197}At^{n}$	T : other	99Sm0	7=5.5(1.4)						102							**
* ¹⁹⁷ Rn ^m T: symmetrized from 08An05=25(+3-2) J: from α decay to ¹⁹⁵ Po ^m ** * ¹⁹⁷ Rn ^m T: others 05Uu02=30(+150-15) 96En02=19(+8-4) 95Mo14=18(+9-5) ** * ¹⁹⁷ Fr T: symmetrized from 13Ka16=0.6(+30-3) ** ¹⁹⁸ Re -17140# 400# 300# ms (>300 ns) 16 09St16 I 2009 β^- ?; β^- n=0# * ¹⁹⁸ Os -23840# 200# 1# m (>300 ns) 0 ⁺ 16 09Po02 I 2008 β^- ? ¹⁹⁸ Ir -25820# 200# 8 s 1 16 1973 β^- =100 ¹⁹⁸ Pt -29904.0 2.1 STABLE 0 ⁺ 16 1935 IS=7.36 13: 2 β^- ?: α ? *	* ¹⁹⁷ Rn	T : symn	netrized	from 08Ar	105=53(+7-5)		J : fro	α deca	ıy to	¹⁹³ Po							**
*** * ¹⁹⁷ Rn ^m T: others 05Uu02=30(+150-15) 96En02=19(+8-4) 95Mo14=18(+9-5) *** * ¹⁹⁷ Fr T: symmetrized from 13Ka16=0.6(+30-3) *** ¹⁹⁸ Re $-17140\#$ 400# 300# ms (>300 ns) 16 09St16 I 2009 β^- ?; β^- n=0# * ¹⁹⁸ Os $-23840\#$ 200# 1# m (>300 ns) 0 ⁺ 16 09Po02 I 2008 β^- ? ¹⁹⁸ Ir $-25820\#$ 200# 8 s 1 16 1973 β^- =100 ¹⁹⁸ Pt -29904.0 2.1 STABLE 0 ⁺ 16 1935 IS=7.36 13: $2\beta^-$?: α ? *	$*^{197}$ Rn ^m	T : symn	netrized	from 08Ar	105=25(+3-2)		J : fro	α deca	iy to	¹⁹³ Po ^m							**
** ** ** ** ** ** ** ** ** **	* ¹⁹⁷ Rn ^m	T: other	s 05Uu0	2=30(+150)-15) 96En02=	=19(+8	-4) 9:	5Mo14=1	8(+9-	-5)							**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*197 Fr	T : symn	netrized	from 13Ka	116=0.6(+30-3)											**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	198 5	171 40"	100"					200"		(> 200		16	005:16	Ŧ	2000	Q= 0, Q=,, 0#	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	198 Oc	-1/140#	400#					500#	ins	(>300 ns)	0^+	10	093110	I T	2009	μ (; μ II=0# $\beta = 2$	*
198 Pt -29904.0 2.1 STABLE 0 ⁺ 16 1935 IS=7.36 13: 2 β ⁻ ?: α ? *	¹⁹⁸ Ir	-25820#	200#					1# Q	ш с	(>300 IIS) 1	U	16	091 002	1	1973	$\beta^{-1} = 100$	
	¹⁹⁸ Pt	-29904.0	2.1					STABLE	3	*	0^+	16			1935	IS=7.36 13; $2\beta^{-}$?; α ?	*

¹⁹⁸ Pt	-29904.0	2.1			STABLE			0^{+}	16			1935	IS=7.36 13; $2\beta^{-}$?; α ?	*
¹⁹⁸ Au	-29580.8	0.5			2.6941	d	0.0002	2^{-}	16			1937	$\beta^{-}=100$	
¹⁹⁸ Au ^m	-29268.6	0.5	312.2227	0.0020	124	ns	4	5^{+}	16			1968	IT=100	
¹⁹⁸ Au ⁿ	-28768.9	1.6	811.9	1.5	2.272	d	0.016	12^{-}	16	FGK128	J	1972	IT=100	*
¹⁹⁸ Hg	-30954.3	0.5			STABLE			0^+	16			1925	IS=9.97 20	
¹⁹⁸ Tl	-27529	8			5.3	h	0.5	2^{-}	16			1949	$\beta^{+}=100$	
¹⁹⁸ Tl ^m	-26985	8	543.6	0.4	1.87	h	0.03	7+	16			1949	$\beta^+=55.923$; IT=44.123	
¹⁹⁸ Tl ⁿ	-26842	8	686.8	0.5	150	ns	40	$(5,7,9)^+$	16			1977	IT=100	
¹⁹⁸ Tl ^p	-26787	8	742.4	0.4	32.1	ms	1.0	10-	16	FGK128	J	1975	IT=100	*
¹⁹⁸ Pb	-26067	9			2.4	h	0.1	0^+	16			1955	$\beta^{+}=100$	
¹⁹⁸ Pb ^m	-23926	9	2141.4	0.4	4.19	μs	0.10	7^{-}	16	FGK128	J	1972	IT=100	*
¹⁹⁸ Pb ⁿ	-23836	9	2231.4	0.5	137	ns	10	9-	16	FGK128	J	1989	IT=100	*
¹⁹⁸ Pb ^p	-23245	9	2821.7	0.6	212	ns	4	12^{+}	16	FGK128	J	1973	IT=100	*
A-grou	up is continued	l on ne	xt page											
Chinese Physics C Vol. 41, No. 3 (2017) 030001

			Table	I. The N	UBASE	2016 tab	le (continue	d, Expla	nat	ion of T	able	on page	18)	
Nuclide	Mass e	xcess		Excitation]	Half-	life	J^{π}	Ens	Referen	ce	Year of	Decay modes and	
	(keV	/)	e	nergy (keV)								discovery	intensities (%)	
A-grou	up continued	1													
¹⁹⁸ Bi	-19369	28				10.3	m	0.3	$3^{(+)}$	16	16Ly01	J	1950	$\beta^{+}=100$	
$^{198}\text{Bi}^m$	-19085	28	280	40	MD	11.6	m	0.3	$7^{(+)}$	16	16Ly01	J	1992	$\beta^{+}=100$	
¹⁹⁸ Bi ⁿ	-18837	28	530	40	MD	7.7	s	0.5	$10^{(-)}$	16	16Ly01	J	1972	IT=100	*
¹⁹⁸ Po	-15473	17				1.760	m	0.024	0^+	16			1965	α =57 2; β ⁺ =43 2	
¹⁹⁸ Po ^m	-12907	17	2565.92	0.20		200	ns	20	11-	16			1990	IT=100	
¹⁹⁸ Po ⁿ	-12730	50	2740	50		750	ns	50	12+	16	1.477	-	1990	IT ?	
198 A +m	-6/15	6	294	10		3.0	s	0.1	(3^{+})	16	14Ka23	Т	1967	$\alpha > 94; \beta \uparrow ?$	
¹⁹⁸ Rn	-0450	13	264	10	AD	1.21	s me	3	(10 ⁻)	16			1907	$\alpha = 84 10; p^{+} 2$ $\alpha = 2; \beta^{+} = 1 \#$	
¹⁹⁸ Fr	9570	30				15	ms	3	low	16			2013	$\alpha \approx 100$	
¹⁹⁸ Fr ^m	9580	40	0	50		1.1	ms	0.7	high	16			2013	$\alpha \approx 100$	
* ¹⁹⁸ Re	I : other	12Ku26	>300 ns						U						**
* ¹⁹⁸ Pt	T : 52Fr	23 : 0v-	$\beta\beta$ >320 Ty												**
* ¹⁹⁸ Au ⁿ	J : M4 to	5 8 ⁺ ; ma	gnetic mome	nt											**
* ¹⁹⁸ Tl ^p	J : E3 to	7+ -													**
* ¹⁹⁸ Pb ^m	J : E2 to	5 ⁻ ; mag	gnetic momen	it											**
* ¹⁹⁸ PD ²	J : E2 to	/ 10 ⁺ · m/	anetic mome	nt											**
* ¹⁹⁸ Bi ⁿ	E · 248 4	5(0.5) ke	V above ¹⁹⁸ B	i ^m from 92	2Hu04	$I \cdot E3$ to	(7^{+}))							**
** D1	E . 210.	5(0.5) Ke	r above B	, 110111 /2		5 . <u>1</u> .5 u	. (, ,)							
199 D o	14860#	400#				100#	-	(> 200 nc)	5/2+#	12	128,026	т	2012	B^{-2}	
199 Os	-14800# -20480#	200#				100#	ins e	(>500 lis)	5/2*# 5/2 ⁻ #	07	12Ku20 14Ku23	Т	2012	β^{-100}	*
¹⁹⁹ Ir	-24400	40				7	s	5	$3/2^{+}$ #	07	14Ku23	Ť	1993	β^{-} ?	*
199 Irm	-24270#	60#	130#	40#		235	ns	90	$11/2^{-}$ #	07			2005	IT=100	*
199Pt	-27388.7	2.2				30.80	m	0.21	$5/2^{-}$	07			1937	$\beta^{-}=100$	
¹⁹⁹ Pt ^m	-26964.7	3.0	424	2		13.6	s	0.4	$(13/2)^+$	07			1959	IT=100	
¹⁹⁹ Au	-29093.7	0.5				3.139	d	0.007	$3/2^+$	07			1937	$\beta^{-}=100$	
¹⁹⁹ Au ^m	-28544.8	0.5	548.9405	0.0021		440	μs	30	$(11/2)^{-}$	07			1968	IT=100	
199 Hg	-29546.1	0.5	522 18	0.10		STABLE 42.67		0.00	$\frac{1}{2}$	07			1925	IS=16.87 22 IT=100	
¹⁹⁹ Tl	-29013.0 -28059	28	332.40	0.10		42.07	h	0.09	$\frac{13/2}{1/2^+}$	07			1948	$\beta^{+}=100$	
$^{199}\text{Tl}^{m}$	-27310	28	748.87	0.06		28.4	ms	0.00	$9/2^{-}$	07			1963	IT=100	
¹⁹⁹ Pb	-25232	10				90	m	10	$3/2^{-}$	07			1950	$\beta^{+}=100$	
199 Pb ^m	-24803	10	429.5	2.7		12.2	m	0.3	$(13/2^+)$	07			1955	IT=93; $\beta^+=7$	*
¹⁹⁹ Pb ⁿ	-22668	10	2563.8	2.7		10.1	μs	0.2	$(29/2^{-})$	07			1981	IT=100	*
¹⁹⁹ Bi	-20798	11		2		27	m	1	$9/2^{-}$	07			1950	$\beta^+=100$	
199 D:n	-20131	11	667	3		24.70	m	0.15	$(1/2^+)$	07			1950	$\beta' = ?; 11 < 2; \alpha \approx 0.01$	
199 Bip	-18051 -18250	18	2548	14		168	ns	50 13	23/2*#	07			1974	IT=100 IT=100	*
¹⁹⁹ Po	-15208	18	2510	11		5.47	m	0.15	$(3/2^{-})$	07	13Se03	J	1965	$\beta^+=92.53; \alpha=7.53$	
¹⁹⁹ Po ^m	-14897	18	311.9	2.7	AD	4.17	m	0.05	$13/2^{(+)}$	07			1964	$\beta^+=73.5\ 10;\ \alpha=24\ 1;\ IT=2.5\ 10$	*
199At	-8823	5				7.02	s	0.12	$9/2^{(-)}$	07	05De01	Т	1967	$\alpha = 89.6; \beta^+?$	*
$^{199}At^m$	-8579	5	244.0	1.0		273	ms	9	$(1/2^+)$		14Au03	TJD	2013	IT \approx 100; α =1#	*
¹⁹⁹ At ⁿ	-8250	5	572.9	0.1		70	ns	20	$(13/2^+)$	07	10Ja05	ETJ	2000	IT=100	
¹⁹⁹ At ^p	-6530	5	2293.4	0.5		800	ns	50	$(29/2^+)$	07	10Ja05	ETJ	2010	11 = 100	
199 Rn 199 Rnm	-1500	40	160	50	AD	590 210	ms	30	(3/2) $(12/2^+)$	07	05Uu02	J	1980	$\alpha = ?; \beta = 6\pi$ $\alpha = 2; \beta = 2\pi$	*
199 Fr	6771	14	100	50	AD	66	ms	20	$(13/2^{+})$ $1/2^{+}$ #	07	13Ka16	Т	1901	$\alpha \approx 100$ β^+ 2	*
199 Fr ^m	6817	10	45	13	AD	6.5	ms	0.9	7/2-#	0,	13Ka16	Ť	2013	$\alpha \approx 100; \beta^+$?	*
199 Fr ⁿ	7020#	50#	250#	50#		2.2	ms	1.2	,		13Uu01	TD	2013	$\alpha = ?; \beta^+ ?$	*
* ¹⁹⁹ Os	T : symr	netrized	from 14Ku23	3=14Mo15=	=5(+4-2)										**
* ¹⁹⁹ Ir	T : symr	netrized	from 14Ku23	8=14Mo15=	=6(+5-4)										**
* ¹⁹⁹ Ir ^m	T : range	e 80-390	ns		6 70	. .									**
**** Pb''' **********************************	E: 424.8	5(0.2) + 1	$x; x < 9.3 \text{ ke}^{-1}$	v D	: from 78	Le.A									**
* PU * ¹⁹⁹ Bi ⁿ	E: 2009 E · 1022	$3 + x \cdot x$	- л, л < 9.3 KG x < 50 in FNCI	-v DF'07											**
* ¹⁹⁹ Bi ^p	E : 2523	2 + x = 3	x < 50 in ENSI	DF'07											**
* ¹⁹⁹ Po ^m	J : same	as ²⁰³ Rr	a^m , from α de	cay; also 1	3Se03=(1	3/2+)									**
* ¹⁹⁹ At	T : avera	ige 12Fo	09=6.7(0.5))5De01=6.9	92(0.13) 0	5Uu02=7.8	(0.4)	67Tr06=7.2	(0.5)						**
* ¹⁹⁹ At	J : spins	of grour	nd-state derive	ed from α of	lecay to d	aughter									**
* ¹⁹⁹ At	D : sym	metrized	from $\alpha = 92(+$	+3-8)%											**
* ¹⁹⁹ At ^m	T : 14Au	103=273	(9) 13Ja06=3	10(80)											**
* ¹⁹⁹ E.	I : other	s 14Ka2	3=340(+280-	-110) 13) 00Ta	0-12(+1)	1 4)	L·cc	ma as 195 A +							**
* гі * ¹⁹⁹ Fr ^m	T: avera	130 13N8 196 13K	16=6 2(+1 1	-1.3) 991a -0.8) 13Uu	01=7(+3)	.2) I	∍.sa sam	e as ¹⁹⁵ Atm							**
* ¹⁹⁹ Fr ⁿ	T : svmr	netrized	from 13Uu01	l=1.6(+1.6-	6)	-) J.	Jun	e us mill							**
					- /										

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I The NUBASE2016	table (continued	Explanation o	f Table on nage 18)
	table (continueu	\mathbf{h}	1 Iable on page 10/

Nuclide	Mass ex	cess		Excitatio	on		1	Half-	life	J^{π}	Ens	Referenc	e	Year of	Decay modes and	
	(keV	')	e	nergy (ke	eV)									discovery	intensities (%)	
²⁰⁰ Os	-18780#	300#					7	s	4	0^{+}	08	14Ku23	т	2005	$\beta^{-}=100$	*
²⁰⁰ Ir	-21610#	200#					43	s	6	$(2^{-}, 3^{-})$) 11	14Mo15	T	2008	$\beta^{-}=100$	*
²⁰⁰ Pt	-26599	20					12.6	h	0.3	0+	07			1957	$\beta^{-}=100$	
²⁰⁰ Au	-27240	27					48.4	m	0.3	$1^{(-)}$	07			1951	$\beta^{-}=100$	
$^{200}Au^m$	-26233	26	1010	40	BD		18.7	h	0.5	12^{-}	07			1968	$\beta^{-}=82$ 2; IT=18 2	
²⁰⁰ Hg	-29503.3	0.5					STABLE			0^+	07			1925	IS=23.10 19	
²⁰⁰ Tl	-27047	6					26.1	h	0.1	2-	07			1949	$\beta^{+}=100$	
²⁰⁰ Tl ^m	-26293	6	753.6	0.24			34.0	ms	0.9	7+	07			1963	IT=100	
²⁰⁰ Tl ⁿ	-26285	6	762.00	0.24			330	ns	50	5+	07			1972	IT=100	
200 Pb 200 pt m	-26251	11	2192.2	1.1			21.5	h	0.4	(0^{-})	07			1950	£=100	
200 Pb ^m 200 phn	-24068	11	2183.3	1.1			448	ns	12	(9)	07			1972	II=100 IT-100	
200 Bi	-23243 -20371	22	3003.8	1.2		¥	36.4	m	0.5	(12.)	07			1975	$\beta^{+}=100$	
200 Bim	_20371 _20270#	70#	100#	70#		*	31	m	2	(2^+)	07			1978	$\beta^{+} < 100^{\circ}$ IT 2	
$^{200}Bi^{n}$	-19943	22	428.20	0.10			400	ms	50	(10^{-})	07			1972	T = 100	
²⁰⁰ Po	-16942	8					11.51	m	0.08	0+	07			1951	$\beta^+=88.93; \alpha=11.13$	
200 Po ^m	-14346	8	2596.1	0.3			100	ns	10	11-	07			1985	IT=100	
200 Po ⁿ	-14125	11	2817	8			268	ns	3	12^{+}	07			1985	IT=100	*
²⁰⁰ At	-8988	24					43.2	s	0.9	(3^+)	07	96Ta18	Т	1963	α =52 3; β +=48 3	*
$^{200}At^{m}$	-8875	25	112.9	2.9	AD		47	s	1	(7^+)	07			1967	α =43 7; β^+ =?; IT ?	
200 At ⁿ	-8644	25	343.8	3.0	AD		8.0	s	2.1	(10^{-})	07			1967	IT<89.5 3; $\alpha \approx 10.5$ 3; β^+ ?	*
²⁰⁰ Rn	-4005	14					1.09	s	0.16	0^+	07			1971	α =92 8; β^+ ?	*
$^{200}Rn^{m}$	-1685	24	2320	20			28	μs	9	(-1)	07			2002	IT=100	*
200 Fr 200 Fr	6130	30	50	<i>(</i> 0		*	47.5	ms	2.8	(3+)	07	14Ka23	TD	1995	$\alpha = 100; \beta^{-} = 2.5\#; \beta^{-} SF > 1.4$	*
200 Fr ^m 200 Fr ^m	6180	50	50	60 50#	AD	*	190	ms	120	10 ⁻ #		96En01	TD	1996	$\alpha \approx 100; 11?$	*
FF	0280# T. over	00#	150# from 14Ku	30# 22_14M	-15-6(1 4 2	/90 v. othor 051	ns Ku A	-4.6(1.2)	anna araun		14 K a25	1	2014	11 ?	*
* 0s * ²⁰⁰ Ir	I . synni I · from 1	$13M_020$	=(2- 3-)	23-141010	515-0(+4-3	, ouler 05	Ku.A	-4.0(1.3)	same group						**
* ²⁰⁰ Po ⁿ	$E \cdot Ex < 2$	25 keV a	-(2-,5-) bove 2804 '	5(0.6) lev	/el											**
* ²⁰⁰ At	T : avera	ge 96Ta	18=44(2) 92	2Hu04=4	3(1)											**
* ²⁰⁰ At ⁿ	E:230.9	(0.2) ke	V above 200	At ^m , from	n Ensi	DF										**
* ²⁰⁰ At ⁿ	T : symn	netrized	from 7.3(+2	2.6-1.5)												**
* ²⁰⁰ Rn	T : symn	netrized	from 1.03(+	-0.20-0.1	11)	D	: symmetr	ized	from 86(+	14-4)%						**
$*^{200}$ Rn ^m	E : Estim	ated 20#	#(20#) keV	above 23	800.5(0	.5) le	vel									**
$*^{200}$ Rn ^m	T : symn	netrized	from 25(+1	1–6)												**
* ²⁰⁰ Fr	T : avera	ge 14Ka	23=46(4)0	5De01=4	49(4)											**
* ²⁰⁰ Fr ^m	I : two ev	ents wit	h 100 ms ai	$200 r_m$	/550 C	orrela	ted with E	(a)=6	5880							**
* FI * 200 Erm	I : assign	eu by ev	aluators to	n level n	nu P	ntad	in ENSDE									**
* 11 * ²⁰⁰ Fr ^m	T · symm	netrized	from $100(+$	180-40	(2 evts)	with	half-life=1	100m	s) see 849	Sc13						**
$*^{200}Fr^{n}$	E : 14Ka	23 > 101	.13 keV	T : s	symme	trized	from 14K	a23=	:600(+500	-200)						**
²⁰¹ Os	-15240#	300#					1#	s	(>300 n	s) $1/2^{-}\#$	13			2009	β^- ?	
²⁰¹ Ir	-19900#	200#					21	s	5	$(3/2^+)$	11	14Mo15	Т	2008	$\beta^{-}=100$	*
²⁰¹ Pt	-23740	50					2.5	m	0.1	$(5/2^{-})$	07			1962	$\beta^{-}=100$	
²⁰¹ Au	-26401	3					26.0	m	0.8	$3/2^{+}$	07			1952	$\beta^{-}=100$	
$^{201}Au^{m}$	-25807	6	594	5			730	μs	630	$(11/2^{-})$) 07	11St21	ETJ	1981	IT=100	*
²⁰¹ Au ⁿ	-24791	6	1610	5			5.6	μs	2.4			11St21	ETD	2011	IT=100	*
²⁰¹ Hg	-27662.5	0.7					STABLE		• •	3/2-	07			1925	IS=13.18 9	
²⁰¹ Hg ^m	-26896.3	0.7	766.22	0.15			94.0	μs	2.0	13/2+	07	1.411.01	T	1961	IT=100	
201 T1m	-2/181	14	010.16	0.21			3.0442	a	0.0019	$1/2^{-1}$	07	14Un01	1	1950	E=100	*
201 Dh	-20202	14	919.10	0.21			2.01	ins b	0.07	(9/2) 5/2-	07			1902	$\beta^{+}-100$	
201 Pb ^m	-23271 -24642	14	629.1	0.3			9.33 60.8	п с	1.8	$\frac{3/2}{13/2^+}$	07			1950	$\beta = 100$ IT $\approx 100 \cdot \beta^+ 2$	
201 Ph ⁿ	-22333	24	2938	20			508	ns ps	3	$(29/2^{-1})$	07			1981	IT=100	*
²⁰¹ Bi	-21416	15	2750	20			103	m	3	9/2-	07			1950	$\beta^{+}=100$	·P
²⁰¹ Bi ^m	-20570	15	846.35	0.18			57.5	m	2.1	$1/2^+$	07			1950	$\beta^+ > 91.1\#$; IT<8.6; $\alpha = ?$	*
$^{201}\mathrm{Bi}^n$	-19443	27	1973	23			118	ns	28	25/2+#	07			1982	IT=100	*
$^{201}\mathrm{Bi}^{p}$	-19404	27	2012	23			105	ns	75	27/2+#	07			1985	IT=100	*
$^{201}\mathrm{Bi}^{q}$	-18635	27	2781	23			124	ns	4	29/2-#	07			1982	IT=100	*
²⁰¹ Po	-16521	5					15.6	m	0.1	$3/2^{-}$	07	13Se03	J	1951	$\beta^+=98.873; \alpha=1.133$	
²⁰¹ Po ^m	-16097	5	423.8	2.4	AD		8.96	m	0.12	$13/2^+$	07	13Se03	J	1962	IT=56.2 12; β^+ =41.4 7; α =2.4 5	
²⁰¹ At	-10789	8					85.2	s	1.6	(9/2-)	07			1963	$\alpha = 717; \beta^+ = 297$	
201 Atm 201 A m	-10330	8	459	1			45	ms	3	$1/2^+$		14Au03	ETJ	2015	II=100	
²⁰¹ At ⁿ	-8470	8	2319	1			3.39	μs	0.09	$29/2^+$		15Au01	EIJ	2015	11=100	*
A-grou	ip is continue	eu on ne	xt page													

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Nuclide	Mass ex	kcess	Tubi	Excitation	110 0/10	12010	Half-	life	$\frac{J^{\pi}}{J^{\pi}}$	Ens	Referen	ce	Year of	Decay modes and	
	(keV	/)	6	energy (keV)								discovery	intensities (%)	
A-grou	in continued														
²⁰¹ Rn	-4070	50				7.0	s	0.4	$(3/2^{-})$	07			1967	$\alpha = ?: \beta^+ = 49 \#$	
201 Rn ^m	-3790#	90#	280#	80#		3.8	s	0.1	$(13/2^+)$	07			1967	$\beta^{+}=66\#; \alpha=?$	*
²⁰¹ Fr	3589	9				62.8	ms	1.9	(9/2-)	07	14Ka23	Т	1980	α=100	*
201 Fr ^m	3715	11	127	11	AD	17	ms	7	$(1/2^+)$	07	14Ka23	Т	2005	<i>α</i> =100	*
$^{201}Fr^{n}$	3790	60	200	60		890	ns	360	$(13/2^+)$		14Ka23	ETJ	2014	IT=100	*
²⁰¹ Ra	11937	20	2(2	26		20	ms	30	$(3/2^{-})$	07	14Ka23	TJ	2005	$\alpha = 100$	*
201 Ram	12200 L : from	26 12Mo20	263 -(1/2+3/2)	20 + 5/2+) 2/	+ agrees	0 with system	ms	5 of odd A 7	(13/2+) 	07			2005	$\alpha = 100$	*
* ²⁰¹ Δ11 ^m	J : Hom T · symn	151vi020 netrized	from 340(4)	-900_290) /	agrees	with system	latics	of odd-A Z	,=//						**
$*^{201}Au^{n}$	E : 378.2	2. 638 <i>v</i> s	above ²⁰¹	100-200)	13										**
* ²⁰¹ Tl	T : avera	ge 14Ur	n01=3.046(0.006) 04So	:04=3.048	6(0.0030) 9	4Si2	6=3.0400(0	.0028)						**
$*^{201}$ Pb ⁿ	E : estim	ated 20#	#(20#) keV	above 2917	.6(0.9) le	vel		,							**
$*^{201}Bi^{m}$	$D: \alpha de$	cay is ot	oserved. Its	branching	ratio is est	timated 0.39	%# in	ENSDF							**
$*^{201}$ Bi ⁿ	E:1933	.3(0.4) +	- x ; x<80												**
* ²⁰¹ Bi ^p	E : 1972	.3(0.4) +	-x; x < 80												**
* ²⁰¹ B1 ^q	E:2741	.0(0.3) +	-x; x < 80												**
* ²⁰¹ D n ^m	E : error	estimate	= 2.24(+2.2)	$\frac{100}{100}$											**
* Kii * ²⁰¹ Fr	T : outer	rone23)=3.24(+3.2)23=64(3) (1.06) ms 5 Uu 02 = 53	(4) 05Def	1 = 67(3)									**
$*^{201}$ Fr ^m	T : avera	ige 14Ka	23=8(+12-	-3) 05Uu02	=19(+19)	6)									**
$*^{201}$ Fr ⁿ	E : deriv	ed from	range in 14	Ka23 101 t	o 300 keV	7									**
$*^{201}$ Fr ⁿ	T : symn	netrized	from 14Ka	23=700(+5	00-200)										**
* ²⁰¹ Ra	T : symn	netrized	from 14Ka	23=8(+40-	4)										**
$*^{201}$ Ra ^m	T : symn	netrized	from 1.6(+	7.7–0.7)											**
²⁰² Os	-13090#	400#				200#	ms	(>300 ns)	0^+	13			2009	β^- ?	
²⁰² Ir	-16780 #	300#				11	s	3	(2^{-})	08	14Ku23	Т	2008	$\beta^{-}=100$	*
202 Ir ^m	-14780#	300#	2000#	1000#		3.4	μs	0.6			11St21	TD	2011	IT=100	*
²⁰² Pt 202 pt	-22692	25	1700 5	0.4		44	h	15	(7^{-})	08	110.01	T	1992	$\beta^{-}=100$	
202 Pt ^m 202 A 11	-20904	25	1788.5	0.4		141	μs	1.2	(7)	08	11 St 21	Т	2005	$\Pi \approx 100$ $R^{-} = 100$	
202 Hg	-24555	25				Z0.4 STADLE	s	1.2	(1) 0 ⁺	08			1907	p = 100 18-29.86.26	<u>ب</u>
²⁰² Tl	-27343.3 -25980.2	1.6				12 31	đ	0.08	2-	08			1920	$\epsilon = 100$	*
$^{202}\text{Tl}^{m}$	-25030.0	1.6	950.19	0.10		591	us	3	7+	08			1958	IT=100	
²⁰² Pb	-25941	4				52.5	ky	2.8	0^{+}	08			1954	ε=100	
202 Pb ^m	-23771	4	2169.85	0.08		3.54	h	0.02	9-	08			1954	IT=90.5 5; β^+ =9.5 5	
202 Pb ⁿ	-21800	50	4140	50		110	ns	5	16^{+} #	08			1986	IT=100	*
²⁰² Pb ^p	-20640	50	5300	50		107	ns	3	19-#	08			1987	IT=100	*
²⁰² Bi	-20741	15	(25			1.72	h	0.05	5 ^(+#)	08			1951	$\beta^+=100; \alpha < 1e-5$	*
$202 B1^{m}$ 202 D:n	-20116	19	625	12		3.04	μs	0.06	10 #	08			1981	II=100 IT-100	*
202 Po	-18124 -17942	19	2017	12		44.6	m	0.4	(17 ⁺) 0 ⁺	08			1981	$\beta^{+} - 2^{-} \alpha - 1.92.7$	*
$^{202}Po^{m}$	-16230	15	1712	12		110	ns	15	8+	08			1971	F = 1.927	*
²⁰² At	-10591	28	1712			184	s	1	3(+)	08	16Lv01	JD	1961	$\beta^{+}=?: \alpha=12.7$	
$^{202}At^m$	-10401	28	190	40	MD	182	s	2	$7^{(+)}$	08	16Ly01	J	1992	IT ?; β^+ ?; α =8.7 15	
$^{202}At^n$	-10010	28	580	40	MD	460	ms	50	$10^{(-)}$	08	16Ly01	J	1992	IT \approx 100; α =0.096 11; β ⁺ =0.033#	*
²⁰² Rn	-6275	18				9.7	s	0.1	0^{+}	08	-		1967	$\alpha = 78 \ 8; \ \beta^+ \ ?$	
202 Rn ^m	-3970#	50#	2310#	50#		2.22	μs	0.07	11^{-} #		02Do19	Т	2002	IT=100	
²⁰² Fr	3096	7				372	ms	12	3+	08	14Ka23	Т	1980	$\alpha = ?; \beta^+ = 14 \#$	*
202 Fr ^m	3370	9	274	12	AD	286	ms	13	10-	08	14Ka23	Т	1980	$\alpha = ?; \beta^+ = 14 \#$	*
202 Ka	9075 T+1412-	15	a) curaread	ac 1/Mo15	-15(2)	4.1 L · from	ms	1.1	0-	08	14Ka23	Ľ	2005	$\alpha = 100$	*
* ²⁰² Ir m	1 : 14KU D : 311 4	120=11(3 5 655 0	737 2 800	2 967 6 m	-1J(J)	J : ITON in decay	1131	1020=(2)							**
* 11 * ²⁰² Ho	D: 511.3 D: lowe	r half-lif	e limit for ²	24 Ne decay	T>3.77	from 90R	128								**
$*^{202}Ph^{n}$	E : 4091	.0(0.7) +	- x: x estim	ated $50(50)$	1 / J.I LY	, 110111 2010									**
$*^{202}$ Pb ^p	E : 5251	.0(0.5) +	- u; u estima	ated 50(50)											**
* ²⁰² Bi	J : re-eva	luation	to a possibl	e 6 ⁺ is disc	ussed in 9	96Ca02									**
$*^{202}$ Bi ^m	E:605+	⊦ x with	x<40 keV												**
$*^{202}$ Bi ⁿ	E:2597	.07(0.25) + x, with	x<40 keV											**
$*^{202}$ Po ^m	E:1691	.5(0.4) +	x, with x<	(40 keV											**
$*^{202}At^{n}$	E: 391.7	(0.5) ke	V above ²⁰²	At ^m											**
* ²⁰² Fr	J : from	13Fl09=	3^+ (see the	tr Fig.2)											**
* ²⁰² Fr‴ 202 p -	J: from	13F109=	10- (see the	err Fig.2)	2 0 8										**
****Ka	I : symn	netrized	from 14Ka	23=5.8(+1.	5–0.8)										**

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I. The NUBASE201	16 table (continued,	Explar	natior	of Table o	on page 18)
Excitation	Half life	Iπ	Enc	Peference	Vear of

Nuclide	Mass ex	ccess		Excitation	n.		Half-	life	J^{π}	Ens	Referenc	e	Year of	Decay modes and	
	(keV	/)		energy (keV	()								discovery	intensities (%)	
²⁰³ Os	-7640#	400#				100#	ms	(>300 ns)	9/2+#	13	12Ku26	I	2012	β^{-} ?: β^{-} n=7#	
²⁰³ Ir	-14690#	400#				6#	s	(>300 ns)	$3/2^+$ #	13	09St16	Ī	2009	β^{-} ?	
203 Ir ^m	-12550#	400#	2140#	50#		798	ns	350	$(23/2^+)$		11St21	TJD	2011	IT=100	*
²⁰³ Pt	-19630#	200#				22	s	4	$(1/2^{-})$	06	14Mo15	Т	2008	$\beta^{-}=100$	*
203 Pt ^m	-16530#	200#	3100#	1000#		641	ns	55	33/2+#		11St21	TJD	2011	IT=100	
²⁰³ Au	-23143	3				60	s	6	$3/2^{+}$	05			1952	$\beta^{-}=100$	
203 Au ^m	-22502	4	641	3		140	μs	44	$11/2^{-}$ #	05	11St21	TJ	2005	IT=100	
²⁰³ Hg	-25269.3	1.6				46.613	ď	0.018	$5'/2^{-}$	05	14Un01	Т	1943	$\beta^{-}=100$	*
$^{203}Hg^{m}$	-24336.2	1.6	933.14	0.23		21.9	μs	1.0	$(13/2^+)$	05	11St21	Т	1964	IT=100	
203 Hg ⁿ	-16988.3	1.7	8281.0	0.5		146	ns	30	$(53/2^+)$		11Sz01	EJT	2011	IT=100	
²⁰³ Tl	-25761.4	1.2				STABLE			1/2+	05			1931	IS=29.52 1	
203 Tl^{m}	-22200	50	3565	50		7.7	μs	0.5	$(25/2^+)$	05			1998	IT=100	*
²⁰³ Pb	-24787	7				51.916	'n	0.015	5/2-	05	14Un01	Т	1942	ε=100	*
203 Pb ^m	-23962	7	825.2	0.3		6.21	s	0.11	$13/2^+$	05			1955	IT=100	
203 Pb ⁿ	-21838	7	2949.2	0.4		480	ms	7	$29/2^{-}$	05			1977	IT=100	
$^{203}\text{Pb}^{p}$	-21820	50	2970	50		122	ns	4	25/2-#	05			1988	IT=100	*
²⁰³ Bi	-21525	13				11.76	h	0.05	9/2-	05			1950	$\beta^{+}=100$	
²⁰³ Bi ^m	-20427	13	1098.12	0.12		305	ms	5	$1/2^{+}$	05			1984	IT=100	
²⁰³ Bi ⁿ	-19484	13	2041.5	0.6		194	ns	30	$25/2^+$	05			1978	IT=100	
²⁰³ Po	-17311	9				36.7	m	0.5	$5/2^{-}$	05	13Se03	J	1951	$\beta^+ \approx 100; \alpha = 0.112$	
203 Po ^m	-16669	9	641.68	0.17		45	s	2	$13/2^+$	05	13Se03	J	1969	IT≈100; α=0.04#	
²⁰³ Po ⁿ	-15153	9	2158.5	0.6		> 200	ns			05			1986	IT=100	
²⁰³ At	-12163	11				7.4	m	0.2	$9/2^{-}$	05			1951	$\beta^+=693; \alpha=313$	
²⁰³ Rn	-6154	18				44	s	2	$3/2^{-}$ #	05			1967	$\alpha = 66 9; \beta^+ ?$	*
203Rn ^m	-5791	18	363	4	AD	26.9	s	0.5	$13/2^{(+)}$	05	87Bo29	J	1967	$\alpha = 75 \ 10; \beta^+$?	
²⁰³ Fr	876	6				550	ms	10	$9/2^{-}$	05	13F109	J	1967	$\alpha \approx 100; \beta^+=5\#$	
203 Fr ^m	1237	7	361	6		43	ms	4	$(1/2^+)$		13Ja06	TJD	2013	IT=?; α=20 4	
²⁰³ Fr ⁿ	1300	100	426	100		370	ns	50	$(13/2^+)$		13Ja06	TJD	2013	IT≈100	
²⁰³ Ra	8660	40				36	ms	13	$(3/2^{-})$	05	96Le09	J	1996	$\alpha \approx 100; \beta^+$?	*
$^{203}Ra^{m}$	8851	29	190	50	AD	25	ms	5	$(13/2^+)$	05	96Le09	J	1996	$\alpha \approx 100; \beta^+$?	*
$*^{203}$ Ir ^m	E:207.0	, 841.3, 8	894.7 γs in	cascade to 1	1/2- esti	mated at 200	(50) k	eV							**
* ²⁰³ Pt	J : from	13Mo20=	=(1/2 ⁻)												**
* ²⁰³ Hg	T : avera	ge 14Un	01=46.62(0	.06) 83Wa2	6=46.612	(0.019)									**
$*^{203}$ Tl ^m	E:3514.	.6 + x and	d x estimate	ed 50(50) ke	V										**
* ²⁰³ Pb	T : avera	ge 14Un	01=51.923(0.036) 01Li	17=51.99	(0.03) 80Hol	7=51	.88(0.02)							**
* ²⁰³ Pb ^p	E: 2923.	4(0.7) +	x ; x estima	ated 50(50)	100										**
* ²⁰³ Rn	J : not ye	t known,	will be san	ne as ¹⁹⁵ Pb	and ¹⁹⁹ Po	, from α deca	ay								**
* ²⁰³ Ra	T : symn	netrized f	from 05Uu0	2=31(+17-	9); other	14Ka23=50(+	-40-1	5)							**
* ²⁰³ Ra ^m	T : symn	netrized f	from 05Uu0)2=24(+6-4)); other 14	4Ka23=37(+3	37–12)							**
204 L .	0600#	400#				1#	6	(> 300 mc)		12	128,026	ĭ		$B^{-} 2 B^{-} n = 0.01 $	
²⁰⁴ Pt	-9090# -17920#	200#				10.3	s	(>300 lls) 1.4	0^{+}	10	12Ku20	1	2008	$\beta^{-}=100$	*

²⁰⁴ Pt	-17920#	200#			10.3	s	1.4	0^{+}	10			2008	$\beta^{-}=100$	*
204 Pt ^m	-15930#	200#	1995.1	0.7	5.5	μs	0.7	(5^{-})	10	11St21	Е	2009	IT=100	*
204 Pt ⁿ	-15890#	200#	2035	23	55	μs	3	(7-)	10			2009	IT ?	*
204 Pt ^p	-14730#	200#	3193	23	146	ns	14	(10^{+})	10			2009	IT=100	*
²⁰⁴ Au	-20650#	200#			38.3	s	1.3	(2^{-})	10	14Mo15	Т	1972	$\beta^{-}=100$	*
$^{204}Au^m$	-16830#	200#	3816#	1000#	2.1	μs	0.3	16^{+} #	10	11St21	JD	2008	IT=100	*
²⁰⁴ Hg	-24690.1	0.5			STABLE			0^{+}	10			1920	IS=6.87 15; $2\beta^-$?	
204 Hg ^m	-20301.4	0.7	4388.7	0.5	29	ns	21	4+		15Wr02	ETJ	2015	IT=100	
²⁰⁴ Hg ⁿ	-17464.0	0.7	7226.1	0.5	> 480	ns	2	2^{+}		15Wr02	ETJ	2015	IT=100	
²⁰⁴ Tl	-24346.1	1.2			3.783	У	0.012	2^{-}	10			1953	$\beta^{-}=97.087; \epsilon + \beta^{+}=2.927$	
204 Tl ^m	-23242.0	1.2	1104.1	0.2	61.7	μs	1.0	7+	10	11Br12	EJ	1972	IT=100	
204 Tl ⁿ	-22027.1	1.2	2319.0	0.3	2.6	μs	0.2	12^{-}	10	11Br12	EJ	1998	IT=100	
204 Tl ^p	-19954.5	1.3	4391.6	0.5	420	ns	30	18^{+}	10	11Br12	ETJ	1998	IT=100	
204 Tl ^q	-18106.7	1.3	6239.4	0.5	90	ns	3	22^{-}	10	11Br12	ETJ	2011	IT=100	
²⁰⁴ Pb	-25109.9	1.1			STABLE		(>140 Py)	0^{+}	10			1932	IS=1.4 1; α ?	*
204 Pb ^m	-23835.8	1.1	1274.13	0.05	265	ns	6	4+	10			1963	IT=100	
204 Pb ⁿ	-22924.0	1.1	2185.88	0.08	66.93	m	0.10	9-	10			1956	IT=100	
204 Pb ^p	-22845.5	1.1	2264.42	0.06	490	ns	70	7-	10			1978	IT=100	*
²⁰⁴ Bi	-20646	9			11.22	h	0.10	6+	10			1947	$\beta^{+}=100$	
$^{204}\text{Bi}^m$	-19841	9	805.5	0.3	13.0	ms	0.1	10^{-}	10			1974	IT=100	
²⁰⁴ Bi ⁿ	-17813	9	2833.4	1.1	1.07	ms	0.03	17^{+}	10			1974	IT=100	
²⁰⁴ Po	-18341	11			3.519	h	0.012	0^{+}	10			1951	$\beta^+=99.333; \alpha=0.673$	
204 Po ^m	-16702	11	1639.03	0.06	158.6	ns	1.8	8+	10	10Ka29	Т	1970	IT=100	*
²⁰⁴ At	-11875	22			9.12	m	0.11	7+	10			1961	$\beta^+=96.22; \alpha=3.82$	*
$^{204}At^m$	-11288	22	587.30	0.20	108	ms	10	10^{-}	10			1969	IT=100	
²⁰⁴ Rn	-7970	7			1.242	m	0.023	0^+	10			1967	α =72.4 9; β^+ ?	
	• .•	1												

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Nuclide	Mass ex	cess		Excitatio	n VD		Half-l	ife	J^{π}	Ens	Reference	ce	Year of	Decay modes and	
	(kev)		energy (ke	(v)								discovery	intensities (%)	
A group	n continued														
204 Er	607	25				1 75	6	0.26	3+	10	05Bi A	р	1064	$\alpha - 962 \cdot \beta + 2$	*
204 Erm	658	25	50	4	AD	2.41	5	0.20	7(+)	10	05Bi A	D	1967	$\alpha = 90.2, \beta^{-1}$	*
204 Ern	034	25	326	4		1.65	5	0.15	10(-)	10	13Ja06	т	1907	$\alpha = 50.2, p$: $\alpha = 53.10; IT = 47.10$	*
204 R a	6057	15	520	+	AD	60	me	9	0+	10	05Uu02	т	1992	$\alpha \approx 100$ $\beta^+ = 0.3 \pm$	*
*204 Pt	T: other	14Mo15	-16(+6-5)			00	ms	2	0	10	050002	1	1995	$u \sim 100, p = 0.5\pi$	*
$*^{204} \mathbf{Pt}^m$	F · 872 4	(0.5) 11'	727(0.5) ye	to 0^+											**
$*^{204} Pt^{n}$	E : 1995	1(0.7) +	$x \cdot x < 80 k$	eV											**
$*^{204} Pt^{p}$	E : 1157	$5(0.5) \gamma$	to 204 Pt ⁿ												**
* ²⁰⁴ Au	T : avera	pe 14Mo	15=37.2(0.8)	3) 84 Cr 01 = 3	39.8(0.9): oth	er 72Pa06=4	0(3)								**
$*^{204}Au^{m}$	E:839.0	. 976.6 1	s in cascade	to 12 ^{-#} es	timated at 20	00#(1000#)	keV								**
* ²⁰⁴ Pb	T: also 1	3Be16>	140Ey												**
$*^{204} Pb^{p}$	T : symn	netrized f	from 450(+1	00–30)											**
$*^{204}Po^{m}$	T : avera	ge 10Ka	29=161(4) 8	7Ra04=158	3(2); others 90	Fa03=150(10) 83	He08=150(1	0)						**
$*^{204}Po^{m}$	T: 7	1Ha01=1	140(5) 70Ya	03=190(20)	70Br.A=143	(5)									**
* ²⁰⁴ At	T : other	10Ka29	=9.6(2)												**
* ²⁰⁴ Fr	T : avera	ge 05Uu	02=1.9(0.5)	92Hu04=1	.7(0.3)	J:14Ly01=	-3 13	Vo10=3							**
$*^{204}$ Fr ^m	T : avera	ge 13Ja0	6=2.6(0.3) 0	5Uu02=1.6	6(+0.5-0.3) 92	2Hu04=2.6(0.3)								**
$*^{204}$ Fr ^m	J:15Vo0	5=7													**
$*^{204}$ Fr ⁿ	E:276.1	keV abo	ove ²⁰⁴ Fr ^{<i>m</i>} , fi	rom 95Bi.A	D:fr	om 14Ly01									**
$*^{204}$ Fr ⁿ	T : 13Ja0	6=1.65(0.15) superse	edes 05Uu0	02=0.8(0.2) sa	me group		J:15Vo05=1	0						**
* ²⁰⁴ Ra	T : avera	ge 05Uu	02=54(+19-	11) 96Le09	9=59(+12-9);	other 10He2	25=44	(+44–15)							**
* ²⁰⁴ Ra	T: 9:	5Le04=4	45(+55–21)												**
²⁰⁵ Ir	-5960#	500#				300#	me	(>300 nc)	3/2+#	13	12Ku26	T	2012	$\beta^- \gamma \beta^- n=10\#$	
²⁰⁵ Pt	-12970#	300#				5#	s	(>300 ns)	$9/2^+ \#$	11	10A124	Ť	2009	β^{-} ?	

²⁰⁵ Pt	-12970#	300#			5#	s	(>300 ns)	$9/2^{+}$ #	11	10Al24	Ι	2009	β^{-} ?	
²⁰⁵ Au	-18770#	200#			32.5	s	1.4	3/2+#	04	09Po01	Т	1994	$\beta^{-}=100$	*
$^{205}Au^m$	-17860#	200#	907	5	6	s	2	$11/2^{-}$ #		09Po01	ETJ	2009	$IT=?: \beta^{-}=?$	
²⁰⁵ Au ⁿ	-15920#	200#	2850	5	163	ns	5	$19'/2^+$ #		11St21	ET	2011	IT=100	
²⁰⁵ Hg	-22288	4			5.14	m	0.09	$1/2^{-}$	04			1940	$\beta^{-}=100$	*
$^{205}Hg^m$	-20732	4	1556.40	0.17	1.09	ms	0.04	$13/2^+$	04			1985	IT=100	
$^{205}Hg^n$	-18972	4	3315.8	0.9	5.89	μs	0.18	$(23/2^{-})$		11St21	ETJ	2011	IT=100	*
²⁰⁵ Tl	-23820.9	1.2			STABLE	•		$1/2^{+}$	04			1931	IS=70.48 1	
205 Tl^{m}	-20530.3	1.2	3290.60	0.17	2.6	μs	0.2	$25/2^+$	04			1976	IT=100	
205 Tl^{n}	-18985.3	1.9	4835.6	1.5	235	ns	10	$(35/2^{-})$	04			2004	IT=100	
²⁰⁵ Pb	-23770.2	1.1			17.3	My	0.7	5/2-	04			1954	ε=100	
205 Pb ^m	-23767.9	1.1	2.329	0.007	24.2	μs	0.4	$1/2^{-}$	04			1994	IT=100	
205 Pb ⁿ	-22756.4	1.1	1013.85	0.03	5.55	ms	0.02	$13/2^{+}$	04			1960	IT=100	
205 Pb ^p	-20574.5	1.2	3195.7	0.5	217	ns	5	$25/2^{-}$	04			1973	IT=100	
²⁰⁵ Bi	-21065	5			15.31	d	0.04	9/2-	04			1951	$\beta^{+}=100$	
$^{205}Bi^m$	-19568	5	1497.17	0.09	7.9	μs	0.7	$1/2^{+}$	04			1972	IT=100	
²⁰⁵ Bi ⁿ	-18926	5	2139.0	0.7	220	ns	25	$25/2^+$	04			1978	IT=100	
²⁰⁵ Po	-17521	10			1.74	h	0.08	$5/2^{-}$	04			1951	$\beta^+ \approx 100; \alpha = 0.04 1$	
205 Po ^m	-17378	10	143.166	0.017	310	ns	60	$1/2^{-}$	04			1960	IT=100	
²⁰⁵ Po ⁿ	-16641	10	880.31	0.07	645	μs	20	$13/2^{+}$	04			1962	IT=100	
²⁰⁵ Po ^p	-16060	10	1461.21	0.21	57.4	ms	0.9	$19'/2^{-}$	04			1973	IT=100	
205 Po ^q	-14434	10	3087.2	0.4	115	ns	10	$29/2^{-}$	04			1985	IT=100	
²⁰⁵ At	-12972	15			33.8	m	0.2	9/2-	04	10Ka29	Т	1951	β^+ ?; α =10 2	
$^{205}At^m$	-10632	15	2339.65	0.23	7.76	μs	0.14	$29/2^+$	04			1982	IT=100	
²⁰⁵ Rn	-7710	5			2.83	m	0.07	$5/2^{-}$	04			1967	β^+ ?; α =24.6 9	
205Rn ^m	-7053	5	657.1	0.5	> 10	s		$13/2^+$ #	04	10De04	ED	2010	IT \approx 100; α ?; β^+ ?	
²⁰⁵ Fr	-1310	8			3.82	s	0.06	$9/2^{-}$	04	10De04	Т	1964	$\alpha \approx 100; \beta^+ < 1$	*
205 Fr ^m	-766	8	544.0	1.0	80	ns	20	$(13/2^+)$		12Ja01	EJT	2012	IT=100	
²⁰⁵ Fr ⁿ	-701	9	609	5	1.15	ms	0.04	$(1/2^+)$		12Ja01	ETJ	2012	IT=100	
²⁰⁵ Ra	5840	70			220	ms	50	$(3/2^{-})$	04			1987	$\alpha = ?; \beta^+ ?$	*
205 Ra ^m	6140#	100#	300#	100#	180	ms	50	$(13/2^+)$	04			1995	$\alpha = ?;$ IT ?; β^+ ?	*
²⁰⁵ Ac	14110	50			80	ms	60	9/2-#	14	14Zh03	Т	2014	$\alpha \approx 100; \beta^+=0.2\#$	*
* ²⁰⁵ Au	T : avera	ge 09Po0	1=34(2) 94W	/e02=31(2); o	ther 16Ca25=35(17)			,						**

030001-113

** ** ** ** ** **

 $*^{205}$ Au $*^{205}$ Hg $*^{205}$ Hgⁿ $*^{205}$ Fr $*^{205}$ Fr $*^{205}$ Fr $*^{205}$ Fr $\begin{array}{l} T: average 09P001=34(2) 94We02=31(2); other 16Ca25=35(17)\\ T: other 10Ku02=5.61(0.38) for q=80^+ (bare ion)\\ E: least-squares fit to \gamma-ray energies 227.6(0.5), 722.6(0.5), 810.0(0.5) 1014.7(0.5)\\ T: unweighed average 10De04=4.03(0.08) 05De01=3.80(0.03) 81Ri04=3.96(0.04)\\ T: 74Ho27=3.7(0.1) 67Va20=3.7(0.2) 64Gr04=3.7(0.4)\\ J: from 14Ly01=9/2 13Vo10=9/2 13Fl09=9/2; parity from mag. moment\\ T: symmetrized from 210(+60-40)\\ T: symmetrized from 170(+60-40); other 10He25=68(+68-23) ms\\ T: symmetrized from 14Zh03=20(+97-9)\\ \end{array}$

 $*^{205}$ Ra $*^{205}$ Ra^m

*²⁰⁵Ac

Chinese Physics C Vol. 41, No. 3 (2017) 030001

|--|

Nuclide	Mass ex	cess		Excitation]	Half-1	ife	J^{π}	Ens	Reference		Year of	Decay modes and	
	(keV	')	(energy (keV)								discovery	intensities (%)	
206 20	0.620.0	2004				~ "		(200)	0±	10	1017 06	×	2012	0-0.0-0"	
200 Pt 206 A	-9630#	300#				5#	s	(>300 ns)	(5+(+))	13	12Ku26	I TI	2012	β ?; β n=0#	
200 Au 20611	-14220#	300#				47	s	11	(5',6')	16	16Ca25	IJ	2009	p = 100	*
200 Hg	-20946	20	2102.4	0.2		8.32	m	0.07	0 ·	08	110-01	T	1961	p = 100	
200 Hgm 206 H - n	-18844	20	2102.4	0.3		2.09	μs	0.02	3 (10 ⁺)	08	115t21	I	1982	II=100 IT_100	*
206 TI	-1/224	20	3722.3	1.0		100	ns	0	(10.)	08	115(21	EIJ	2001	R = 100	*
206 T1m	-22253.4	1.5	2642 10	0.19		4.202	m	0.011	(12-)	08			1935	p = 100	
206 pt	-19010.5	1.5	2045.10	0.18		5.74	m	(2.05)	(12)	00	120-16	т	1970	11=100	
206 DLm	-23/85.0	1.1	2200 16	0.04		STABLE		(>2.5 Zy)	7-	08	13Be10	1	1927	$15=24.11; \alpha$?	
206 DLn	-21585.4	1.1	2200.16	0.04		125	μs	2	12+	08			1955	II=100 IT-100	
206 D :	-19/38.5	1.5	4027.5	0.7		202	IIS J	5	(+)	00			19/1	R^{\pm} 100	
206 D :m	-20028	8	50 807	0.017		0.243	a	0.003	0 ⁽¹⁾ (4+)	08			1947	p = 100	
200 B1 ^m 206 D :n	-19968	8	59.897	0.017		/./	μs	0.2	(4^+)	08			1957	II=100 IT_100	
206 Do	-18983	8	1044.8	0.7		890	μs	10	(10)	08			1974	$\beta_{\pm}^{+}=0.4555100$	
206 Dom	-16169	4	1595.00	0.11		0.0	u	0.1	0 · 0+	08	ECV145	т	1947	$p = 94.555; \alpha = 5.455$	
206 Don	-10005	4	1383.90	0.11		232	ns	4	0-	08	FUK145	J	1970	II=100 IT-100	*
206 A t	-13927	4	2202.09	0.12		1.05	μs	0.00	(5)+	08	FUK145	J	1970	$\beta_{\pm}^{\pm} = 100$ $\beta_{\pm}^{\pm} = 00, 10, 8; \alpha_{\pm}^{\pm} = 0, 00, 8$	*
206 A +m	-12430	15	810	2		812	m	0.8	$(10)^{-1}$	08	000-08	т	1901	$\mu^{-}=99.10.8, \mu=0.90.8$	
206 D n	-11020	15	810	5		5 67	m	0.17	(10)	08	090108	1	1999	$\alpha = 62.2; B^{+} = 28.2$	*
206 Er	-9133	28				5.07	e m	0.17	0 3+	08	16Lv01	р	1954	$\beta^+ - 2^{-9} \alpha - 88 4 33$	*
206 Erm	1048	20	100	40		16	0		7(+)	00	16Ly01	D	1964	p = 1, a = 00.4 55 $\alpha = 94.7 15; B^{\pm}_{2} 2; IT 2$	*
206 Ern	-1048	20	720	40	MD	700		100	10(-)	00	16Ly01	D	1092	$T_{2} = 0 + .7 + 13, p = .7 + 11 + .7 + .7 + .7 + .7 + .7 + .7 +$	*
206 Env	-317	100	100	100	MD	P _ 2	ms	100	opmix	08	TOLYOT	D	1985	$11=2, \alpha=152$	*
206 P .o	2566	100	100	100	MD	240	-	20	0 ⁺	00			1067	$\alpha - 2; \beta^+ - 2.5 $ #	
206 A a	12480	50				240	ma	20	(2^+)	08			1907	$\alpha = 2.5 $ $\mu = 2.5 $	
206 A cm	13700	30	220	60	٨D	41	me	16	(10^{-})	08			1996	$\alpha \sim 100; \beta^{+} = 0.2\pi$	*
*206 Au	T · avera	ле 16Са?	220 5-56(17) 15	Mo20-400	AD 15)	41	ms	10	(10)	00			1990	$u \sim 100, p$	*
*206Ham	T : avera	ge 10Ca2	1(-095i35) -	2 09(0 02)	27Be38-7	15(0.21)									**
* ²⁰⁶ Hg ⁿ	T : avera	ge 115t2 ge 11St2	1(-095i35) =	112(4) 000	120-06(15)	$0.01E_{0.08-0.02}$	(8) 01	11 200-00(10	n						**
* 11g	I · measu	red mag	r(=0)0100)=	112(+) 0)/1	heervation	of v_{5} to 3^{+} a	$nd 4^+$	levels	·)						**
* ²⁰⁶ Po ⁿ	I · F1 vs	to 8^+ lev	els	t und non o	oser varion	01 /3 10 5 4	ina i	levels							**
*206 Atm	T: other	10Ka29	=377(44)99	Fe10=4100	80)										**
* ²⁰⁶ At ^m	E : from	ENSDE'	8 806 7(1 4)	$+ x \cdot x < 6 e$	stimated by	NUBASE									**
* ²⁰⁶ Fr	$I \cdot 14I v($	1=3.13V	610=3	- A, A < 0 C	sumated b	, NOBROL									**
$*^{206} Fr^{m}$	T · 92Hu	04=15.90	03)	$1 \cdot 15 V_0 05 =$	7										**
$*^{206} Fr^{n}$	E : 81Ri(4 = 531(2)	keV above	²⁰⁶ Fr ^m	I · 15Vc	05 = 10									**
* ²⁰⁶ Ac	T : symm	netrized f	rom 98Es02	=22(+9-5):	also 14Zh	3=41(+56-1	5)								**
* ²⁰⁶ Ac ^m	T : symm	netrized f	rom 98Es02	=33(+22-9)			- /								**
				/											

²⁰⁷ Pt	-4540#	400#				1#	s	(>300 ns)	$9/2^{+}$ #	13	12Ku26	Ι	2012	β^{-} ?; β^{-} n=2#	
²⁰⁷ Au	-10810#	300#				10#	s	(>300 ns)	$3/2^{+}$ #	11			2010	β^{-} ?; β^{-} n=0.4#	
²⁰⁷ Hg	-16487	30				2.9	m	0.2	9/2+#	11			1982	$\beta^{-}=100$	
²⁰⁷ Tl	-21034	5				4.77	m	0.02	$1/2^{+}$	11			1908	$\beta^{-}=100$	*
207 Tl^{m}	-19686	5	1348.18	0.16		1.33	s	0.11	$11/2^{-}$	11			1965	IT $\approx 100; \beta^- < 0.1 \#$	
²⁰⁷ Pb	-22452.0	1.1				STABLE		(>1.9 Zy)	$1/2^{-}$	11	13Be16	Т	1927	IS=22.1 1; α ?	
207 Pb ^m	-20818.6	1.1	1633.356	0.004		806	ms	5	$13/2^+$	11			1951	IT=100	
²⁰⁷ Bi	-20054.6	2.4				31.20	у	0.03	$9/2^{-}$	11	14Un01	Т	1950	$\beta^{+}=100$	
$^{207}\text{Bi}^m$	-17953.0	2.4	2101.61	0.16		182	μs	6	$21/2^+$	11			1967	IT=100	
²⁰⁷ Po	-17146	7				5.80	h	0.02	$5/2^{-}$	11			1947	$\beta^+ \approx 100; \alpha = 0.0212$	
$^{207}Po^{m}$	-17077	7	68.557	0.014		205	ns	10	$1/2^{-}$	11			1963	IT=100	
²⁰⁷ Po ⁿ	-16031	7	1115.076	0.017		49	μs	4	$13/2^{+}$	11			1962	IT=100	
²⁰⁷ Po ^p	-15763	7	1383.16	0.07		2.79	s	0.08	$19/2^{-}$	11			1961	IT=100	
²⁰⁷ At	-13227	12				1.81	h	0.03	$9/2^{-}$	11			1951	β^+ ?; $\alpha \approx 10$	
$^{207}At^{m}$	-11110	12	2117.3	0.6		108	ns	2	$25/2^+$	11			1981	IT=100	
²⁰⁷ Rn	-8635	8				9.25	m	0.17	$5/2^{-}$	11			1954	$\beta^+=793; \alpha=213$	
$207 Rn^{m}$	-7736	8	899.1	1.0		184.5	μs	0.9	$13/2^+$	11			1974	IT=100	
²⁰⁷ Fr	-2844	18				14.8	s	0.1	$9/2^{-}$	11	85Co24	J	1964	$\alpha = 95 2; \beta^+$?	
²⁰⁷ Ra	3540	50				1.38	s	0.18	$5/2^{-}$ #	11			1967	$lpha \approx 86; \beta^+$?	*
207 Ra ^m	4102	20	560	50	AD	57	ms	8	$13/2^+$ #	11	96Le09	Т	1987	IT=85#; α =?; β ⁺ =0.55#	*
²⁰⁷ Ac	11150	50				31	ms	8	9/2-#	11	98Es02	Т	1994	$\alpha \approx 100$	*
* ²⁰⁷ Tl	T : other	05Oh08=	=4.25(0.14) 10	0Ku02=4.7	0(0.19) for	q=81 ⁺ (bar	e ion)								**
* ²⁰⁷ Ra	T : averag	ge 95Uu	01=1.1(+0.9-0	0.3) 68Lo1	5=1.8(0.5)	67Va22=1.3	(0.2)								**
$*^{207}$ Ra ^m	T : averag	ge 96Le(9=63(16) 87H	He10=55(1	0)										**
* ²⁰⁷ Ac	T : averag	ge 98Es0	2=27(+11-6)	94Le05=2	2(+40–9)										**
* ²⁰⁷ Ac	J : unhino	dered α d	lecay to 203 Fr	9/2-#											**

T: average 90Ee09=05(10) 87He10=55(10) T: average 98Es02=27(+11–6) 94Le05=22(+40–9) J: unhindered α decay to ²⁰³Fr 9/2^{-#}

* Ka $*^{207}Ac$ $*^{207}Ac$

Chinese Physics C Vol. 41, No. 3 (2017) 030001

	Mass ex	cess		Excitation		Half-I	ife	J^{π}	Ens	Reference	e P	Year of	Decay modes and	
	(keV	7)	e	energy (keV)		i iuri i	lie	9	LIII	Reference		discovery	intensities (%)	
208 Pt	_990#	400#			1#	¢	(\300 ns)	0^+	13	12Ku26	T	2012	$\beta^{-} 2 \beta^{-} n - 90 \#$	
²⁰⁸ Au	-6100#	300#			10#	s	(>300 ns)	0	11	10A124	Ī	2012	β^{-} ?: β^{-} n=5#	
²⁰⁸ Hg	-13270	30			42	m	5	0^{+}	10	1011121	•	1994	$\beta^{-}=100$	*
²⁰⁸ Hg ^m	-11930	40	1338	24	99	ns	14	(8^+)	10			2009	IT=100	*
²⁰⁸ TI	-16750.1	1.9	1000	2.	3.053	m	0.004	5+	07			1909	$\beta^{-}=100$	
²⁰⁸ Ph	-21748.6	1.1			STABLE		(>2.67v)	0^{+}	07	13Be16	т	1927	$IS=52.41 \cdot \alpha^{2}$	
208 Pb ^m	-16853.4	1.1	4895.23	0.05	500	ns	10	10^{+}	07	98Pf02	Ť	1998	IT=100	
²⁰⁸ Bi	-18870.2	2.3	1070120	0102	368	kv	4	5+	07	201102	•	1953	$\beta^{+}=100$	
²⁰⁸ Bi ^m	-17299.1	2.3	1571.1	0.4	2.58	ms	0.04	10-	07			1961	IT=100	
²⁰⁸ Po	-17469.6	1.7	10/111	011	2.898	v	0.002	0^{+}	07			1947	$\alpha \approx 100; \beta^+ = 0.00404$	
$208 Po^{m}$	-159414	17	1528 22	0.04	350	ns	20	8+	07			1968	IT=100	
²⁰⁸ At	-12470	9			1.63	h	0.03	6^{+}	07			1950	$\beta^+=99.456; \alpha=0.556$	
$^{208}At^m$	-10194	9	2276.4	1.8	1.5	μs	0.2	16-	07			1991	IT=100	
²⁰⁸ Rn	-9656	11			24.35	m	0.14	0+	07			1955	$\alpha = 62.7: \beta^+ = 38.7$	
208 Rn ^m	-7828	11	1828.3	0.4	487	ns	12	8+	07			1979	IT=100	*
²⁰⁸ Fr	-2666	12			59.1	s	0.3	7+	07	78Ek02	J	1964	$\alpha = 89.3; \beta^+ = 11.3$	
²⁰⁸ Fr ^m	-1839	22	827	18	432	ns	11	(10^{-})	07	09Dr08	T	2009	IT=100	*
²⁰⁸ Ra	1728	9	027	10	1 110	s	0.045	0+	07	10He25	TD	1967	$\alpha = 87.3 \cdot \beta^+$?	*
$^{208}Ra^m$	3875	9	2147.4	0.4	263	ns	17	(8^+)	07	05Re02	Т	1998	T = 100	*
²⁰⁸ Ac	10750	60		···	97	ms	15	(3^+)	07	14Ya19	Ť	1994	$\alpha = ?; \beta^+ = 1 \#$	*
208 Acm	11258	28	500	50 AD	28	ms	7	(10^{-})	07	96Ik01	Ť	1994	$\alpha = ?: IT < 10 # \beta^{+} = 1 #$	*
²⁰⁸ Th	16680	30	500	50 AD	28	ms	1.2	0+	11	JOINUI	•	2010	$\alpha \approx 100$	*
* ²⁰⁸ Hg	T · symm	netrized fi	rom 98Zh22	=41(+5-4) other	· 16Ca25=132(50)) s	1.2	0				2010	W/0100	**
* ²⁰⁸ Ho ^m	E · 1296	9(0, 9) + 3	x and $x < 83$	keV	1000020 102(00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								**
$*^{208}Rn^{m}$	T: other	$10K_{2}^{(0,2)} = 2$	590(144) ns											**
$*^{208} Fr^{m}$	T : from	lifetime (9Dr08=623	, (16): other 10Ka	29=233(18) not	trustec	ı							**
$^{-11}_{-208}$ Er ^m		6Me03-4	446(14) orig	rinally assigned to	2^{209} Er see 09Dr	04								**
* ²⁰⁸ Ra	T: other	681 o15 =	1 8(0 5) 67	$V_{a}^{2} = 12(02)$	5 11, 300 0701	04								**
$*^{208}Ra^{m}$	T : avera	oe 05Re0	2=250(30)	$99C_{0}13=270(21)$										**
* ²⁰⁸ Ac	T : avera	ge 14Ya1	9=93(+40-2)	$(21)^{(21)}$	34-19) 94I e05=9	95(+24	L16)							**
* ²⁰⁸ Ac ^m	$E : if \alpha d$	lecav goe	s to $(7^+)^{204}$	Fr^m instead of (1)	(0^{-}) as assumed	in AM	E then							**
* ²⁰⁸ Ac ^m	E F	will becc	me 234(22)	keV	io) us ussumed		L, then							**
* ²⁰⁸ Ac ^m	T : avera	oe 96Ik01	=21(+28-8)) 94I $e^{05}=25(+9)$	-5)									**
* ²⁰⁸ Th	T · symm	petrized fi	rom 10He25	i=1.7(+1.7-0.6)	5)									**
* 11	r . synn	ieu izeu ii	101110225	-1.7(11.7 0.0)										
²⁰⁹ Au	-2540#	400#			1#	s	(>300 ns)	$3/2^{+}$ #	15	10A124	Ι	2010	β^{-} ?; β^{-} n=90#	
²⁰⁹ Hg	-8640#	150#			38	s	6	9/2+#	15			1998	$\beta^{-}=100; \beta^{-}n=0#$	*
²⁰⁹ Tl	-13645	6			2.162	m	0.007	$1/2^+$	15			1950	$\beta^{-}=100; \beta^{-}n=0#$	
²⁰⁹ Pb	-17614.6	1.7			3.234	h	0.007	$9/2^{+}$	15			1940	$\beta^{-}=100$	
²⁰⁹ Bi	-18258.7	1.4			20.1	Ey	0.8	$9/2^{-}$	15			1924	IS=100.; α =100	
²⁰⁹ Po	-16366.1	1.8			124	у	3	$1/2^{-}$	15	13Se03	J	1949	$\alpha \approx 100; \beta^+=0.4547$	
²⁰⁹ Po ^m	-12100.7	1.8	4265.4	0.3	119	ns	4	$31/2^{-}$	15			1974	IT=100	
209At	-12883	5			5.42	h	0.05	$9/2^{-}$	15			1951	$\beta^+=95.95; \alpha=4.15$	
$^{209}At^{m}$	-10454	5	2429.32	0.22	916	ns	10	$29/2^+$	15			1975	IT=100	
²⁰⁹ Rn	-8941	10			28.8	m	1.0	$5/2^{-}$	15			1952	$\beta^+=832; \alpha=172$	
209Rn ^m	-7767	10	1174.01	0.13	13.4	μs	1.3	$13/2^+$	15			1985	IT=100	
209Rn ⁿ	-5304	10	3636.81	0.23	3.0	μs	0.3	$35/2^+$	15			1985	IT=100	
209 -	-3770	15			50.5	s	0.7	$9/2^{-}$	15	78Ek02	J	1964	$\alpha = 893; \beta^+ = 113$	
Fr	800	15	4659.8	0.7	420	ns	18	$45/2^{-}$	15			2006	IT=100	*
²⁰⁹ Fr ^m	090				4.71	s	0.08	$5/2^{-}$	15	08Ha12	Т	1967	$\alpha \approx 100; \beta^+$?	
²⁰⁹ Fr ^m ²⁰⁹ Ra	1858	6			4./1		5	13/2+	15	08Ha12	D	2008	$\alpha \approx 90; \beta^+ \approx 10$	
²⁰⁹ Fr ^m ²⁰⁹ Ra ²⁰⁹ Ra ^m	1858 2740	6 6	882.4	0.7	4.71	μs		15/2		0011412			-	
²⁰⁹ Fr ^m ²⁰⁹ Ra ²⁰⁹ Ra ^m ²⁰⁹ Ac	1858 2740 8840	6 6 50	882.4	0.7	4.71 117 94	μs ms	10	$(9/2^{-})$	15	14Ya19	Т	1968	$\alpha = ?; \beta^+ = 1 #$	*
209 Fr 209 Fr ^m 209 Ra 209 Ra ^m 209 Ac 209 Th	1858 2740 8840 16370#	6 6 50 140#	882.4	0.7	4.71 117 94 60#	μs ms ms	10	$(9/2^{-})$ $5/2^{-}#$	15	14Ya19	Т	1968	$\alpha = ?; \beta^+ = 1 # \\ \alpha ?; \beta^+ ?$	*
209 Fr 209 Ra 209 Ra 209 Ra 209 Ac 209 Th 209 Th	1858 2740 8840 16370# 16840#	6 6 50 140# 100#	882.4 470#	0.7 100#	4.71 117 94 60# 3.1	μs ms ms ms	10 1.2	$(9/2^{-})$ $5/2^{-}\#$ $(13/2^{+})$	15 15	14Ya19	Т	1968 1996	$lpha = ?; \ eta^+ = 1 \# \ lpha ?; \ eta^+ ? \ lpha pprox 100; \ eta^+ ?$	*
²⁰⁹ Fr ²⁰⁹ Ra ²⁰⁹ Ra ^m ²⁰⁹ Ac ²⁰⁹ Th ²⁰⁹ Th ^m * ²⁰⁹ Hg	1858 2740 8840 16370# 16840# T : symn	6 6 50 140# 100# netrized fr	882.4 470# rom Ensdf	0.7 100# 2015=36(+7-4); d	4.71 117 94 60# 3.1 other 16Ca25=6(µs ms ms ms 1)	10 1.2	$(9/2^{-})$ $5/2^{-}$ # $(13/2^{+})$	15 15	14Ya19	Т	1968 1996	$\alpha = ?; \beta^+ = 1\#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$	* * **
²⁰⁹ Fr ^m ²⁰⁹ Ra ^m ²⁰⁹ Ra ^m ²⁰⁹ Ac ²⁰⁹ Th ²⁰⁹ Th ^m * ²⁰⁹ Hg * ²⁰⁹ Fr ^m	1858 2740 8840 16370# 16840# T : symn T : from	6 6 50 140# 100# netrized fr lifetime 0	882.4 470# rom ENSDF	0.7 100# 2015=36(+7-4); o (26);	4.71 117 94 60# 3.1 other 16Ca25=6(μs ms ms ms 1)	10 1.2	$(9/2^{-})$ $5/2^{-}$ # $(13/2^{+})$	15 15	14Ya19	Т	1968 1996	$\alpha = ?; \beta^+ = 1 # \alpha ?; \beta^+ ? \alpha \approx 100; \beta^+ ?$	* * ** **
	1858 2740 8840 16370# 16840# T : symn T : from T : avera	6 50 140# 100# netrized fn lifetime 0 ge 14Ya1	882.4 470# com ENSDE 09Dr04=606 9=98(22) 00	0.7 100# 2015=36(+7-4); ((26);)He17=98(+59-2	+,71 117 94 60# 3.1 other 16Ca25=6(7) 96Ik01=82(+1	μs ms ms 1)	10 1.2	$\begin{array}{c} (9/2^{-}) \\ 5/2^{-}\# \\ (13/2^{+}) \end{array}$	15 15	14Ya19	Т	1968 1996	$\alpha = ?; \beta^+ = 1 \#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$	* * ** ** **
²⁰⁹ Fr ^m ²⁰⁹ Ra ^m ²⁰⁹ Ra ^m ²⁰⁹ Ac ²⁰⁹ Th ²⁰⁹ Th ^m * ²⁰⁹ Hg * ²⁰⁹ Fr ^m * ²⁰⁹ Ac * ²⁰⁹ Ac	1858 2740 8840 16370# 16840# T : symn T : from T : avera T : 9	6 6 50 140# 100# netrized fi lifetime 0 ge 14Ya1 4Le05=93	882.4 470# com ENSDF 99Dr04=606 9=98(22) 00 1(+21-14) a	0.7 100# 2015=36(+7-4); 6 (26); 0He17=98(+59-2 nd 68Va04=100(:	4.71 117 94 60# 3.1 other 16Ca25=6(7) 96Ik01=82(+1 50)	μs ms ms 1) 8–13)	10 1.2	$(9/2^{-})$ $5/2^{-}\#$ $(13/2^{+})$	15 15	14Ya19	Т	1968 1996	$\alpha = ?; \beta^+ = 1 \#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$	* * ** ** **
209 Fr ^m 209 Ra ^m 209 Ra ^m 209 Ac 209 Th 209 Th ^m *209 Hg *209 Fr ^m *209 Ac *209 Ac *209 Ac	1858 2740 8840 16370# 16840# T : symn T : from T : avera T : 9 T : symn	6 6 50 140# 100# netrized fn lifetime 0 ge 14Ya1 4Le05=92 netrized fn	882.4 470# rom ENSDF 19Dr04=606 9=98(22) 00 1(+21-14) a rom ENSDF	0.7 100# 2015=36(+7-4); ((26);)He17=98(+59-2 nd 68Va04=100() 2015=2.5(+1.7-0	4./1 117 94 60# 3.1 other 16Ca25=6(7) 96Ik01=82(+1 50) .7)	μs ms ms 1)	10 1.2	$(9/2^{-})$ $5/2^{-\#}$ $(13/2^{+})$	15 15	14Ya19	Т	1968 1996	$\alpha = ?; \beta^+ = 1 \#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$	* * ** ** ** **
Fr 209 Fr ^m 209 Ra 209 Ra ^m 209 Ac 209 Th 209 Th ^m * ²⁰⁹ Hg * ²⁰⁹ Hg * ²⁰⁹ Hc * ²⁰⁹ Ac * ²⁰⁹ Ac	1858 2740 8840 16370# 16840# T: symn T: from T: avera T: 9 T: symn	6 6 50 140# 100# hetrized fi lifetime 0 ge 14Ya1 4Le05=92 hetrized fi	882.4 470# rom ENSDF: 9Dr04=606 9=98(22) 00 1(+21-14) a rom ENSDF:	0.7 100# 2015=36(+7-4); ((26); He 17=98(+59-2 nd 68Va04=100(: 2015=2.5(+1.7-0	$\begin{array}{c} 4.71\\ 117\\ 94\\ 60\#\\ 3.1\\ 0 \text{ther } 16\text{Ca25=6}(\\ 7) 96\text{Ik}01=82(+1)\\ 50)\\ .7)\end{array}$	μs ms ms 1) (8–13)	10 1.2	$(9/2^{-})$ $5/2^{-}\#$ $(13/2^{+})$	15	14Ya19	Τ	1968 1996	$\alpha = ?; \beta^+ = \#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$	* * ** ** ** ** **
Fr 209 Fr ^m 209 Ra 209 Ra ^m 209 Ac 209 Th 209 Th 209 Th ^m *209 Hg *209 Fr ^m *209 Ac *209 Ac *209 Ac	1858 2740 8840 16370# 16840# T : symn T : from T : avera T : 9 T : symn	6 6 50 140# 100# hetrized fi lifetime 0 ge 14Ya1 4Le05=91 hetrized fi	882.4 470# rom ENSDF: 9Dr04=606 9=98(22) 00 1(+21-14) a rom ENSDF:	0.7 100# 2015=36(+7-4); c (26);)He17=98(+59-2 nd 68Va04=100() 2015=2.5(+1.7-0	4./1 117 94 60# 3.1 other 16Ca25=6(7) 96Ik01=82(+1 50) .7)	μs ms ms 1)	10 1.2	$(9/2^{-})$ $5/2^{-}\#$ $(13/2^{+})$	15	14Ya19	Τ	1968 1996	$\alpha = ?; \beta^+ = 1 \#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$	* * * * * * * * * * * *
²⁰⁹ Fr ^m ²⁰⁹ Ra ²⁰⁹ Ra ^m ²⁰⁹ Ac ²⁰⁹ Ac ²⁰⁹ Th ^m ²⁰⁹ Hg ²⁰⁹ Hg ²⁰⁹ Ac ²⁰⁹ Ac ²⁰⁹ Ac ²⁰⁹ Ac ²⁰⁹ Ac	1858 2740 8840 16370# 16840# T : symn T : from T : avera T : 9 T : symn 2330#	6 6 50 140# 100# hetrized fi lifetime 0 ge 14Ya1 4Le05=9: hetrized fi 400#	882.4 470# rom ENSDF: 9Dr04=606 9=98(22) 00 1(+21-14) a rom ENSDF:	0.7 100# 2015=36(+7-4); d (26);)He17=98(+59-2 nd 68Va04=100() 2015=2.5(+1.7-0	4./1 117 94 60# 3.1 other 16Ca25=6(7) 96Ik01=82(+1 50) .7) 1#	µs ms ms 1) (8–13)	10 1.2 (>300 ns)	(9/2 ⁻) 5/2 ⁻ # (13/2 ⁺)	15 15 15	14Ya19	Т	1968 1996 2010	$\alpha = ?; \beta^+ = 1\#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$ $\beta^- ?; \beta^- n = 10\#$	* * * * * * * * * * * * * *
 Fr ²⁰⁹ Fr^m ²⁰⁹ Ra ²⁰⁹ Ac ²⁰⁹ Ac ²⁰⁹ Hg ^{*209} Hg ^{*209} Ac 	1858 2740 8840 16370# 16840# T : symn T : from T : avera T : 9 T : symn 2330# -5370#	6 6 50 140# 100# hetrized fi lifetime 0 ge 14Ya1 4Le05=9 hetrized fi 400# 200#	882.4 470# rom ENSDF 9Dr04=606 9=98(22) 00 1(+21-14) a rom ENSDF	0.7 100# 2015=36(+7-4); c (26);)He17=98(+59-2 nd 68Va04=100(3 2015=2.5(+1.7-0	4.71 117 94 60# 3.1 other 16Ca25=6(7) 96Ik01=82(+1 50) .7) 1# 64	μs ms ms 1) (8–13)	10 1.2 (>300 ns) 10	0/+	15 15 15	10Al24 16Ca25	T I TD	1968 1996 2010 1998	$\alpha = ?; \beta^+ = 1\#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$ $\beta^- ?; \beta^- n = 10\#$ $\beta^- = 100; \beta^- n = 2.2 22$	* * * * * * * * * * * * * * *
 Fr 209 Fr^m 209 Ra 209 Ra^m 209 Ac 209 Th^m *²⁰⁹ Hg *²⁰⁹ Hg *²⁰⁹ Fr^m *²⁰⁹ Ac 	1858 2740 8840 16370# 16840# T : symm T : symm T : avera T : 9 T : symm 2330# -5370# -4710#	6 6 50 140# 100# hetrized fi lifetime 0 ge 14Ya1 4Le05=9 hetrized fi 400# 200#	882.4 470# rom ENSDF 19Dr04=606 9=98(22) 00 1(+21-14) a rom ENSDF	0.7 100# 2015=36(+7-4); ((26); He17=98(+59-2) nd 68Va04=100() 2015=2.5(+1.7-0	$\begin{array}{c} 4.71\\ 117\\ 94\\ 60\#\\ 3.1\\ 0 ther 16Ca25=6(\\ 7) 96Ik01=82(+1) 50)\\ .7)\\ 1\#\\ 64\\ 2.1\\ \end{array}$	$\mu s ms ms ms 1)$ $(8-13)$ $s s \mu s$	10 1.2 (>300 ns) 10 0.7	$(9/2^{-})$ $5/2^{-}\#$ $(13/2^{+})$ 0^{+} (3^{-})	15 15 15	10A124 16Ca25	T I TD	1968 1996 2010 1998 2013	$\alpha = ?; \beta^+ = 1\#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$ $\beta^- ?; \beta^- n = 10\#$ $\beta^- = 100; \beta^- n = 2.2 22$ IT = 100	* * * * * * * * * * * * *
Fr 209 Fr ^m 209 Ra ^m 209 Ra ^m 209 Ac 209 Th 209 Th 209 Th 209 Th 209 Th ^m *209 Hg *209 Ac *209 Ac *209 Ac *209 Ac	1858 2740 8840 16370# 16840# T : symn T : from T : avera T : 9 T : symn 2330# -4710# -3960#	6 6 50 140# 100# netrized fi lifetime 0 ge 14Ya1 4Le05=9 netrized fi 400# 200# 200#	882.4 470# com ENSDF 99Dr04=606 9=98(22) 00 1(+21-14) a com ENSDF 663 1406	0.7 100# 2015=36(+7-4); 6 (26); He 17=98(+59-2 nd 68Va04=100(: 2015=2.5(+1.7-0) 2 2 23	$\begin{array}{c} 4.71\\ 117\\ 94\\ 60\#\\ 3.1\\ 0 \text{ther } 16\text{Ca25=6(}\\ 7) 96\text{Ik}01=82(+1)\\ 50)\\ .7)\\ 1\#\\ 64\\ 2.1\\ 2\end{array}$	$\mu s ms ms ms 1)$ $(8-13)$ $s s \mu s \mu s$	10 1.2 (>300 ns) 10 0.7 1	$0^{+} (3^{-}) \\ 8^{+} \#$	15 15 15 14 14 14	14Ya19 10A124 16Ca25 13Go10	T I TD E	1968 1996 2010 1998 2013 2013	$\alpha = ?; \beta^+ = !\#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$ $\beta^- ?; \beta^- n = 10 \#$ $\beta^- = 100; \beta^- n = 2.2 22$ IT = 100 IT = 100	* * * * * * * * * *
Fr 209 Fr ^m 209 Ra ^m 209 Ac 209 Th ^m 209 Hg *209 Hg *209 Hg *209 Ac *209 Ac *209 Ac *209 Th ^m 210 Au 210 Hg ^m 210 Hg ^m 210 Hg ⁿ	1858 2740 8840 16370# 16840# T: symn T: from T: avera T: 9 T: symn 2330# -5370# -4710# -3960# -9247	6 6 50 140# 100# hetrized fi lifetime 0 ge 14Ya1 4Le05=9: hetrized fi 400# 200# 200# 200# 12	882.4 470# rom ENSDF: 19Dr04=606 9=98(22) 00 1(+21-14) a rom ENSDF: 663 1406	0.7 100# 2015=36(+7-4); c (26);)He17=98(+59-2 nd 68Va04=100() 2015=2.5(+1.7-0 2 23	$\begin{array}{c} 4.71\\ 117\\ 94\\ 60\#\\ 3.1\\ 0 ther 16Ca25=6(\\ 7) 96Ik01=82(+1)\\ 50)\\ .7)\\ 1\#\\ 64\\ 2.1\\ 1\\ 2\\ 1.30\end{array}$	$\mu s ms ms ms 1)$ $(8-13)$ $s s \mu s \mu s m$	10 1.2 (>300 ns) 10 0.7 1 0.03	0/2 ⁻) 5/2 ⁻ # (13/2 ⁺) 0 ⁺ (13/2 ⁺) 8 ⁺ #	15 15 15 14 14 14 14 14	10A124 16Ca25 13Go10	T I TD E	1968 1996 2010 1998 2013 2013 1909	$\alpha = ?; \beta^+ = 1\#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$ $\beta^- ?; \beta^- n = 10\#$ $\beta^- = 100; \beta^- n = 2.2 22$ IT = 100 IT = 100 $\beta^- = 100; \beta^- n = 0.009 6$	* * * * * * * * * *
Fr 209 Fr ^m 209 Ra 209 Ra ^m 209 Ac 209 Th 209 Th 209 Th 209 Hg *209 Hg *209 Ac *209 Ac *209 Ac *209 Ac *209 Ac *209 Th ^m	1858 2740 8840 16370# 16840# T : symn T : from T : avera T : 9 T : symn 2330# -5370# -4710# -3960# -9247 -14728.5	6 6 50 140# 100# hetrized fi lifetime 0 ge 14Ya1 4Le05=9 hetrized fi 200# 200# 200# 200# 12 1.4	882.4 470# rom ENSDF 99Dr04=606 9=98(22) 00 1(+21-14) a rom ENSDF 663 1406	0.7 100# 2015=36(+7-4); o (26); 0He17=98(+59-2 nd 68Va04=100() 2015=2.5(+1.7-0 2 2 23	$\begin{array}{c} 4.71\\ 117\\ 94\\ 60\#\\ 3.1\\ 0 ther 16Ca25=6(\\ 7) 96Ik01=82(+1)\\ 50)\\ .7)\\ 1\#\\ 64\\ 2.1\\ 2\\ 1.30\\ 22.20\\ \end{array}$	$\mu s ms ms ms 1)$ $(8-13)$ $s s \mu s m y$	10 1.2 (>300 ns) 10 0.7 1 0.03 0.22	0+ (3 ⁻) 8 ⁺ # 0 ⁺	15 15 15 14 14 14 14 14	10A124 16Ca25 13Go10	T I TD E	1968 1996 2010 1998 2013 2013 1909 1900	$\alpha = ?; \beta^+ = 1\#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$ $\beta^- ?; \beta^- n = 10\#$ $\beta^- = 100; \beta^- n = 2.2 22$ IT = 100 IT = 100; $\beta^- n = 0.009 6$ $\beta^- = 100; \beta^- n = 0.009 6$	* * * * * * * * *
 Fr 209 Fr^m 209 Ra 209 Ac 209 Ac 209 Th^m *209 Hg *209 Fr^m *209 Ac *209 Ac *209 Ac *209 Ac *209 Ac *209 Th^m *209 Ac *200 Ac<td>1858 2740 8840 16370# 16840# T: symn T: avera T: 9 T: symn 2330# -5370# -4710# -3960# -9247 -14728.5 -13451</td><td>6 6 50 140# 100# netrized fn lifetime 0 ge 14Ya1 4Le05=9 netrized fn 400# 200# 200# 200# 12 1.4</td><td>882.4 470# com ENSDF 99Dr04=606 9=98(22) 00 1(+21-14) a com ENSDF 663 1406 1278</td><td>0.7 100# 2015=36(+7-4); ((26); He17=98(+59-2 nd 68Va04=100(; 2015=2.5(+1.7-0) 2 2 23 5</td><td>$\begin{array}{c} 4.71\\ 117\\ 94\\ 60\#\\ 3.1\\ 0 \\ 60\#\\ 3.1\\ 0 \\ 0 \\ 50\\ 7) 96 \\ 1 \\ 82(+1)\\ 50\\ .7)\\ 1 \\ 1 \\ 64\\ 2.1\\ 2\\ 1.30\\ 22.20\\ 201\\ \end{array}$</td><td>$\mu s ms ms ms 1)$ $(8-13)$ $s s \mu s m y ns$</td><td>10 1.2 (>300 ns) 10 0.7 1 0.03 0.22 17</td><td>0^+ (3^-) 8^+ 8^+ 8^+</td><td>15 15 15 14 14 14 14 14 14 14</td><td>10A124 16Ca25 13Go10</td><td>T I TD E</td><td>1968 1996 2010 1998 2013 2013 2013 1909 1900 1980</td><td>$\alpha = ?; \beta^+ = 1\#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$ $\beta^- ?; \beta^- n = 10\#$ $\beta^- = 100; \beta^- n = 2.2 22$ IT = 100 IT = 100 $\beta^- = 100; \beta^- n = 0.009 6$ $\beta^- = 100; \alpha = 1.9e - 6 4$ IT = 100</td><td>* ********</td>	1858 2740 8840 16370# 16840# T: symn T: avera T: 9 T: symn 2330# -5370# -4710# -3960# -9247 -14728.5 -13451	6 6 50 140# 100# netrized fn lifetime 0 ge 14Ya1 4Le05=9 netrized fn 400# 200# 200# 200# 12 1.4	882.4 470# com ENSDF 99Dr04=606 9=98(22) 00 1(+21-14) a com ENSDF 663 1406 1278	0.7 100# 2015=36(+7-4); ((26); He17=98(+59-2 nd 68Va04=100(; 2015=2.5(+1.7-0) 2 2 23 5	$\begin{array}{c} 4.71\\ 117\\ 94\\ 60\#\\ 3.1\\ 0 \\ 60\#\\ 3.1\\ 0 \\ 0 \\ 50\\ 7) 96 \\ 1 \\ 82(+1)\\ 50\\ .7)\\ 1 \\ 1 \\ 64\\ 2.1\\ 2\\ 1.30\\ 22.20\\ 201\\ \end{array}$	$\mu s ms ms ms 1)$ $(8-13)$ $s s \mu s m y ns$	10 1.2 (>300 ns) 10 0.7 1 0.03 0.22 17	0^+ (3^-) 8^+ 8^+ 8^+	15 15 15 14 14 14 14 14 14 14	10A124 16Ca25 13Go10	T I TD E	1968 1996 2010 1998 2013 2013 2013 1909 1900 1980	$\alpha = ?; \beta^+ = 1\#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$ $\beta^- ?; \beta^- n = 10\#$ $\beta^- = 100; \beta^- n = 2.2 22$ IT = 100 IT = 100 $\beta^- = 100; \beta^- n = 0.009 6$ $\beta^- = 100; \alpha = 1.9e - 6 4$ IT = 100	* ********
Fr 209 Fr ^m 209 Ra ^m 209 Ra ^m 209 Ac 209 Th 209 Th 209 Th 209 Hg *209 Fr ^m *209 Ac *209 Ac *209 Ac *209 Ac *209 Ac *209 Ac *209 Ac *209 Ac *209 Ac *209 Ac	1858 2740 8840 16370# 16840# T: symn T: from T: avera T: 9 T: symn 2330# -5370# -4710# -3960# -9247 -14728.5 -13451 -14792.0	6 6 50 140# 100# netrized fi lifetime 0 ge 14Ya1 4Le05=9: netrized fi 400# 200# 200# 200# 12 1.4	882.4 470# rom ENSDF 19Dr04=606 9=98(22) 00 1(+21-14) a rom ENSDF 663 1406 1278	0.7 100# 2015=36(+7-4); ((26); He 17=98(+59-2 nd 68Va04=100(; 2015=2.5(+1.7-0 2 2 23 5	$ \begin{array}{c} 4.71\\ 117\\ 94\\ 60\#\\ 3.1\\ 0 ther 16Ca25=6(\\ 7) 96Ik01=82(+150)\\ 50)\\ .7) \begin{array}{c} 1\#\\ 64\\ 2.1\\ 2\\ 1.30\\ 22.20\\ 201\\ 5.012 \end{array} $	$\mu s ms ms ms 1)$ $(8-13)$ $s s \mu s ms m y ns d$	10 1.2 (>300 ns) 10 0.7 1 0.03 0.22 17 0.005	$0^{+}(3^{-})$ $5/2^{-}\#$ $(13/2^{+})$ $0^{+}(3^{-})$ $8^{+}\#$ $5^{+}\#$ 0^{+} 8^{+} 1^{-}	15 15 15 14 14 14 14 14 14 14 14	10A124 16Ca25 13Go10	T I TD E	1968 1996 2010 1998 2013 2013 1909 1900 1980 1905	$\alpha = ?; \beta^+ = 1\#$ $\alpha ?; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$ $\alpha \approx 100; \beta^- n = 10\#$ $\beta^- = 100; \beta^- n = 2.2 22$ IT=100 IT=100 $\beta^- = 100; \beta^- n = 0.009 6$ $\beta^- = 100; \alpha = 1.9e - 6 4$ IT=100 $\beta^- = 100; \alpha = 13.2e - 5 10$	* ********
Fr 209 Fr ^m 209 Ra ^m 209 Ra ^m 209 Ac 209 Th 209 Th 209 Th ^m *209 Hg *209 Fr ^m *209 Ac *209 Ac *209 Ac *209 Ac *209 Th ^m 210 Au 210 Hg ^m 210 Hg ^m 210 Hg ^m 210 Flore 210 Pb 210 Pb ^m 210 Bi 210 B	1858 2740 8840 16370# 16840# T : symn T : from T : avera T : 9 T : symn 2330# -4710# -3960# -9247 -14728.5 -13451 -14792.0 -14520 7	6 6 50 140# 100# netrized fi lifetime 0 ge 14Ya1 4Le05=9 netrized fi 400# 200# 200# 200# 12 1.4 5 1.4 1.4	882.4 470# rom ENSDF: 19Dr04=606 9=98(22) 00 1(+21-14) a rom ENSDF: 663 1406 1278 271.31	0.7 100# 2015=36(+7-4); 6 (26);)He17=98(+59=2 nd 68Va04=100(: 2015=2.5(+1.7=0) 2 23 5 0.11	$\begin{array}{c} 4.71\\ 117\\ 94\\ 60\#\\ 3.1\\ 0 ther 16Ca25=6(\\ 7) 96Ik01=82(+1)50)\\ .7)\\ 1\#\\ 64\\ 2.1\\ 1\\ 2\\ 1.30\\ 22.20\\ 201\\ 5.012\\ 3.04\\ \end{array}$	$\mu s ms ms ms l)$ $1)$ $8-13)$ $\beta s \mu s m y ns d Mv$	10 1.2 (>300 ns) 10 0.7 1 0.03 0.22 17 0.005 0.06	0^{+} (3^{-}) 3^{+} (3^{-}) 3^{+} 3^{+} 3^{+} 3^{+} 3^{+} 3^{+} 3^{+} 3^{+} 3^{-} 3^{-} 3^{+} 3^{+} 3^{-}	15 15 15 14 14 14 14 14 14 14 14 14	10A124 16Ca25 13Go10	T I TD E	1968 1996 2010 1998 2013 2013 2013 1909 1900 1980 1905 1953	$\alpha = ?; \beta^{+} = !\#$ $\alpha ?; \beta^{+} ?$ $\alpha \approx 100; \beta^{+} ?$ $\beta^{-} ?; \beta^{-} n = 10 \#$ $\beta^{-} = 100; \beta^{-} n = 2.2 22$ IT = 100 $\beta^{-} = 100; \beta^{-} n = 0.009 6$ $\beta^{-} = 100; \alpha = 1.9e - 6 4$ IT = 100 $\beta^{-} = 100; \alpha = 13.2e - 5 10$ $\alpha = 100$	* * * * * * * * *

Chinese Physics C Vol. 41, No. 3 (2017) 030001

			Tabl	e I. Tł	e Nuba	ase2016	i tal	ole (conti	nued, E	xpla	nation	of T	able on p	age 18)	
Nuclide	Mass ex (keV	cess ()	er	Excitatio nergy (ke	en eV)]	Half-	life	J^{π}	Ens	Reference	e	Year of discovery	Decay modes and intensities (%)	
210 Pc	ip continued					120 276	A	0.002	0+	14			1000	~-100	
210 PO 210 Pom	-13955.1	1.1	1556.07	0.03		138.370	a ne	0.002	0 ' 8+	14			1898	$\alpha = 100$	
$210 Po^{n}$	-108955	1.1	5057.65	0.05		263	ns	5	16 ⁺	14			1908	IT=100 IT=100	
²¹⁰ At	-11972	8	5057.05	0.05		8.1	h	0.4	$(5)^+$	14			1949	$\beta^+ \approx 100; \alpha = 0.17520$	
²¹⁰ At ^m	-9422	8	2549.6	0.2		482	ns	6	$(15)^{-}$	14			1970	IT=100	
$^{210}At^n$	-7944	8	4027.7	0.2		5.66	μs	0.07	$(19)^+$	14			1975	IT=100	
²¹⁰ Rn	-9605	5				2.4	'n	0.1	0+	14			1952	$\alpha = 961; \beta^+?$	
210 Rn ^m	-7900	30	1710	30	AD	644	ns	40	8+#	14			1979	IT ?	
210 Rn ⁿ	-5750	30	3857	30		1.06	μs	0.05	$(17)^{-}$	14			1979	IT=100	*
$^{210}Rn^{p}$	-3090	30	6514	30		1.04	μs	0.07	$(23)^+$	14		_	1986	IT=100	*
²¹⁰ Fr	-3333	15				3.18	m	0.06	6+	14	05Ku06	D	1964	$\alpha = 714; \beta^+?$	
²¹⁰ Ra ²¹⁰ D m	443	9	2050.0	0.7		4.0	s	0.1	0^+	14	08Ha12	Т	1967	$\alpha = ?; \beta^+ = 4 \#$	*
210 A a	2494	9	2050.9	0.7		2.29	μs	0.03	8' 7+#	14	04Re04	IJ T	1998	11=100 $\alpha = 2, \ \beta^{\pm} = 0^{\#}$	*
210 Th	14059	19				16.0	ms	40 3.6	0+	14	00617	1	1908	$\alpha = 2; \beta^{-1} = 9 \#$ $\alpha = 2; \beta^{+} = 1 \#$	*
* ²¹⁰ Ho ⁿ	E · from	13Go10	stated to h	he less th	an 80 keV	above 136	6 lev	el	0	14			1775	$\alpha = 1, \beta = 1$	**
* ²¹⁰ Tl	D : symn	netrized	from β^- n=	=0.007(+	-7-4)%	40010 100	0 10 1								**
$*^{210}Rn^{n}$	E : Ense	F2014:	2147.4(0.2) keV ab	ove the 8 ⁺	⁺ level, quo	ted 3	812.40(0.16) + x						**
$*^{210}$ Rn ^p	E : Ense	oF2014:	4803.7(0.4) keV ab	ove the 8 ⁺	⁺ level, quo	ted 6	469.02(0.21) + x						**
* ²¹⁰ Ra	T : also ()7Le14=	2.5(+1.4-0).7) and 3	3.5(+4.8-1	.3)									**
$*^{210}$ Ra ^m	T : avera	ge 13Ba	29=2.1(0.1) 06Ha1	7=2.28(0.0	08) 04Re04	=2.1	(0.1) 04He2	5=2.36(0.0	04)					**
* ²¹⁰ Ac	T : avera	ge 00He	17=335(+6	64–46) 6	8Va04=35	0(50)									**
211 Ца	620#	200#				26	0	0	0/2+#	12	160.25	тD	2010	$\beta^{-} = 100; \beta^{-} = 262$	
211 TI	-6080	200#				20	s	0 16	9/2*#	13	10Ca25	TD	1008	$\rho = 100; \rho = 1=0.505$ $\beta = -100; \beta = n - 2.2.22$	<u>ب</u>
211 Ph	-10492.9	23				36 164	m	0.012	$9/2^+$	13	140002 16Ai01	т	1998	$\beta^{-100}, \beta^{-12.2} 22$ β^{-100}	*
$^{211}Pb^{m}$	-8789	15	1704	15		159	ns	28	$(27/2^+)$	13	05La01	ĒT	2005	IT=100	*
²¹¹ Bi	-11859	5				2.14	m	0.02	9/2-	13			1905	$\alpha \approx 100; \beta^{-}=0.2764$	
$^{211}\text{Bi}^m$	-10602	11	1257	10		1.4	μs	0.3	$(25/2^{-})$	13			1998	IT=100	
²¹¹ Po	-12432.6	1.3				516	ms	3	9/2+	15	13Se03	J	1913	<i>α</i> =100	
211 Po ^m	-10970	5	1462	5	AD	25.2	s	0.6	$(25/2^+)$	15			1954	<i>α</i> ≈100; IT=0.016 4	
²¹¹ Po ⁿ	-10298	5	2135	5		243	ns	21	$(31/2^{-})$	15			1998	IT \approx 100; α ?	
²¹¹ Po ^p	-7561	6	4872	6		2.8	μs	0.7	$(43/2^+)$	15			1998	IT \approx 100; α ?	
²¹¹ At	-11647.3	2.7				7.214	h	0.007	9/2-	13			1940	$\varepsilon = 58.20 \ 8; \ \alpha = 41.80 \ 8$	
211 Atm 211 D	-6832.8	2.7	4814.5	0.5		4.23	μs	0.07	$(39/2^{-})$	13			1971	IT=100	
211 Rn 211 Dm	-8/55	10	1602	1.4		14.6	h	0.2	1/2	13			1952	$\beta' = /2.6 1/; \alpha = 2/.4 1/$	
211 p.n	-/152	10	1003	14		201	ns	28	(11/2) $(62/2^{-})$	13			1981	II=100 IT=100	*
211 Er	_4140	10	0000	14		3 10	m	0.02	(03/2)	13	05Ku06	D	1964	$\alpha = 87.3 \cdot \beta^+ 2$	*
$^{211}Fr^{m}$	-1717	12	2423 16	0.24		146	ns	14	$(29/2^+)$	13	0514000	D	1986	IT=100	
$^{211}Fr^{n}$	517	12	4657.3	0.4		123	ns	14	$(45/2^{-})$	13			1986	IT=100	
²¹¹ Ra	832	8				13.2	s	1.4	5/2(-)	13	07Le14	Т	1967	$\alpha > 93$; $\beta^+ < 7$	*
211 Ra ^m	2030	8	1198.1	0.8		9.5	μs	0.3	$13/2^{+}$	13	13Ba29	Т	2004	IT=100	*
²¹¹ Ac	7200	50				213	ms	25	$9/2^{-}$	13	00He17	Т	1968	$\alpha \approx 100; \beta^+ < 0.2$	*
²¹¹ Th	13910	70				48	ms	20	5/2-#	13			1995	$\alpha = ?; \beta^+ = 0.5 \#$	*
²¹¹ Pa	22080#	100#				3#	ms	(>300 ns)	9/2-#	13			2006	α?;β ⁺ ?;p?	
* ²¹¹ Tl	T : avera	ge 16Ca	25 = 76(18)	12Be28	=88(+46-2	29)	D : β	⁻ n 16Ca25=	=2.2 22						**
* ²¹¹ Pb	T : avera	ge 16Ai	01=36.164	(0.013) 1	5Ko09=3	6.165(0.03	7)								**
* ²¹¹ Pb ^m	E : E=16	79.1 + x	in 05La01	, where	x < 50 keV										**
* KII ²¹¹ D.n ⁿ	E: 1377.	5(0,4)	x < 50												**
* Kii * ²¹¹ Ra	E . 0004. T : avera	.5(0.4) + ge 07I e	14-9(5) 68	L 015-1	2(2) 67Va	22 - 15(2)									**
$*^{211}Ra^{m}$	T · avera	ge 07Ee ge 13Ba	29=94(0.4)	06Ha1	7=97(0.6)): other 04F	le25=	=40(0.5)							**
* ²¹¹ Ac	T : avera	ge 00He	17=200(29) 68Va0	4=250(50)), ouior o ir	1020								**
* ²¹¹ Th	T : symn	netrized	from 95Uu	01=37(+	-28-11); 0	ther 15Ya1	3=20	.8(+37.9-8.1	2)(2 evts)						**
				(-	,, -										
215															
²¹² Hg	2760#	300#				1#	m	(>300 ns)	0+	11	10A124	Ι	2010	β^- ?; β^- n=8#	
²¹² Tl	-1550#	200#				31	s	8	(5 ⁺)	12	16Ca25	TD	1998	$\beta^{-}=100; \beta^{-}n=1.8 \ 18$	
²¹² Pb	-7548.8	1.8	100-			10.64	h	0.01	0+	05	105 5	-	1905	$\beta^{-}=100$	
212 p.	-6213.8	2.7	1335	2		6.0	μs	0.8	8 ⁺ #	05	12Re.B	E	1998	11=100	*
212 D:m	-8118.0	1.9	250	20		60.55	m	0.06	(0- 0-)	05	89Ha.A	D	1905	$p = 64.066; \alpha = 35.946; \beta^{-}\alpha = 0.014$	
212 D;n	-/8/0	30 30	250 1470	30 30	AD MD	25.0	m	0.2	(8,9)	05	13Ch12	P	1978	$\alpha = 0/1; p = 551; p \alpha = 501$ $\beta^{-} = 2.1T > 75$	
212 Po	-10360 5	12	14/9	50	MD	7.0 204 7	me	1.0	> 10 0+	05	13Re31	т	1978	$\mu = 1.11 > 1.5$ $\alpha = 100$	*
$^{212}Po^{m}$	-7446	5	2923	4	AD	45.1	5	0.6	(18^{+})	05	150051	1	1962	$\alpha \approx 100; \text{ IT}=0.07 2$	
A-grou	ip is continu	ed on ne	ext page	· ·		+5.1	3	5.0	(10)	55			1702	a100, 11=0.07 Z	
6	•		1 8												

Chinese Physics C Vol. 41, No. 3 (2017) 030001

			Table	I. The	NUBAS	E2016 ta	ble	(cont	inued, Exp	lanat	ion of Ta	ble o	on page 1	8)	
Nuclide	Mass e	xcess		Excitation	n		Half	-life	J^{π}	Ens	Reference	e	Year of	Decay modes and	
	(ke'	V)	e	nergy (ke	V)								discovery	intensities (%)	
A-grou	p continued														
²¹² At	-8628.2	2.4				314	ms	2	(1-)	05			1954	$\alpha \approx 100; \beta^+ < 0.03; \beta^- < 2e-6$	
$^{212}At^{m}$	-8405.3	2.4	222.9	0.9	AD	119	ms	3	9-#	05			1970	$\alpha > 99$; IT<1	
$^{212}At^n$	-3856.6	2.6	4771.6	1.1		152	μs	5	(25-) 05			1998	IT=100	
²¹² Rn	-8660	3				23.9	m	1.2	0^{+}	05			1950	$\alpha = 100; 2\beta^+$?	
$^{212}Rn^m$	-7020	3	1639.8	0.3		118	ns	14	6+	05	FGK128	J	1971	IT=100	*
$^{212}Rn^{n}$	-6966	3	1694.0	0.4		910	ns	30	8+	05	FGK128	J	1971	IT=100	
212 Rn ^p	-2486	3	6174.0	0.4		104.0	ns	2.8	22^{+}	05	09Dr12	ETJ	1977	IT=100	
212 Rn ^q	-81	3	8579.0	0.5		154	ns	14	30+	05	09Dr12	EJ	1977	IT=100	
²¹² Fr	-3516	9				20.0	m	0.6	5+	05	78Ek02	J	1950	$\beta^{+}=572; \alpha=432$	
$^{212}Fr^{m}$	-1965	9	1551.4	0.3		31.9	μs	0.7	(11+	05			1977	IT=100	
212 Fr ⁿ	-1024	9	2492.2	0.4		604	ns	28	(15-	05			1977	IT=100	
²¹² Fr ^p	2339	9	5854.7	0.6		312	ns	21	(27-	05			1986	IT=100	
212 Fr ^q	5017	9	8533.4	1.1		23.6	μs	2.1	34+#	05			1990	IT=100	
²¹² Ra	-199	11				13.0	s	0.2	0^{+}	05			1967	$\alpha = ?; \beta^+ = 15 \#$	
212 Ra ^m	1759	11	1958.4	0.5		8.1	μs	0.7	8^{+}	05	13Ba29	Т	1986	IT=100	*
212 Ra ⁿ	2414	11	2613.4	0.5		512	ns	104	11-	05	13Ba29	Т	1986	IT=100	*
²¹² Ac	7280	50				895	ms	28	6+#	05	14Ya19	Т	1968	$\alpha = ?; \beta^+ = 3\#$	*
²¹² Th	12111	10				31.7	ms	1.3	0^{+}	15			1980	$\alpha \approx 100; \beta^+ = 0.3\#$	
²¹² Pa	21590	70				7.5	ms	2.8	7+#	05	14Ya19	Т	1997	$\alpha = 100$	*
$*^{212}Pb^{m}$	T : 12Go	019=6.0(0.8) supersed	des 12Re.l	B=5.0(0.3); other 98F	f02=	5(1)							**
* ²¹² Bi ⁿ	D : IT n	ot observ	ed, deduced	from half-	-life>30 r	n for highly	char	ged ion	s						**
$*^{212}Rn^{m}$	J : E2 to	4+ for 21	12 Rn ^m ; E2 to	6 ⁺ for ²¹²	Rn ⁿ ; mag	netic mome	ent me	easuren	nent						**
$*^{212}Ra^{m}$	T : avera	age 13Ba	29=7.1(0.2)	06Ha17=9	9.7(0.6) 04	4He25=8.31	1(0.25	5) 86Ko	01=10.9(0.4)						**
$*^{212}Ra^{m}$	J:63.31	keV γ to (6^+ ; no γ to 2	2^{+} and 4^{+} :	; measure	d magnetic	mom	ent							**
$*^{212}$ Ra ⁿ	T : avera	ige 13Ba	29=480(40)	86Ko01=8	850(130)	U									**
$*^{212}$ Ra ⁿ	J : 655 k	eVγE3	to 8+; measu	ured magn	etic mom	ent									**
* ²¹² Ac	T : avera	age 14Ya	19=880(35)	00He17=8	380(110)	58Va04=930	0(50)								**
* ²¹² Ac	J : Ense	OF propos	ses to assign	7^+ , if the	observed	α feeds the	208 F	r 7 ⁺ gro	ound-state						**
* ²¹² Pa	T : avera	age 14Ya	10=5.1(+5.1	-1.7) 97M	1i03=5.1(-	+6.1–1.9)		3-							**
		-		· · ·	`										

²¹³ Hg	7670#	300#				1#	s	(>300 ns)	$5/2^{+}$ #	11	10A124	Ι	2010	β^{-} ?; β^{-} n=30#	
²¹³ Tl	1784	27				24	s	4	$1/2^{+}$	12	16Ca25	TD	2010	$\beta^{-}=100; \beta^{-}n=7.634$	
²¹³ Pb	-3204	7				10.2	m	0.3	$(9/2^+)$	07			1964	$\beta^{-}=100$	
²¹³ Bi	-5232	5				45.61	m	0.04	$9/2^{-}$	07	13Ma13	Т	1947	$\beta^{-}=97.913; \alpha=2.093$	*
$^{213}\text{Bi}^m$	-3930#	200#	1300#	200#		> 168	s		$25/2^{-}$ #		08Ch.A	Т	2008		
²¹³ Po	-6654	3				3.708	μs	0.008	$9/2^{+}$	07	13Su13	Т	1947	$\alpha = 100$	
²¹³ At	-6580	5				125	ns	6	$9/2^{-}$	07			1968	$\alpha = 100$	
$^{213}\text{At}^m$	-5210	50	1370	50		110	ns	17		07			1980	IT=100	*
213 At ⁿ	-3600	50	2980	50		45	μs	4	$(49/2^+)$	07			2003	IT=100	*
²¹³ Rn	-5696	3				19.5	ms	0.1	9/2+#	07			1967	$\alpha = 100$	
213 Rn ^m	-3990	50	1710	50		1.00	μs	0.21	$(25/2^+)$	07			1988	IT=100	*
213 Rn ⁿ	-3460	50	2240	50		1.36	μs	0.07	$(31/2^{-})$	07			1988	IT=100	*
213 Rn ^p	280	50	5980	50		164	ns	11	$(55/2^+)$	07			1988	IT=100	*
²¹³ Fr	-3553	5				34.14	s	0.06	$9/2^{-}$	07	13Fi08	Т	1964	$\alpha = 99.445; \beta^+ = 0.565$	*
213 Fr ^m	-1963	5	1590.41	0.18		505	ns	14	$21/2^{-}$	07			1971	IT=100	
213 Fr ⁿ	-1015	5 5 2537.62 0.23 238 ns 6 $29/2^+$ 07 1971 IT=100													
213 Fr ^p	4542	$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
²¹³ Ra	346	10				2.73	m	0.05	$1/2^{-}$	07			1955	$\alpha = 80.5; \beta^+?$	
213 Ra ^m	2114	11	1768	4	AD	2.20	ms	0.05	$(17/2^{-})$	07	06Ku26	TD	1976	IT \approx 99; α =0.64	*
²¹³ Ac	6155	15				738	ms	16	$9/2^{-}$ #	07			1968	$\alpha = ?; \beta^+ ?$	
²¹³ Th	12120	9				144	ms	21	$5/2^{-}$ #	07			1968	$\alpha = ?; \beta^+ = 1.4 \#$	
²¹³ Th ^m	13300	9	1180	3		1.4	μs	0.4	$13/2^+$ #		07Kh22	TD	2007	IT=100	*
213 Th ^p	12380#	50#	260#	50#											
²¹³ Pa	19660	70				7	ms	3	$9/2^{-}$ #	07	95Ni05	TD	1995	$\alpha = 100$	*
* ²¹³ Bi	T : aver	age 13Ma	13 = 45.62(0.	.06) 73Po1	6=45.59(0	.06)									**
$*^{213}$ At ^m	E:1318	8.1(0.6) +	x ; x estima	ted 50(50)	by NUBAS	SE									**
$*^{213}$ At ⁿ	E:2920	5 + y ; y e	stimated 50(50) by Nt	BASE										**
$*^{213}$ Rn ^m	E:1664	4.0(1.0) +	x; x=50(50) estimated	i by Nuba	SE									**
$*^{213}$ Rn ⁿ	E:2180	5.7 + x ; x	=50(50) esti	mated by	NUBASE										**
$*^{213}$ Rn ^p	E:5929	9 + y ; y=:	50(50) estim	ated by N	UBASE										**
* ²¹³ Fr	T : see	discussion	n of previous	results in	13Fi08										**
$*^{213}Ra^{m}$	E : deriv	ved from	difference in	α decay e	energy in th	e Ame ev	aluati	ion.							**
$*^{213}$ Ra ^m	E :	76Ra37 le	ess than 10 k	eV above	1769.7 leve	el, thus 17	75(3)	keV							**
$*^{213}$ Ra ^m	J: 17/2	or 13/2	+ as propose	d in 76Ra	37										**
$*^{213}$ Th ^m	E : unce	ertainty es	timated by N	NUBASE											**
* ²¹³ Pa	T : sym	metrized t	from 5.3(+4.	0–1.6)											**

Chinese Physics C Vol. 41, No. 3 (2017) 030001

			Tabl	e I. III	e NUBA	SE2010		ie (contin	ueu, Ex		ation of		ne on pag	(e 18)	
Nuclide	Mass e	excess		Excitatio	n N		Half-	life	J^{π}	Ens	Reference	ce	Year of	Decay modes and	
	(Ke	V)	e	nergy (Ke	ev)								discovery	intensities (%)	
²¹⁴ Hg	11180#	400#				1#	s	(>300 ns)	0^+	11	10A124	Ι	2010	β^{-} ?; β^{-} n=10#	
²¹⁴ Tl	6470#	200#				11	s	2	5+#	11	16Ca25	TD	2010	$\beta^{-}=100; \beta^{-}n=34 12$	
²¹⁴ Pb	-182.8	2.0				27.06	m	0.07	0^{+}	15			1904	$\beta^{-}=100$	
214 Pb ^m	1237	20	1420	20		6.2	μs	0.3	8+#	15			2012	IT=100	*
²¹⁴ Bi	-1201	11				19.9	m	0.4	1-	09	89Ha.A	D	1904	$\beta^{-} \approx 100; \alpha = 0.021 1; \beta^{-} \alpha = 0.003$	3
$^{214}\text{Bi}^m$	-1000#	100#	200#	100#		> 93	s		8-#		08Ch.A	Т	2008		
²¹⁴ Po	-4470.0	1.4				163.72	μs	0.27	0^{+}	09	13Be31	Т	1912	$\alpha = 100$	*
²¹⁴ At	-3380	4				558	ns	10	1-	09			1949	$\alpha = 100$	
$^{214}At^m$	-3321	8	59	9	AD	265	ns	30		09			1982	$\alpha < 100$	
$^{214}At^{n}$	-3146	5	234	6	AD	760	ns	15	9-	09			1982	$\alpha < 100$	
²¹⁴ Rn	-4320	9				270	ns	20	0^{+}	09			1970	$\alpha = 100$	
214 Rn ^m	275	9	4595.4	1.8		245	ns	30	(22^{+})	09			1983	IT=100	
²¹⁴ Fr	-959	9				5.18	ms	0.16	(1^{-})	09	15Kh09	Т	1967	$\alpha = 100$	*
214 Fr ^m	-837	8	122	5	AD	3.35	ms	0.05	(8^{-})	09			1962	$\alpha = 100$	
214 Fr ⁿ	-321	10	638	5		103	ns	4	(11^{+})	09			1993	IT=100	
214 Fr ^p	5620	100	6580	100		108	ns	7	(33^{+})	09			1994	IT ?	*
²¹⁴ Ra	93	5				2.437	s	0.016	0+	09	15Kh09	Т	1967	$\alpha \approx 100; \beta^+ = 0.0594$	*
214 Ra ^m	1913	5	1819.7	1.8		118	ns	7	6+	09			2004	IT=100	
214 Ra ⁿ	1958	5	1865.2	1.8		67.3	μs	1.5	8+	09			1971	IT $\approx 100; \alpha = 0.097$	
²¹⁴ Ra ^p	2776	5	2683.2	1.8		295	ns	7	11-	09			1979	IT=100	
214 Ra ^q	3571	5	3478.4	1.8		279	ns	4	14-	09			1979	IT=100	
214 Ra'	4240	2	4146.8	1.8		225	ns	4	17	09			1979	II=100	
214 Rax	6670	5	6577.0	1.8		128	ns	4	(25)	09			1992		
214 AC	6444	15				8.2	s	0.2	5'#	09			1968	$\alpha > 893; \beta < 113$	
214 m	10695	11	0101.0	0.7		8/	ms	10	0'	09			1968	$\alpha \approx 100; p^{-1} = 0.1 \#$	
214 D-	12870	11	2181.0	2.7		1.24	μs	0.12	8'#	09	0511:05	D	2007	11=100	
214 phm	19490 E . 126	80	20.001 aV			17	ms	3		09	9511105	D	1995	$\alpha \approx 100$	
* PD ++ ²¹⁴ Po	E : 150. T : over	y + x; x = 0	20-90 Ke V	0 2) 128,	11-164.2	(0.6)									**
* F0 * ²¹⁴ Er	T : aver	age 15Be	00-50(0)	0.5) 1230 1) 051 (17	111 = 104.2	(0.0) 68To10-5	0(0.2	68Va18-5	5(0.5)						**
* 11 * ²¹⁴ ErP	F · 647	agc 15Ki 7 $\pm v \cdot v$ -	-100(100) e	etimated	-4.0(0.7)	001010–5 SE	.0(0.2	.) 00 va10=5.	5(0.5)						**
* ²¹⁴ Ra	T · aver	2000-15K1	100(100) c 100-2 36(0)	06) 12N	$0.08 - 2.43^{\circ}$	5(0 020) 73	Re33	-2.46(0.03)							**
* Ka	1 . avei	age 1510	107=2.50(0	.00) 121	000-2.43	(0.020) 7.	bess.	-2.40(0.05)							**
²¹⁵ Hg	16210#	400#				1#	s	(>300 ns)	3/2+#	13	10Al24	Ι	2010	β^{-} ?; β^{-} n=4#	
²¹⁵ Tl	9910#	300#				10	s	4	$1/2^+$ #	13	16Ca25	TD	2010	$\beta^{-}=100; \beta^{-}n=4.646$	
²¹⁵ Pb	4340	50				2.34	m	0.19	9/2+#	13	16Ca25	Т	1998	$\beta^{-}=100$	*
²¹⁵ Bi	1629	6				7.6	m	0.2	$(9/2^{-})$	13			1953	$\beta^{-}=100$	
$^{215}\text{Bi}^m$	2996	21	1367	20		36.9	s	0.6	$(25/2^{-})$	13			2001	IT=76.9 5; β^{-} =23.1 5	*
²¹⁵ Po	-541.7	2.1				1.781	ms	0.005	$9/2^{+}$	13			1911	$\alpha = 100; \beta^{-} = 2.3e - 42$	
²¹⁵ At	-1256	7				100	μs	20	$9/2^{-}$	13			1944	$\alpha = 100$	
²¹⁵ Rn	-1169	8				2.30	μs	0.10	$9/2^{+}$	13			1952	$\alpha = 100$	
²¹⁵ Fr	318	7				86	ns	5	$9/2^{-}$	13			1970	$\alpha = 100$	
²¹⁵ Ra	2534	8				1.67	ms	0.01	9/2+#	13			1967	$\alpha = 100$	
$^{215}Ra^{m}$	4412	8	1877.8	0.3		7.31	μs	0.13	$(25/2^+)$	13	04He25	Т	1983	IT=100	*
215 Ra ⁿ	4781	8	2246.9	0.4		1.39	μs	0.07	$(29/2^{-})$	13			1998	IT=100	
215 Ra ^p	6340	50	3810	50		555	ns	10	$(43/2^{-})$	13			1987	IT=100	*
²¹⁵ Ac	6031	12				170	ms	10	9/2-	13			1968	$\alpha \approx 100; \beta^+=0.092$	
²¹⁵ Ac ^m	7827	12	1796.0	0.9		185	ns	30	$(21/2^{-})$	13			1983	TT=100	
²¹³ Ac ⁿ	8520	50	2490	50		335	ns	10	$(29/2^+)$	13			1983	TT=100	*
215 Th	10922	9	1.450	50		1.2	s	0.2	$(1/2^{-})$	13			1968	$\alpha = 100$	*
215 Th ^m	12390	50	1470	50		7/0	ns	00	9/2*#	13			2005	11=100	*
Pa	1/860	/0				14	ms	2	9/2 #	13			1979	$\alpha = 100$	

²¹⁵U 24920 90 1.4 ms 0.9 ²¹⁵U *²¹⁵Pb *²¹⁵Bi^m *²¹⁵Ra^m *²¹⁵Ra^p *²¹⁵Acⁿ *²¹⁵Th *²¹⁵Th *²¹⁵Th *²¹⁵U T : average 16Ca25=98(30)s 13De20=147(12)s; others 14Mo02=160(40) 96Ry.B=36(1)

E: 1347.5(0.2) + x ; x=20(20) estimated by NUBASE

T : average 04He25=7.6(0.2) 98St24=6.9(0.3) 88Fu10=7.2(0.2)

E : 3756.6(0.4) + x; x=50(50) estimated by NUBASE E : 2438 + x; x=50(50) from ENSDF'2001

T : also 07Le14=0.63(+1.26-0.21)

E: 1421.3(0.3) + x; x=50(50) estimated by NUBASE

T : symmetrized from 15Ya13=0.73(+1.33-0.29) ms

5/2-#

15 15Ya13 T

*

** ** ** ** **

**

**

2015

 $\alpha > 0; \beta^+$?

Chinese Physics C Vol. 41, No. 3 (2017) 030001

			Table	I. The	NUB	ASE	2016 t a	able	(continue	d, Expla	anati	ion of Ta	ble o	on page 18	B)	
Nuclide	Mass	excess		Excitati	ion	Half-life J^{π}		J^{π}	Ens	Referenc	e	Year of	Decay modes and			
	(Ke	ev)		energy (I	æv)									discovery	intensities (%)	
²¹⁶ Hg	19860#	400#					100#	ms	(>300 ns)	0^+	11	10A124	I	2010	β^{-} ?; β^{-} n=6#	
²¹⁶ Tl	14720#	300#					6	s	3	5+#	11	16Ca25	TD	2010	$\beta^{-}=100; \beta^{-}n<11.5$	
²¹⁶ Pb	7480#	200#					1.65	m	0.2	0^{+}	15	16Ca25	TD	2010	$\beta^{-}=100$	
$^{216}\text{Pb}^m$	8990#	200#	1514	20			400	ns	40	8+#	15			2012	IT=100	*
²¹⁶ Bi	5874	11				*	2.25	m	0.05	$(6^{-}, 7^{-})$	07			1989	$\beta^{-}\approx 100$	
$^{216}\text{Bi}^m$	5898	15	24	19	MD	*	6.6	m	2.1	$(3)^{(-\#)}$	07			1989	$\beta^{-}\approx 100$	
²¹⁶ Po	1782.4	1.8					145	ms	2	0+	07			1910	$\alpha = 100; 2\beta^{-}?$	
²¹⁶ At	2257	4					300	μs	30	$1^{(-)}$	07			1948	$\alpha \approx 100; \beta^- < 0.006; \varepsilon < 3e-7$	
$^{216}At^{m}$	2417	10	161	11	AD		100#	μs		9-#	07			1971	α=100	
²¹⁶ Rn	253	6					45	μs	5	0^{+}	07			1949	<i>α</i> =100	
²¹⁶ Fr	2971	4					700	ns	20	(1^{-})	07			1970	$\alpha = 100; \beta^+ < 2e - 7\#$	
²¹⁶ Fr ^m	3190	6	219	6	AD		850	ns	30	(9 ⁻)		07Ku30	TJD	2007	$\alpha = ?; \beta^+ ?$	
²¹⁶ Ra	3291	9					182	ns	10	0^{+}	07			1972	$\alpha = 100; \varepsilon < 1e - 8$	
²¹⁶ Ac	8144	11					440	μs	16	(1^{-})	07			1967	$\alpha = 100; \beta^+ = 7e - 5\#$	
$^{216}Ac^m$	8188	10	44	8	AD		441	μs	7	(9 ⁻)	07			1966	$\alpha = 100; \beta^+ = 7e - 5\#$	
$^{216}Ac^n$	8560#	100#	420#	100#			300	ns			07			2006	IT=100	*
²¹⁶ Th	10298	12					26.0	ms	0.2	0^{+}	07			1968	$\alpha \approx 100; \beta^+=0.01\#$	
216 Th ^m	12342	14	2043	9	AD		134	μs	4	(8^+)	07			1983	IT ?; α=2.8 9	
216 Th ⁿ	12945	12	2646.8	0.1			580	ns	30	(11^{-})	07	01Ha46	J	1983	IT=100	
216 Th ^p	13979	12	3681.4	0.7			740	ns	70	(14^{+})	07			2001	IT=100	
²¹⁶ Pa	17800	50					105	ms	12		07	96An21	Т	1972	$\alpha = ?; \beta^+ = 2\#$	*
²¹⁶ U	23066	28					6.9	ms	2.9	0+	15	15Ma37	Т	2015	$\alpha = 100$	*
$^{216}U^{m}$	25320	30	2250	40			1.4	ms	0.9	8+#	15	15Ma37	Т	2015	$\alpha = 100$	*
$*^{216}$ Pb ^m	E:145	9 + x ; x=	=20-90 keV													**
$*^{216}Ac^{n}$	E:322	+ x, x=1	00#100													**
* ²¹⁶ Pa	T : othe	ers 98Ik0	1=150(70-40)), 140(50	0-30) 7	9Sc09=	=170(100)-40)	71Su14=200	(40)						**
* ²¹⁶ U	T : ave	rage 15M	a37=4.72(+4	4.72-1.57	7) 15De	22=3.	8(+8.8-3	.2)								**
$*^{216}U^{m}$	T : syn	nmetrized	from 15Ma	37=0.74(+1.34-	0.29)										**

 $*^{216}U$ $*^{216}U^{m}$ T : average 15Ma37=4.72(+4.72-1.57) 15De22=3.8(+8.8-3.2)T : symmetrized from 15Ma37=0.74(+1.34-0.29)

²¹⁷ Tl	18310#	400#				1#	s	(>300 ns)	$1/2^{+}$ #	11	10A124	Ι	2010	β^{-} ?; β^{-} n=100#	
²¹⁷ Pb	12240#	300#				20	s	5	$9'/2^+$ #	11	16Ca25	TD	2010	$\beta^{-}=100$	
²¹⁷ Bi	8730	18				98.5	s	1.3	9/2-#	14			1998	$\beta^{-}=100$	
$^{217}\text{Bi}^m$	10210	40	1480	40		2.70	μs	0.06	$25/2^{-}$ #	14	14Mo02	Т	2012	IT=100	*
²¹⁷ Po	5884	7				1.514	s	0.026	$(9/2^+)$	03	04Li28	TJ	1956	$\alpha > 95; \beta^- < 5$	*
²¹⁷ At	4395	5				32.62	ms	0.24	9/2-	03	13Su13	Т	1947	$\alpha \approx 100; \beta^{-}=0.0082$	*
²¹⁷ Rn	3659	4				540	μs	50	$9/2^{+}$	03			1949	$\alpha = 100$	
²¹⁷ Fr	4315	7				16.8	μs	1.9	$9/2^{-}$	03	90An19	Т	1968	$\alpha = 100$	*
²¹⁷ Ra	5890	7				1.63	μs	0.17	$(9/2^+)$	03	90An19	Т	1970	$\alpha = 100$	*
²¹⁷ Ac	8704	11				69	ns	4	$9/2^{-}$	03			1972	$\alpha = 100; \beta^+ = 6.9e^{-9}$	
²¹⁷ Ac ^m	10716	18	2012	20	AD	740	ns	40	$(29/2)^+$	03			1973	IT=95.7 10; α=4.3 10	
²¹⁷ Th	12206	11				247	μs	4	9/2+#	03	05Ku31	Т	1968	$\alpha = 100$	*
217 Th ^m	12880	11	673.8	1.8		141	ns	50	$(15/2^{-})$	03			1989	IT=100	*
217 Th ⁿ	14510#	60#	2307#	55#		71	μs	14	$(25/2^+)$		05Ku31	ETJ	2002	IT=100	*
²¹⁷ Pa	17068	16				3.48	ms	0.09	$9/2^{-}$ #	03	02He29	Т	1968	α =100; B=0.0024#	*
217 Pa ^m	18929	16	1860	7	AD	1.08	ms	0.03	$(23/2^{-})$	03	02He29	TD	1979	<i>α</i> =73 4; IT ?	*
²¹⁷ U	22970#	70#				800	μs	700	$1/2^{-}$ #	03	05Le42	Т	2000	$\alpha \approx 100; \beta^{-}=0.05\#$	*
$*^{217}$ Bi ^m	E:143	6 + y ; y=	=40(40) estin	nated by	NUBASE										**
* ²¹⁷ Po	T : aver	rage 03Kı	125=1.53(0.0)3) 96Ry	.B=1.47(0.0	05); other 0	4Li28	=1.6(0.2)							**
* ²¹⁷ At	T : aver	rage 13Su	13=32.8(0.3) 63Di0	5=32.3(0.4)										**
* ²¹⁷ At	D : ave	rage β^{-9}	97Ch53=0.00	067(24)9	% 69Le.A=0	0.012(4)%									**
* ²¹⁷ Fr	T : aver	rage 90Aı	$119=16(2)\ 70$)Bo13=2	22(5)										**
* ²¹⁷ Ra	T : aver	rage 90Ai	119=1.7(0.3)	70Bo13	3=1.6(0.2)										**
* ²¹⁷ Th	T : unw	veighed a	verage 05Ku	31=257(2) 02He29=	=237(2) 00H	He17=	=247(3) 73Ha	32=252(7)						**
* ²¹⁷ Th	T : othe	ers 15Kh(9=259(12))5L117=	310(70)										**
* ²¹⁷ Th ^m	E : unc	ertainty e	stimated by	NUBASE			20/5								**
* ²¹⁷ Th"	T:sym	imetrized	from 05Ku3	1=6/(+	[7–11); othe	r 02Mu.A=	=20(5))							**
* ²¹⁷ Th"	E : wea	k Kx ray	s placed it le	ss than 1	10 keV abo	ve 21/2 ' at	2252	keV							**
²¹⁷ Pa	I : avei	rage 02He	$e^{29=3.8(0.2)}$	00He1/	=3.4(0.1)										**
**** Pa‴ 21711	J : from	1 13ASUI	f	1 12 0	0		15 (1	. 21.2.5.7)							**
*=•• U	i : sym	imetrized	1000.19(+	1.13-0.	(U) ms; othe	r 001/1a65=	12.0(-	+21.3–3.7)m	IS						**

			1a	Die I.	The N	UBASE2	201	o table (continuea,	Ex	pianatio	on oi	Table on	page 18)	
Nuclide	Mass (k	excess eV)	e	Excitat nergy (l	ion keV)		Half	life	J^{π}	Ens	Reference	ce	Year of discovery	Decay modes and intensities (%)	
218 mm	22100#	100 //				200.0			5 + 11					0-0.0- 70"	
218 Dh	23180#	400#				200#	ms	7	5'# 0+	11	160-25	TD	2000	p ?; p n=/0#	
218 Bi	13430#	27				13	s	1	$(6^{-} 7^{-} 8^{-})$	06	10Ca25 04De16	TD	1008	$\beta = 100$ $\beta^{-} = 100$	
218 PO	8356.0	20				3 008	8 m	0.012	0,7,8	00	04De10	J	1996	$\beta = 100$ $\alpha \sim 100; \beta^{-} = 0.02 $	
²¹⁸ At	8098	12				1.5	s	0.012	1-#	06			1904	$\alpha \approx 100; \beta^{-} = 0.02\pi$	
²¹⁸ Rn	5217 3	2.3				33 75	ms	0.15	0+	06	12Sn11	т	1948	$\alpha \approx 100, \beta = 0.1\%$	
²¹⁸ Fr	7059	5				1.0	ms	0.6	1-	06	125011		1949	$\alpha = 100$	
²¹⁸ Fr ^m	7146	6	86	4	AD	22.0	ms	0.5	(8-)	06	99Sh03	J	1982	$\alpha \approx 100$; IT ?	
²¹⁸ Fr ^p	7260#	150#	200#	150#					high					··· ···, ···	
²¹⁸ Ra	6651	11				25.2	μs	0.3	0^+	06			1970	$\alpha = 100; 2\beta^+$?	
²¹⁸ Ac	10840	50				1.00	μs	0.04	1-#	06	15Kh09	Т	1970	α=100	*
$^{218}Ac^{m}$	10990#	70#	150#	50#		32	ns	9	(9^{-})		94De04	ET	1994		*
$^{218}Ac^n$	11370#	70#	530#	50#		103	ns	11	(11^{+})	06			1994	IT=100	*
²¹⁸ Th	12367	11				117	ns	9	0^{+}	06			1973	$\alpha = 100$	*
²¹⁸ Pa	18684	18				113	μs	10		06			1979	$\alpha = 100$	
218 U	21895	14				550	μs	140	0+	06		-	1992	$\alpha = 100$	*
218 Um	24004	18	2109	17	AD	660	μs	200	(8+)	06	15Ma37	Т	2005	$\alpha = 100$	*
* ²¹⁸ Ac	T: ave	rage 15K	h09=0.96	(0.05) 8 24	39M117=	1.06(0.09)	835	c23=1.12(0).11)						**
* ²¹⁸ Ac ^m	E: at 1	east 122.:	in 94Det	J4 12 218 A	om faces	ENGDE									**
*218 AC	E : 384	+.49(0.13)	-160(40)	/e 210 A	c ^m , from	ENSDF									**
* 111 *21811	T : evr	nmetrized	=100(40)	(+170)	100)										**
* 218 Um	T : syr	mineurized	a37-2800	(+170- (±1300-	-120) 05	I e42-560	+26	0_140)							**
* 0	1.400	auge 151vi	1457-2000	11500	-120) 05	12042-3000	120	0-140)							n n
²¹⁹ Pb	20280#	400#				10#	s	(>300 ns)	9/2+#	11	10Al24	Ι	2009	β^- ?	
²¹⁹ Bi	16280#	200#				8.7	s	2.9	$9/2^{-}$ #	12	16Ca25	Т	2009	$\beta^{-}=100$	*
²¹⁹ Po	12681	16				10.3	m	1.0	$9/2^{+}$ #	15	15Fi07	Т	1998	β^- ?; α =28.2 20	*
²¹⁹ At	10396	3				56	s	3	$(9/2^{-})$	16			1953	$\alpha = 93.6 \ 10; \beta^{-} = ?$	
²¹⁹ Rn	8829.4	2.1				3.96	s	0.01	$5/2^{+}$	01			1903	$\alpha = 100$	
219 Fr	8618	7				20	ms	2	$9/2^{-}$	01			1948	$\alpha = 100$	
²¹⁹ Ra	9394	8				10	ms	3	$(7/2)^+$	01			1952	$\alpha = 100$	
²¹⁹ Ac	11570	50				11.8	μs	1.5	9/2-	01		-	1970	$\alpha = 100; \beta^+ = 1e - 6\#$	
²¹⁹ Th	14470	50				1.021	μs	0.024	9/2+#	12	15Kh09	Т	1973	$\alpha = 100; \beta^+ = 1e^{-7}$	*
219 Pa	18540	50				53	ns	10	9/2	01			2005	$\alpha = 100; \beta^+ = 5e - 9\#$	
219 U 219 Na	23290	50)))	μs	25	9/2+#	16	150.22	D	1993	$\alpha = 100; p = 1.4e - 5\pi$	*
-219 p;	29400 T : oth	90 or 12Po2	2+_22(7)			< 5	μs		9/2 #	10	15De22	D		α=100	
* ²¹⁹ Po	T : fro	m 15 Fi07	-620(50)	e											**
* ²¹⁹ Th	T · 15	Kh09-0 9	-020(39) 7(0.04) 73	s 3H937-	1.05(0.0	13)									**
* III * ²¹⁹ ∐	T · svr	nmetrized	from 42(+34-13	3): also ())51 e42=80i	(+10	0-30)							**
* 0	1.591	mietrizee	110111-12(151 10	<i>)</i> , uiso o	012-00	(110	0 50)							
²²⁰ Pb	23670#	400#				30#	s	(>300 ns)	0+	11	10A124	Ι	2010	β^- ?	
²²⁰ Bi	20820#	300#				9.5	s	5.7	1-#	11	16Ca25	TD	2010	$\beta^{-}=100; \beta^{-}n=0.04\#$	
²²⁰ Po	15263	18				40#	s	(>300 ns)	0+	11	98Pf02	Ι	1998	β^- ?	
²²⁰ At	14376	14				3.71	m	0.04	3 ^(-#)	11			1989	$\beta^{-}=922; \alpha=82$	
²²⁰ Rn	10612.1	1.8				55.6	s	0.1	0^{+}	11			1900	$\alpha = 100; 2\beta^{-}?$	
²²⁰ Fr	11482	4				27.4	s	0.3	1+	11	78Ek02	J	1948	$\alpha \approx 100; \beta^{-}=0.355$	
²²⁰ Ra	10270	8				17.9	ms	1.4	0+	11	00He17	Т	1949	$\alpha = 100$	*
²²⁰ Ac	13744	6				26.36	ms	0.19	(3-)	11	90An19	Т	1970	$\alpha = 100; \beta^+ = 5e - 4\#$	*
²²⁰ Th	14669	22				9.7	μs	0.6	0+	11			1973	$\alpha = 100; \varepsilon = 2e - 7\#$	
220 Pa 220 F	20220#	50#				780	ns	160	I #	11			2005	$\alpha = 100; \beta^+ = 3e^{-/\#}$	
220 U 220 N	22930#	100#				60#	ns		0					$\alpha ?; \beta \uparrow ?$	
220 Np	30310#	200#	- 17 19/0	004	10 17/2	30#	ns	``````````````````````````````````````	1 #					α ?	
* Ka 	T : ave	rage 00H	$r_{10-26.4}$	(0.2).7(19=1/(2)	0.01 Ku = 0.000 Ku = 0.000 Ku = 0.000 Ku = 0.0000 Ku = 0.00000 Ku = 0.00000 Ku = 0.00000 Ku = 0.0000000 Ku = 0.0000000000000000000000000000000000	23(3)							**
* AC	1. ave	age 90A	1119-20.4	(0.2) /(JB013-2	.0.1(0.5)									**
²²¹ Bi	24100#	300#				5#	8	(>300 ns)	$9/2^{-}$ #	11	10A124	Ι	2009	β^{-} ?: β^{-} n=2#	
²²¹ Po	19774	20				2.2	m	0.7	9/2+#	13		-	2010	β^- ?	*
²²¹ At	16783	14				2.3	m	0.2	$3/2^{-}\#$	07			1989	$\beta^{-}=100$	
²²¹ Rn	14471	6				25.7	m	0.5	$7/2^+$	07	97Li23	Т	1956	$\beta^{-}=781; \alpha=221$	
²²¹ Fr	13277	5				4.801	m	0.005	5/2-	07	13Su13	Т	1947	$\alpha \approx 100; \beta^{-} = 0.0048 \ 15; 14C = 8.8e - 11 \ 11$	*
²²¹ Ra	12964	5				28	s	2	$5'/2^+$	07	94Bo28	D	1949	α=100; 14C=1.2e-10 9	
²²¹ Ac	14520	50				52	ms	2	9/2-#	07			1968	<i>α</i> =100	
²²¹ Th	16940	8				1.78	ms	0.03	7/2+#	07	14Lo10	Т	1970	<i>α</i> =100	
²²¹ Pa	20380	50				5.9	μs	1.7	$9/2^{-}$	07			1983	$\alpha = 100$	

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

Muslida	Maga		18	Die I.	tion				$\frac{[eu, Ex]}{\pi}$	pian	Deferen	14	Veen of	e 18)	
Nuclide	(k	eXcess eV)		energy	(keV)	I	1a11-1	lle	<i>J</i>	Ells	Kelefelia	æ	discovery	intensities (%)	
A-grou	up continue	-d													
221U	24520	50				660	ns	140	$(9/2^+)$	15			2015	$\alpha \approx 100; \beta^+$?	
²²¹ Np	29850#	200#				30#	ns		9/2-#					α?	
* ²²¹ Po	T : syn	nmetrize	d from 100	Ch19=1	12(+58–28) s										**
* ²²¹ Fr	D : β-	intensity	y is from 9	7Ch53;	¹⁴ C intensity	is from 94B	028								**
* ²²¹ Fr	T : ave	rage 13S	u13=4.800	5(0.006)	10Wa42=4.7	/68(0.017) 0	/Je07	=4.79(0.02)							**
²²² Bi	28730#	300#				2#	s	(>300 ns)	1^{-} #		10Al24	Ι	2009	β^{-} ?; β^{-} n=1#	
²²² Po	22490	40				9.1	m	7.2	0^+	11			2010	β^- ?	*
²²² At	20953	16				54	s	10		11			1989	$\beta^{-}=100$	
²²² Rn	16372.2	1.9				3.8215	d	0.0002	0^{+}	11	15Be07	Т	1899	$\alpha = 100$	*
222 Fr 222 Po	16378	7				14.2	m	0.3	2^{-} 0 ⁺	11	78Ek02	J	1975	$\beta^{-}=100$	
222 A c	14520	4			J.	5 0	s	0.4	1-	11	12P013	1	1948	$\alpha = 100; 14C = 3.0e - 8.10$ $\alpha = 00.1; B^+ = 1.1$	*
222 Acm	16820#	150#	200#	150#	*	1.05	m	0.5	ı high	11			1949	$\alpha = 991, \beta = 11$ $\alpha = 2. \text{ IT} < 10. \beta^{+} = 1.4.4$	*
²²² Th	17203	12	2001	1500		2.24	ms	0.03	0^+	11			1970	$\alpha = 100$: $\varepsilon < 1.3e - 8\#$	
²²² Pa	22160#	70#				3.2	ms	0.3		11	95Ni.A	Т	1970	$\alpha = 100$	*
²²² U	24270	50				4.7	μs	0.7	0^+	15			1983	α =100; β^+ <1e-6#	
²²² Np	31020#	200#				700#	ns		1^{-} #					α ?	
* ²²² Po	T : syn	nmetrize	d from 100	Ch19=14	45(+694–66)	s									**
* ²²² Rn	T : rou	nded fro	m 15Be07	=3.8214	6(16stat,4sys	st)									**
* ²²² A c ^m	I:0th D:der	ived from	sed 95K05	$B^+ > 2$	/(0.10) 82B0 % in ENSDE	04=43(4)									**
* AC * ²²² Pa	T · ave	rage 95N	II 0.7 /0 ⊂ Ji A=3 3(0	p < 2 (3) 795	209=2.9(+0.6)	-04)									**
* ²²² Pa	T : 70E	3013=5.7	7(0.5) conf	licting,	not used	0.1)									**
				0.											
223 D .	22140#	100//				1.11		(- 200)	0/0-1		10 4 10 4	Ŧ	2000	0-0.0-5"	
223 B1 223 Do	32140#	400#				1#	s	(>300 ns)	9/2 = 0/2	11	10AI24 10A124	T	2009	$p_{\beta} ?; p_{n=5\pi}$	
223 At	27080#	200#				1# 50	s s	(>300 lls) 7	$\frac{9}{2}$ # $3/2^{-}$ #	01	10A124	1	1989	$\beta^{-1} \approx 100: \alpha = 0.008 \#$	
223Rn	20390	8				24.3	m	04	$7/2^{(+\#)}$	01			1964	$\beta^{-} \approx 100, \alpha = 0.000 \#$ $\beta^{-} = 100; \alpha = 0.0004 \#$	
²²³ Fr	18382.4	1.9				22.00	m	0.07	$3/2^{-}$	01	85Co24	J	1939	$\beta^{-} \approx 100; \alpha = 0.006$	
²²³ Ra	17233.3	2.1				11.4377	d	0.0022	$3/2^+$	01	15Ko06	Т	1905	$\alpha = 100; 14C = 8.9e - 84$	*
²²³ Ac	17826	7				2.10	m	0.05	$(5/2^{-})$	01			1948	$\alpha = 99; \varepsilon = 1$	
²²³ Th	19386	9				600	ms	20	$(5/2)^+$	01		_	1952	$\alpha = 100$	
²²³ Pa 22311	22320	70				5.1	ms	0.3	$9/2^{-}#$	01	99Ho28	Т	1970	$\alpha = 100; \beta^+ < 0.001 \#$	*
223 Np	25840	200#				21	μs	8	$0/2^{-}$ #	01			1991	$\alpha \approx 100; p = 0.2 \#$	*
* ²²³ Ra	T : ave	rage 15k	xo06=11.4	362(0.0	050) 15Be13:	=11.447(0.00	(μ_{3})	Be13=11.44	5(0.013)					u :	**
* ²²³ Ra	Τ:	15Co02	=11.4358(0.0028)			,		-()						**
* ²²³ Pa	T : ave	rage 99H	Ho28=4.9(0.4) 95N	Vi.A=5.0(1.0)	70Bo13=6.5	5(1.0)								**
* ²²³ U	T : syn	nmetrize	d from 18(+10-5)											**
²²⁴ Bi	36830#	400#				300#	ms	(>300 ns)	1^{-} #	15	10Al24	Ι	2010	β^{-} ?; β^{-} n=10#	
²²⁴ Po	29910#	200#				1#	m	(>300 ns)	0^+	15	10Al24	Ι	2010	β^{-2}	
²²⁴ At	27711	22				2.5	m	1.5		15			2010	β^- ?	*
²²⁴ Rn	22445	10				107	m	3	0^{+}	15		_	1964	$\beta^{-}=100$	
²²⁴ Fr 224 Fr	21749	11	100#	100#		3.33	m	0.10	1-	15	85Co24	J	1969	$\beta^{-}=100$	
224 P.o	21850#	100#	100#	100#	MD	2 6210	n d	0.0022	0^+	15			1002	$\alpha = 100; 14C = 4.02; 0.12$	
²²⁴ Ac	20234	4				2.78	h	0.0023	(0^{-})	15			1902	$\beta^+=90.617: \alpha=9.417: \beta^-<1.6\#$	*
²²⁴ Th	19994	10				1.04	s	0.02	0+	15			1949	$\alpha = 100; 2\beta^+$?	
²²⁴ Pa	23862	8				846	ms	20	5-#	15			1958	$\alpha \approx 100; \beta^+=0.1\#$	
²²⁴ U	25722	23				396	μs	17	0^+	15	14Lo10	Т	1991	$\alpha = 100; \beta^+ < 1.2e - 4\#$	
²²⁴ Np	31880#	200#				100#	μs		1^{-} #					α ?	
* ²²⁴ At	T : syn	nmetrize	d from 100	Ch19=7	6(+138-23) s			0.1.00							**
****Ac	D : syr	nmetrize	a from 51	vie 10 β	=90.9(+1.4-	-2.0)%; α=9	.1(+2	.0–1.4)%							**
225															
²²⁵ Po	34530#	300#				20#	s	(>300 ns)	9/2+#	11	10A124	Ι	2010	β^- ?	
225 At	30400#	300#				2#	m	(>300 ns)	1/2+#	11	10Al24	Ι	2010	β^{-} ?	
225 En	26534	11				4.66	m	0.04	$\frac{7}{2^{-}}$	09	850-24	T	1969	p = 100 $\beta = -100$	
225 P.	23621	12				5.95 14 0	m A	0.14	$\frac{3}{2}$	09	850024	J	1909	$\mu = 100$ $\beta^{-} - 100$	
225 Ac	21995.1	2.0				9 920	d	0.003	$3/2^{-}$ #	09	12Po14	т	1947	$\alpha = 100; 14C = 4.5e - 12.14$	
²²⁵ Th	22310	5				8.75	m	0.04	$(3/2^+)$	09		•	1949	$\alpha \approx 90; \varepsilon \approx 10$	
²²⁵ Pa	24340	70				1.7	s	0.2	5/2-#	09			1958	α=100	

Table I The NUBASE2016 table (continued Explanation of Table on page 18)

Nuclide	Mass	excess	E	xcitation		Half-	life	J^{π}	Ens	Reference	ce	Year of	Decay modes and intensities (%)	
			Circ	ligy (KC V)								discovery	intensities (<i>n</i>)	
22511	up continue	ed			61		4	5 /2+#	00	0011-17	т	1020	~-100	
225 N.m	21500	70			01	ms	4	0/2-#	09	15D=22	T	1989	$\alpha = 100$ $\alpha = 100; \beta^{\pm} 2$	*
* ²²⁵ 11	51590 T · evn	70 metrized	from 00He17	$(-50(\pm 5, 2))$; of	bars not used i	1115 03 NG	10-135(+03	30)	09	15De22	1	1994	$\alpha = 100, \beta$	*
* U * ²²⁵ U	Т. Syn Т.	01Ku07-	-84(4) $-84(4)$ $-84(4)$	$2 = 68(\pm 45, 20)$	$02T_002-05(1$	5) an	d 80He13-80	-39)						**
* U * ²²⁵ Nn	T · svn	-/orKu0/	from 15 De22	2=08(+43-20)	921002=95(1): also 15De?	2 - 38	$(\pm 7.6_{-}2.7)$	J(+40-10)						**
* T	1 . syn	meuizeu	110111150022	-5.5(17.0-2.7), also 15De2.	2-5.0	(17.0-2.7)							**
²²⁶ Po	37550#	400#			20#	s	(>300 ns)	0^{+}	11	10A124	T	2010	β- 🤉	
²²⁶ At	34610#	300#			20#	s	(>300 ns)	0	11	10A124	Ī	2010	β^{-} ?: β^{-} n=0#	
²²⁶ Rn	28747	10			7.4	m	0.1	0^{+}	96			1969	$\beta^{-}=100$	
²²⁶ Fr	27521	6			49	s	1	1^{-}	96	85Co24	J	1969	$\beta^{-}=100$	
²²⁶ Ra	23667.8	1.9			1.600	ky	0.007	0^{+}	96	90We01	D	1898	$\alpha = 100; 14C = 2.6e - 9.6; 2\beta^{-}?$	*
²²⁶ Ac	24309	3			29.37	h	0.12	$(1)^{(-\#)}$	96			1950	$\beta^{-}=833; \epsilon=173; \alpha=0.0062$	
²²⁶ Th	23198	4			30.70	m	0.03	0^+	96	01Bo11	D	1948	$\alpha = 100; {}^{18}O < 3.2e - 12$	*
²²⁶ Pa	26033	11			1.8	m	0.2		96			1949	$\alpha = 745; \beta^+ = 265$	
²²⁶ U	27329	13			269	ms	6	0^+	14	01Ca.B	Т	1973	$\alpha = 100$	*
²²⁰ Np	32780#	90#			35	ms	10		96			1990	$\alpha = 100; \beta^+ = 0.003 \#$	
* ²²⁰ Ra	D: 14C	2 : average	e 90We01=2.3	8(0.8)e-9% 861	Ba26=2.9(1.0)	e-9%	6 85Ho21=3.	2(1.6)e–99	6					**
* ²²⁰⁷ Th	T : from	m 12Po13	; other 87Mil	0=30.57(0.10)		(10)								**
*2200	1 : ave	rage OTCa	а.B=258(15) (0He1/=281(9) 99Gr28=260	(10)								**
227 po	42280#	400#			5#	c	(>300 pc)	9/2+#	16			2010	β^{-2}	
²²⁷ At	42280# 37480#	300#			20#	5	(>300 ns)	$\frac{9}{2} \pi$ $1/2^+ \#$	16			2010	β^{-1} : β^{-2} : $\beta^{-n=0.2#$	
²²⁷ Rn	32886	14			20.2	s	04	$(5/2)^{(+\#)}$	16			1986	$\beta^{-}=100$	
²²⁷ Fr	29682	6			2.47	m	0.03	$1/2^+$	16	85Co24	J	1972	$\beta^{-}=100$	
²²⁷ Ra	27177.7	2.0			42.2	m	0.5	$3/2^+$	16			1953	$\beta^{-}=100$	
²²⁷ Ac	25849.6	1.9			21.772	у	0.003	$3/2^{-}$	16			1902	$\beta^{-}=98.6236; \alpha=1.3836$	
²²⁷ Th	25804.8	2.1			18.697	d	0.007	$(1/2^+)$	16			1906	α=100	
²²⁷ Pa	26831	7			38.3	m	0.3	$(5/2^{-})$	16			1948	<i>α</i> =85 2; <i>ε</i> =15 2	
²²⁷ U	29045	10			1.1	m	0.1	$(3/2^+)$	16			1952	$\alpha = 100; \beta^+ < 0.001 \#$	
²²⁷ Np	32560	70			510	ms	60	5/2-#	16			1990	$\alpha \approx 100; \beta^+=0.05\#$	
227 Pu	36770#	100#			20#	ms		5/2+#					α ?	
228 A t	41680#	400#			5#	0	$(> 200 m_{\odot})$		14	10 4 124	T	2010	$\beta^{-} 2 \beta^{-} n - 0.6 \#$	
228 Rn	35243	400#			5#	s	(>500 lis)	0^+	14	10A124	1	1080	β^{-} , β^{-} II=0.0#	
228 Fr	33384	7			38	5	1	2-	14	85Co24	T	1989	$\beta^{-}=100$ $\beta^{-}=100$	*
²²⁸ Ra	28940 3	2.0			5 75	v	0.03	0^{+}	14	050024	3	1907	$\beta^{-}=100$	~
²²⁸ Ac	28894.7	2.1			6.15	h	0.02	3+	14			1908	$\beta^{-}=100$	*
²²⁸ Th	26771.0	1.8			1.9124	y	0.0008	0^+	14	93Bo20	D	1905	$\alpha = 100; {}^{20}\text{O} = 1.13\text{e} - 1122$	*
²²⁸ Pa	28924	4			22	ĥ	1	3+	14			1948	$\beta^+=98.15\ 17;\ \alpha=1.85\ 17$	
²²⁸ U	29222	14			9.1	m	0.2	0^+	14			1949	$\alpha > 95; \varepsilon < 5$	
²²⁸ Np	33600	50			61.4	s	1.4		14	94Kr13	D	1994	ε =60 7; α =40 7; β +SF=0.012 6	*
²²⁸ Pu	36087	29			2.1	s	1.3	0^+	14	03Ni10	Т	1994	$lpha \approx 100; eta^+ < 7#$	*
* ²²⁸ Fr	I : 08C	h.A repor	ts an excited i	somer with ha	lf-life=94(+17	0-29) s							**
* ²²⁸ Ac	I : 08C	h.A repor	ts an excited i	somer with ha	lf-life=149(+9	5-42	() s							**
* ²²⁸ Th	T: ave	rage 14Ui	n01=698.3(0.6)	5) 71Jo14=698	.//(0.32) 56K	116=0	697.6(0.7)	.1						**
* ²²⁸ Pu	T: syn	nmetrized	from 03Ni10	=1.1(+2.0-0.5))	0.01	2(6)% of tota	11						**
²²⁹ At	44820#	400#			5#	s	(>300 ns)	$1/2^{+}$ #	11	10A124	Ι	2010	β^{-} ?; β^{-} n=4#	
²²⁹ Rn	39362	13			11.9	s	1.3	5/2+#	09		_	2009	β^- ?	*
²²⁹ Fr	35668	5			50.2	s	0.4	$(1/2^+)$	08	14Bu06	J	1975	$\beta^{-}=100$	*
²²⁹ Ra	32562	15			4.0	m	0.2	$5/2^+$	08			1975	$\beta^{-}=100$	
229 AC	30690	12			62.7	m	0.5	$(3/2^{+})$	08	1437.04	т	1952	p = 100	
229 Th 229 Th	29585.6	2.4	0.007/	0.0005	7.920	ky	0.017	$5/2^{+}$	08	14 Va04	T ETE	1947	$\alpha = 100$	*
229 Do	29383.6	2.4	0.0076	0.0005	< 1	S d	0.05	$(3/2^+)$ $(5/2^+)$	08	10 we0/	EID	1994	$11=100; \alpha$	*
229 p.m	29091 29900	3	12 20	0.04	420	u ne	30	$(3/2^{-})$ $3/2^{-}$	00	15Ab0/	FID	1949	$c \sim 100, u = 0.40 J$ $c \sim 100, u = 0.40 J$	*
229 ₁ 1	31211	6	12.20	0.04	420 57 8	m	0.5	$(3/2^+)$	08	15Ah04	Т	1949	$\beta^+ \approx 80^\circ \alpha \approx 20$	*
²²⁹ Nn	33780	90			4.00	m	0.18	$5/2^+ \#$	08	04Sa05	TD	1968	$\alpha = 68 11; \beta^+$?	*
$^{229}Np^{p}$	33940#	100#	160#	50#				$5/2^{-}$ #	00			-,	······································	
²²⁹ Pu	37400	50			91	s	26	$3/2^+$ #	08	10Kh06	TD	1994	α =50 20; β^+ =50 20; SF<7	*
4	· ,•	1											· ·	

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

			140	ne I. The NU	BASE.	201	o table (continue	u, 1	лріана	uion	I OI TADIE	on page 10)	
Nuclide	Mass e	excess	Ex	xcitation		Half	-life	J^{π}	Ens	Referen	ce	Year of	Decay modes and	
	(Ke	V)	ene	rgy (kev)								discovery	intensities (%)	
A-gro	up continue	ed												
²²⁹ Am	42150	90			1.8	s	1.5	$5/2^{-}$ #	15			2015	$\alpha \approx 91; \beta^+$?	*
²²⁹ Am ^p	42530#	220#	380#	200#									IT ?	
* ²²⁹ Rn	T : sym	metrized	from 09Ne	e03=12.0(+1.2-1	.3)									**
* ²²⁹ Fr	T : 92B	005=50.2	(0.4); ENS	SDF2008 50.2 S 2	20 is mis	prin	t							**
* ²²⁹ Th	T : as e	valuated b	y 14Va04											**
* ²²⁹ Th ^m	T:>60) s for 2^+	charge stat	te from 16We07;	others ()9In()1(1m <t<3< td=""><td>3m); 09Ki1</td><td>4<21</td><td>h</td><td></td><td></td><td></td><td>**</td></t<3<>	3m); 09Ki1	4<21	h				**
* ²²⁹ Th ^m	E : 0.00	63 <ex<< td=""><td>0.0183 fro</td><td>m 16We07; other</td><td>r 94He0</td><td>8=0.</td><td>0035(0.0010</td><td>))</td><td></td><td></td><td></td><td></td><td></td><td>**</td></ex<<>	0.0183 fro	m 16We07; other	r 94He0	8=0.	0035(0.0010))						**
* ²²⁹ Pa ^m	D : 98L	e15 11=1	00 rejected	a by 15An04	2)									**
* ²²⁹ NP	T : aver	age 045a	05=4.0(0.4)	$(0.110) 01C_0 P_0$.2) 0(+71-2	27)								**
* Fu * 229 pu	D · from	n ENSDE'	00=07(+4 07	(1-19) 01Ca.D=9	0(+/1-2	./)								**
* ²²⁹ Am	T · sym	metrized	from 15D	-22-0.9(+2.1-0.5	7) · also	15De	$22-64(\pm 14)$	9_5 4)						**
	1.091	metriced), 100			.,,						
²³⁰ Rn	42050#	200#			10#	s	(>300 ns)	0^+	12	10A124	Ι	2010	β^- ?	
²³⁰ Fr	39487	7			19.1	s	0.5		12			1987	$\beta^{-}=100$	
²³⁰ Ra	34516	10			93	m	2	0^{+}	12			1978	$\beta^{-}=100$	
²³⁰ Ac	33838	16			122	S	3	(1^{+})	12			1973	$\beta^{-}=100; \beta^{-}SF=1.2e-6.4$	
²³⁰ Th	30862.6	1.2			75.4	ky	0.3	0^{+}	12			1907	$\alpha = 100$; SF<4e-12; ²⁴ Ne=5.8e-11 13	
²³⁰ Pa	32174	3			17.4	d	0.5	2-	14	100 10	-	1948	$\beta^+=92.27; \beta^-=7.87; \alpha=0.00321$	
230 U 230 N	31615	5			20.23	d	0.02	0^+	12	12Po12	Т	1948	$\alpha = 100; 22 \text{Ne} = 4.8 \text{e} - 12 20; \text{SF} < 1.4 \text{e} - 10 \text{\#}; \dots$	*
²³⁰ Np	35240	50			4.6	m	0.3	<u>0</u> +	12	010 D	T	1968	$\beta' < 97; \alpha > 3$	
230 A m	30934 42020#	13			1.70	m	0.17	0.	12	16Ko12	1 TD	1990	$\alpha \approx 100; p^{-1};$ $\beta = 100; \beta = 2; SE = 2; SE = 2;$	
	42950# D···	28 ± 2			40	s	10		12	10Ka15	ID	2005	$p \approx 100; p \approx 5r = ?; sr = ?$	*
* 230 A m	D , T : eym	metrized	from 16K	(13-32(+22, 0))										**
* 7 u m	1 . sym	metrized	110111 1010	a15=52(122-7)3										ጥጥ
²³¹ Rn	46450#	300#			300#	ms	(>300 ns)	$1/2^+$ #	13	10Al24	Ι	2010	β^- ?	
²³¹ Fr	42081	8			17.6	s	0.6	$(1/2^+)$	13	14Bu06	J	1985	$\beta^{-}=100$	
²³¹ Ra	38216	11			104	s	1	$(5/2^+)$	13	06Bo33	Т	1983	$\beta^{-}=100$	
231 Ra ^m	38282	11	66.21	0.09	53	μs		$(1/2^+)$	13			2001	IT=100	
²³¹ Ac	35763	13			7.5	m	0.1	$1/2^+$	13			1973	$\beta^{-}=100$	
²³¹ Th	33815.9	1.2			25.52	h	0.01	$5/2^+$	13			1911	$\beta^{-}=100; \alpha=4e-11\#$	
²³¹ Pa	33424.4	1.8			32.76	ky	0.11	$3/2^{-}$	13			1918	$\alpha = 100; SF \le 3e - 10; {}^{24}Ne = 13.4e - 1017; \dots$	*
²³¹ U	33806.0	2.7			4.2	d	0.1	$(5/2)^{(+\#)}$	13			1949	$\varepsilon \approx 100; \alpha = 0.004 1$	
²³¹ Np	35620	50			48.8	m	0.2	$(5/2)^{(+\pi)}$	13			1950	$\beta^+=98$ 1; $\alpha=2$ 1	
²³¹ Pu 231	38309	23			8.6	m	0.5	$(3/2^+)$	13			1999	$\beta = 875; \alpha = 135$	*
²³¹ Am	42410#	300#			1#	m		5/2 # 2/2+#					β ' ?; α ?	
231 Do	4/2/0#	23E_0.00	12		20#	s		5/2.#					p · · · ; α ·	
* ²³¹ Pu	D : sym	metrized	-15 from 99L:	a14=90(+3-7)%	and 10(-	+7_3)%							**
							,,-							
222-								(-)						
²³² Fr	46073	14			5.5	s	0.6	(5)	06		_	1990	$\beta^{-}=100; \beta^{-}SF<2e-4$	
²³² Ra	40497	9			4.0	m	0.3	0^+	06	08Ch.A	Т	1983	$\beta^{-}=100$	*
²³² Ac	39154	13			1.98	m	0.08	(1^{+})	06			1986	$\beta^{-}=100$	
232 Th 232 D	35446.8	1.4			14.0	Gy	0.1	(2^{-})	06			1898	$IS=100; \alpha=100; SF=1.1e-94;$	*
232 Pa	35947	8			1.32	a	0.02	(2)	06			1949	$\beta \approx 100; \epsilon = 0.003 \text{ I}$	
232 N.	34009.5	1.8			08.9	У	0.4	(4^{+})	06			1949	$\alpha = 100; -100; 8.9e - 107; SF = 2.7e - 120; $	*
232 Pu	28262	100#			14.7	m	0.5	(4 ⁺) 0 ⁺	00			1930	$p^{+} \approx 100; \alpha \approx 0.0002 \#$	
²³² Am	13340#	300#			1 31	m	0.5	1-#	00			1975	$\beta^{+}-2$; $\alpha^{-}-3$ #: β^{+} SE=0.060.10	*
²³² Cm	46310#	200#			1.51	s s	0.04	0+	00			1907	$\beta^{+} 2; \alpha^{-2}$	
* ²³² Ra	T · aver	age 08Ch	A = 4.00(0)	33) 86Gi08=4 2	(0.8)	3		0					p ., u .	**
* ²³² Th	D· ·	²⁴ Ne+ ²⁶ N	Ne<2 78e-	-10.28^{-2}	(0.0)									**
* ²³² U	D:,	$^{28}Mg < 56$	e-12	, -										**
* ²³² Pu	T : aver	age 00La	25=33.1(0	.8) 73Ja06=34.1(0.7)]	D : 520r.A a	x>1.6% 73	3Ja06	5<20%				**
		8 x	(0	,	/									
233-	100.20	20			0.00		100	1 /0-1 **				2010	0- 100 0- 0"	
²³³ Fr	48920	20			900	ms	100	1/2+#	14			2010	$\beta = 100; \beta^{-}n=0\#$	
233 Ka	44334	9			30	s	5	$1/2^+ #$	05			1990	p = 100	
233 Ac	41308	13			145	s	10	$(1/2^{+})$	05			1983	p = 100	
233 D-	38/31.7	1.4			21.83	m	0.04	$(1/2)^{+}$	05			1935	p = 100 $B^{-} = 100$	
233 TT	3/489.3	1.5			20.9/3	a Icr	0.013	3/2 5/2+	05			1958	$\mu = 100$ $\alpha = 100; SE < 60; 11; ^{24}N_0 = 7.20; 11:0;$	
233 NT	37050	2.3 50			159.2	ку	0.2	5/2' 5/2+#	05	50Ma14	P	1947	$\alpha = 100; \ Sr < 0e - 11; \ TNe = 7.2e - 119; \dots$ $\beta^+ \sim 100; \ \alpha = 0.0007$	*
233 Nmp	38000#	50 60#	50#	30#	50.2	111	0.1	$(5/2^{-1})$	05	501414	D	1950	$\mu \sim 100, a = 0.0007$	*
TAD.		001		2011				(3/2)	05					

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Nuclide	Mass exces (keV)	e	Excitation energy (keV)	Н	alf-li	ife	J^{π}]	Ens	Referen	ce	Year of discovery	Decay modes and intensities (%)	
A-gro ²³³ Pu ²³³ Am ²³³ Bk * ²³³ U * ²³³ Np * ²³³ Am * ²³³ Cm * ²³³ Bk	up continued 40050 50 43260# 100 47290 70 52860# 220 D :; ²⁸ M D : α obser D : combini T : symmetr T : symmetr	# g<1.3e-13 ved in 50Ma14 w ng 10Kh06 a<6 ized from 23(+13 ized from 15De2	ith $\beta^+/\alpha=1.5e5$ and 00Sa52 $\alpha>3$ B-6) 2=21(+48-17)	20.9 3.2 27 40	m s s	0.4 0.8 10 30	5/2+# 5/2-# 3/2+#	05 05 05 15	00Sa52 10Kh06 15De22	TD TD TD	1957 2000 2001 2015	$\beta^+ \approx 100; \alpha = 0.125$ $\beta^+ ?; \alpha = 4.59$ $\alpha = 2010; \beta^+ = 8010$ $\alpha \approx 82; \beta^+ ?$	* * * * * * * * *
234 Ra 234 Ac 234 Th 234 Pa 234 Pa ²³⁴ Pa ²³⁴ U ²³⁴ U ²³⁴ Vu 234 Vu 234 Ac 234 Ch 234 Ac *234 Pa ²³⁴ Ac *234 U *234 Ac *234 Cm *234 Cm *234 Bk	46931 8 44841 14 40613.0 2 40339 4 40417.9 2 38145.0 1 39566.3 1 39556.3 1 39555 8 40350 7 44460# 160 46725 17 53460# 140 1 : 08Ch.A r E : less than D :; ²⁸ M T : also 04S T : average T : symmetr	6 8 79 1 1421.257 4 4 eports two excite 10 keV above (3 g=1.4e-11 3; ²⁴ N a05=3.5(1.3) not 16Ka13=49(+15- ized from 16Ka1	3 0.017 d isomers with $T > 9$. ⁺) level at 73.92(0.0 ke+ ²⁶ Ne=9e-12 7 used -9) 01Ca.B=51(12) 3=19(+6-4) s	30 45 24.10 6.70 1.159 245.5 33.5 4.4 8.8 2.32 52 20 3 s and T= 2), see EN	s d h m ky µs d h m s s 149(-	10 2 0.03 0.05 0.011 0.6 2.0 0.1 0.1 0.08 9 5 +95-42; 2007	$\begin{array}{c} 0^{+} \\ 1^{+} \# \\ 0^{+} \\ 4^{+} \\ (0^{-}) \\ 0^{+} \\ 0^{+} \\ 0^{+} \\ 0^{+} \\ 0^{+} \\ 0^{+} \end{array}$	07 07 07 07 07 07 07 07 07 07 07	08Ch.A 78Ga07 78Ga07 90Ha02 10Kh06 16Ka13	T D D T	1990 1986 1900 1913 1951 1912 1963 1949 1949 1967 2001 2003	$\begin{array}{l} \beta^{-}=100; \ \beta^{-} \mathrm{SF} < 1\mathrm{e} -4 \\ \beta^{-}=100; \ \alpha < 1\mathrm{e} -4 \\ \beta^{-}=100; \ \mathrm{SF} < 3\mathrm{e} -10 \\ \beta^{-}\approx 100; \ \mathrm{SF} < 3\mathrm{e} -10 \\ \beta^{-}\approx 100; \ \mathrm{IT} = 0.16 \ 4; \ \mathrm{SF} < 1\mathrm{e} -10 \\ \mathrm{IS} = 0.0054 \ 5; \ \alpha = 100; \ \mathrm{SF} = 1.64\mathrm{e} -9 \ 22; \ \dots \\ \mathrm{IT} = 100 \\ \beta^{+} = 100 \\ \varepsilon \approx 94; \ \alpha \approx 6 \\ \beta^{+} \approx 100; \ \alpha = 0.039 \ 12; \ \beta^{+} \mathrm{SF} = 0.0066 \ 18 \\ \beta^{+} \approx 71; \ \alpha \approx 27; \ \mathrm{SF} \approx 2 \\ \alpha > 80; \ \beta^{+} < 20 \end{array}$	* * * * * * * * * *
235 Ra 235 Ac 235 Th 235 Pa 235 U ^m 235 U ^m 235 Np 235 Pu 235 Am 235 Cm ^p 235 Cm ^p 235 Bk * ²³⁵ U	51130# 300 47357 14 44018 13 42289 14 40918.8 1. 40918.9 1. 43420 300 41043.1 1. 42182 21 44630 50 48030# 200 48080# 210 52700# 400 D:; SF=	# 1 0.0760 2500 4 # # 50# # 7e-9 2; ²⁰ Ne=8e	0.0004 300 50# -10 4; ²⁵ Ne≈8e-10;	3# 62 7.2 24.4 704 25.7 3.6 396.1 25.3 10.3 5# 1# ²⁸ Mg=8e-	s m My m ms d m m m m -10	4 0.1 0.2 1 0.1 1.8 1.2 0.5 0.6	$5/2^+ \#$ $1/2^+ \#$ $1/2^+ \#$ $(3/2^-)$ $7/2^-$ $1/2^+$ $5/2^+ \#$ $5/2^- \#$ am	14 14 14 14 14 14 14 14 14	08Ch.A 16Ch11	T	2006 1969 1950 1935 1966 2007 1949 1957 1996	$\beta^{-}? \beta^{-}? \beta^{-}=100 \beta^{-}=100 IS=0.7204 6; \alpha=100; IT=100 SF ? \varepsilon \approx 100; \alpha=0.00260 13 \beta^{+} \approx 100; \alpha=0.0028 7 \beta^{+} \approx 100; \alpha=0.40 5 \beta^{+} ?; \alpha ? \beta^{+} ?; \alpha ? $	*
236 Ac 236 Th 236 Pa 236 U 236 Um 236 Np ^m 236 Np ^m 236 Pu ^m 236 Pu ^m 236 Pu ^m 236 Am 236 Am 236 Bk *236 Ac *236 Ac	51220 40 46255 14 45334 14 42444.6 1. 45195 3 43380 50 43438 7 43616 14 42001.6 1. 44087.0 1. 46040# 110 46090# 120 47855 18 53540# 400 T: symmetr D: β^- SF de D: and Net 1.	1 2750 60 240 8 8 1185.45 # 50# # ized from 10Ch1 cay questioned i Mg < 4e-10%, f	3 * 50 AD 0.15 50# 9=72(+345-33) s n 90Ha02 rom 89Mi.A	4.5 37.3 9.1 23.42 120 153 22.5 2.858 1.2 3.6 2.9 6.8 2#	m m My ns ky h yμs m m m m	$\begin{array}{c} 3.6 \\ 1.5 \\ 0.1 \\ 0.03 \\ 2 \\ 5 \\ 0.4 \\ 0.008 \\ 0.3 \\ 0.1 \\ 0.2 \\ 0.8 \end{array}$	$\begin{array}{c} 0^+ \\ 1^{(-)} \\ 0^+ \\ (0^+) \\ (6^-) \\ 1 \\ (3^-) \\ 0^+ \\ 5^- \\ (5^-) \\ (1^-) \\ 0^+ \end{array}$	15 15 06 06 06 06 06 06 06 06 06 06	10Ch19 90Og01 04Sa05 10Kh06	T D D TD	2010 1973 1963 1951 1969 1949 1949 2005 1998 2004 2010	$\beta^{-}?$ $\beta^{-}=100$ $\beta^{-}=100; \beta^{-}SF=6e-8 4$ $\alpha=100; SF=9.4e-8 4$ IT=87 6; SF=13 6; $\alpha<10$ $\varepsilon=86.3 8; \beta^{-}=13.5 8; \alpha=0.16 4$ $\varepsilon=50 3; \beta^{-}=50 3$ $\alpha=100; SF=1.9e-7 4; 28Mg=2e-12; 2\beta^{+} 3;$ IT=100 $\beta^{+}=?; \alpha=4.0e-3 1$ $\beta^{+}=?; \alpha=?$ $\beta^{+}=82 2; \alpha=18 2; SF<0.1$ $\beta^{+} ?; \alpha ?$	* * * ? ****

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued. Explanation of Table on page 18)

			Table		UDASE	20101	aur		unueu, Ex	ра		ЛІ	ible off pa	ige 10)	
Nuclide	Mass (ki	excess eV)	e	Excitation nergy (keV)		Н	alt-li	fe	J^{π}	Ens	Referen	ce	Year of discovery	Decay modes and intensities (%)	
	(10)			neigy (ke v)									uiscovery	intensities (<i>ii</i>)	
²³⁷ Ac	54020#	400#				4#	m		$1/2^{+}$ #					β^- ?	
²³⁷ Th	49955	16				4.8	m	0.5	$5/2^+$ #	06			1993	$\beta^{-}=100$	
²³⁷ Pa	47528	13				8.7	m	0.2	$(1/2^+)$	06			1954	$\beta^{-}=100$	
²³⁷ U 227 x xm	45390.2	1.2				6.752	d	0.002	$1/2^+$	06			1940	$\beta^{-}=100$	
237 Um 237 X	45664.2	1.6	274.0	1.0		155	ns	6	$(7/2)^{-}$	06	000	D	1968	IT=100	
237 Np	448/1./	1.1	045 20	0.10		2.144	My	0.007	5/2'	06	89Pr.A	D	1948	$\alpha = 100; SF < 2e - 10; SSMg < 4e - 12$	*
237 Pu	45001.7	1.1	945.20	0.10		15 64	ns d	40	(11/2, 15/2) $7/2^{-}$	06			1990	r = 100 $r \sim 100; \alpha = 0.0042.4$	
$237 Pu^{m}$	45237.2	1.7	145 543	0.008		180	ms	20	$\frac{1}{2^{+}}$	06			1949	$E \approx 100, u = 0.00424$	
$^{237}Pu^{n}$	47990	250	2900	250		1.1	ШS	0.1	1/2	06			1970	SF=?	
²³⁷ Am	46570#	60#				73.6	m	0.8	$5/2^{(-)}$	06			1970	$\beta^+ \approx 100; \alpha = 0.025 3$	
²³⁷ Cm	49250	70				20#	m		5/2+#	06	02As08	D	2002	β^+ ?; $\alpha = 1.8$	*
²³⁷ Cm ^p	49450#	170#	200#	150#					7/2-						
²³⁷ Bk	53190#	220#				2#	m		$(3/2^{-})$					β^{+} ?; α ?	
²³⁷ Cf	57940	90				0.8	s	0.2	$5/2^{+}$ #	06	10Kh06	TD	1995	α =70 10; SF=30 10; β^+ ?	*
* ²³⁷ Np	D : and	d cluster (Z=10-14) < 1	1.8e–12%, fr	om 92Mo	503									**
* ²³⁷ Cm	D : par	tial α T=	6.6e4 s or 110	00 m											**
* ²³⁷ Cf	T: oth	ers not us	ed 95La09=2	.1(0.3)											**
238 mm	525204	200#				0.4		2.0	0+	15			1000	0- 100	
238 Do	52530#	280#				9.4	m	2.0	0 ⁺ 2−#	15	85D-57	P	1999	p = 100 $\beta = -100; \beta = SE < 2.62, 6$	
238 Pa 238 I I	50894 47307.8	10				2.28	m Gv	0.09	5 # 0 ⁺	15	85Ba57	D	1908	p = 100; p SF < 2.0e-0 IS-00 2742 10: $\alpha = 100;$	<u>ب</u>
238 L Im	49865.7	1.5	2557.9	0.5		280	ns	6	0+	15	911u02	D	1979	$II = 2^{\circ} SF = 264^{\circ} \alpha < 05$	*
²³⁸ Np	47454.7	1.1	2551.9	0.5		2.099	d	0.002	2^{+}	15			1949	$\beta^{-}=100$	
$^{238}Np^m$	49760#	200#	2300#	200#		112	ns	39	-	15			1970	SF≈100; IT ?	
²³⁸ Pu	46163.2	1.1				87.7	у	0.1	0^{+}	15	89Wa10	D	1949	$\alpha = 100; \text{ SF} = 1.9 \text{e} - 7 1; \dots$	*
²³⁸ Am	48420	50				98	m	2	1^{+}	15			1950	$\beta^+=100; \alpha=1.0e-4.4$	
$^{238}Am^m$	50920#	210#	2500#	200#		35	μs	18		15			1967	SF≈100; IT ?	
²³⁸ Cm	49445	12				2.2	h	0.4	0^{+}	15			1994	ε ?; α=3.84 18; SF=0.048 2	
²³⁸ Bk	54220#	260#				2.40	m	0.08		15			1994	$\beta^+ \approx 100; \alpha ?; \beta^+ \text{SF}=0.048 2$	
²³⁸ Cf	57280#	300#	0			21.1	ms	1.3	0^+	15	01Og08	D	1995	SF \approx 100; $\alpha \approx$ 0.2; β^+ ?	
* ²³⁸ U	D:	; SF=5.45	$5e-57; 2\beta^{-}=$	2.2e - 107	1 16 1:6. /	T 20/0	~ 7	:	-02						**
* ²³⁸ Du	D:2p	=2.2(7)	e = 10% derive	30 Max (c)	half-life .	I = 2.0(0.0)	b) Zy	, in 911	u02						**
* ru	D	, 3i≈1.	4c-14, Mg-	+ wig≈oe−.	15										**
239 Th	56450#	400#				2#	m		7/2+#					β- 2	
239 Pa	53340#	200#				1.8	h	0.5	(3/2)(-#)	14			1995	β^{-1}	
239U	50572.7	1.5				23.45	m	0.02	$5/2^+$	14			1937	$\beta^{-}=100$	
239 Um	50593#	20#	20#	20#		> 25.45	ns	0.02	$(5/2^+)$	14			1994	$\beta^{-}=100$	
$^{239}U^{n}$	50706.5	1.5	133,7991	0.0010		780	ns	40	$\frac{(3/2)}{1/2^+}$	14			1975	IT=100	
²³⁹ Np	49311.1	1.3				2.356	d	0.003	$5/2^+$	14			1940	$\beta^{-}=100; \alpha=5e-10\#$	
²³⁹ Pu	48588.3	1.1				24.11	ky	0.03	$1/2^+$	14			1946	$\alpha = 100$; SF=3.1e-10 6	
²³⁹ Pu ^m	48979.9	1.1	391.584	0.003		193	ns	4	$7/2^{-}$	14			1955	IT=100	
²³⁹ Pu ⁿ	51690	200	3100	200		7.5	μs	1.0	$(5/2^+)$	14			1970	SF≈100; IT ?	
²³⁹ Am	49390.4	2.0				11.9	h	0.1	$(5/2)^{-}$	14			1949	$\varepsilon \approx 100; \alpha = 0.010 1$	
$^{239}Am^{m}$	51890	200	2500	200		163	ns	12	$(7/2^+)$	14			1969	SF≈100; IT ?	
²³⁹ Cm	51150	50	240"	100"		2.5	h	0.4	$(7/2^{-})$	14	02Sh.C	TD	1952	$\beta^{+} \approx 100; \alpha = 6.2e - 3.14$	
239 D1-	51390#	110#	240#	100#		4.11			$1/2^{+}$	1.4	0011-27	т		$R^{+} > 00$ + $\alpha < 1$ SE <1	
239 DL-7	54250#	210#	41	11	AD	4#	m		$(1/2^{+})$	14	89Ha27	J		$\beta > 99 \pi; \alpha < 1; SF < 1$	
239 Cf	58270#	210#	41	11	AD	60		20	(3/2)	14	89Ha27	J	1091	$\alpha - 2, \beta + 2$	
239 Es	58270# 63560#	210#				1#	s	50	3/2*#	14			1981	$\alpha = i; \beta = i$ $\alpha = 2; \beta = 2; SE = 2$	*
* ²³⁹ Cf	T · svr	500# nmetrized	from 81Mu1	2-30(+37-1	2)	1#	5							a_1, p_2, s_1	**
* 61	1.591			2-35(157-1	(2)										
240-		200												0- 0	
²⁴⁰ Pa 240 x x	56910#	200#				2#	m	0.1	c^{\perp}	00			1052	β^{-} ?	
240 U 240 V	52715.5	2.6				14.1	h	0.1	0^+	08			1953	$\beta^{-}=100; \alpha < 1e-10\#$	
240 Np	52316	17	10	14	*	61.9	m	0.2	(5^+)	08	0111 00	г	1953	$\beta = 100$	
240 Np ^m	52334	13	18	14	*	7.22	m	0.02	(1^+)	08	81Hs02	E	10.40	$\beta \approx 100; \text{ IT}=0.12 \text{ I}$	
240 p. m	50125.4	1.1	1200 74	0.07		6.561	ky	0.007	0^{+}	08	138a65	D	1949	$\alpha = 100; SF = 5.63e - 6.6; 34S1 < 1.3e - 13$. *
240 A	51434.1	1.1	1308.74	0.05		165	ns L	10	(5)	08			1967	$\beta_{\pm}^{+} = 100$	
240 A mm	54510	14	3000	200		50.8	n	0.5 40	(3)	08			1949	$\mu^{-} = 100; \alpha \approx 1.9e - 4 / SE \sim 100; IT 2$	
²⁴⁰ Cm	51724 2	19	5000	200		940 27	µs A	40 1	0^+	08			1907	$\alpha \approx 100, 11$	
A-groi	up is conti	nued on r	ext page			21	u	1	U	00			1,747	a - 100, c < 0.3, 51 - 5.90-0 0	
5.00	1		1 - 65												

_

		Table I. The NUBAS	E2016 table (con	tinued	, Exp	olanation	of Table on	page 18)	
Nuclide	Mass excess	Excitation	Half-life	J^{π}	Ens	Reference	Year of	Decay modes and	
	(keV)	energy (keV)					discovery	intensities (%)	

A-grou	ip continu	ed													
240 Bk 240 Bkp	55660# 55900#	150# 180#	240#	100#		4.8	m	0.8	am	08			1980	β^+ ?; $\alpha = 10\#$; β^+ SF=0.0020 13	*
²⁴⁰ Cf	57991	19	240#	100#		40.3	s	0.9	0^{+}	08	10As.A	Т	1970	$\alpha = 98.52$; SF=1.52; β^+ ?	*
²⁴⁰ Es	64200#	400#				1#	s							$\alpha ?; \beta^+ ?$	
* ²⁴⁰ Pu	D : SF	=5.632(0.	.062)e-6 from	SF half-life	e 13Sa65=	=116.5(1.3) Gy	/							**
* ²⁴⁰ Bk	D : syr	nmetrized	1 from β^+ SF=	=0.0013(+18	3–7)%										**
*240Cf	D : fro	m 10Kh0	6; also 95La0	$9 \alpha \approx 98; SF$	≈2										**
²⁴¹ Pa	59640#	300#				2#	m		3/2-#					β^- ?	
241 U 241 Nm	56200#	200#				5#	m	0.2	$7/2^+ #$	15			1050	β^{-} ?	
241 Pu	52055.2	11				14 320	m v	0.2	$(3/2^+)$ $5/2^+$	15			1939	$\beta = 100; \alpha < 100-0$ $\beta = \sim 100; \alpha = 0.00247; SE < 2.4 = 14$	
²⁴¹ Pu ^m	53116.9	1.1	161 6853	0.0009		880	y ns	50	$\frac{3}{2}$	15			1949	$p \sim 100, u = 0.00247, 31 < 2.4c = 14$ IT=100	
241 Pu ⁿ	55160	200	2200	200		20.5	us	2.2	-/-	15			1970	SF=100	
²⁴¹ Am	52934.4	1.1				432.6	y	0.6	$5/2^{-}$	15			1949	α=100; SF=3.6e-10 9; 34Si<7.4e-14	
$^{241}Am^m$	55130	100	2200	100		1.2	μs	0.3	,	15			1969	SF=100	
²⁴¹ Cm	53701.8	1.6				32.8	d	0.2	$1/2^{+}$	15			1952	ε =99.0 1; α =1.0 1	
²⁴¹ Bk	56030#	200#				4.6	m	0.4	$(7/2^+)$	15			2003	$\alpha ?; \beta^+ ?$	
²⁴¹ Bk ^p	56080#	200#	51	3	AD	0.05		0.10	$(3/2^{-})$	15		-	1070	0 0 05	
241 Cfn	59330#	1/0#	150#	100#	Nime	2.35	m	0.18	$(1/2^{-})$	15	10As.A	Т	1970	β^+ ?; $\alpha \approx 25$	*
241 Es	59480# 63860#	190# 230#	150#	100#	INM	10		5	$(1/2^{+})$ $(3/2^{-})$	15	06Ni00	TID	1006	$\alpha - 2 \cdot \beta + 2$	<u>ب</u>
241 Esp	64020#	200#	160#	200#		10	3	5	(3/2) am	15	9011109	IJD	1990	a=1, p	*
²⁴¹ Fm	69130#	300#	100#	2001		730	ЦS	60	$5/2^+$ #	15			2008	SF=?: $\alpha < 14$: $\beta^+ < 12$	
* ²⁴¹ Cf	T : from	m 10As.A	A=141(11) s; o	ther 70Si19	=3.78(0.7	(0) m	μυ	00	0/2	10			2000	51 ., w (1., p (12	**
*241 Es	T : syn	nmetrized	l from 96Ni09	=8(+6-4)		·									**
²⁴² U	58620#	200#				16.8	m	0.5	0^+	02			1979	$\beta^{-}=100$	
²⁴² Np	57420	200			*	2.2	m	0.2	(1^+)	02			1979	$\beta^{-}=100$	
$^{242}Np^m$	57420#	210#	0#	50#	*	5.5	m	0.1	6+#	02			1981	$\beta^{-}=100$	
²⁴² Pu	54716.9	1.2				375	ky	2	0^{+}	02	13Sa65	D	1950	α =100; SF=5.56e-4 7	*
²⁴² Am	55468.1	1.1	10.50			16.02	h	0.02	1-	02			1949	$\beta^{-}=82.73; \varepsilon=17.33$	
242 Amm	55516.7	1.1	48.60	0.05		141	у	2	5^{-}	02			1950	$11 \approx 100; \alpha = 0.45 2; SF < 4.7e - 9$	
242 Cm	5/6/0	80	2200	80		14.0	ms	1.0	$(2^{+},3^{-})$	02			1962	SF \approx 100; 11=?; α ?	
$^{242}Cm^{m}$	57600	1.1	2800	100		102.8	u ne	0.2 70	0.	02			1949	α=100; SF=0.2e=0 5; 54SI=1.1e=14 4; SE 2: IT 2	*
²⁴² Bk	57730#	200#	2000	100		7.0	m	1.3	2-#	02	80Ga07	D	1972	$\beta^+\approx 100$: β^+ SF<3e-5: α^{-2}	
$^{242}Bk^m$	57930#	280#	200#	200#		600	ns	100	2 "	02	000007	D	1972	$F \approx 100; IT ?$	
$^{242}Bk^p$	57980#	220#	250#	100#					4^{-}					,	
²⁴² Cf	59387	13				3.49	m	0.15	0^+	02	70Si19	Т	1967	α =80 20; β^+ ?; SF<0.014	*
²⁴² Es	64800#	260#				17.8	s	1.6		02	10An08	TD	1994	α =57 3; β^+ =43 3; β^+ SF=0.6 2	*
²⁴² Fm	68400#	400#				800	μs	200	0^{+}	02			1975	SF=?; α ?	*
* ²⁴² Pu	D : SF	=5.564(0.	.072)e-4 from	SF half-life	13Sa65=	=67.4(0.9)	Gy								**
* ²⁴² Cf	D: T.or	; 2p ' ?	D : sym	1 metrized from 1 for 1 for 2 for	$5m^{-7}Si=1$	1.0(+4-3)6 E:04-2.2(e-14	671101	-2 7(0.2)						**
* CI * ²⁴² Fe	T: ave	ers 00Sh1	117=3.08(0.44 10=11(3).06N	i09=16(±6	4(0.2)07 4)	1104=3.2(0.5)	0/1101:	-3.7(0.5)						**
* ²⁴² Es	$D:\beta^+$	SF from	00Sh10: other	· 10An08=1	.3(+1.2-0	.7)%									**
* ²⁴² Fm	T : con	flicting 0	8Kh10 exclud	les 4 μ s-1s		,									**
-				1											
²⁴³ U	62360#	300#				10#	m		$9/2^{-}$ #					β^- ?	
²⁴³ Np	59880#	30#				1.85	m	0.15	$5/2^+$ #	14			1979	$\beta^{-}=100$	
$^{243}Np^{p}$	59926	10	50#	30#	Nm				$(5/2^{-})$						
243 p.,	57754 6	25				4 956	h	0.003	$7/2^{+}$	14			1951	$\beta^{-}=100$	

	np	39880#	50#				1.65	III	0.15	3/2.4	14	19/9 $p = 100$	
2	$^{243}Np^{p}$	59926	10	50#	30#	Nm				$(5/2^{-})$			
2	²⁴³ Pu	57754.6	2.5				4.956	h	0.003	$7/2^{+}$	14	1951 $\beta^{-}=100$	
2	243 Pu ^m	58138.2	2.5	383.64	0.25		330	ns	30	$(1/2^+)$	14	1975 IT=100	
2	²⁴³ Am	57175.0	1.4				7.364	ky	0.022	$5/2^{-1}$	14	1950 $\alpha = 100; SF = 3.7e - 9$	9
2	$^{243}Am^m$	59480	200	2300	200		5.5	μs	0.5	,	14	1970 SF≈100; IT ?	
2	²⁴³ Cm	57182.0	1.5				29.1	y	0.1	$5/2^{+}$	14	1950 $\alpha \approx 100; \varepsilon = 0.293; S$	SF=5.3e-9 9
2	243 Cm ^m	57269.4	1.5	87.4	0.1		1.08	μs	0.03	$1/2^{+}$	14	1971 IT=100	
2	243 Cm ^{p}	57279	16	97	16	AD				$(7/2^+)$	14	1984 IT ?	
2	²⁴³ Bk	58690	5				4.6	h	0.2	$3/2^{-}$ #	14	1950 $\beta^+ \approx 100; \alpha \approx 0.15$	
2	243 Bk ^p	58710	19	20	20	AD				$(7/2^{-})$			
2	²⁴³ Cf	60990#	110#				10.7	m	0.5	$(1/2^+)$	14	1967 $\beta^+ \approx 86; \alpha \approx 14$	
2	²⁴³ Es	64750#	210#				21.6	s	1.6	$(7/2^+)$	14	1973 $\alpha = 61.6; \beta^+ = 39.6; S^+ = 39.6; S$	SF<1
2	²⁴³ Fm	69390#	220#				231	ms	9	$7/2^{-}#$	14	1981 $\alpha = 913; SF = 91; \beta^+$	- ?
*2	²⁴³ Fm	D : 08I	Kh10 β^+	<10									

* **

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table L	The	NUBASE	2016	table	(continued.	Explanation	of Table on	nage 18)
TUDIC II	I HU		2010	unne	(comunucu.	L'ADIGHUUUU	VI IUVIC VII	Du20 10/

				1. The l	NUBAS	E2010 tal	ле (contil	iueu, E	лрп	mation	01 12	une on pa	ige 10)	
Nuclide	Mass (ke	excess eV)		Excitatio energy (ke	n V)	Н	alf-li	fe	J^{π}	Ens	Referenc	e	Year of discovery	Decay modes and intensities (%)	
²⁴⁴ Np ²⁴⁴ Pu	63200# 59806.0	300# 2.3				2.29 80.0	m My	0.16 0.9	(7^{-}) 0^{+}	03 03	92Mo25	D	1987 1954	$\beta^{-}=100$ $\alpha \approx 100; \text{ SF}=0.121 4; 2\beta^{-} < 7.3e-9$	*
244 Pu ^m	61022	3	1216	2		1.75	s	0.12	(8^{-})		16Ho13	ETJ	2016	IT=100	
²⁴⁴ Am	59879.2	1.5				10.1	h	0.1	6-#	03			1950	$\beta^{-}=100$	
$^{244}Am^m$	59968.5	1.4	89.3	1.6	RQ	26	m	1	1^{+}	03			1950	$\beta^{-} \approx 100; \epsilon = 0.0361 \ 13$	
²⁴⁴ Am ⁿ	60080#	200#	200#	200#		900	μs	150		03			1967	SF≈100; IT ?	
²⁴⁴ Am ^p	60080#	200#	200#	200#		6.5	μs			03			1969	SF≈100; IT ?	
²⁴⁴ Cm	58451.9	1.1				18.10	У	0.02	0+	03			1950	$\alpha = 100; SF = 1.37e - 4.3$	
²⁴⁴ Cm ^m	59492.1	1.1	1040.188	0.012		34	ms	2	6+	03			1963	IT=100	
244 Cm ⁿ	59550#	900#	1100#	900#		> 500	ns	0.02	(A =)	03	140 17	T	1969	$SF \approx 100; TT?$	
244 DLm	60/14	14	500#	200#		5.02	h	0.03	(4)	03	14So17	Т	1972	β ?; α =0.006 3	
244 D1-P	60850#	50#	140#	500#		820	ns	60		03			1972	SF≈100; 11 ?	
244 Cf	61478.2	26	140#	50#		19.4	m	0.6	0^+	03			1956	α~100· ε ?	
244 Fs	66030#	180#				37	s	4	0	03			1950	$\beta^{+}=2^{\circ} \alpha=5^{\circ}3^{\circ}\beta^{+}SF=0^{\circ}01$	*
$^{244}Es^{p}$	66230#	240#	200#	150#		51	3	-	am	05			1775	p =1, u=5 5, p 51=0.01	Ŧ
²⁴⁴ Fm	68970#	200#	2001	1500		3.12	ms	0.08	0^{+}	03	08Kh10	TD	1967	SF \approx 100: $\beta^+ < 2$: $\alpha = 0.4$ #	*
* ²⁴⁴ Pu	T : and	$T(2\beta^{-})$	> 1.1 Ev. fro	m 92Mo25	: thus 2β	- < 7.3 e - 99	6							22 200, p (2, 0) 0000	**
* ²⁴⁴ Es	D : syr	nmetrized	1 from $\alpha = 4(+$	3-2)%	, I										**
* ²⁴⁴ Fm	T : oth	er 12Sv02	2=3.47(0.26)												**
245									- (-						
245 Np	65890#	300#				2#	m		5/2+#				1055	β^{-2}	
²⁴⁵ Pu ²⁴⁵ Pu	63178	14	264.5	0.0		10.5	h	0.1	$(9/2^{-})$	11			1955	$\beta^{-}=100$	
245 Pu ^m	63443	14	264.5	0.3		330	ns	20	$(5/2^+)$	11			2007	n = 100	
245 Am	61900.5	1.9	2400#	400#		2.05	n	0.01	$(5/2)^{+}$	11			1955	$\beta = 100$	
245 Cm	61004.6	400#	2400#	400#		040 8 25	ns 1m	0.07	7/2+	11	120-20	т	1972	$SF \approx 100; 11 ?$	
245 Cm ^m	61260.5	1.1	355.02	0.10		8.23	Ky no	20	1/2+	11	12Ch50	1	1934	$\alpha = 100; SF = 0.1e - 7.9$	
245 Pl	61912.9	1.1	333.92	0.10		290	115	20	2/2-	11			1975	$r \sim 100; \alpha = 0.12.1$	
245 Bkp	61860#	30#	50#	30#		4.95	u	0.05	$(7/2^{-})$	11			1951	$\epsilon \approx 100, \alpha = 0.12$	
²⁴⁵ Cf	63385.2	2.4	501	501		45.0	m	15	$1/2^+$	11			1956	$\beta^{+} ? \alpha = 36.3$	
²⁴⁵ Es	66370#	200#				1.1	m	0.1	$(3/2^{-})$	11			1967	β^{+} ?: $\alpha = 40.10$	
$^{245}\text{Es}^p$	66650#	200#	283	15					$(7/2^{-})$	11			2005	IT=100	*
$^{245}\text{Es}^{q}$	66700#	230#	330#	100#					$(1/2^{-})$						
²⁴⁵ Fm	70190#	200#				4.2	s	1.3	1/2+#	11			1967	$\alpha = ?; \beta^+ = 4.2\#; SF = 0.13\#$	
²⁴⁵ Md	75270#	310#			*	& 400	ms	200	$(7/2^{-})$	11	96Ni09	TJD	1996	$\alpha = ?; \beta^+ ?$	*
$^{245}Md^m$	75370#	330#	100#	100#	*	& 900	μs	250	$1/2^{-}$ #	11			1996	SF=?; α ?	
* ²⁴⁵ Es ^p	E:253	3.2 keV at	pove the $7/2^+$	[633] leve	1 at 30(15	5) keV									**
* ²⁴⁵ Md	T : syn	nmetrized	from 96Ni09	9=350(+23	0–160)										**
²⁴⁶ Pu	65395	15				10.84	d	0.02	0^{+}	11			1955	$\beta^{-}=100$	
²⁴⁶ Am	64994#	18#				39	m	3	(7^{-})	11			1955	$\beta^{-}=100$	
$^{246}Am^m$	65024	15	30#	10#		25.0	m	0.2	$2^{(-)}$	11			1955	$\beta^{-} \approx 100; \text{ IT} < 0.02$	
$^{246}Am^n$	66990#	800#	2000#	800#		73	μs	10		11			1972	SF≈100; IT ?	
²⁴⁶ Cm	62617.0	1.5				4.706	ky	0.040	0^+	11			1954	<i>α</i> ≈100; SF=0.02615 7	
²⁴⁶ Cm ^m	63796.7	1.5	1179.66	0.13		1.12	s	0.24	8-	11	12Ta.A	ETJ	2012	IT=100	
²⁴⁶ Bk	63970	60				1.80	d	0.02	$2^{(-)}$	11			1954	$\beta^{+} \approx 100; \alpha = 0.1 \#$	
²⁴⁶ Cf	64090.3	1.5				35.7	h	0.5	0^+	11			1951	α =100; SF=2.4e-4 4; ε <4e-3	
²⁴⁶ Es	67900#	220#				7.5	m	0.5	4^{-} #	11			1954	$\beta^+=90.1\ 18;\ \alpha=9.9\ 18;\ \beta^+\text{SF}\approx0.003$	
246Esp	68250#	300#	350#	200#					am						*
²⁴⁰ Fm	70189	15				1.54	s	0.04	0^+	11	10An08	Т	1966	$\alpha = ?; SF = 6.8 6; \varepsilon < 1.3; \beta + SF = 10 5$	*
²⁴⁰ Md	76120#	260#				0.92	s	0.18		11	10An08	TD	1996	$\alpha = 100$	*
246 Mdm 246 D n	76170#	260#	60	60	AD	4.4	s	0.8		11			2010	β >77; β SF>10; α <23	
* ²⁴⁶ ES ^p	E : abo	we level (lecaying by I	52.3(0.5) k	ævγ										**
* ²⁴⁶ Fm	D : Iro	m 90N10	* *08_0.0(0.2)	06N300-1	0(0, 4)										**
-•Mu	1 : ave	rage TUA	1108=0.9(0.2)	901109=1	.0(0.4)										**
²⁴⁷ Pu	69110#	200#				2.27	d	0.23	$1/2^{+}$ #	15			1983	$\beta^{-}=100$	
²⁴⁷ Am	67150#	100#				23.0	m	1.3	5/2#	15			1967	$\beta^{-}=100$	
²⁴⁷ Cm	65533	4				15.6	My	0.5	9/2-	15			1954	<i>α</i> =100	
$^{247}Cm^{m}$	65760	4	227.38	0.19		26.3	μs	0.3	$5/2^{+}$	15			1968	IT=100	
$^{247}Cm^{n}$	65938	4	404.90	0.03		100.6	ns	0.6	$1/2^{+}$	15			2003	IT=100	
²⁴⁷ Bk	65490	5				1.38	ky	0.25	$3/2^{-}$	15			1965	$\alpha \approx 100$; SF ?	
^{24/} Cf	66104	15				3.11	h	0.03	7/2+#	15		_	1954	$\varepsilon \approx 100; \alpha = 0.0355$	
²⁴ /Es	68578	19				4.55	m	0.26	$(7/2^+)$	15	89Ha27	J	1967	$\beta^+\approx 93; \alpha\approx 7; SF\approx 9e-5#$	
²⁴⁷ Fm 247	71670#	120#	10	0		31	s	1	$(7/2^+)$	15			1967	$\alpha = 64; \beta^+?$	
247 Y m''	/1/20#	110#	49	8	AD	5.1	s	0.2	$(1/2^{+})$	15			1967	$\alpha = 882; \beta = 2; 11?$	
247 Md	/3940#	210#	260	40		1.2	S	0.1	(1/2)	15	104-00	р	1981	$\alpha \approx 100; SF < 0.1$	
- Md ^m	/0200#	210#	200	40	AD	250	ms	40	(1/2)	15	10An08	D	1993	$\alpha = 19.5; SF = 21.5$	

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Nuclide	Mass	excess		Excitation			Н	[alf-l	ife	J^{π}	Ens	Referen	ce	Year of	Decay modes and	
	(k	eV)		energy (keV	')									discovery	intensities (%)	
²⁴⁸ Am	70560#	200#					3#	m			14				β- 2	
²⁴⁸ Cm	67392.8	2.4					348	kv	6	0^{+}	14			1956	$\alpha = 91.61 \ 16; \ SF = 8.39 \ 16; \ 2\beta^{-}$?	
²⁴⁸ Cm ^m	68850.9	2.6	1458.1	1.0			146	μs	18	(8^{-})	14	12Ta.A	ETJ	2012	IT=100	
²⁴⁸ Bk	68080#	70#				*	> 9	y		6+#	14			1956	α?	
$^{248}Bk^m$	68108	21	30#	70#		*	23.7	h	0.2	$1^{(-)}$	14			1956	$\beta^{-}=705; \epsilon=305; \alpha=0.001\#$	
²⁴⁸ Bk ^p	68130	50	50#	50#						(5^{-})						
²⁴⁸ Cf	67238	5					333.5	d	2.8	0^{+}	14			1954	$\alpha \approx 100$; SF=0.0029 3	
²⁴⁸ Es	70300#	50#					24	m	3	2-#	14			1956	$\beta^+ \approx 100; \alpha \approx 0.25; \beta^+ \text{SF}=3e-5$	
²⁴⁰ Fm 248 F	71898	8	1200#	100//			34.5	s	1.2	0^+	14			1958	$\alpha = 955; \beta^+ = 55; \text{SF} = 0.105$	
248 MA	77150#	240#	1200#	100#			10.1	ms	0.6		14			2010	α ?; B ? $\beta_{+}=80.10; \alpha=20.10; \beta_{+}=8E < 0.05$	
²⁴⁸ No	80620#	220#					,	5	$<2 \mu s$	0^+	14	03Be18	Ι	1975	p = 30, 10, a = 20, 10, p = 31 < 0.05 SF ?	
²⁴⁹ Am	73100#	300#					1#	m							β^- ?	
²⁴⁹ Cm	70750.7	2.4					64.15	m	0.03	$(1/2^+)$	11			1956	$\beta^{-}=100$	
$^{249}Cm^{m}$	70799.5	2.4	48.76	0.04			23	μs		$(7/2^+)$	11			1966	$\alpha = 100$	
²⁴⁹ Bk	69846.4	1.2					327.2	d	0.3	$7/2^+$	11	14Ch47	Т	1954	$\beta^{-} \approx 100; \alpha = 0.00145 8; \text{SF} = 47e - 92$	
249 Bk ^m	69855.2	1.2	8.777	0.014			300	μs		$(3/2^{-})$	11			1975	IT=100	
249 Cf	69722.8	1.2	111.00	0.05			351	У	2	9/2-	11			1954	$\alpha = 100; \text{ SF} = 5.0 \text{e}^{-7} \text{ 4}$	
249 Cfm	69867.8	1.2	144.98	0.05			45	μs	5	5/2	11			1967	11=100 $R^{+}=100$ m 0.57.8	
249 Em	72510	50#					102.2	m	0.0	$(7/2^+)$	11	111 -06	т	1950	$p^+ \approx 100; \alpha = 0.57.8$ $\beta^+ 2; \alpha = 22.0$	
²⁴⁹ Md	77230#	200#					23.4	s m	24	$(7/2^{-})$	11	01He35	J	1900	ρ 2, $\alpha = 35.9$ $\alpha > 60: \beta^+ 2$	*
$^{249}Md^m$	77330#	2200#	100#	100#			19	s	0.9	$(1/2^{-})$	11	01He35	TID	2001	$\alpha = 100$	*
²⁴⁹ No	81780#	280#					57	μs	12	5/2+#	11	03Be18	Т	2003	β^+ ?; α ?	*
* ²⁴⁹ Fm	T : fro	m 04He2	8; others 66A	k01=2.6(0.7	7) 59Pe	27=2.5	5(1.0)			- /					F Open	**
* ²⁴⁹ Md	T : ave	rage 09H	le20=23(3) 73	3Es01=24(4))											**
$*^{249}$ Md ^m	T : syn	nmetrized	d from 1.5(+1	.2–0.5)												**
* ²⁴⁹ No	T : syn	nmetrized	d from 54.0(+	13.9–9.2)												**
²⁵⁰ Cm	72990	10				:	8300#	у	0.005	0^+	01			1966	SF \approx 74; $\alpha \approx 18$; $\beta^{-}\approx 8$	
²⁵⁰ Bk	72950	4	25.50	0.10			3.212	h	0.005	2-	01	00 41 02	-	1954	$\beta^{-}=100$	
250 BKm 250 D1-n	72986	4	35.59	0.10			29	μs	1	4 ' 7+	01	08Ah02	EJ	1966	11=100 IT 2	
250 Cf	75054	4	64.1	2.1	AD		13.08	μs	0.00	0+	01	08A1102	EJ	1972	$\alpha \sim 100$; SE=0.077.3	
250 Es	73230#	100#				*	8.6	h	0.05	(6^+)	01			1956	$\beta^+ > 97 \cdot \alpha^2$	
²⁵⁰ Es ^m	73430#	180#	200#	150#		*	2.22	h	0.05	1(-)	01			1970	$\beta^+ \approx 100$: α ?	
²⁵⁰ Fm	74072	8	2001	1000			30.4	m	1.5	0+	01	06Ba09	Т	1954	$\alpha > 90; \varepsilon < 10; SF=0.0069 10$	*
²⁵⁰ Fm ^m	75271	8	1199.2	1.0			1.92	s	0.05	(8^{-})	01	08Gr17	ETJ	1973	IT>80; $\alpha < 20$; β^+ ?; SF<8.2E-5	
²⁵⁰ Md	78630#	300#					52	s	5	. ,	01	08An16	TD	1973	$\beta^+=93$ 1; $\alpha=7$ 1; β^+ SF=0.02	*
²⁵⁰ No	81560#	200#					5.0	μs	0.6	0^{+}	06	06Pe17	TD	2003	SF \approx 100; α <2.1; β ⁺ =0.00025#	*
²⁵⁰ No ^m	82610#	280#	1050#	200#			51	μs	18	(6^{+})	06	06Pe17	Т	2001	SF \approx 100; IT ?; α ?	*
* ²⁵⁰ Fm	T : oth	ers not us	sed 06Fo02=1	8(+13-6) 6	6Ak01	=30(3)										**
* ²⁵⁰ Md	T : ave	rage 08A	n16=50(+10-	-7)73Es01=	:52(6)	. 10 7										**
* ²⁵⁰ Md	D : oth	er recent	$06F002 \beta' =$	91(+7-19)%	b; α=9	(+19-7)	()%									**
* ²⁵⁰ No ^m	T : ave	rage 06P	$e_1 = 3.7(+1.1)$	-0.8) 03Be18	18=3.0 -46(±'	(+0.9-0)	J.7) 010a0	8-36	5(+11-6)							**
* 10	1 . ave	lage 001	C17=45(422=	·15) 05BC18	-+0(+.	22-14)	010g0	0-50	(+11=0)							**
²⁵¹ Cm	76648	22					16.8	m	0.2	$(1/2^{+})$	12			1978	$\beta^{-}-100$	
251 Rk	75228	25 11					10.0 55.6	m	11	$(1/2^{-})$ $(3/2^{-})$	13			1967	β^{-100} $\beta^{-}=100$	
251 Rkm	75264	11	35.5	13			55.0	119	4	7/2+#	13			1966	IT=100	
²⁵¹ Cf	74135	4	55.5	1.5			900	v	40	$1/2^+$	13			1954	$\alpha \approx 100$: SF ?	
$^{251}Cf^m$	74505	4	370.47	0.03			1.3	us.	0.1	$\frac{1}{11/2^{-1}}$	13			1971	IT=100	
251 Es	74512	6	2.0117	5.05			33	h	1	$3/2^{-}$	13			1956	ε ?; α =0.5 2	
²⁵¹ Fm	75954	15					5.30	h	0.08	$(9'/2^{-})$	13			1957	$\beta^+=98.20\ 13;\ \alpha=1.80\ 13$	
251 Fm ^m	76154	15	200.00	0.10			21.1	μs	1.9	5/2+	13			1970	IT=100	*
²⁵¹ Md	78967	19					4.21	m	0.23	$(7/2^{-})$	13	06Ch52	TD	1973	β^+ ?; α =10 1	*
251 Md ^p	79020	18	53	8	AD					$(1/2^{-})$	13			2006	IT ?	
²⁵¹ No	82850#	110#					800	ms	10	$(7/2^+)$	13	06He27	J	1967	α =83 16; β^+ ?; SF<0.3	*
²⁵¹ No ^m	82960#	110#	106	6			1.02	s	0.03	$(1/2^+)$	13			1997	<i>α</i> =100	
²⁵¹ No ⁿ	84600#	120#	1750	50			2	μs			13			2006	IT ?	*
²⁵¹ Lr	87730#	300#	1/1 0) 0 000 -	0.01/0:=:=			150#	μs							β^+ ?; α ?	
**** Fm/"	1:11/	As03=21.	.1(1.9) 06He2	U=21(3)711	$J_{103}=1$	15.2(2.3	5)									**
**** Fm'" *251 MA	E:11/ T:00/2	48U3=200	0.09(0.11) 06 152-4.27(0.2	1020 = 199.9	(U.3) A 0/0 4	5)										**
* IVIU * ²⁵¹ No	D : eve	nmetrize	d from 01H=3	$35 \alpha = 01(\pm 0)$)										**
* ²⁵¹ No ⁿ	E · 160)9 7(0 8)	$+ x \cdot x$ estimation	$10 \ mmod 50(50)$												**
	2.10/		, counte													10.000

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

			Table	e 1. 1 ne	INUDAS	E2010 ta	DIC	(contin	ucu, E	хріан	ation of	Tab	ie on page	(10)	
Nuclide	Mass	excess		Excitation	n	Н	alf-li	fe	J^{π}	Ens	Reference	e	Year of	Decay modes and	
	(k	eV)		energy (k	eV)								discovery	intensities (%)	
252 C	700/0#	200#				1.11		-0.1	0^+	06	(CD 01			0- 0	
252 Cm	/9060#	300#				1#	m	<2a	0	06	66Rg01	1		p ?	
²³² Bk	78540#	200#				1.8	m	0.5		06	92Kr.A	TD	1992	$\beta^{-}=?; \alpha ?$	
²⁵² Cf	76034.6	2.4				2.645	У	0.008	0^{+}	06			1954	α=96.908 8; SF=3.092 8	
²⁵² Es	77290	50				471.7	d	1.9	(4^{+})	06	FGK12a	J	1956	$\alpha = 782; \varepsilon = 222$	*
²⁵² Fm	76816	5				25.39	h	0.04	0^{+}	06			1956	$\alpha \approx 100$; SF=0.0023 2; $2\beta^+$?	
²⁵² Md	80510#	130#				2.3	m	0.8		06			1973	$\beta^+>50; \alpha$?	
$^{252}Md^p$	80550	80	40# 100# am												
²⁵² No	82871	9	$2.45 \text{ s} 0.02 0^+ 06 11\text{Ga19 T} 1967 \alpha > 66.7 \text{c}; \text{SF=32.2 5}; \beta^-$											$\alpha > 66.7 6; \text{ SF}=32.2 5; \beta^+ < 1.1 4$	*
²⁵² No ^m	84126	9	1254.5	0.7		109	ms	4	(8^{-})		11Lo06	Т	2007	IT=100	*
²⁵² Lr	88740#	240#				369	ms	75	()	06	08Ne01	TD	2001	$\beta^+=71\#; \alpha=?; SF<1$	*
$^{252}Lr^p$	88910#	240#	170	30	AD										
* ²⁵² Es	J: stro	ng direct ε	e feeding to	3 ⁺ ; know	n structure	es in TNN									**
* ²⁵² No	T : ave	rage 11Ga	19=2.47(0.	02) 01Og0	8=2.44(0.	.04)									**
* ²⁵² No	T: oth	ers 12Sv02	2=2.3(0.1))4He28=2	52(0.22)	03Be18=2.3	8(+0.2	26-0.22)							**
* ²⁵² No	D : SF	01Og08=	32.2(0.5)%;	other 110	a19=29.3	(0.5)%									**
$*^{252}No^{m}$	E : ave	rage 08Ro	21=1255(1) 07Su19=	1254(1)										**
$*^{252}No^{m}$	T : ave	rage 11Lo	06=110(8)	08Ro21=1	09(6) 07S	Su19=110(10)								**
$*^{252}No^{m}$	J : fron	n 08Ro21	based on co	omparison	with theor	ry; other 07S	u19=	(8 ⁺)							**
* ²⁵² Lr	T : ave	rage 08Ne	01=270(+1	80-80) 01	He35=360	0(+110-70)									**

²⁵³ Bk	80930#	360#				10#	m			13	91Kr.A	I	1991	β^- ?	*
²⁵³ Cf	79302	4				17.81	d	0.08	$(7/2^+)$	13			1954	$\beta^{-} \approx 100; \alpha = 0.314$	
²⁵³ Es	79010.5	1.2				20.47	d	0.03	$7/2^{+}$	13	05Ah03	D	1954	α=100; SF=10e-6 1	*
²⁵³ Fm	79345.7	2.9				3.00	d	0.12	$(1/2)^+$	13			1957	$\epsilon = 88 1; \alpha = 12 1$	
²⁵³ Fm ^m	79697	7	351	6		560	ns	60	$(11/2^{-})$	13	11An13	ETJ	2011	IT=100	*
²⁵³ Md	81170#	30#				12	m	8	$(7/2^{-})$	13			1992	$\beta^{+} \approx 100; \alpha = 0.6 \#$	*
$^{253}Md^{p}$	81230#	40#	60	30					$1/2^{-}$ #	13			1971	IT ?	
²⁵³ No	84359	7				1.56	m	0.02	$(9/2^{-})$	13			1967	α =55 3; β ⁺ ?; SF=0.001#	*
²⁵³ No ^m	84526	7	167.34	0.45		30.3	μs	1.6	$(5/2^+)$	13	09He23	Т	1973	α=?	*
²⁵³ No ⁿ	85560	110	1200	110		706	μs	24	$(25/2^+)$		11Lo06	TJ	2011	IT ?	*
²⁵³ No ^p	85800	200	1440	200		627	μs	5		13					*
²⁵³ Lr	88580#	200#			*	632	ms	46	$(7/2^{-})$	13	01He35	TJD	1985	α =90 10; SF=2.6 21; β^+ =1#	*
$^{253}Lr^{m}$	88610#	230#	30#	100#	*	1.32	s	0.14	$(1/2^{-})$	13	09He20	TJD	1985	α =90 10; SF=8 5; β^+ =1#	*
²⁵³ Rf	93560#	410#			*	13	ms	5	$(7/2)^{(+\#)}$	06	95Ho.B	TJ	1997	SF=?; α ?	*
253 Rf ^m	93760#	440#	200#	150#	*	52	μs	14	$(1/2)^{(-\#)}$	06	97He29	J	1995	SF=?; α=5#	*
* ²⁵³ Bk	I : poss	ible ident	ification in 9	1Kr.A; nee	ds confirma	tion									**
* ²⁵³ Es	D : SF=	=8.7(0.3)e	-6% from E	NSDF'99 : :	from α/SF=	=1.15(0.0	3)e7 ((1965M	1e02)						**
$*^{253}$ Fm ^m	E:211	keV abov	$(7/2^+)$ leve	el at 130-15	0 keV										**
$*^{253}Md$	T · svm	metrized	from $6.4(\pm 1)$	16-36)											**

**

**

**

**

**

**

**

 $\begin{array}{l} T: symmetrized from \ 6.4(+11.6-3.6) \\ T: average \ 09He23=1.56(0.02) \ m \ 09Qi04=1.57(+0.18-0.15) \ m \ 67Mi03=95(10) \ s \\ T: \ and \ 67Gh01=105(20) \ s \end{array}$ *²⁵³Md *²⁵³No

*²⁵³No

*²⁵³No J : from 11Lo06 and 10St14

*²⁵³No D : $\epsilon/e^+=0.45(0.03)$

*²⁵³No^m E : average 11An13=167.5(0.5) 10St14=166.7(1.0)

T : average 09He23=28(3) 07Lo11=31.1(2.1) 73Be33=31.3(4.1);

* No *²⁵³No^m *²⁵³No^m

T: others 11An13=22.7(0.5) and 10St14=24(2) disagree

*²⁵³Noⁿ *²⁵³Noⁿ E : greater than 1011 and less than 1380 keV

T: 11Lo06=706(24) 11An13=627(5) 07Lo11=970(210)

*²⁵³Noⁿ *²⁵³Noⁿ T : possibly two isomers with $792(43) \mu s$ and $641(23) \mu s$ in 11Lo06 T : possibly two isomers with $650(15) \,\mu$ s and $552(15) \,\mu$ s in 11An13 E: ENSDF=1440 + x, x unknown*²⁵³Lr

T : average 09He20=670(60) 01He35=570(+70-60) * *²⁵³Lr

D : symmetrized from SF=1.3(+3.0-1.0)% T : supersedes 01He35=1.49(+0.30-0.21); other 10He11=1.2(+0.7-0.4)

*²⁵³Lr^m *²⁵³Rf I : the state with ≈ 1.8 s reported in earlier ENSDF is not confirmed

* *²⁵³Rf T : symmetrized from 11(+6–3) I : ENSDF06 reported 253Rf ground-state and m

 $*^{253}$ Rf^m T : symmetrized from 48(+17-10)

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

			140			OBA	51201	<u> </u>		continu	cu, i	Баріана		of fable	on page 10)	
Nuclide	Mass e	xcess		Excitat	tion		H	alf-li	ife	J^{π}	Ens	Referenc	e	Year of	Decay modes and	
	(ke	V)		energy (kev)									discovery	intensities (%)	
²⁵⁴ B k	84390#	300#					1#	m			05				β^{-2}	
²⁵⁴ Cf	81341	11					60.5	d	0.2	0^+	05			1955	$SF\approx 100; \alpha=0.312; 2B^{-}?$	
²⁵⁴ Es	81991	4					275.7	d	0.5	(7+)	05			1954	$\alpha \approx 100; \epsilon = 0.03\#; \beta^{-} = 1.74e - 4.8; SF < 3e - 6$	
²⁵⁴ Es ^m	82075	3	84.2	2.5	AD		39.3	h	0.2	2+	05			1954	$\beta^{-}=982$; IT<3; $\alpha=0.321$; $\varepsilon=0.0767$;	*
²⁵⁴ Fm	80902.8	2.4					3.240	h	0.002	0^{+}	05			1954	$\alpha \approx 100; \text{ SF}=0.0592 3$	
²⁵⁴ Md	83450#	100#				*	10	m	3	0-#	05			1970	$\beta^+ \approx 100; \alpha$?	
$^{254}Md^m$	83500#	140#	50#	100#		*	28	m	8	3-#	05			1970	$\beta^+ \approx 100; \alpha$?	
²⁵⁴ No	84723	10					51.2	s	0.4	0^+	05	06He19	Т	1966	$\alpha = 901; \beta^+ = 101; \text{SF} = 0.231$	*
254 No ^m	86018	10	1295	2			264.9	ms	1.4	(8^{-})	05	11Lo06	Т	1973	IT>80; SF=0.020 12; α =0.01	*
²⁵⁴ No ⁿ	87940#	300#	3220#	300#			183.8	μs	1.6	(16^{+})		10He10	ETD	2006	IT=100; SF<0.012	*
²⁵⁴ Lr	89870#	300#					17.1	s	1.8	· /	05	08An16	TD	1981	$\alpha = 722; \beta^+ = 282; SF?$	*
$^{254}Lr^p$	89940#	310#	60	50	AD											
$^{254}Lr^q$	90090#	330#	220#	120#												
²⁵⁴ Rf	93200#	280#					23.2	μs	1.0	0^{+}	05	15Da12	Т	1997	SF=?; $\alpha < 1.5$	*
254 Rf ^m	94500#	340#	1300#	200#			4.7	μs	1.1	(8^{-})		15Da12	JT	2015	IT=100; SF ?	
254 Rf ⁿ	95200#	570#	2000#	500#			247	μs	73	(16^+)		15Da12	JT	2015	IT=100	
$*^{254}Es^{m}$	D:;	SF<0.04	5							```						**
* ²⁵⁴ No	D : from	n 10He10)													**
$*^{254}$ No ^m	T : avera	age 11Lo	06=259(1	7) 10Cl	01=263	(2) 10	He10=2	75(7) 06Hel	19=266(2))					**
$*^{254}$ No ^m	T: () 6Ta19=2	266(10); o	ther 730	Gh03=2	80(40)									**
*254 No ⁿ	T : avera	age 06He	19=184(3) 10He1	0=198	(13) 10	0Cl01=1	84(2) 06Ta1	9=171(9)						**
$*^{254}$ No ⁿ	E:2917	(3) + x;	x estimate	ed 300#3	300; 10	C101=	2930(2)	but	their lev	/el						**
$*^{254}$ No ⁿ	E: 8	scheme is	s disputed	J	J : from	06He	19									**
* ²⁵⁴ Lr	T : avera	age 08Ar	16 = 18(2)	01Ga20)=13.4(4.2); 8	35He22=	-13(+	-3-2) sa	me group	; othe	r				**
* ²⁵⁴ Lr	T: ()6Fo02=2	22(+9-6)	Γ) : not i	ised 0	6Fo02 o	=60	(+11-15	5)%; $\beta^{+} =$	40(+1	5-11)%				**
* ²⁵⁴ Rf	T : avera	age 15Da	12=23.2(1.1) 97H	Ie29=23	3(3); o	ther 08I	Dr05:	=29.6(+	0.7-0.6)						**
		0														
255																
²⁵⁵ Cf	84810#	200#					85	m	18	$(7/2^+)$	13			1981	$\beta^{-}=100$; SF<0.001#; $\alpha=2e-7#$	
²⁵⁵ Es	84089	11					39.8	d	1.2	$(7/2^+)$	13			1954	$\beta^{-}=92.04; \alpha=8.04; \text{SF}=0.00412$	
²⁵⁵ Fm	83800	4					20.07	h	0.07	$7/2^{+}$	13			1954	α =100; SF=2.4e-5 10	
²⁵⁵ Md	84843	7					27	m	2	$(7/2^{-})$	13			1958	$\beta^+=93$ 1; $\alpha=7$ 1; SF<0.15	
$^{255}Md^p$	84850#	70#	10#	70#						$1/2^{-}$ #	13					
²⁵⁵ No	86807	15					3.52	m	0.18	$(1/2^+)$	13	11As03	TJ	1967	$\beta^+=705; \alpha=305$	
²⁵⁵ No ^m	87020#	100#	210#	100#			1#	s		$11/2^{-}$ #						
²⁵⁵ No ^p	86910#	70#	100#	70#	Nm					$(7/2^+)$						
²⁵⁵ Lr	89947	18					31.1	s	1.1	$(1/2^{-})$	13	06Ch52	TJ	1971	α =99.7 1; β^+ =0.3 1; SF<0.1	
²⁵⁵ Lr ^m	89988	19	41	8	AD		2.54	s	0.05	$(7/2^{-})$	13	06Ch52	J	2006	IT \approx 60; $\alpha \approx$ 40	
$^{255}Lr^n$	90741	22	794	12			< 1	μs		$(15/2^+)$) 13			2009	IT=100	*
$^{255}Lr^p$	91410	22	1463	12			1.70	ms	0.03	$(25/2^+)$) 13			2008	IT=100; $\alpha < 0.15$	*
²⁵⁵ Rf	94330#	120#					1.66	s	0.07	$(9/2^{-})$	13	15An05	D	1975	SF=45 3; α =48 3; $\beta^+ < 1$	*
255 Rf ^m	94480#	120#	150	22	AD		50	μs	17	$(5/2^+)$		15An05	ETJ	2015	IT=100	
²⁵⁵ Db	99590#	360#					1.7	s	0.5		13			1977	α ?; SF \approx 20	*
* ²⁵⁵ Lr ⁿ	E:740.	0 keV ab	ove 9/2+,	which is	s <30 a	bove 2	255Lrm									**
$*^{255}Lr^{p}$	E:1408	3.6 keV a	bove 9/2+	, which	is <30	above	255Lrn	1								**
* ²⁵⁵ Rf	T : avera	age 06He	27=1.68(0.09) 01	He35=	1.64(0	.11)	Ε) : 15Ai	n05 SF=43	53;α	=48 3				**
* ²⁵⁵ Db	T : sym	metrized	from 1.6(-	+0.6-0.4	4)											**
256 04	87040#	310#					12 2		12	Ω^+	00			1000	$SE = 100; \alpha = 6.2, 7#; 2R = 9$	
256 E a	87100#	100#					12.5	m	1.2	$(1+0^{-})$	99			1980	SF=100; a=0.2e-7#; 2p	
256 E.s	87100#	140#	0#	100#		*	23.4	111	2.4	$(1^{,0})$	99			1981	p = 100 $R^{-} \sim 100$, $R^{-} SE = 0.002$	
256 Em	05100#	140#	0#	100#		*	1576	п	1.2	(o ⁺)	99			1970	$p \approx 100; p \text{ SF}=0.002$	
256 M.4	03407	120#				. 0-	20#	m	1.5	7-#	99			1955	$\beta F = 91.9 \ 5, \ \alpha = 0.1 \ 5$	
256 M Am	07400# 07600	70	160#	100#		* 00	30# 77	m	2	(1-)	00	ECVID	т	1055	p^{+} 2, α^{-} , 3^{-} 2 β^{+} -2; α^{-0} 2.7; SE <2	
256 N 40	0/020 97700#	120#	240#	140#		* &	//	m	4	(1)	99	ruk120	1	1933	p = 0; u = 9.27; SP < 3	*
256 NL	01/00# 07000	120#	∠40#	140#			2.01	~	0.05	am	00			1062	$\alpha \sim 100$, SE-0.52.6, $\alpha < 0.01$	
2561 -	01022	0 80					2.91	s	2.05	0	99			1903	$\alpha \sim 100$; $S\Gamma = 0.330$; $\varepsilon < 0.01\%$	
2561n	91/30 01000#	00#	220#	10#			27	s	3		99			1903	$\alpha_{-0.5,10}$; $p = 15,10$; $SP < 0.05$	
256 D.C	91980#	90# 10	∠30#	40#			617		0.10	0 ⁺	1.4			1075	SE-2, ~-0.22.17	
256 p. m	94222	18	1100#	100"			0.67	ms	0.10	(\overline{c})	14			19/5	$SF = ?; \alpha = 0.321/$	*
256 p. m	95340#	100#	1120#	100#			25	μs	2	(5)	14			2009	11=100; SF ?	
256 D C2	93620#	100#	1400#	100#			17	μs	2 5	(8)	14			2009	11=100; SF /	
256 D1	90020#	200#	2400#	200#			27	μs	5		14	0111.25	TD	2009	11=100; SF ?	
-256 M 100	100500#	240#	C-11 1	. M. 1	1	.1. 4	1.7	S	0.4		16	UTHe35	ID	2001	$\alpha = 10.11; p = 30.12; SF = ?$	*
* ²⁵⁶ Md‴	I : Follo	wing the	Gallagher	-Mosko	wsky ri	ule, th	is should	1 be 1	ine grou	ind-state						**
* 256 DL	D: othe	1 10St14	5F=9/(+2	2-0)%	(105	0.21	ther 024)~ ^	-2 (4.0.00						**
* ²⁵⁶ Db	I : symi	metrized	110m 01H	e35=1.6	0(+0.5-0	U.5); 0	otner 830	Jg.A	=2.0(+1	.4–0.8)						**
*0Db	D:01H	ess p⊤=	30(12)% (JSINEUI	$\alpha = /0(1$	11)%										**

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Nuclida	Masa			Evoite	tion		[_1f_1]	F.a.	1π	Enc	Dafamana		Veer of	Decour modes and	
Inuclide	(ke	V)		energy ((keV)	п	lan-m	le	J	Ells	Kelelelic	e	discovery	intensities (%)	
													· ·		-
²⁵⁷ Es	89400#	410#				7.7	d	0.2	7/2+#	13			1987	$\beta^{-}=100; \alpha=4e-4\#$	
²⁵⁷ Fm	88590	4				100.5	d	0.2	$(9/2^+)$	13			1964	$\alpha \approx 100$; SF=0.210 4	
²⁵⁷ Md	88993.1	1.6				5.52	h	0.05	$(7/2^{-})$	13			1965	$\epsilon = 85 3; \alpha = 15 3; SF < 1$	
²⁵⁷ No	90247	7				24.5	s	0.5	$(3/2^+)$	13	02Ho11	D	1967	$\alpha = ?; \beta^+ = 15.8$	
$257 \operatorname{No}^{p}$	90550#	110#	300#	110#					$9/2^{+}$ #am						
²⁵⁷ L r	92670#	40#	2001	1100		6.0	¢	0.4	$(1/2^{-})$	13	10St14	т	1971	$\alpha \approx 100: \beta^+ - 0.01 \#: SE - 0.001 \#$	*
257 L r.P	02820#	110#	150#	100#		0.0	3	0.4	(1/2)	12	105(14	1	17/1	$u \approx 100, p = 0.01\%, 31 = 0.001\%$	Ŧ
257 D.f	92820#	110	150#	100#		4.00		0.12	$(1/2^+)$	12	ECV10-	т	10/0	$\alpha_{1} = 0; 0^{\pm} = 10, 4, 14; \text{SE} = 1, 2, 2$	
257 RI	95866	11				4.82	s	0.13	$(1/2^{+})$	13	FGKI0a	J	1969	$\alpha = ?; \beta = 19.4 \ 14; \text{SF} = 1.3 \ 3$	*
2.57 Rfm	95940	10	73	11	AD	4.3	S	0.2	$(11/2^{-})$	13	10Be16	Т	1997	$\alpha = 882; \beta^+ = 112; SF < 1.4$	*
25 Rf ⁿ	97022	10	1155	11	AD	106	μs	6	$(21/2^+)$	13	13Ri07	ΤJ	2009	IT=100	*
²⁵⁷ Db	100210#	200#			*	2.3	s	0.2	$(9/2^+)$	13			1985	$\alpha > 94$; SF<6; $\beta^+=1$ #	
²⁵⁷ Db ^m	100350#	230#	140#	110#	*	670	ms	60	$(1/2^{-})$	99	01He35	J	1985	$\alpha > 87; SF < 13; \beta^+ = 1\#$	
* ²⁵⁷ Lr	T : avera	age 10St1	4=6.3(+0.	9–0.7)) a	and 5.8 (0.5)										**
* ²⁵⁷ Lr	T : othe	rs not use	d 97He29=	=3.3(+0.	5-0.4) 97He	29=4.3(+1)	.3-0.	8)							**
* ²⁵⁷ Lr	T· 7	76Be A=0	646(0.02	5)71Es(1=0.6(0,1)			~)							**
* ²⁵⁷ Lr	I · feedi	ng in e de	cav of 1/2	+ 257 Rf	and TNN tr	ends for e	_o nei	ighbors							**
"257 D f	J : fever	ite or te th	$1/2^{+}$ of $1/2$	to at 670	land Haiv u	D : also 0		4 SE_2	(1)07-						
* KI 257 D.C	J : Tavor		4 = 5 = 5(0, 4)		$\int \mathbf{K} \mathbf{e} \mathbf{v}$	D: also 0	19Q10-	+ 31=20	(1)%						**
* ²⁵⁷ RI	1 : avera	age TUSTI	4=5.5(0.4)		=4.8(0.2)0	9Q104=4./	(0.3)								**
* ²⁵⁷ Rf	T: 8	\$5\$003=3	.8(0.8) 74	Be.A=4.	8(0.3) /IGh	03 = 4.8(0.3)	5)								**
* ²⁵⁷ Rf ^m	E:97H	e29=118(+	4) keV fro	m direct	comparison	of two α	lines								**
$*^{25}/Rf^{m}$	T : avera	age 10Be	16=4.6(0.3)) 08Dr0	5=4.1(+0.7-	0.6) 97He	29=3.	9(0.4)							**
$*^{257}$ Rf ^m	T : 09Q	04=4.1(+	2.4-1.3) n	naybe to	a 11/2 ⁻ leve	el in ²⁵⁷ Lr									**
$*^{257}$ Rf ⁿ	E:1082	(4) keV a	bove ²⁵⁷ R	f^m											**
$*^{257}$ Rf ⁿ	T:10B	16=134.9	9 (7.7), rea	nalyzed	in 13Ri07 to	o 10Be16=	110(5	5)							**
258 0	02700#	400#				2#								β^{-2} , α^{2}	
258	92700#	400#				270	m	1.4	0+	01	0.011 0.0	T	1071	p r, α r	
258 Fm	90430#	200#				370	μs	14	0,	01	86Hu05	1	1971	SF \approx 100; α ?	*
2.58 Md	91687	4			*	51.5	d	0.3	8-#	01	93Mo18	D	1970	$\alpha \approx 100; \beta^+ < 0.0015; \beta^- < 0.0015$	*
258 Md ^m	91690#	200#	0#	200#	*	57.0	m	0.9	1-#	01	93Mo18	D	1980	$\epsilon = ?; SF < 20; \beta^{-} < 10 \#; \alpha < 1.2$	*
²⁵⁸ No	91480#	100#				1.2	ms	0.2	0^{+}	01			1989	SF \approx 100; α =0.001#; 2 β^+ ?	
²⁵⁸ Lr	94780#	100#				3.6	s	0.4		01	14Ha04	TD	1971	$\alpha = ?; \beta^+ = 2.6 18$	*
258Lr ^p	95020#	140#	240#	100#					am						
²⁵⁸ Rf	96340	30				13.8	ms	0.9	0^{+}	01	08Ga08	Т	1969	SF=87 2: α =13 2	*
²⁵⁸ Db	101800#	310#			*	4 5	s	04		01	09He20	т	1981	$\alpha = 63.6$; $\beta^+ = 37.6$; SF < 1#	*
258 Dbm	101860#	320#	60#	100#	*	1.0	6	0.5		01	09He20	Ť	1985	$\beta^+ \approx 100$: IT 2	
258 S.a	105240#	410#	0011	1001	т Т	27		0.5	0+	01	00Ec02	T	1007	$\beta \sim 100, 11$	
258 E	105240#	410#	05 260/20		200/202	2.7	ms		0.	01	091/002	1	1997	$31 = 1, \alpha < 20$	*
*250 Fm	1 : avera	ige 86Hu	05=360(20)) / I Hu()3=380(20) ($(an 1\sigma) E$	NSDF	gives 3	σ						**
* ²⁵⁸ Md	D : deriv	ed from:	"the sum	of SF, E	and β^- deca	ay branche	es < 0	.003%	'n						**
* ²⁵⁸ Md	D :	93Mo18 a	and $T(SF)$	>150000) y, from 861	Lo16, thus	SF<	1e-4%#	ŧ						**
$*^{258}Md^{m}$	D : SF<	20% deri	ved from 9	93Mo18	"the sum of	SF and β	- deca	ay bran	ches < 30%	"					**
* ²⁵⁸ Lr	T : sym	netrized f	from 14Ha	04=3.54	(+0.46-0.36)	5)									**
* ²⁵⁸ Rf	T : aver	age 08Ga	08 = 14.7(+	1.2 - 1.0)	85So03=13	(3) 69Gh0	1=11	(2)							**
* ²⁵⁸ Db	T · aver	ore 09He	20=4 3(0 5	0.06Fo0	2=48(+10-	0.8) 01Ga	20=4	3(11);	and						**
* ²⁵⁸ Dh	T · · ·	35He??=4	4(+0.9_0	6		, 5100									**
⁺ D0	D: over	$\beta \beta R^{+} \Omega$	E-02-20	(11.0)	% 85U-22-2	22(10 5)0	<u>.</u>								
* D0 + 258 S ~	D aver	age p 00	5F002=59	(+11-9)	0.604	55(+9-5)%	y vith a		i o al r						**
*Sg	1 : sym	netrized i	rom 09F0	02=2.6(-	+0.6–0.4); co	ombining	with e	armer w	/OFK						**
²⁵⁹ Fm	93700#	280#				1.5	s	0.2	$3/2^{+}$ #	13			1980	SF=100	
²⁵⁹ Md	93620#	200#				1.60	h	0,06	$7/2^{-}$ #	13			1982	SF=?: $\alpha < 1.3$	
259 No	94079	7				58	m	5	$(9/2^+)$	13	13As02	T	1973	$\alpha = 75.4$ $\epsilon = 25.4$ SF < 10	
259 NLop	0/210#	150#	220#	150#		50	m	5	(2/2)	15	1.5/1302	5	1713	w=75 T, C=25 T, 51 \ 10	
259	24310# 05050#	100#	230#	130#				0.2	1 /2- "	10			1071		
250	95850#	/0#				6.2	s	0.3	1/2 #	13			19/1	$\alpha = /8 2; SF = 22 2; \beta' = 0.6\#$	
2.59 Lr ^p	96200#	170#	350#	150#											
²⁵⁹ Rf	98360#	70#				2.63	s	0.26	7/2+#	13	08Ga08	Т	1969	α =92 2; SF=8 2; β^+ =0.3#	*
²⁵⁹ Rf ^p	98430#	100#	60	70	Nm				$(3/2^+)$						
259 Rf ^q	98570#	110#	210	90	Nm				$(9/2^+)$						
²⁵⁹ Dh	101990	50	-			510	ms	160	9/2+#	13	01Ga20	D	2001	$\alpha = 100$	
259 S.a	106520#	120#				102	me	56	$(11/2^{-1})$	13	154 n05		1985	$\alpha - 97$ 1. SE < 3. c < 1	ىك
259 g - m	100320#	120#	07	22	AD	402	ms	27	(11/2)	15	154-05		1903	$u = y/1, SI \le 3, z \le 1$	*
259 D C	100010#	120#	8/	22	AD	226	ms	21	$(1/2^{+})$		15An05	IJD		$\alpha = 9/1; SF > 5; E < 1$	*
* Rt	1 : avera	age 08Gal	J8=2.5(+0	.4–0.3) 9	4Gr08=1.7(+0.8-0.5)									**
* ²⁵⁹ Sg	D : SF=	3(1)% ass	sumed fror	n shorter	r-lived isome	eric state									**
$*^{259}Sg^{m}$	D : SF=	3(1)% ass	sumed fror	n this sta	ate										**

 $*^{259}$ Sg^m D:SF=3(1)% assumed from this state

Chinese Physics C Vol. 41, No. 3 (2017) 030001

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Nuclide	Mass	excess	Iubic	Excit	tion	15220	10	Half-li	ife		Fns	Reference	P	Year of	Decay modes and	
	(ke	V)		energy	(keV)			ian-n	ne	3	LIIS	Reference	c .	discovery	intensities (%)	
260 Em	05770#	440#			EU		1#			0+					SE 2	
²⁶⁰ Md	96550#	320#			EU		27.8	d	0.8	0	99	92L o B	TD	1989	$SF=?: \alpha < 5: \varepsilon < 5: \beta^{-} < 3.5$	*
²⁶⁰ No	95610#	200#					106	ms	8	0^{+}	99)2E0.D	10	1985	SF=100	
²⁶⁰ Lr	98280#	120#					3.0	m	0.5	-	99			1971	$\alpha = 80\ 20;\ \beta^+ = 20\ 20$	
²⁶⁰ Rf	99150#	200#					21	ms	1	0^+	99			1985	SF=?; α =2#; ϵ =0.01#	*
²⁶⁰ Db	103670#	90#					1.52	s	0.13		99			1970	$\alpha > 90.46$; SF<9.66; $\beta^+ < 2.5$	*
$^{260}\text{Db}^p$	103870#	180#	200#	150#												
²⁶⁰ Sg	106548	21					4.95	ms	0.33	0^+	99	09He20	Т	1984	SF=60 30; α=40 30	*
²⁶⁰ Bh	113320#	250#					41	ms	14		16	08Ne01	TD	2008	$\alpha \approx 100; \beta^+ ?; SF ?$	*
* ²⁶⁰ Fm	I : half-l	life ≈4 ms	and SF=10	0 mode	were rep	ported in	the 92	Lo.B	internal	1						**
* ²⁰⁰ Fm		eport. Not	confirmed	in subse	quent ex	perimer	it by sa	me gr	oup (97	/Lo.A)						**
* ²⁶⁰ Fm	1: L T. come	Jiscovery (1 mis nucl	(0.5) of	nsidered	unprove	en									**
* 1010 * 260 Pf	T : supe	086-08-	1001=31.8	(0.3) 01 2 4) 08G	same gro $\alpha \Lambda - 210$	up (±73.4	3)									**
* Ki * ²⁶⁰ Db		$04M_026=$	15(+0.8-0)	(2.4) 03C	0.A = 210 0.29 = 0.89	(+1.3,-+.)(+0.79_	0 35)									**
* ²⁶⁰ Sg	T : supe	ersedes 851	Mu11=3.60	+0.9-0.0		(10.7)	0.55)									**
* ²⁶⁰ Sg	D : svm	metrized f	rom SF=50	(+30-2)))% and	$\alpha = 50(+)$	20-30)	%								**
* ²⁶⁰ Bh	T : sym	metrized f	rom 08Ne0)1=35(+	(9–9)		,									**
	2			Ì	,											
261	00500#	510#					40#			7/2-#					~ P	
261 NIG	98580#	200#					40#	m h		1/2 # 2/2+#					α ?	
261 L r	98400#	200#					30 30	m	12	5/2*#	00			1087	α : SE-2: α 2	
261 Rf	101320	200#				* &	22	s s	0.3	3/2+#	15	11Ha13	TD	1987	$SF=73.6: \alpha=27.6$	*
$^{261}Rf^{m}$	101320	110#	70#	100#		* &	20	s	4	$9/2^{+}$ #	15	13Mu08	Т	1970	$\alpha = ?: \beta^+ < 15: \text{SF} < 10$	*
$^{261}Rf^{p}$	101620#	110#	300#	100#		÷	20	5	•	<i>)</i> /2 "	15	1511400		1770	u=.,p <13, 51 <10	
²⁶¹ Db	104310#	110#					4.7	s	1.0		99	13Su04	TD	1970	SF=73 11; α =?	*
$^{261}\text{Db}^p$	104610#	230#	300#	200#												
²⁶¹ Sg	108005	18					183	ms	5	$(3/2^+)$	99	10St14	TJD	1984	α =98.1 4; β ⁺ =1.3 3; SF=0.6 2	*
$^{261}Sg^{m}$	108110#	50#	100#	50#			9.3	μs	1.8	$(11/2^{-})$	99	10Be16	TJ	2010	IT=100	*
²⁶¹ Bh	113130#	210#					12.8	ms	3.2	$(5/2^{-})$	99	10He11	TJD	1989	α =95 5; SF<5	*
* ²⁶¹ Rf	T : aver	age 12Ha0	05=2.6(+0.7	7–0.5) 1	1Ha13=1	1.9(0.4))8Go.A	A=2.2((+0.9–0	0.5)						**
* ²⁰¹ Rf	T : othe	rs 08Dv02	=3(1) 08M	1009 2 e	ents at 2	2.97 and	8.3s 02	2Ho11	l = 4.2(+)	3.4–1.3)						**
* ²⁰¹ RI		13Mu08=:	5.9(3.0) usi	ng SF e	ents	000		107 6.								**
* ²⁶¹ P fm	D:SFC	motrized f	a05=82(9)	2): oth	13 = 73(0)	02-20()	110 1	0.021	or 11 ev	(11.6)						**
* KI * ²⁶¹ Dh	T : sym T : sver	age 13Suf	$4-4.7(\pm 3.6)$	-5), 000000000000000000000000000000000000	15 000 v 5t14-4	1(+14-() 8)	0) 021	1011-7	8(+11-0)						**
* ²⁶¹ Db	D · obse	erved 11 S	F and 4 α	decays: 1	incertair	ity evalu	ated by	NUB	ASE							**
* ²⁶¹ Sg	T : aver	age 10St14	4=184(5) 1	0Be16=	178(14)	ity evalu	uicu oj	1100								**
$*^{261}Sg^{m}$	T: sym	metrized fi	rom 9.0(+2	2.0-1.5)												**
* ²⁶¹ Bh	T : sym	metrized f	rom 10He1	1=11.8(+3.9-2.4	4); others	s not us	ed 06	Fo02=1	10(+14–5)						**
$*^{261}Bh$	T: ;	and 08Ne0	08=6.7(+3.8	8–1.8)												**
²⁶² Md	101630#	500#					3#	m							SF ?; α ?	
²⁶² No	100100#	360#					5	ms		0^{+}	01			1989	SF \approx 100; α ?	
²⁶² Lr	102100#	200#					4	h			01			1987	β^+ =?; SF<10; α ?	
²⁶² Rf	102390#	220#				*	250	ms	100	0^+	01	08Go.A	TD	1985	SF≈100	*
262 Rf ^m	103390#	460#	1000#	400#		*	47	ms	5	high		96La11	Ι	1978	SF=100	*
²⁶² Db	106250#	140#					34	s	4		01	14Ha04	TD	1971	SF=52 4; α =?; β ⁺ =3#	*
²⁶² Db ^p	106300#	160#	50#	70#						a					α ?	
202 Sg	108370	40	0.00	00			10.9	ms	2.3	0^+	01	06Gr24	TD	2001	SF \approx 100; α ?	*
262 DL	109220	90 310#	800	90	AD		Q /	me	11		01	001-20	т	1081	$\alpha - 2: SE < 20$	
262 Bhm	114340#	310#	210	50			0.5	me	11		01	09He20	т	1981	$\alpha = 2; SF < 20$ $\alpha = 2: SE < 10$	*
* ²⁶² Rf	T · svm	metrized f	210 rom 08Go	A=2100	+128-58) ms· 7 \$	9.5 Feven	ins	1.0		01	001/002	1	1701	$u = 1, 01 \le 10$	*
* ²⁶² Rf	T : conf	licting 961	_a11=2.1(0).2) 94I s	22=1.20	+1.0-0 5	5)									**
* ²⁶² Rf	T:	11Ha13 ar	d 08Go.A	suggest	these act	tivities b	elong t	o ²⁶¹ F	Rf							**
* ²⁶² Rf	D:	this sugge	stion contra	adicts 96	Lall a	<0.8; no	t adopt	ed by	NUBA	SE						**
$*^{262}$ Rf ^m	I : assig	ned in 96L	all to K-i	someric	state	T : 8	35So03	=47(5	5)							**
* ²⁶² Db	T : sym	metrized f	rom 14Ha0	4=33.8(+4.4-3.5	5)										**
* ²⁶² Sg	T : 06G	r24=15(+5	-3) 01Ho)6=6.9(+	3.8-1.8)	1	D : no	α obs	erved a	<i>α</i> <16%						**
* ²⁶² Bh	T : aver	age 09He2	20=83(14)	06Fo02=	84(+21-	-16)										**
* ²⁶² Bh	T: othe	r 08Ne08(10 events)=	=120(+5	5–29) no	ot used										**
* ²⁶² Bh ^m	T : 06Fo	002=9.6(+	3.6-2.4) 97	/Ho14(1	1 events)=12.2(+	5.5-2.	8) 89N	Mu09=8	3.0(2.1)						**
$*^{202}Bh^m$	T : also	09He20=2	22(4) 08Ne	08(4 eve	ents)=16	(+14–5)	not use	ed								**

Chinese Physics C Vol. 41, No. 3 (2017) 030001

Table I. Th	e NUBASE2016 tab	e (continued, Explanation	of Table on nage 18
14000 16 110		C (CONTINUEUR D'ADIANALIO)	

			Table	I. The	NUBA	SE201	6 tabl	le (co	ontinu	ed, Expl	anat	tion of Ta	ible (on page 18)	
Nuclide	Mass (ke	excess V)		Excita energy	ation (keV)		Ι	Half-li	fe	J^{π}	Ens	Referenc	e	Year of discovery	Decay modes and intensities (%)	
²⁶³ No	103130#	490#					20#	m							α?·SF?	
²⁶³ Lr	103730#	280#					20# 5#	h							α ?	
²⁶³ Rf	104760#	150#					11	m	3	$3/2^{+}$ #	99	93Gr.C	TD	2003	SF=?: α =30	*
263 Rf ^p	105060#	250#	300#	200#						- /						
²⁶³ Db	107110#	170#					29	s	9		99	92Kr01	D	1992	SF=56 14; α =?; β ⁺ =6.9 16	*
$^{263}\text{Db}^p$	107370#	260#	260#	200#												
²⁶³ Sg	110190#	100#				*	940	ms	140	$7/2^{+}$ #	99	06Gr24	TD	1974	α=87 8; SF=13 8	*
$^{263}Sg^{m}$	110240#	100#	51	19	Nm	*	420	ms	100	$3/2^{+}$ #	99	04Fo08	Т	1995	<i>α</i> =?; IT ?	*
²⁰³ Sg ^p	110290#	100#	100	30	AD		2004				00				2	
263 Bh	114500#	310#					200#	ms	40	2/2+#	99	000-02	TD	2000	α ?	
263 HS 263 Hom	120000#	130#	320	70	AD		760	μs	40	3/2'#	99	09Dr02	TD TD	2009	$\alpha = ?; SF < 8.4$	*
263 Pf	T : over	130# age 03Kr2	$0-24(\pm 10)$	7) m 030	AD 3r C=50	0(+300 2	2001	μs	40 -600(±3	11/2 #		09D102	ID	2009	$\alpha = 2, 31^{\circ}$	ياد ياد
* R1 * ²⁶³ Rf	T : also	one SF ev	$0=24(\pm 1)=$ ent 08Dv02	2 = 8(+40)	-4) s	0(+500-2	200) \$ 92		-000(+3	00-200) s						**
* ²⁶³ Db	D : SF f	rom 92Kr	01=57(+13-	-15)%: [3^+ avera	ige 03Kr	20=3(+4)	-1)%	93Gr.C=	=8(2)%						**
* ²⁶³ Db	T : Poss	ibly a can	didate for th	he 54(+9	8–21) s	SF decay	observe	ed in 9	8Ik02	-(_)/-						**
* ²⁶³ Db	T : sym	metrized fi	rom 27(+10)–7)	ĺ.											**
* ²⁶³ Sg	T : aver	age 06Gr2	4=820(+37	0-190) 9	94Gr08=	553(+33	6–152) 7	74Gh0	4=900(2	200); all						**
* ²⁶³ Sg	T :	produced v	ia direct pi	oduction	n mechai	nisms										**
$*^{263}Sg^{m}$	T : aver	age 04Fo0	8=290(+17	0-90) 04	Mo40=	549(+300)—143) n	ns 03C	3i05=222	2(+404-87)					**
$*^{263}Sg^{m}$	T :	and 98Ho1	3=310(+16	60–80) m	s; all pro	oduced v	ia α dec	ay of p	parent							**
$*^{263}Sg^{m}$	T :	also 10Ni1	4 at τ=702	ms via o	ι-decay α	of parent	, but wit	h low	energy							**
* ²⁶³ Hs	T : sym	metrized fi	rom 740(+4	48–21) 6	events f	or both s	tates (lo	w stati	istics)							**
* ²⁰⁵ Hs	D : 09D	r02 no SF	observed													**
264 Nr -	105010#	500#					1 11			0 ⁺					~ 2. SE 2	
264 L	105010#	390# 440#					1#	m L		0.					α ?; SF ? α ?: SE ?	
264 D f	106080#	440# 260#					10#	n h		0^+					a ?	
264 Dh	100080#	240#					1#	п		0.					<i>u</i> ?	
264 S a	110780#	240#					5# 47	ma	20	0^+	06			2006	α ? SE~100: α ?	
264 Bh	116060#	280#					1 07	ins c	0.21	0	90	04Mo26	TD	1995	$\alpha = 86 \cdot 8E = 14 \cdot \beta^+ 2$	*
²⁶⁴ Bh ^p	116290#	230#	230#	150#			1.07	3	0.21	am	,,,	041020	ID	1995	u=30, 31=14, p	*
264 Hs	110290#	230#	250#	150#			540	115	300	0^{+}	99	95Ho B	т	1986	α≈50: SE≈50	*
* ²⁶⁴ Sg	T · svm	metrized fi	rom 37(+27	7–11): al	so 10Nil	14(1 ever	(1) = 86.4	ms ms	500	0)))IIO.D	•	1900	a	**
* ²⁶⁴ Sg	D: no c	t observed	$\alpha < 36\%$	11), ui	50 10141		10)=00.1	1115								**
* ²⁶⁴ Bh	T : aver	age 04Mo	26=0.9(+0.1)	3-0.2) 04	4Ga29=1	1.17(+0.8	38-0.44)	and								**
* ²⁶⁴ Bh	Τ:	02Ho11=1	.02(+0.69-	0.29)												**
* ²⁶⁴ Hs	T : 95H	o.B (2 eve	nts 76 µs ai	nd 825 µ	s) 8'	7Mu15 (l event 8	30 μs):	; average	e of the						**
* ²⁶⁴ Hs	Τ:	3 events: 3	27(+448-1	20) µs, s	ee 84Sc	13			-							**
265 *	100000	5504					10.0								0.070	
²⁰⁵ Lr	108230#	550#					10#	h	0.0	a /a± "		1.577.00	-	2010	α ?; SF ?	
265 Rf 265 Dh	110490#	360#					1.0	m	0.8	3/2'#	15	150t02	1	2010	SF \approx 100; α ?	*
265 S a	110480#	220#				P-	15#	m	16	0/2+#	15	1211-05	т	1004	α ?	
265 S ~m	112/90#	120#	60#	160#		<i>a</i> .	9.2	s	1.0	9/2·#	15	12Fa05	I T	1994	$\alpha > 30; \text{ SF } ?$	*
265 Ph	112000#	120#	00#	100#		æ	10.4	s	2.4	5/2 #	13	155u04 04Go20	I TD	2004	$\alpha > 05 10; \text{ SF } ?$	*
265 He	120000	230#					1.19	s	0.52	3/2+#	99	04Ga29	т	2004	$\alpha = i$ $\alpha \sim 100$; SE < 1	*
265 Hem	120900	24	220	22	٨D		360	IIIS 110	150	$0/2^+$	00	09Hc20	т	1964	$\alpha \approx 100, 31 < 1$	*
265 Mt	126680#	450#	229	22	AD		2#	ms	150	9/2 m	,,,	0911020	1	1995	$\alpha \sim 100, 11$	*
* ²⁶⁵ Rf	T · sym	metrized fi	rom 15Ut02	2=1 0(+1	2-03)		211	mo							G .	**
* ²⁶⁵ Sg	T : sym T : sver	age 12Ha0	15 = 85(+26)	5 = 1.0(11)	.2-0.5) 8Du09=9	8 9(+2 7-	-1 9)									**
* ²⁶⁵ Sg ^m	T : aver	age 13Su0	4=20(+15-	6) 12Ha	05=14.4	(+3.72	5) 08D	109=16	5.2(+4.7-	-3.5)						**
* ²⁶⁵ Bh	T : svm	metrized fi	rom 0.94(+	0.70-0.3	1)	(, =	-,		(**
* ²⁶⁵ Hs	T : aver	age 09He2	0=1.9(0.2)	99He11	=2.0(+0)	.3-0.2)										**
* ²⁶⁵ Hs ^m	T : sym	metrized fi	rom 300(+2	200-100	; other 9	9He11=	750(+17	0-120))							**
	2		,		,		,		·							
255																
²⁰⁰ Lr	111620#	580#					21	h	14		14			2014	SF=100	*
²⁰⁰ Rf	110080#	470#					4#	h		0^+		0 -	-		α ?; SF ?	
²⁰⁰ Db	112740#	280#					80	m	70		07	07Og02	Т	2007	α ?; SF ?; β^+ ?	*
²⁰⁰ Sg	113620#	250#					390	ms	110	0^+	05	13Og03	TD	2006	SF=100	*
²⁰⁰ Bh	118100#	160#					2.5	s	1.6		05	08Mo09	Т	2000	$\alpha \approx 100; \beta^+ ?; SF ?$	*
200 Hs	121140	40		=			3.02	ms	0.54	0+	05	11Ac.A	Т	2001	$\alpha = ?; SF \approx 1.4 \#$	*
200 Hsm	122240	80	1100	70	AD		280	ms	220	9-#		11Ac.A	Т	2011	α=?	*
A-grou	p 1s continu	ed on next	page													

 Table I. The NUBASE2016 table (continued, Explanation of Table on page 18)

Nuclide	Mass	excess		Excita	tion		Half-li	fe	$\frac{J^{\pi}}{J^{\pi}}$	Ens	Reference	e	Year of	Decay modes and	
	(ke	eV)		energy	(keV)								discovery	intensities (%)	
A-group	p continued														
²⁶⁶ Mt	127960#	310#		0.0		1.2	ms	0.4		05	97Ho14	Т	1982	$\alpha = ?; SF < 5.5$	*
²⁶⁶ Mt ^m	129100# T:sym	310# metrized fro	1140 m 14Kb0/	80 1-11(+2)	AD	6	ms	3			9/Ho14	TD	1984	$\alpha = 100$	*
* Li * ²⁶⁶ Dh	T: one of	event at 31	74 m viela	$\frac{1}{1} = 11(\pm 2)$	(-5) (5-10) see 84S	c13									**
* ²⁶⁶ Sg	T : avera	age 13Og03	3=280(+19	0–80) ms	08Dv02=360(+	+250-100)) ms								**
* ²⁶⁶ Sg	T: (08Dv02 sup	ersedes 06	Dv01=4	44(+444–148)										**
* ²⁶⁶ Sg	I : 98Tu	01=21(+20	–12) s 94L	a22=10	30 s with 18%<	$\alpha < 50\%$	50%<	SF<829	% re-assigned						**
* ²⁰⁰ Sg	I: to	203 Sg, see	08Dv02; 1	10Gr04 c	one SF event afte	er 23 ms,	not tru	isted							**
* ²⁶⁶ Bn * ²⁶⁶ He	1 : 2 eve T : aver	ents at 2.46	$-2.07(\pm 0.7)$	s; other $(78, 0.51)$	$01H_{0}06=23(\pm 1)$	1.59-0.20))								**
$*^{266}$ Hs ^m	T · svm	metrized fro	m 11Ac A	=74(+3)	(4-34) the possi	ibility in	01Ho()6 that							**
* ²⁶⁶ Hs ^m	T: (01Ho06=6.	3(+8.6-2.3) is ruled	out by the 11A	c.A resul	lt	, o unut							**
* ²⁶⁶ Mt	T : 10 e	vents yieldi	ng 1.01(+0	0.47-0.24), see 84Sc13										**
$*^{266}Mt^{m}$	T : 3 eve	ents at 7.8,	2.0 and 5.0	yield 3.	4(+4.7–1.3), see	84Sc13									**
²⁶⁷ Rf	113440#	580#				25	h	15		05	060005	тD	2004	SE=100	*
267 Rf ^p	113660#	580#	220#	100#		2.5		1.5		05	000505	10	2001	51-100	
²⁶⁷ Db	114070#	410#				100	m	60		05	13Ru11	Т	2004	SF=100	*
²⁶⁷ Sg	115810#	260#				1.8	m	0.7			08Dv02	TD	2008	SF=83; α=17	*
$^{267}Sg^{p}$	115880#	280#	70#	100#											
267 Bh 267 Ho	118770#	260#				22	S	10	5 /2+#	05			2000	$\alpha = 100$	*
267 Hem	122030#	100#	30	24	۸D	990		90	3/2 * #	05	04Eo08	тр	2004	$\alpha > 80$; SF ? $\alpha - 2$ · IT 2	*
²⁶⁷ Mt	127790#	500#	57	24	лD	10#	ms	70		05	041 000	10	2004	α ?	4
²⁶⁷ Ds	133880#	140#				10	μs	8	$3/2^{+}$ #	05	95Gh04	Т	1995	α=100	*
* ²⁶⁷ Rf	T : sym	metrized fro	om 1.3(+2.	3–0.5); s	upersedes 04Og	12 one e	vent at	2.3 h							**
* ²⁶⁷ Db	T : 13Ri	u11 one eve	ent at 30.61	m and 04	Og03 one event	at 73									**
* ²⁶⁷ Sg ²⁶⁷ Ph	T : sym	metrized from	m 80(+60)	–20) s ; c 5–17(+1)	ther 99Og.B=19	9 ms not	trusted								**
$*^{267}$ Hs	T : sym	metrized fro	51100 w 113 52(+13)	-8)	-0)										**
* ²⁶⁷ Hs ^m	T : 04Fc	08(2 event	s)=940(+12	20-45); (other not trusted	04Mo40) (1 eve	ent)=803	ms						**
* ²⁶⁷ Ds	T : one	single even	t, τ =4 μ s, t	hus $T=2$.8(+13.0–1.3), s	ee 84Sc1	3								**
268 D.C	115400#													0.05.0	
208 Rf 268 Dh	115480#	660# 520#				1#	h h	4	0^+	05	12D.,11	т	2004	α ?; SF ? SEc. 100: β^+ ?	
²⁶⁸ Db ^p	117210#	530#	150	70		29	п	4		05	IJKUII	1	2004	$31 \approx 100, p$	*
²⁶⁸ Sg	116800#	470#	100			2#	m		0^+					α ?; SF ?	
²⁶⁸ Bh	120810#	380#				25#	s							α ?; SF ?	
²⁶⁸ Hs	122830#	280#				1.42	s	1.13	0^{+}		10Ni14	TD	2010	$\alpha \approx 100$	*
²⁶⁸ Mt	129150#	230#				27	ms	6	5+#,6+#	05	04Mo26	Т	1995	$\alpha = 100$	*
²⁶⁸ Ds	133650# T: over	300#	-26(17.5)	120~01	-25 0(16 2 4 2	100#	μs 2	11 4)	0					α ?	
* D0 * ²⁶⁸ Db	T · 130	oll superse	$=20(\pm 7-3)$	2 = 27.9	+7 8-5 0) 050 of	02=29(+)	-20(+ 9-6) 04	$40 \circ 03 =$	16(+19-6)						**
* ²⁶⁸ Hs	T : svm	metrized fro	m 0.38(+1)	1.8-0.17	17.0 5.0) 0505	02-27(1	, 0, 0	10505-	10(11) 0)						**
* ²⁶⁸ Mt	T : mea	n lifetime o	f 14 events	in 04M	026=30 ms and 6	5 events i	n 02H	011=60	ms						**
200															
²⁰⁹ Db	119150#	620#				3#	h	2			1511:00	T	2010	α ?; SF ?	
269 Dh	119760#	360#				5 1#	m	3		15	15Ut02	Т	2010	$\alpha \approx 100$; SF?	*
269 Hs	121480# 124560#	370# 120#				1# 16	m s	6	9/2+#	05	135004	т	1996	$\alpha = 100$	*
²⁶⁹ Mt	129370#	460#				100#	ms	č	>/ = "	55	105401	*		α?	
²⁶⁹ Ds	134830	30				230	μs	110	$9/2^{+}$ #	05	95Ho03	Т	1995	α=100	*
* ²⁶⁹ Sg	T : sym	metrized fro	om 15Ut02	=3.1(+3.	7–1.1)										**
* ²⁶⁹ Hs	T : avera	age 13Su04	=12(+9-4)	and 02H	Holl 2 events at	19.7s 22	2.0s, se	e 84Sc1	3						**
*209Ds	T : sym	metrized fro	om 17/0(+1	60–60)											**
270 Db	122210#	620#				2.0	h	12		10	148404	TD	2010	SE-100	
270 So	122310#	560#				2.0 3#	n m	1.3	0^{+}	10	14K1104	ТD	2010	$\alpha^{2} SF^{2}$	*
²⁷⁰ Bh	124230#	290#				3.8	m	3.0	3	07	07Og02	TD	2007	$\alpha = 100$	*
$^{270}\mathrm{Bh}^{p}$	124920#	350#	690#	200#							U				
²⁷⁰ Hs	125110#	250#				9	s	4	0^+	05	13Og03	Т	2003	α=100; SF ?	*
270 Mt	130710#	170#				6.3	ms	1.5		05			2004	$\alpha \approx 100$	*
A-group	p is continue	a on next p	age												

Nuclide	Mass (ke	excess eV)		Excita energy	ation (keV)]	Half-li	fe	J^{π}	Ens	Reference	•	Year of discovery	Decay modes and intensities (%)	
A-group	p continued					205		10		0.5		-	2001		
270 Ds 270 Dcm	134680	50 60	1200	60		205	μs	48	(10)(-#)	05	IIAC.A	1	2001	$\alpha \approx 100; SF < 0.2$	*
* ²⁷⁰ Db	T · svm	metrized f	from 14Kh04	4=1.0(+1)	9-04) other	not used 13	0004=	:17(+15-	-6)	05			2001	a=:,11 :	**
* ²⁷⁰ Bh	T : sym	metrized f	from 61(+29	2-28)s	.) 0.1), ouler	not used 15	0501-		0)						**
* ²⁷⁰ Hs	T : sym	metrized f	from 13Og03	3=7.6(+4	.9-2.2); other	estimated 0	3Tu05:	=3.6(+0.	8–1.4)						**
* ²⁷⁰ Mt	T : sym	metrized f	from 5.0(+2	4–0.3)											**
* ²⁷⁰ Ds	T : aver	age 11Ac	.A=200(+70-	-40) 01H	006=100(+14	0–40)									**
* ²⁷⁰ DS ^m	T : sym	metrized	from 6.0(+8.)	2-2.2)											**
²⁷¹ Sg	124760#	590#				3.1	m	1.6		06	06Og05	TD	2004	<i>α</i> =70; SF=30	*
²⁷¹ Bh	125920#	420#				10	m	8		05	13Ru11	TD	2000	$\alpha = 100$	*
271 Hs 271 Mt	127/40#	280#				10#	S						2008	α ?; SF ?	
271 De	131100#	330# 100#			*	400# & 90	ms	40	13/2-#	05			1008	α ? $\alpha = 100$	*
$^{271}Ds^{m}$	136020#	100#	68	27	AD *	& 1.7	ms	0.4	$9/2^+ \#$	05			1995	$\alpha = 100$ $\alpha = 100$	*
* ²⁷¹ Sg	T : sym	metrized f	from 1.9(+2	4–0.6); si	upersedes 040	g12=2.4(4.	3-1.0)	α=50; S	F=50						**
* ²⁷¹ Bh	T:13R	u11 one e	vent at 2.6 m	1											**
* ²⁷¹ Ds	T : sym	metrized f	from 69(+56	-21)											**
* ^{2/1} Ds ^m	T : sym	metrized f	from 1.63(+0).44–0.29	')										**
²⁷² Sg	126580#	730#				4#	m		0^{+}					α ?; SF ?	
²⁷² Bh	128790#	530#				11.3	s	1.8		05	13Ru11	Т	2004	$\alpha \approx 100$	*
272Hs	129010#	510#				10#	s		0^+					α ?; SF ?	
272 Mt 272 Da	133580#	490#				400#	ms		0±					α?; SF?	
272 DS	136020#	410# 230#				200#	ms	1.0	0' 5+# 6+#	05	04Mo26	т	1005	$\alpha = 100$	*
* ²⁷² Bh	T : aver	age 13Ru	11=9.2(+3.1-	-1.8) 130	0g01=12.0(+3)	.1–2.1)	ms	1.0	5 #,0 #	05	041020	1	1995	u=100	**
* ²⁷² Bh	Τ:	13Og01 s	upersedes 12	2Og02=8.	2(+2.5–1.6)s ()4Og03=9.8	8(+11.7	7–3.5)s							**
* ²⁷² Rg	T : mea	n lifetime	of 14 events	in 04Mc	26=5.5 ms and	d 6 events in	n 02Hc	011=2.3							**
²⁷³ Sg ²⁷³ Bb	130020#	500# 690#				5# 1#	m							SF ?	
²⁷³ Hs	131890#	370#				1060	ms	500	$3/2^{+}$ #	15	15Ut02	т	2010	$\alpha \approx 100$	*
²⁷³ Hs ^p	132000#	380#	110#	100#		1000		200	5/2	10	100102	•	2010	α ?; SF ?	
²⁷³ Mt	134710#	420#				800#	ms							α ?; SF ?	
²⁷³ Ds	138360#	130#				240	μs	80	$13/2^{-}$ #	05	13Su04	Т	1996	$\alpha = 100$	*
²⁷³ Ds ^m	138560#	130#	198	20	EU	120	ms		3/2+#	05			1996	α=100	
273Rg	142700# T	530#	From 151 1t00	-760(17	10.240)	2#	ms							α ?	
* ²⁷³ De	T : sym T : over	age 13Su	$M = 100(\pm 14)$	=/00(+/	10-240 spe=170(+17	0.60 for 4	avante								**
* ²⁷³ Ds	T: aver	08Mo09 2	2 events at 52	20 and 40	$\mu_{s}: 02Ho11 a$	t 310: 96H	o13 at	і. 110 µs							**
					<i>p,</i>			,							
²⁷⁴ Bh ²⁷⁴ Ho	133680#	620#				60	S	30	0+	10	14Kh04	TD	2010	$\alpha = 100$	*
274 Mt	133490#	350#				300# 850	ins	540	0'	07	070002	TD	2007	α :; 5Γ ! α=100	÷
274Ds	139200#	390#				10#	ms	5 10	0^{+}	57	010502	10	2007	α ?; SF ?	Ŧ
²⁷⁴ Rg	144610#	180#				29	ms	18		05	08Mo09	TD	2004	$\alpha \approx 100$	*
* ²⁷⁴ Bh	T : aver	age 14Kh	04=30(+54-	12) 13Og	904=54(+65-1	9)s									**
* ²⁷⁴ Mt	T : sym	metrized f	from 440(+8	10–170)r	ns										**
* ²⁷⁴ Rg	T : 2 ev	ents at 9.2	26 and 34.3 n	ns											**
²⁷⁵ Bh	135690#	600#				5#	m							SF ?	
²⁷⁵ Hs	136620#	590#				290	ms	150		05	06Og05	TD	2004	α=100	*
275 Hsp	136860#	600#	240#	100#											
²⁷⁵ Mt	138830#	420#				117	ms	74		05	13Ru11	Т	2004	$\alpha = 100$	*
275 DS	141570#	410#				10#	ms							α?; SF?	
* ²⁷⁵ He	145500# T · evm	J20# metrized f	from 190(17	20-70) **	s: supercedee	5# 040012−14	ins 50(+27	0-60)						α :	**
* ²⁷⁵ Mt	T · 13R	ull one e	vent at 51.31	20.700 ms and 0_4	40o03 one eve	$\frac{10512-1}{100}$.5(127	5 50)							**

Nuclida	Macc	avcass	Table	Evel	ation	5120	10 table	Jolf 12	anacu a	, μ Αριαι π	Enc	Deferer	, on h	Veer of	Decay modes and	
Nuclide	Mass (ke	excess eV)		energy	(keV)		1	1a11-111	e	Jn	Ens	Reference	2	discovery	intensities (%)	
276 -														•		
²⁷⁰ Hs	138290#	750#					100#	ms	100	0^+	0.5	100 11	m	2004	α ?; SF ?	
²⁷⁶ Mt	141320#	530#				*	630	ms	100		05	13Ru11	Т	2004	$\alpha = 100$	*
²⁷⁶ Mt ^m	141570#	540#	250	80	AD	*	10	s	5	- 1		13Og01	TD	2012	$\alpha = 100$	*
²⁷⁶ Ds	142540#	550#					100#	ms		0^+					α ?; SF ?	
276 Rg	147490#	630#					10#	ms		e					α ?; SF ?	
²⁷⁶ Cn	150350#	600#					100#	μs		0^+					α ?; SF ?	
* ²⁷⁶ Mt	T : aver	age 13Ru	11=750(+2	50–150) 1	13Og01	=540(+	140–90)									**
* ²⁷⁶ Mt	T :	13Og01 sı	upersedes 1	2Og02=6	680(+20	0-120)	ms 04Og03	=720(-	+870–25	0)ms						**
$*^{2} Mt^{m}$	T : sym	metrized f	from 6(+8–	2) superse	edes 12	Og02										**
277										a (a) v						
2//Hs	141490#	540#					11	ms	9	3/2+#	14	10Du06	TD	2010	SF=100	*
277 Hs ^m	141590#	550#	100#	100#			110	s	70		14	12Ho12	TD	2012	SF=100	*
277Hsp	142150#	580#	660#	200#												
277Mt	142970#	700#					9	s	6		14	13Og04	TD	2013	SF=100; α ?	*
²⁷⁷ Ds	145140#	380#					6	ms	3	$11/2^+$ #	15	15Ut02	Т	2010	$\alpha \approx 100$; SF ?	*
²⁷⁷ Rg	148340#	520#					10#	ms							α ?; SF ?	
²⁷⁷ Cn	152400#	140#					850	μs	280	3/2+#	05	13Su04	Т	1996	$\alpha = 100$	*
* ²⁷⁷ Hs	T : sym	metrized f	from 3.0(+1	4.4–1.4);	990g1	0 one S	F event at 1	6.5m,	not trust	ed						**
* ²⁷⁷ Hs ^m	T : (SF	1 event) s	ymmetrized	I from $\tau =$	34(+16	4–16) s										**
* ²⁷⁷ Mt	T : sym	metrized f	from 13Og(04=5(+9-	2) s											**
* ²⁷⁷ Ds	T : sym	metrized f	from 15Ut0	2=4.1(+3)	.7–1.3)											**
* ²⁷⁷ Cn	T : aver	age 13Su(04=610(+46	60–180) a	nd 4 ev	ents : 0	8Mo09 at 1	100 an	d 1220 µ	ıs,						**
* ²⁷⁷ Cn	Τ:	02Ho11 at	t 1406 µs a	nd 96Ho1	3 at 28	0 μs										**
278	1455.000	(20) "					_		2			1 4771	-	2010		
278 Mt	145740#	620#	4-0.0				7	s	3		10	14Kh04	T	2010	$\alpha = 100$	*
$^{278}Mt^{p}$	146210#	650#	470#	200#												
²⁷⁸ Ds	146380#	630#					270#	ms	_	0^+					α ?; SF ?	
278Rg	150520#	360#					8	ms	5		07	07Og02	TD	2007	$\alpha = 100$	*
²⁷⁸ Cn	152930#	440#					2#	ms		0^{+}					α ?; SF ?	
²⁷⁸ Ed	158890#	180#					2.3	ms	1.3		05	12Mo25	TD	2004	$\alpha \approx 100$	*
* ²⁷⁸ Mt	T : aver	age 14Kh	04=3.6(+6.	5–1.4) 13	Og04=:	5.2(+6.2	2–1.8)s									**
* ²⁷⁸ Rg	T : sym	metrized f	from 4.2(+7	.5–1.7)												**
* ²⁷⁸ Ed	T : 3 ev	ents at 0.3	44, 4.930 a	nd 0.667	ms; sup	ersedes	08Mo09									**
279	1.47500.0	(70)					20//									
279 Mt	147500#	670#					30#	S	50		0.5	0.00 05	-	2004	α ?; SF ?	
279 Ds	149130#	600#	2004	1004			210	ms	50		05	06Og05	TD	2004	SF=90; $\alpha = 10$	*
279 Dsp	149410#	610#	280#	100#			100				0.5	100 11	m	2004	100	
279 Rg	151780#	420#					180	ms	110		05	13Ru11	Т	2004	$\alpha = 100$	*
279 Rg ^p	151910#	430#	130#	100#												
279Cn	155030#	460#					5#	ms							α ?; SF ?	
279 Ed	159240#	700#					1#	ms							α ?; SF ?	
* ²⁷⁹ Ds	T : sym	metrized f	from 200(+	50–40); s	upersed	es 040	g12=180(+5	50–30)	and							**
* ²⁷⁹ Ds	T :	04Og07=2	290(+350-1	.00);												**
* ²⁷⁹ Ds	T :	others : 09	St21 one S	F event a	t 185 m	s, 07Ei(02 one SF e	vent at	536 ms							**
* ²⁷⁹ Rg	T : 13R	u11 one e	vent at 16.1	ms and (04Og03	one eve	ent at 170									**
280	100000	7 00 "							6	<u></u>	0.5	010 01	-	1000	0E 100	
200 Ds	150520#	780#					11	s	6	0^+	05	01Og01	TD	1999	SF=100	*
280 Rg	153890#	530#					4.3	s	0.7		05	13Ru11	Т	2004	$\alpha = 100$	*
²⁸⁰ Cn	155700#	580#					5#	ms		0^+					α ?; SF ?	
²⁸⁰ Ed	161140#	400#					10#	ms							α ?; SF ?	
* ²⁸⁰ Ds	T : 3 ev	ents at 6.9	3, 14.3 and	7.4 yield	l 6.6(+9	–2.4), s	ee 84Sc13									**
* ²⁸⁰ Rg	T : aver	age 13Ru	11=6.4(+2.	1–1.3) 13	Og01=3	3.61(+0	.90–0.60);									**
* ²⁸⁰ Rg	Τ:	13Og01 sı	upersedes 1	2Og02=3	8.53(+0.	99–0.63	3)ms 04Og0)3=3.6	(+4.3–1.	3)ms						**
281 D-	1524204	5004					1.4	_	4	2/2+4	05	100-06	TD	2004	CE_05 10: ~ 15 10	
281 D	153430#	580#	10.0	0.40.0			14	s	4	3/2 ⁺ #	05	10Du06	TD	2004	SF=85 12; α =15 12	*
281 DSm	153470#	550#	40#	240#			0.9	s	0.7			12Ho12	TD	2012	$\alpha = 100$	*
201 Rg	155300#	810#					24	s	8	a /- · · ·	10	16Fo16	Т	2010	SF=100	*
²⁸¹ Cn	158020#	390#					180	ms	80	3/2+#	15	15Ut02	Т	2010	$\alpha \approx 100$; SF ?	*
²⁸¹ Ed	161810#	300#					100#	ms							α ?; SF ?	
* ²⁸¹ Ds	T : aver	age 10Du	06=20(+20	-7) 07Og	01=11.	1(+5.0-	2.7); supers	edes								**
* ²⁸¹ Ds	T :	04Og07=9	9.6(+5.0–2.	5); 99Og	10 one o	α event	at 1.6 m, no	ot trust	ed							**
* ²⁸¹ Ds	D : sym	metrized t	from SF=9	l(+7–16)	%; α= 9	(+16-7))%									**
$*^{281}$ Ds ^m	T : sym	metrized f	from 0.25(+	1.18-0.1	1) s											**
* ²⁸¹ Rg	T : sym	metrized f	from 16Fo1	6=21(+10	0–5), re	analyze	d data of 13	3Og04:	=17(+6-	3),						**
* ²⁸¹ Rg	Τ:	12Og06=2	26(+25-8),	10Og01=	26(+25	-8)										**
* ²⁸¹ Cn	T : sym	metrized f	from 15Ut0	2=130(+1	(20-40))										**

030001-136

Mualida	Massawaaaa	Evolution			life		Enc	Deference		Voor of	Decorr modes and	
Inuclide	(keV)	energy (keV)		naii-i	lille	<i>J</i>	Ells	Reference	e	discovery	intensities (%)	
282 5	1550004 6504				0.7		0.5	1.1771.0.1	TD	2010	100	
282 Cp	15/800# 650#		1.6	m	0.7	0^+	05	14Kn04 06Oc05	TD TD	2010	$\alpha = 100$ SE-100	*
282 Ed	158980# 000#		900 140	μs ms	240 90	0.	03	000g03 070g02	TD	2004	$\alpha = 100$	*
* ²⁸² Rg	T : average 14Kh04	=3.1(+5.7-1.2)m 13Og04=59(+55	5–19)s	1113	<i>)</i> 0		07	070g02	ID	2007	u=100	**
* ²⁸² Cn	T : symmetrized fro	m SF=820(+300-180); supersede	s 04Og12	=500(-	+330-140)							**
* ²⁸² Cn	T: also 10El06	one SF event at 522 µs; 09St21 or	ne SF at 3	600 µs	3							**
* ²⁸² Ed	T : symmetrized fro	m 73(+134–29)										**
²⁸³ Rg	159280# 700#		30#	s							α ?; SF ?	
²⁸³ Cn	161490# 610#		4.1	s	1.0		06	06Og05	TD	2004	$\alpha = ?; SF < 10$	*
²⁸³ Ed	164710# 440#		160	ms	100		05	13Ru11	Т	2004	$\alpha = 100$	*
* ²⁸³ Cn	T : symmetrized fro	m $3.8(+1.2-0.7)$; supersedes 04O	$g_{12=4.0(-1)}$	+1.3-0.	.7) and							**
* ²⁸³ Cn	T: 040g0/=0.1	(+7.2-2.2); other 0/H018=0.9(+0)	0.9–2.3), 3	SF=30								**
* Cli * ²⁸³ Cn	T · Four SF events a	t 990o07=9.3 m 3.8 m 990o05=	=30m 0	9 m n	ot trusted							**
* ²⁸³ Ed	T : 13Ru11 one even	nt at 68.4 ms and 04Og03 one eve	nt at 100	.,,	or indisted							**
²⁸⁴ Cn	162550# 810#		104	me	20	0+	05	100006	TD	2004	SE-100	ų
284 Ed	166590# 530#		930	ms	140	0	05	13Ru11	T	2004	$\alpha = 100$	*
²⁸⁴ Fl	168920# 660#		3.3	ms	1.4	0^+	15	15Ut02	TD	2015	SF \approx 100; α ?	*
* ²⁸⁴ Cn	T : average 10Du06	=101(+50-25) 07Og01=97(+31-1	19); super	sedes								**
* ²⁸⁴ Cn	T: 04Og12=10	1(+41-22) and 04Og07=98(+41-2	23)									**
* ²⁰⁴ Cn	TD: 01Og01 3	α 's at 53.9 s, 10.3 s, 18.0 s, not true	isted									**
* ²⁸⁴ Ed	T : average 13Rull	=810(+230-150) 130g01=970(+2 areadas 120g02=040(+200-180)r	250-170);	2_190	(1580 170	Dime						**
* Eu * ²⁸⁴ Fl	T : 5 events at 0.555	5. 8.588. 0.857. 7.246 and 0.529 m	iis 040gu is	5-400	(+500-170	/)1115						**
		, 0.000, 0.007, 7.210 and 0.027 m										
²⁸⁵ Cn	165170# 580#	570.0	32	s	9	$5/2^{+}$ #	05	10Du06	TD	2004	$\alpha = 100$	*
285 CA	165/40# 560#	570# 250#	15	s	12		10	12H012	TD T	2012	$\alpha = 100$ $\alpha = 100$	*
285 FI	171000# 390#		210	ms	1.1		10	15Ut02	Т	2010	$\alpha \approx 100^{\circ}$ SF ?	*
* ²⁸⁵ Cn	T : average 10Du06	=30(+30-10)070g01=29(+13-7)	; superse	des	100		10	100102	•	2010	G - 100, 51 -	**
* ²⁸⁵ Cn	T: 04Og07=34	(+17-9); 99Og10 one event at 15.4	4 m, not t	rusted								**
* ²⁸⁵ Cn ^m	T : symmetrized fro	m 4.0(+19.1–1.8) s										**
* ²⁸⁵ Ed	T : symmetrized fro	m 16Fo16=2.9(+1.4–0.7), reanaly	zed data	of								**
* ²⁸⁵ Ed	T: 13Og04=4.2	(+1.4-0.8), 120g06=4.9(+6.7-1.8)	s), 10Ogu	01=5.5(+5.0-1.8)							**
* Fl	1 : symmetrized fro	m 150t02=150(+140-50)										**
²⁸⁶ Ed	170010# 660#		7	s	3		10	14Kh04	Т	2010	<i>α</i> =100	*
²⁸⁰ Fl	171770# 660#		140	ms	30	0^+	05	06Og05	TD	2004	SF \approx 60; $\alpha \approx$ 40	*
* ²⁸⁰ Ed	T : average 14Kh04	=2.9(+5.3-1.1) 130g04 $=13(+12-$	4)	70.20)) and							**
* ²⁸⁶ Fl	T : 04Og07=290	m 130(+40–20); supersedes 04Og D(+540–110); also one α each 10F	El06=76 n	+70–30 ns, 09S	6) and st21=301 n	15						** **
297											0.677.0	
²⁰ Ed	171250# 730#		2#	m	120		05	000.05	TD	2004	α ?; SF ?	
287 EF	1/40/0# 610#		520	ms	130		05	13P::11	TD T	2004	$\alpha = 100$ $\alpha = 100$	*
* ²⁸⁷ Fl	T : symmetrized fro	m 480(+160–90)· supersedes 040	93 912=510	111S (+180-	-100)		05	13KU11	1	2004	u=100	**
* ²⁸⁷ Fl	T : supersedes 040s	207=1.1(+1.3-0.4); 99O207 2 evts	\$ 1.32, 14	.4 s not	trusted							**
* ²⁸⁷ Fl	T : also 09St21 one	α event at 815 ms	, .									**
* ²⁸⁷ Ef	T:13Ru11 one even	nt at 67.6 ms and 04Og03 one eve	nt at 32 m	is								**
288 F1	175040# 810#		750	me	140	0^+	05	116-10	TD	2004	<i>α</i> =100	¥
²⁸⁸ Ef	179770# 540#		170	ms	25	0	05	13Ru11	T	2004	$\alpha = 100$	*
* ²⁸⁸ Fl	T : average 11Ga19	=520(+220-130) 07Og01=800(+2	270–160);	supers	sedes		50		-			**
* ²⁸⁸ Fl	T: 10Du06=470	0(+240-120); 04Og12=800(+320-	-180) and	04Og	07=630(+2	270-140)						**
* ²⁸⁸ Fl	T:01Og01=1800(+	2100–600) re-assigned to ²⁸⁹ Fl	-									**
* ²⁰⁰ Ef	T : average 13Ru11	=150(+43-28) 13Og01=171(+42-	-28);	02.07	7/. 105 . 55	、 、						**
*-** Ef	1: 13Og01 sup	ersedes 12Og02=1/3(+52-32) ms	and 04O	903=87	/(+105-30	ims						**

 $*^{288}$ Ef T: 13Og01 supersedes 12Og02=173(+52-32) ms and 04Og03=87(+105-30) ms

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Table	I. The NUBAS	E2016 tab	le (con	tinued	l, Explar	natior	ı of Tabl	e on p	page 18)		
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	Nuclide	Mass excess (keV)	3	Excitation energy (keV)		Half-1	ife	J^{π}	Ens	Referenc	e	Year of discovery	Decay modes and intensities (%)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁸⁹ Fl	177560# 580	#		2.4	s	0.6	5/2+#	05	10Du06	TD	2004	$\alpha = 100$	*
	²⁸⁹ Fl ^m	178330# 560	# 770#	260#	1.1	s	0.8	-/		12Ho12	TD	2012	$\alpha = 100$	*
$ \frac{1}{2} 1$	²⁸⁹ Ef	180670# 810	#		310) ms	90		10	16Fo16	Т	2010	$\alpha = 100$	*
$ \frac{1}{2} 1$	²⁸⁹ Lv	184530# 490	#	RN	2#	t ms		$5/2^{+}$ #	00	02Ni10	Ι		α ?	*
$ \frac{1}{2} 1$	* ²⁸⁹ Fl	T : average 10	Du06=0.97(+0	.97-0.32) 07Og01:	=2.6(+1.2-0.7));								**
$ \begin{array}{c} & {\to} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	* ²⁸⁹ Fl	T: supers	edes 04Og07=2	2.7(+1.4-0.7);										**
$ \begin{array}{c} = \ \ \ \ \ \ \ \ \ \ \ \ \$	* ²⁸⁹ Fl	T : 99Og10 or	ne event at 30.4	s, not trusted										**
$ \begin{array}{c} \begin{array}{c} & = 1 \\ &$	* ²⁸⁹ FI ^m	T : symmetriz	ed from $0.28(+$	(1.35-0.13) s	analyzed dat	of								**
$ \frac{1}{2^{39}} \frac{1}{1^{5}} = \frac{1}{1000^{10}} \frac{1}{200^{10}} \frac{1}{$	* ²⁸⁹ Ef	T : symmetriz	$M_{-220(+120, 8)}$	0=2/0(+120-00), 1	$\frac{1}{500}$ $\frac{1}{60}$ $\frac{1}{60}$	$101 - 2^{\circ}$	001260	80)						**
$ \frac{1}{2} = \frac{1}{1} + \frac{1}{2} + 1$	* ²⁸⁹ L v	T : 99Ni03-6	$00(\pm 860 \pm 300)$	α decay retracted h	-390-100, 100	201=22	20(+200-	-80)						**
$ \begin{array}{c} \overset{290}{2} \text{Ef} & \text{i} 182890\# 660\# & 410 \text{ ms} 190 \\ \overset{290}{3} \text{ms} 3 & 0^{+} & 0^{$	* LV	1.991003-0	00(+800-300)	a decay retracted t	by authors in 0.	211110								**
$ \frac{1}{2^{20}L_V} = \frac{1822040}{12904} = \frac{600^{4}}{600} = \frac{600}{204+220(+280-90); other 14KD04=1300(+2300-500)} \\ + \frac{1}{2^{20}L_V} = \frac{18230906}{118} = \frac{7}{1290} = \frac{7}{11} + \frac{11}{1200} = \frac{11}{1100} = \frac{11}{11000} = \frac{11}{11000} = \frac{11}{11000} = \frac{11}{11000} = \frac{11}{11000} = \frac{11}{110000} = \frac{11}{1100000000000000000000000000000000$	²⁹⁰ Ef	182890# 660	#		410	ms	190		10	13Og04	Т	2010	<i>α</i> =100	*
$ \frac{1}{2^{30}} E_{1} = 1 : symmetrized from 130g04=240(+230-30); other (14K104=1500(+250-300)) = 1 : symmetrized from 7.1(+3.2-1.7); supersedes 040g07=15(+26-6) = 1 : symmetrized from 7.1(+3.2-1.7); supersedes 040g07=15(+26-6) = 1 : symmetrized from 18(+22-6); supersedes 040g07=6.3(+11.6-2.5) = 1 : symmetrized from 18(+16-6) = 2 : symmetrized from 18(+16-6) = 18(+3-4), reanalyzed data of = 2 : symmetrized from 18(+16-6) = 18(+3-4), reanalyzed data of = 2 : symmetrized from 18(+16-6) = 18(+3-4), reanalyzed data of = 2 : symmetrized from 10(+57-20); supersedes 040g07=53(+62-19) = 2 : symmetrized from 10(+57-20); supersedes 040g01=14(+11-4) = 2 : symmetrized from 18(+40-4-20) 130g04=50(+60-18) = 2 : symmetrized from 18(+40-4-20) 130g04=50(+60-18) = 2 : symmetrized from 10(+50-5) supersedes 10 : symmetrized from 10(-50-5) supersedes 10 : symmetrized from 10(-50-5) supersedes 040g07=53(+62-19) = 2 : symmetrized from 18(+40-4-20) 130g04=50(+60-18) = 2 : symmetrized from 10(-50-50 supersedes 040g07=50(+60-18) = 2 : symmetrized from 18(+20-18) = 2 : symmetrized from 10(-50-50 supersedes 040g07=50(+60-18) = 2 : symmetrized from 10$	290 LV	185200# 660	# 16 120 0	4 949(1999 00)	1 1 4121 04	ms 1200()	3	0	05	06Og05	TD	2004	$\alpha = 100$	*
*** Ev T: Symmetrized from $f.1(\pm 3.2-1.7)$, supersedes $0.40g07 = 13(\pm 20-5)$ ** **********************************	* ²⁹⁰ Ef	T : symmetriz	ed from 13Ogu	(4=240(+280-90);	other 14 Kn04=	=1300(+	2300-50	0)						**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* 1.14	1 : symmetriz	ed from 7.1(+5	.2-1.7); supersedes	8 04Og07=13(+20-0)								**
$ \begin{array}{c} \begin{array}{c} 291 \ Lv \\ 291 \ Eh \\ 291 \ Eh \\ 291 \ Lv \\ 4^{291} \ Lv \\ 4^{291} \ Lv \end{array} \begin{array}{c} 187390 \ fi \ 610 \ fi \\ 500 \ fi \ 500 \ fi \ 20 \ fi \ 20 \ fi \ 10 \ 100 \ fi \ 500 \ fi \ 100 \ fi \ 1$	²⁹¹ Ef	183990# 780	#		1#	t s							α ?; SF ?	
$ \begin{array}{c} ^{29} \text{Eh} & 191800^{6} 590^{\#} & 2^{\#} \text{ ms} \\ *^{391} \text{Lv} & \text{T}: \text{symmetrized from 18(+22-6); supersedes 040g07=6.3(+11.6-2.5)} \\ \end{array} \\ \begin{array}{c} & \ast ^{292} \text{Lv} & 188240^{\#} 810^{\#} & 24 \text{ ms} 12 & 0^{\pm} & 05 & 040g12 \text{ TD} & 2004 & \alpha = 100 \\ \alpha ^{292} \text{Eh} & 193580^{\#} 670^{\#} & 10^{\#} \text{ ms} & 0^{\pm} & 05 & 070g01 \text{ TD} & 2004 & \alpha = 100 \\ \alpha ^{292} \text{Eh} & 193580^{\#} 670^{\#} & 10^{\#} \text{ ms} & 0^{\pm} & 05 & 070g01 \text{ TD} & 2004 & \alpha = 100 \\ \alpha ^{292} \text{Eh} & 190670^{\#} 590^{\#} & 80 \text{ ms} 40 & 05 & 070g01 \text{ TD} & 2004 & \alpha = 100 \\ \ast ^{293} \text{Lv} & \text{T}: 010g01 \text{ reported one event at 46.9 ms, re-assigned to next isotope} \\ \end{array} \\ \begin{array}{c} & \ast ^{293} \text{Lv} & 190670^{\#} 590^{\#} & 80 \text{ ms} 40 & 05 & 070g01 \text{ TD} & 2004 & \alpha = 100 \\ \ast ^{293} \text{Lv} & 190470^{\#} 810^{\#} & 21 \text{ ms} 6 & 10 & 167616 \text{ T} & 2012 & \alpha = 100 \\ \ast ^{293} \text{Eh} & 194390^{\#} 810^{\#} & 700^{\#} & \text{RN} & 1^{\#} \text{ ms} & 1/2^{\pm \#} & 00 & 02Ni10 & 1 & \alpha ? \\ \ast ^{393} \text{Lv} & \text{T}: \text{symmetrized from 61(+57-20); supersedes 040g07=53(+62-19) \\ \ast ^{293} \text{Eh} & 198870^{\#} 7000^{\#} & 1.12 \text{ mas} 1/2^{\pm \#} & 00 & 02Ni10 & 1 & \alpha ? \\ \ast ^{293} \text{Eh} & \text{T}: \text{symmetrized from 167(16-18(+8-4), reanalyzed data of \\ \ast ^{293} \text{Eh} & \text{T}: 99Ni03=120(+180-60) & \alpha \text{ decay retracted by authors in 02Ni10} \\ \end{array} \\ \begin{array}{c} & \ast ^{294} \text{Eh} & \text{T}: \alpha \text{erg} 14Kh04=51(+94-20) 130g04=50(+60-18) \\ \ast ^{294} \text{Ei} & \text{T}: 120g06=0.135 \text{ ms} (1 \text{ event}) 0.06g05=0.89 (4 \text{ events}) 0.04g05 \text{ TD} & \alpha ? \\ \end{array} \\ \begin{array}{c} & \ast ^{295} \text{Ei} \\ \ast ^{295} \text{Ei} \\ \end{array} \\ \end{array}$	²⁹¹ Lv	187390# 610	#		28	ms	15		05	06Og05	TD	2004	$\alpha = 100$	*
	²⁹¹ Eh	191800# 590	#		2#	t ms							α ?; SF ?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* ²⁹¹ Lv	T : symmetriz	red from 18(+22	2–6); supersedes 04	4Og07=6.3(+1	1.6–2.5)								**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁹² Lv	188240# 810	#		24	ms	12	0^+	05	04Og12	TD	2004	<i>α</i> =100	*
	²⁹² Eh	193580# 670	#		10#	t ms							α ?; SF ?	
	* ²⁹² Lv	T : symmetriz	ed from 18(+10	6–6)										**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ²⁹² Lv	T : 01Og01 re	ported one even	nt at 46.9 ms, re-as	signed to next	isotope								**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁹³ Lv	190670# 590	#		80) ms	40		05	07Og01	TD	2004	<i>α</i> =100	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁹³ Lv ^m	191410# 560	# 740#	270#	80) ms	60			12Ho12	TD	2012	$\alpha = 100$	*
	²⁹³ Eh	194390# 810	#		21	ms	6		10	16Fo16	Т	2010	$\alpha = 100$	*
	²⁹³ Ei	198870# 700	#	RN	1#	ms		$1/2^{+}$ #	00	02Ni10	Ι		α ?	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ²⁹⁵ Lv	T : symmetriz	ed from 61(+5)	7–20); supersedes ()4Og07=53(+6	62–19)								**
*** En T: symmetrized from 10F010=18(+8-4), reanalyzed data of *** * ²⁹³ Eh T: 130g04=22(+8-4), 120g06=27(+12-6), 100g01=14(+11-4) *** **** **** *** *** *** *** *	* ²⁹³ LV ^m	T : symmetriz	ed from $20(+90)$	(-9) ms	1									**
* Eff T: $150 \text{g}04-22(+8-4), 120 \text{g}05-22(+12-4), 100 \text{g}01-14(+11-4)$ * 2^{293}Ei T: $99\text{Ni}03=120(+180-60) \alpha$ decay retracted by authors in $02\text{Ni}10$ ** 2^{94}Ei $196520\#$ $660\#$ 70 ms 30 10 14Kh04 T 2010 $\alpha=100$ * 2^{94}Ei $199460\#$ $660\#$ 1.15 ms 0.47 0 ⁺ 05 120g06 T 2006 $\alpha=100$ * * ^{294}Ei T: average $14\text{Kh}04=51(+94-20)$ $130\text{g}04=50(+60-18)$ ** * ^{294}Ei T: $120\text{g}06=0.135$ ms (1 event) $060\text{g}05=0.89$ (4 events) $040\text{g}12=1.8$ ms (1 event) ** * ^{295}Ei 201510# $640\#$ 10# ms $040\text{g}05$ TD α ? * * ^{295}Ei T: $040\text{g}05$ reports one α event at 2.55 ms ; re-assigned to ^{294}Ei **	* ²⁹³ Eh	T : symmetriz	A = 22(18, 4) 1	0=18(+8-4), reana 20x06-27(+12-6)	$100 \approx 0.1 = 1.4$	11 1)								**
* Er = 1.57405=126(1105-06) & decay reflected by addition = 0.2416 294 Eh = 196520# = 660# = 70 ms = 30 = 10 = 14Kh04 = T = 2010 $\alpha = 100$ * 294 Ei = 199460# = 660# = 1.15 ms = 0.47 0 ⁺ = 05 = 120g06 = T = 2006 $\alpha = 100$ * * 294 Eh = T : average 14Kh04=51(+94-20) 130g04=50(+60-18) * * 294 Ei = T : 120g06=0.135 ms (1 event) 060g05=0.89 (4 events) 040g12=1.8 ms (1 event) ** 295 Ei = 201510# = 640# = 10# ms = 040g05 TD = α ? * * 295 Ei = T : 040g05 reports one α event at 2.55 ms ; re-assigned to 294 Ei = **	* Ell * ²⁹³ Fi	T · 99Ni03-1	$20(\pm 180-60) \alpha$	decay retracted by	, 100g01=14(-3)	$N_{11} = 4$								**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* Ei	1.991103-1.	20(+180-00) a	uccay reflacted by	autions in 02									**
	²⁹⁴ Eh	196520# 660	#		70) ms	30		10	14Kh04	Т	2010	<i>α</i> =100	*
* ²⁹⁴ Eh T : average 14Kh04=51(+94-20) 130g04=50(+60-18) ** * ²⁹⁴ Ei T : 120g06=0.135 ms (1 event) 060g05=0.89 (4 events) 040g12=1.8 ms (1 event) ** ²⁹⁵ Ei 201510# 640# 10# ms 040g05 TD α ? * * ²⁹⁵ Ei T : 040g05 reports one α event at 2.55 ms ; re-assigned to ²⁹⁴ Ei **	²⁹⁴ Ei	199460# 660	#		1.15	ms	0.47	0^{+}	05	12Og06	Т	2006	$\alpha = 100$	*
* ²⁹⁵ Ei 201510# 640# 10# ms 040g05 TD α ? * * ²⁹⁵ Ei T: 040g05 reports one α event at 2.55 ms; re-assigned to ²⁹⁴ Ei **	* ²⁹⁴ Eh	T : average 14	Kh04=51(+94-	-20) 13Og04=50(+	60-18)									**
295 Ei 201510# 640# 10# ms 04Og05 TD α ? * * 295 Ei T : 04Og05 reports one α event at 2.55 ms ; re-assigned to 294 Ei ** **	* ²⁹⁴ Ei	T:12Og06=0	0.135 ms (1 even	nt) 06Og05=0.89 (4	4 events) 04Og	12=1.8	ms (1 eve	ent)						**
* ²⁹⁵ Ei T: 04Og05 reports one α event at 2.55 ms; re-assigned to ²⁹⁴ Ei **	²⁹⁵ Ei	201510# 640	#		10#	ms				04Og05	TD		α?	*
	* ²⁹⁵ Ei	T : 04Og05 re	ports one α eve	ent at 2.55 ms ; re-a	assigned to 294	Ei				č				**