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1 Introduction

A radiofrequency spectrometer has been built for PS189 experiment[1] which requires a very homo-
geneous magnetic �eld[2, 3, 4]. The magnet is described in Ref.[5], but here is the calculation of the
eÆciency of the electric shims used to correct the main �eld B and its radial and axial gradients.
The results of the present calculation are reported in Ref.[5], and this note must be considered as an
appendix to Ref.[5]. All notations are indeed identical, and not given again.
The goal is to calculate the magnitude of Bz, @Bz=@R, and @Bz=@z as produced by the di�erent
printed circuits installed on the 2 pole faces of the magnet. Two di�erent approaches have been used.
First, it has been assumed that the loops which are longer in the azimuthal direction than in the radial
one could be approximated by 2 in�nite parallel wires in azimuthal direction. This approach allows to
establish analytic relations easy to use. They give results in good agreement with our measurements.
However, in order to check the validity of this approach and to better understand why it worked so
well though our loops were not so similar to in�nite wires, we �nally also did a calculation taking into
account the exact dimensions of the loops. These two approaches will be now developed in chapters
2 and 3 respectively, but the approximation by in�nite wires is very generally good enough.

2 Calculation of the magnetic induction produced by in�nite wires

2.1 Magnetic induction produced by an in�nite straight wire near a pole face

The magnetic induction produced at a point M(R; z) by a single wire parallel to x axis, at position
(y0; h) with current intensity I (Fig. 1a) is :

b =
�0I

2�[(h � z)2 + (R� y0)2]1=2

with �0 = 4�10�7 MKSA
The axial component bz is given by

bz =
�0I

2�

(R� y0)

(h� z)2 + (R � y0)2

Following Neyret and Parain[6], we may use the image method to take into account the presence of
the two pole pieces : the medium is then treated as homogeneous air, but the single wire is replaced
by an in�nite set of wires including itself plus its images given by the 2 pole faces (Fig. 1b).
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Figure 1: Magnetic induction created in M(R; z) by a wire(y0; h) with current I
a) in air b) in presence of pole pieces

We make the approximation that the wire and �rst image very near the pole face are exactly
at the same ordinate h, so that

bz = 2
+1X

n=�1

�0I

2�

(R � y0)

(h� z + 4nh)2 + (R� y0)2

De�ning � = (R� y0)=4h, and � = (h� z)=4h, one �nds

bz = 2
�0I

8�h

+1X
n=�1

�

(�+ n)2 + �2

which, according to Neyret and Parain[6], is identical to

bz =
�0I

4�h

� sinh 2��

cosh 2��� cos 2��

bz =
�0I

4h

sinh �(R � y0)=2h

cosh �(R� y0)=2h � sin �z=2h

From this formula, we may deduce the partial derivatives of bz relative to R and z :

@bz
@R

=
�0I

4h

�

2h

1 � cosh �(R� y0)=2h sin �z=2h

[cosh �(R � y0)=2h � sin �z=2h]2

@bz
@z

=
�0I

4h

�

2h

sinh �(R � y0)=2h cos �z=2h

[cosh �(R� y0)=2h � sin �z=2h]2
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Figure 2: Combinations of wire positions and current directions used to correct
a) the main �eld b) the radial gradient c) the axial gradient

We may now restrict ourselves to the values of bz, @bz=@R, and @bz=@z for R = R0 in the median
plane (z = 0). For y0 = R0 � l, one gets :

bz =
�0I

4h
tanh �l=2h

@bz
@R

=
��0I

8h2
1

cosh2 �l=2h

@bz
@z

=
��0I

8h2
sinh �l=2h

cosh2 �l=2h

2.2 Main �eld correction

Using 2 loops with currents in the same directions provides 4 wires as shown in Fig. 2a. Their e�ects
cancel for the two gradients, but add up for bz. The resulting e�ect is indeed 4 times that of a single
wire :

bz =
�0I

h
tanh �l=2h

Numerical values are h=.07 m and l = .115 m which give :

bz=I ' �0=h = :18 10�4 TA�1 = :18 GA�1

our experimental value is .17 GA�1.
It must be noticed that applying the Ampere theorem[7] on a closed � contour through the magnet
and through the 2 correcting loops will give

R
�
~H:d~l = 2I, which leads to bz = �0I=h if it is assumed

that the iron permeability is in�nite and that the magnetic �eld is constant inside the magnet gap.
This last assumption looks reasonable since the adopted con�guration is cancelling the radial and
axial gradients at �rst order. This means that the approximation of the loop by 2 in�nite wires must
be good in the case of the main �eld correction.

2.3 Radial gradient correction

Using sheets of 8 parallel wires separated by small intervals p, with identical current I in the same
direction on both pole faces, provides a pattern as shown in Fig. 2b. The e�ects of the 2 sheets cancel
for bz and for the axial gradient, while they add up for the radial gradient. Following again Neyret
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and Parain[6], we may sum the e�ects of the 2�8 central wires : we replace I by Idl=p and integrate
over the radial extension of the 2 sheets from �l to +l :

@bz
@R

=
2

p

��0I

8h2

Z +l

�l

dl

cosh2 �l=2h

@bz
@R

=
�0I

hp
tanh �l=2h

The external wires necessary to close the current loops are expected to have a small inuence. However,
their e�ect may be calculated the same way by integrating @bz=@R from l1 to l2, which gives :

@bz
@R

=
�0I

2hp
(tanh �l1=2h � tanh �l2=2h)

The total e�ect is thus :

@bz
@R

=
�0I

2hp
(2 tanh �l=2h + tanh �l1=2h � tanh �l2=2h)

Numerical values are h=.07 m, l=.055 m, l1=.07 m, l2=.115 m and p=2l/7=.11/7. The e�ect of loop
closing is only 4% and we �nd

1

I

@bz
@R

= 9:2 10�4 Tm�1A�1 = :092 Gcm�1A�1

Our experimental value is .095 Gcm�1A�1.

2.4 Axial gradient correction

Using 2 loops with currents in opposite directions provides 4 wires as shown in Fig. 2c. Their e�ects
cancel for bz and for the radial gradient, but add up for the axial one. The resulting e�ect is again 4
times that of a single wire :

@bz
@z

=
��0I

2h2
sinh �l=2h

cosh2 �l=2h

Numerical values are h = .07 m and l = .075 which give :

1

I

@bz
@z

= 1:4 10�4 Tm�1A�1 = :014 Gcm�1A�1

Our experimental value is .013 G cm�1 A�1.

3 Magnetic induction produced by rectangular loops

3.1 Magnetic induction produced by a straight wire of �nite length

The magnetic induction produced by a straight wire of �nite length AB with current intensity I, at a
point M (Fig. 3a), is given by Ref. [7].

b =
�0I

4�a
(sin �2 � sin �1)

For a wire parallel to x axis, at coordinates (y0; z0), running from �x0 to +x0, (Fig. 3b), the magnetic
induction at M(x; y; z) is

b =
��0I

4�[(y0 � y)2 + (z0 � z)2]1=2
�K
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Figure 3: Magnetic induction created in M(x; y; z) by a wire (y0; z0) running from �x0 to +x0 with
current I

with

K =
x0 � x

[(x0 � x)2 + (y0 � y)2 + (z0 � z)2]1=2
+

x0 + x

[(x0 + x)2 + (y0 � y)2 + (z0 � z)2]1=2

Its z component is

bz =
�0I

4�

y0 � y

(y0 � y)2 + (z0 � z)2
�K

For an in�nite wire, x0 ! 1, and K ! 1. K thus describes the e�ect of the �nite length which
decreases the �eld.
For wires parallel to y axis, we have just to exchange (x0 � x) and (y0 � y). In a loop, the e�ects of
the wires parallel to x and y axis add up.
Then we shall have to add up the contributions of the images by setting

z0 = hn = (�1)n+1(2n� 1)h

so that bz is twice the in�nite sum from n=1 to 1 of the corresponding bz values.

3.2 Main �eld correction

At M(0,0,0), for the 2 loops, we �nally get :

b0z =
1X
n=1

4�0I

�

�
y0

y20 + h2n
�

x0
(x20 + y20 + h2n)

1=2
+

x0
x20 + h2n

�
y0

(x20 + y20 + h2n)
1=2

�

b0z =
4�0Ix0y0

�

1X
n=1

1

(x20 + y20i + h2n)
1=2

�
1

y20i + h2n
+

1

x20 + h2n

�

In the case of the magnet for PS189, the loops are not exactly rectangular, but are certainly very near
rectangular loops with x0 = �R0=8 = 0:195 m; y0 = 0:115 m, and h = 0:07 m.
The result of the computation is bz = :18 GA�1.
As expected in x2.2, this result con�rms the validity of the in�nite wires approximation in this case.
Even for a nearly square loop, the di�erence is only a few percent. However, if l becomes small, one
has to take into account the hyperbolic tangent term, and not to use the formula deduced from the
Ampere theorem.
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3.3 Radial gradient correction

3.3.1 azimuthal wires

For wires in azimuthal direction, at M(0,y,0), we have

bz(y) =
�0I

2�

�
y0 � y

(y0 � y)2 + z20
�

x0
[x20 + (y0 � y)2 + z20 ]

1=2

�

First, we derive bz(y) relative to y, and take its value at M(0,0,0,). Then, we have to sum from i=1
to 4 the e�ects of the 4 wires at positions

y0i = (2i � 1)p=2

and sum from n=1 to 1 the e�ects of the images at positions hn. Taking into account the fact that
we have 4 times 4 wires and double images, we get :

@bz
@y

=
4�0Ix0

�

1X
n=1

4X
i=1

1

(y2
0i + h2n)(x

2
0 + y2

0i + h2n)
1=2

�
� 1 +

2y20i
(y2
0i + h2n)

+
y20i

x20 + y2
0i + h2n

�

The azimuthal loop-closing wires produce a radial gradient in opposite direction which may be calcu-
lated using the same formula, but with y00i instead of y0i :

y00i = l2 � (i� 1)p

where l2 is de�ned as in x2.3. It thus must be subtracted.

3.3.2 radial wires

The e�ect of the radial wires must be added up to that of the central sheet. The radial wires extend
from y0i to y00i. For one wire, we get :

bz(y) =
�0I

4�

x0
x20 + z20

�
y00i � y

(x20 + (y00i � y)2 + z20)
1=2
�

y0i � y

(x20 + (y0i � y)2 + z20)
1=2

�

@bz
@y

=
�oIx0
4�

�
1

(x20 + y20i + z20)
3=2
�

1

(x20 + y00i
2 + z20)

3=2

�

This value must be summed up the same way as done for the azimuthal wires :

@bz
@y

=
4�oIx0

�

1X
n=1

4X
i=1

�
1

(x20 + y20i + h2n)
3=2
�

1

(x20 + y00i
2 + h2n)

3=2

�

3.3.3 total radial gradient

For x0 = �R0=8 = :195 m, h = :07 m, l = :055 m, and l2 = :115 m , the computation gives :

1

I

@bz
R

= :088 Gcm�1A�1

The 4% di�erence with the analytic formula in x2.3 is not due to the in�nite wires approximation but
to the calculation of the contributions of the di�erent wires of the sheet which have been assimilated
to a homogeneous distribution in x2.3.
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3.4 Axial gradient correction

For wires in azimuthal direction, at M(0,0,z), we have

bz(z) =
�0I

2�

�
y0

y20 + (z0 � z)2
�

x0
(x20 + y20 + (z0 � z)2)1=2

�

First, we derive bz(z) relative to z, and take its value at M(0,0,0,). Then, we sum up the contributions
of the di�erent images :

@bz
@z

=
4�0Ix0y0

�

1X
n=1

hn
(y20 + h2n)(x

2
0 + y20 + h2n)

1=2

�
2

y20 + h2n
+

1

x20 + y20 + h2n

�

The contributions of the radial wires must be added up. It is obtained easily by exchanging x0
and y0 :

@bz
@z

=
4�0Ix0y0

�

1X
n=1

hn
(x20 + h2n)(x

2
0 + y20 + h2n)

1=2

�
2

x20 + h2n
+

1

x20 + y20 + h2n

�

For x0 = �R0=8 = :195 m, h = :07 m, and y0 = :075 m, the computation gives :

1

I

@bz
@z

= :014 Gcm�1A�1

This value is in good agreement with the one calculated by using the analytical formula.
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