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Mass measurements of high precision have been performed on sodium isotopes out to 30Na using
a new technique of radiofrequency excitation of ion trajectories in a homogeneous magnetic �eld.
This method, especially suited to very short-lived nuclides, has allowed us to signi�cantly reduce
the uncertainty in mass of the most exotic Na isotopes: a relative error of 5�10�7was achieved
for 28Na having a half-life of only 30.5 ms and 9�10�7for the weakly produced 30Na. Verifying
and minimizing binding energy uncertainties in this region of the nuclear chart is important for
clari�cation of a long standing problem concerning the strength of the N = 20 magic shell closure.
These results are the fruit of the commissioning of the new experimental program Mistral.
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I. INTRODUCTION

The atomic mass is a global property that reects the
net result of all interactions at work in the atom. Infor-
mation concerning nuclear structure can be derived from
examination of the binding energies of various nuclear
con�gurations over the so-called mass surface [1].
One way the mass surface can be de�ned is by the two-

neutron separation energy S2n, the di�erence in bind-
ing energy (BE) between two isotopes: BE(Z;N) and
BE(Z;N � 2), versus N . The S2n surface has a gen-
eral trend of linearly decreasing separation energy with
neutron number; the more neutrons in the nucleus, the
less they are bound. Deviations from this behavior point
to manifestations of nuclear structure, one of the most
striking examples of which is shell structure.
Of questions pertinent to nuclear structure raised by

masses, shell e�ects are perhaps the most fundamental.
Magic nucleon numbers o�er pillars of nuclear stability
but it seems that these pillars may be eroded in regions
where the ratio of neutrons to protons becomes excessive.
The so-called \island of inversion" was �rst discovered

by Thibault et al. in 1975 [2] when the comportment
of S2n values in sodium showed an abnormal upturn at
N = 19 and above, where a normally stabilizing shell
closure would cause a downturn at N = 21. This phe-
nomenon was attributed to nuclear deformation e�ects

and has since been the subject of intense study. Not
only have further mass measurements been made to map
the shores of this curious island [3{7], but other types of
complementary measurements have been made to learn
more about its topography. Early e�orts using laser spec-
troscopy of Na isotopes [8] revealed an increase in mean-
square-charge radius atN = 18, consistent with the onset
of deformation. �-spectroscopy studies [9{11] revealed
more details of the nuclear level structure, notably a
low-lying 2+ excited state in the 32Mg daughter, con-
�rmed by a complementary Coulomb dissociation tech-
nique that also provided a quadrupole deformation pa-
rameter via the B(E2) transition probability value [12].
More recent measurements of the quadrupole moments of
26�31Na via �-NMR and optical polarization have con-
�rmed that strong deformation is indeed present [13,14].

Consequently, considerable theoretical e�ort has been
concentrated on this phenomenon including calculations
using Hartree-Fock [15,16], the shell model [17{21] and
the relativistic mean �eld [22,23]. Early shell model cal-
culations performed by Chung and Wildenthal [17] failed
to reproduce the deformation thought responsible for the
inversion phenomenon due to the restricted sd space used
whereas later calculations using a more extended basis
did succeed [18,19]. Interestingly enough, the original
mean-�eld computation of Campi et al. [15] that repro-
duced deformation of 30Na did so by restoring rotational

�These results constitute part of the doctoral thesis of C. Toader, Universit�e Paris-Sud, Orsay, July 1999.
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invariance, something not done in a more recent mean-
�eld calculation of 32Mg [16] which is consequently found
to be spherical.
Mass measurements �rst brought this problem into the

arena for study and naturally, masses continue to pro-
vide not only further data for nuclear structure but also a
very stringent test for the various theoretical approaches.
Modern experimental techniques using intermediate en-
ergy exotic beams created either by projectile fragmen-
tation or by the Isol technique [24] are being employed
to glean more experimental data in this and other re-
gions (for example the N = 28 shell closure [25,26]). In
the mean time, great progress has also been made in
the �eld of mass spectrometry (see e.g. [27]). The Mis-
tral experiment (Mass measurements at Isolde using a
Transmission and Radiofrequency spectrometer on-Line),
described in this paper, is one such example. Mistral
has enabled us to return to the origin of this interest-
ing physics problem by examining, with unprecedented
accuracy, the neutron separation energies of the exotic
nuclides constituting the island of inversion.
Masses can be determined a variety of ways, notably

in the form of di�erences resulting from the Q value of
a radioactive decay [29] or nuclear reaction [30]. While
decay measurements can be quite accurate, one must be
careful to have complete knowledge of the level scheme in
order to correctly determine the ground state and feed-
ings and also to link the resulting mass di�erence value
to a known mass value, sometimes very far away.
Methods that are complementary - and not prone

to cumulative error - are based on mass spectrometry
via time-of-ight or cyclotron frequency measurements.
Presently there are several such experimental programs
dedicated to the measurement of masses of radioactive
ions by mass spectrometry (for reviews, see [24,27,28]).
Relatively new on the scene, Mistral at Isolde uses

a radiofrequency excitation of the kinetic energy of an ion
beam in a homogeneous magnetic �eld in order to deter-
mine the ion cyclotron frequency and hence, the mass.
Mistral is capable of high precision (about 0.5 ppm)
and at the same time can measure very short lived nu-
clides since the measurement is made by recording the
transmission of the ion beam at its full transport energy
(60 keV). The half-life limitation corresponds, not to the
short ight time through the apparatus (about 50 �s) but
rather the di�usion time of the radioactive species from
the Isolde thick-target matrix (some ms for the fastest
elements).
Thus Mistral brings a unique combination of fast

measurement time and high precision. This compares to
the time-of-ight technique of Speg and Tofi [4{7,26]

(high sensitivity and fast measurement time), the Pen-
ning trap spectrometer Isoltrap [31] (high sensitivity
and high precision), and the Experimental Storage Ring
at Gsi [32,33] (high sensitivity and soon, fast measure-
ment time due to a new isochronous mode of ring oper-
ation [34]).
This paper will describe the �rst results of Mistral,

masses of the isotopes 23�30Na measured with a precision
almost ten times better than ever before [35]. The spec-
trometer is also described in some detail and the results
discussed in light of the shell quenching problem as well
as comparisons to previous measurements.

II. DESCRIPTION OF THE MISTRAL
SPECTROMETER

Mistral is a radiofrequency, transmission spectrom-
eter based on the principle conceived and later realized
by L.G. Smith [36,37]. The Orsay version originally con-
centrated on the measurement of the antiproton mass
but was also designed for mass measurements of exotic
nuclides [38,39]. Mistral is currently installed at the
Isolde mass separator facility at Cern [40]. Isolde
furnishes low energy (60 keV), high quality beams of ra-
dioactive nuclides produced by spallation, �ssion and/or
fragmentation of thick targets bombarded by a 1 GeV
pulsed proton beam.
With the Mistral spectrometer, the mass is deter-

mined via the cyclotron frequency fc of an ion of charge
q, mass m, rotating in the magnetic �eld B :

fc =
q B

2�m
(2.1)

A. Static, mass-separation mode

The lay-out of Mistral is shown in Fig. 1. The spec-
trometer consists mainly of a homogeneous magnetic
�eld. The ion beam is transported through the stray �eld
of the magnet and focused onto the entrance slit. Given a
slight downward deection, the ions follow a two-turn he-
licoidal trajectory (Fig. 1, inset center) whereupon they
are extracted from the magnetic �eld and transported
(using elements that are symmetric to the injection) to
a secondary electron multiplier for counting. The trans-
mission of the spectrometer (through the four 0.4 mm �
5 mm slits that precisely de�ne the nominal trajectory) is
about 0.5% using the surface ionization reference source
but can be lower than 0.01% using Isolde ion sources.
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FIG. 1. Layout of the Mistral spectrometer (overhead view). The ion beams (coming from the right) are injected either
from the Isolde beamline (at 60 keV) or from a reference ion source (variable energy). Inset (center) shows an isometric
view of the trajectory envelope with the 0.4 mm injection slit followed by the �rst modulator at one-half turn, an opening to
accommodate the modulated-ion trajectories at one-turn, the second modulator at three-half turns and then the exit slit. Inset
(right) shows the modulator electrode structure, the geometry of which is selected for a given mass range (e.g. 20 < A < 70).
Inset (left) shows a transmitted 39K ion signal as a function of radiofrequency spanning three harmonic numbers (about 3400).
The mass resolution varies from 50,000 to 100,000 over the operational frequency range of 250-500 MHz but can exceed 100,000
by applying a higher radiofrequency voltage.

With an orbit diameter of 1000 mm and an entrance
slit size of 0.4 mm, a mass resolving power of 2500 is ob-
tained. In order to obtain the high resolution needed
for precision measurements, a radiofrequency modula-
tion of the longitudinal kinetic energy is e�ected using
two symmetric electrode structures (Fig. 1, inset right)
located at the one-half and three-half turn positions in-
side the magnetic �eld. This way the ions make one
cyclotron orbit between the two modulations. The ra-
diofrequency voltage is applied to the common, central
modulator electrode and the resulting trajectories are
all isochronous. Depending on the phase of this voltage
when the ions cross the gaps, the resulting longitudinal
acceleration produces a larger or smaller cyclotron radius
than that of the nominal trajectory. The ions are trans-
mitted through the 0.4 mm exit slit when the net e�ect of
the two modulations is zero. This happens when the ra-
diofrequency voltage is an integer-plus-one-half multiple
of the cyclotron frequency:

fRF = (n+
1

2
) fc (2.2)

which means that during the second modulation the ions

feel exactly the opposite of what they felt during the �rst.
The ion signal recorded over a wide radiofrequency scan
shows narrow, transmission peaks that are evenly spaced
at the cyclotron frequency (Fig. 1, inset left). The re-
solving power R = m=�m will depend on the harmonic
number n, the exit slit size w, and the modulation am-
plitude, Dm

R = 2�n
Dm

w
(2.3)

A resolving power of 105, for a 60 keV 23Na ion beam
having a cyclotron frequency of about 225 kHz, requires a
2.5 mm increase in the trajectory diameter (about 350 V
of modulator voltage) and can already be achieved with a
harmonic of only 1500, corresponding to a radiofrequency
of about 340 MHz. Details on the calculation of the re-
solving power are given by Coc et al. [41]. The wings of
the transmitted ion signal can be completely suppressed
by using the \phase de�nition slit," located between the
entrance and exit slits, to eliminate modulated ion tra-
jectories with large radial excursions. The resulting peak
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shape is approximately triangular [41,42]. The phase-
de�nition slit has a maximum opening of 5 mm and is
reduced according to the radiofrequency power used (see
Section IID and Fig. 3).
The modulator was designed to deliver up to approx-

imately 500 V peak-to-peak over the frequency range of
250 to 500 MHz. A matching system using a quarter-
wave transformer was designed with a variable length pis-
ton for tuning and having a �3 dB bandwidth of about
2 MHz (which corresponds to about 8 harmonics of our
23Na ion). A 1 kW ampli�er, fed by a direct synthesizer
with a frequency precision of 10�10, was custom built
for this application as well as a radiofrequency circulator
that transmits all the incident power to the modulator
and sends any reected power into a dissipative load in
order to protect the ampli�er.

B. Dynamic, mass-measurement mode

Mistral relies on the concurrent measurement of a
(generally stable) reference nuclide whose mass is known
with suÆcient accuracy. There is at present no technique
with which an absolute mass value may be measured di-
rectly with suÆcient accuracy since this would require an
extremely accurate measurement of the magnetic �eld di-
rectly along the ion trajectory.
The unknown mass is transmitted through the spec-

trometer alternately with a reference mass - without
changing the magnetic �eld. Comparing masses in this
way requires changing the transport energy of the refer-
ence beam and therefore the voltages of all electrostatic
elements in the spectrometer (two quadrupole triplets,
eight pairs of steering plates, and two cylindrical benders
plus the injection switchyard bender). These compar-
isons are done in rapid succession (seconds) in order to
eliminate error contributions due to the mean- and long-
term drifts of the magnetic �eld.
Since the modulator matching system is tuned for a

given frequency range, it is necessary to �nd the har-
monic numbers nr and nx of the reference mr and un-
known mx masses that correspond to approximately the
same frequency (i.e., within the tuning pass-band). The
measurement of mx is thus obtained from the relation:

mx =
fr
fx

(nx +
1

2
)

(nr +
1

2
)
mr (2.4)

where fx and fr are the unknown and reference frequency
peak centroids, determined by a triangular �t (see Sec-
tion IID). The harmonic numbers obey the relation:

n =
2�mf

q B
�

1

2
(2.5)

Since they are integers � 2000, a 10�4 accuracy is suÆ-
cient for m and B to determine them exactly. Even for
unknown nuclides, m is always predicted with at least

such an accuracy. To measure B, a NMR probe is used.
However, since this probe cannot be positioned on the
nominal trajectory, the reading is corrected by recording
peaks at several neighboring harmonics and measuring
directly their spacing (Fig. 1, left insert). The resulting
correction is � 2� 10�4.

C. Control system and data acquisition

The experiment is controlled by a microproces-
sor working under a real-time kernel connected to a
Sun/Unix workstation. After maximizing the transmis-
sion using the beam transport electrostatic elements and
the magnetic �eld, the data acquisition mode is selected
and frequency scan initiated. For stable nuclides, we
make continuous scans of the radiofrequency. Between
scans, the beam transport element voltages are switched
in proportion to the masses. Making frequent reference
mass scans eliminates frequency shifts due to the long
term drift of the magnetic �eld, and allows averaging
over the short term.

In the case of short-lived nuclides (as well as elements
with very rapid release times from the target matrix, such
as Na) there is insuÆcient time to scan the entire required
frequency range after the impact of the proton pulse. In
this case, a special acquisition mode is used (called, ap-
propriately: point-by-point). For each radioactive beam
pulse, the ion transmission signal is recorded for only
one radiofrequency point (determined randomly) and the
peak is reconstructed at the end. This mode not only al-
lows to increase statistics in the peak but for each point,
the time dependance of the transmission can also be re-
constructed. This o�ers an excellent way of identifying
isobars. An example is given in Fig. 2 (top) for the iso-
baric doublet 27Na{27Al. Since we count the ions in the
beam that have been separated with very high resolu-
tion, we can produce very clean release curves as shown
in Fig. 2 (middle). The stable Al peak is easily recognized
by its constant release in Fig. 2 (bottom).

Furthermore, in case of variations in the Isolde pro-
duction from pulse to pulse, it is possible to record the
ion signal with the RF alternately on and o� so that not
just the intensity but the true transmission is measured
in order to correctly normalize the peak. However, this
procedure, used in run #1 (cf. Section III), was found to
be not really necessary.
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FIG. 2. Ion signal as a function of radiofrequency for
A = 27 showing the two isobaric contributions of Al and Na
(top). The peaks are well resolved but in cases where identi�-
cation might be a problem we can examine the time projection
of each peak which reveals either a fast release time indicat-
ing Na (middle) or a constant signal with time indicated the
stable Al isobar (bottom).

At Isolde, the protons are grouped into a supercycle
of 12 pulses of up to 3� 1013 protons every 1.2 seconds.
The selection of these pulses coming to Isolde is vari-
able, usually between 6 and 8 but with no particular
regularity. When measuring the short-lived nuclides, we
synchronize the experiment on this supercycle making a
reference scan each time. We have found this suÆcient
to correct for the magnetic �eld drifts.

D. Data analysis

The primary aim of the data analysis is to determine
the frequency corresponding to the maximum of trans-
mission which is the center of symmetry of the peak. The
�tting procedure consists of iterating a least-squares ad-
justment of the measured yields Yi(fi)using a triangular
[41] function g(fi) depending on three parameters:

g(fi) = Ym(1�
jfi � fmj

fw
) (2.6)

where fm is the adjusted value of interest, fw is the fre-
quency FWHM and Ym is the maximum yield (Fig. 3).
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FIG. 3. Example of triangular �ts of a transmitted 24Mg
Isolde mass peak performed (top) without phase limitation,
and (bottom) with a phase limitation that completely elimi-
nates the wings. The resolving powers are (top) 19,600 and
(bottom) 28,900 using only a moderate radiofrequency volt-
age.

Wings, if not already suppressed by the phase-
de�nition slit, are eliminated by selecting a restricted
area of the peak. The weight given to each point takes
into account not only the statistics but also the short
term uctuations which have been determined experi-
mentally:

�2(Yi) = ("Y Yi)
2 + Yi (2.7)

�2(fi) = ("Bfi)
2 (2.8)
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where "Y reects the unstatistical uctuations of the ref-
erence ion source intensity or of the Isolde production
(if not normalized by a scan without RF) and "B reects
the short term uctuations of the magnetic �eld. Typi-
cally, "Y � 0:05 and "B � 5�10�7.
This �tting procedure provides the frequency ratio

Rf = fx=fr which is then converted into an atomic mass
ratio Rm = mx=mr using relation (2.4) and taking into
account the electron mass and the relativistic correction
for the ion velocity.

III. RESULTS

The data presented in this paper were recorded during
two runs: run#1 in July 1998, and run#2 in November
1998. In both runs, the Isolde target made of uranium
carbide was combined with a thermionic source which de-
livered relatively pure, singly ionized, radioactive alkali
beams. The masses measured were 23�30Na and 27Al.
An example of a recorded mass peak is shown in Fig. 4
for 30Na.
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FIG. 4. Reconstructed peak for 30Na (T1=2 = 48 ms). This
measurement is a sum of 25 series of 64 (random) frequency
steps each recorded after the impact of one proton pulse on
the Isolde target. The center frequency is derived from a tri-
angular �t and corresponds to harmonic number 2421 of the
cyclotron frequency in the 0.3868 T �eld. The mass resolution
is about 25,000 (reduced to favor transmission).

During run#1, the high voltage of theMistral source
was limited to V �60 kV, constraining the reference mass
to be heavier than the measured one. The reason is that,
for a given magnetic �eld, the productm�V is �xed, and
V is always equal to 60 kV for the measured mass from
Isolde. Hence, 39K was the reference mass in all cases
except those where 23Na from the reference source was to
be compared to 23Na from Isolde. During run#2, this

limitation was overcome and both 23Na and 39K could
be used as references for each mass from Isolde.

A. Calibration procedure

A comparison of the measured values to the ones taken
from the Ame'95 evaluation [1] for well-known masses
revealed a dependency on the mass di�erence mr �mx

between theMistral reference massmr and the Isolde
measured mass mx (Fig. 5). A calibration was thus nec-
essary.
The relative mass di�erence between a measured value,

mx and the tabulated one, m0
x, is given by

�meas
x =

mx �m0
x

m0
x

Note that the Ame'95 value is used in �x for conve-
nience, since it only plays the role of a fulcrum and does
not inuence the �nal mass excess.
As the magnetic �eld is not suÆciently homogeneous

over the entire volume seen by the ion beam, the non-zero
value of �meas

x is attributed to an imperfect superposi-
tion of the mx and the mr trajectories. This apparently
linear deviation has two possible components: i) an in-
suÆcient overlap between the Isolde beam and theMis-
tral reference source beam positions which would pro-
duce a constant �meas

x , and (ii) a di�erent injection angle
caused by inadequately calibrated voltage changes that
are necessary for transmission of the two beams of di�er-
ing masses through the same magnetic �eld and which
would produce �meas

x / (mr � mx). This reasoning is
based on measurements of the residual �eld gradient of
the magnetic �eld. While higher order components are
present, the linear gradients represent the largest contri-
bution [43]. We have therefore adopted as a calibration
law:

�meas
x = a (mr �mx) + b (3.1)

In order to check the validity of this calibration law and
to determine a and b, we selected as \calibrants" the pre-
cisely known masses 23;24;25Na and 27Al. A straight line
was �tted to the corresponding �meas

x values. To these
points we add an additional calibration derived from the
measurements of an unknown mass x using the two refer-
ence masses 23Na and 39K. Two such measurements per-
formed under exactly the same experimental conditions,
yield:

�meas
x (39K)��meas

x (23Na) = [(39� x)� (23� x)]� a

= 16 a

Taking into account the adjusted value for b from the �rst
set of calibrants, these values contributed to the averaged
�meas
x corresponding to mr�mx = 16. The process was

iterated to derive the �nal values for a and b and for their
standard deviations.
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While trying to �t the expected law, it appeared that
b was fairly constant in the range of some 10�7. On the
contrary, a changed every time a tuning of the injection
optics of the Isolde or Mistral beams was necessary.
Therefore, each of the two runs was divided into subsets
corresponding to beam optics settings: 1a, 1b, 2a, 2b, 2c,
and 2d (see Table I).

�meas
x � 107

Nuclide Ref. 23Na Ref. 39K
run#1a

27Al calib. 78.0 (0.5)
27Na 103.0 (1.2)
28Na 91.2 (4.5)

run#1b
29Na 95.5 (7.0)
26Na 100.0 (0.5)
25Na calib. 103.5 (0.6)
24Na calib. 113.7 (0.6)
23Na calib. 1.5 (0.5) 119.5 (0.7)
30Na �13:2 (9.7)

run#2a
23Na calib. �3:9 (2.4)
25Na calib. �7:1 (1.3) 4.9 (3.0)
26Na 11:8 (1.3) 28.0 (2.0)

run#2b
23Na calib. �5:6 (1.4) 38.1 (2.1)
25Na calib. �13:3 (1.9) 36.8 (1.0)
26Na �7:7 (1.9) 43.7 (2.6)
27Al calib �14:5 (1.8) 17.8 (1.1)
27Na * �241:0 (2.5) �201:0 (2.4)
28Na 33.0 (9.1)
23Na calib. �3:6 (1.6)

run#2c
28Na 25.2 (6.0) 1.9 (8.1)
23Na calib. �1:5 (1.3) �7:1 (1.4)
29Na 26.1 (6.2) �0:1 (6.3)
26Na 20.1 (1.0) 12.1 (1.0)
25Na calib. �2:8 (1.5) �8:3 (1.9)
23Na calib. �2:6 (1.5) �8:0 (1.4)
26Na 21.3 (1.5) 10.3 (1.5)
24Na calib. �4:1 (1.3) �15:2 (1.4)
27Na 23.1 (2.2) 17.2 (1.4)
27Al calib. 2.1 (1.0) �10:9 (1.1)

run#2d
23Na calib. �3:2 (0.6)
26Na calib. 18.9 (0.8)
28Na calib. 20.4 (6.0)
30Na �77:6 (9.0)

TABLE I. Experimental results, expressed as relative mass
di�erences �meas

x , in chronological order. In column 2, the
mention \calib" indicates a calibrant mass in a given run sub-
set; * indicates that 27Na could not be measured because it
was not suÆciently mass-separated from 27Al. In columns
3{4 are the �meas

x measured values and their statistical plus
uctuations errors between brackets.

The complete set of measured relative mass di�erences
and calibrations for both runs is presented (in chrono-
logical order) in Table I. The values of �meas

x for each
mass are given using the corresponding references: 23Na
in column 3 and 39K in column 4. The errors given in Ta-
ble I are statistical plus the intensity and magnetic �eld
uctuation errors (cf. Section IID).
In the �tting procedure of the calibration law, it ap-

peared that the �2 values were much too large (up to
�2 = 20), revealing the existence of a systematic error. A
good consistency was obtained by adding quadratically a
systematic uncertainty of 5�10�7 to each measurement.
The resulting calibrations for runs #1b, #2a, #2b, #2c,
and #2d are shown in Fig. 5, and the corresponding val-
ues for the calibration parameters a and b are reported
in Table II.
In the case of run#1a, only 27Al was available as a

calibrant. Therefore, b was assumed to have the value
determined in run#1b. In the case of run#2d, due to
the lack of calibrant masses, the calibration law was de-
termined using the evaluated masses for 26Na and 28Na
as obtained in Section IVA.

Run Slope O�set Correl. �

(a� 107) (b� 107)
#1a 6.4 (0.6)
#1b 7.4 (0.4) 1.4 (5.0) �0:86 0.3
#2a 0.82 (0.38) �4:9 (3.5) �0:55 0.4
#2b 2.69 (0.23) �5:6 (2.4) �0:62 1.0
#2c �0:57 (0.18) �2:6 (2.1) �0:69 0.5
#2d �1:7 (1.8) �2:7 (4.8) +0:70 0.4

TABLE II. Calibration parameters used for each of the
measurement periods, after consideration of the systematic
error of 5�10�7(see text). In column 4, the correlation coef-
�cients between the �tted parameters a and b are given. The
� values of the calibration �ts are given in column 5.
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FIG. 5. Plot of the relative mass di�erences �meas
x , for the

well known masses, with respect to the mass table Ame'95,
versus the mass jump (mr �mx). The continuous lines rep-
resent the �ts of the linear calibration law for each run.

B. Results after calibration

The values of �meas
x have been corrected using the cal-

ibration law:

�corr
x = �meas

x � a (mr �mx)� b (3.2)

The resulting values are presented in Table III.

�corr
x � 107

Nuclide Ref. 23Na Ref. 39K
run#1a

27Al calib. �0:2 (10.1)
27Na 24.8 (10.2)
28Na 19.4 (10.7)

run#1b
29Na 20.1 (9.0)
26Na 2.4 (5.7)
25Na calib. �1:5 (5.8)
24Na calib. 1.3 (5.9)
23Na calib. 0.1 (7.1) �0:3 (6.0)
30Na �81:2 (11.2)

run#2a
23Na calib. 1.0 (6.6)
25Na calib. �0:6 (6.5) �1:7 (7.4)
26Na 19.2 (6.7) 22:2 (6.8)

run#2b
23Na calib. 0.0 (5.7) 1.9 (6.1)
25Na calib. �2:5 (6.0) 5.9 (5.7)
26Na 5.7 (6.1) 15.4 (6.1)
27Al calib 1.5 (6.1) �7:9 (5.6)
28Na 9.9 (10.6)
23Na calib. 2.0 (5.8)

run#2c
28Na 25.0 (8.3) 10.8 (9.7)
23Na calib. 1.1 (5.6) 4.6 (5.6)
29Na 25.3 (8.5) 8.2 (8.2)
26Na 21.0 (5.7) 22.1 (5.4)
25Na calib. �1:3 (5.7) 2.3 (5.7)
23Na calib. 0.0 (5.6) 3.7 (5.6)
26Na 22.2 (5.8) 20.3 (5.5)
24Na calib. �2:1 (5.6) �4:0 (5.5)
27Na 23.4 (6.1) 26.6 (5.5)
27Al calib. 2.4 (5.7) �1:5 (5.4)

run#2d
23Na calib. �0:5 (7.0)
26Na calib 16.5 (6.4)
28Na calib 14.6 (10.2)
30Na �86:8 (14.2)

TABLE III. Experimental results, after correction using
the calibration law, expressed as relative mass di�erences
�corr
x . In column 2, \calib" indicates a calibrant mass.
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C. Isobaric comparisons

The comparison of the results for two isobars produced
by Isolde, obtained in two successive measurements,
lead to null values for a and b parameters (same beam, no
mass jump) as in the case of the isobaric doublet 27Na-
27Al. Four measurements were made using this doublet
(one of which does not appear in Table I due to lack of
calibration data). The results are given in Table IV. In
this case adding a 2 � 10�7 systematic uncertainty pro-
vided consistency for the four values (� ' 1).

Run Reference 27Na 27Al 27Na�27Al
#1 39K 96.2 (5.0) 69.8 (2.0) 26.4 (5.5)
#1a 39K 103.0 (1.2) 78.0 (1.2) 25.0 (1.3)
#2c 23Na 23.1 (2.2) 2.1 (1.0) 21.0 (2.4)
#2c 39K 17.2 (1.4) �10:9 (1.1) 28.1 (1.8)

TABLE IV. Measured values of �meas
x � 107 obtained for

27Na and 27Al both coming from the same source. Their dif-
ference gives directly the true value of �x for 27Na using no
calibration law. The �rst measurement was not included in
Table I due to lack of calibration data. The errors indicated
between brackets are statistical plus uctuations ones. A sys-
tematic error of 2 � 10�7 is added (quadratically) to each of
the 27Na�27Al results.

D. Final results

The measured �corr
x values obtained for each nuclide

in Table III have been averaged. In Table V, the results
concerning the calibrant masses are listed. As displayed
in column 4, the agreement with the Ame'95 mass table
is excellent, con�rming the validity of the method used
and of the chosen calibration law.

Nuclide n � �corr
x � 107

23Na 9 0.3 1.5 (1.9)
24Na 3 0.5 �1:7 (3.3)
25Na 5 0.6 0.7 (2.6)
27Al 5 0.7 �1:4 (2.7)

TABLE V. Averaged relative deviations from the Ame'95
mass table for the calibrant nuclides (n is the number of mea-
surements)

In Table VI, the results concerning the masses mea-
sured by Mistral are reported.

Nuclide n � �corr
x � 107 Æmx(�u) Mass excess(�u)

26Na 9 1.3 16.7 (2.0) 43 (5) �7367 (7)
27Na 3 0.3 25.1 (3.8) 68 (11) �5922 (11)
28Na 4 0.8 17.2 (4.8) 48 (14) �1062 (14)
29Na 3 1.0 17.5 (4.9) 51 (14) 2861 (14)
30Na 2 0.3 �83:3 (8.8) �250 (27) 8976 (27)

Isobaric method
27Na 4 1.0 25.2 (1.5) 68 (4) �5922 (4)

TABLE VI. Mistral new measurements. In columns 4{5:
relative (�corr

x ) and absolute (Æmx = mx � m0

x) deviations
from the Ame'95 mass table. In column 6: �nal Mistral

mass excesses. To be conservative, the uncertainty in this last
column, which expresses our �nal values, has been multiplied
by � in the case of 26Na.
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The last line of Table VI shows that the determina-
tion of the 27Na mass by \isobaric comparison" is indeed
more precise, by a factor of almost 3, than the \standard
method". The values obtained through the two methods
agree very well, but the three measurements used in the
\standard method" are also used in the isobaric doublet
evaluation. Therefore the two results given in Table VI
for 27Na should not be considered as independent. Since
the \standard method" was more thoroughly checked,
only its result will be retained for further discussion.
The agreement between the di�erent measurements

from runs #1 and #2 is quite reasonable. The overall
dispersion of the measurements compared to their mean
values, shown in Fig. 6, is quite good, corresponding to
� = 0:94.

�
m
e
a
s

x

�
�
m
e
a
s

x

FIG. 6. Comparison of the individual measurements, for all
the masses determined in this work, with their mean value:
26Na, full cirles; 27Na, open squares; 28Na, full triangles;
29Na, open diamonds; and 30Na, full squares.

IV. DISCUSSION OF THE RESULTS

A. Evaluation

The Mistral results are compared in Fig. 7 to the
accepted mass values from the 1995 \Atomic Mass Eval-
uation" (Ame'95) [1]. There is a very good agreement
for the precisely known masses of 23;24;25Na and 27Al.
The average standard deviation (di�erence in masses di-
vided by the experimental uncertainty) for these four ref-
erence masses is extremely good (0.52) showing that the
quoted precisions (ranging from 2 to 9�10�7 for the mea-
sured masses) are certainly not overestimated. This gives
con�dence to the estimated systematic errors and to the
calibration laws of the observed frequency shifts, even
though their origin is not yet fully understood. Further-
more, the masses of 23�30Na were measured during two
separate data taking periods yielding consistent results.

FIG. 7. The Mistral results compared to the Ame'95 for
27Al and for the sodium isotopes from A = 23 to 30. The
zero line represents the values from the mass table and the
two continuous symmetrical lines represent the table uncer-
tainties.

The Mistral measurement for the 26Na mass di�ers
signi�cantly from the Ame'95 value. In fact, the nine
individual measurements for this nuclide (Fig. 6) are all
higher, with an average di�erence of 40� 7 keV.

A new mass evaluation would consider, among the six
publications determining the mass of 26Na (see Fig. 8),
only two signi�cant data (the insigni�cant ones are those
with 10 times less weight than the combination of all

other accepted data, following Ame'93 [44], p. 200): i)
the (t,3He) reaction energy of Flynn and Garrett [45]
yielding a mass excess value of�7411:7 (21:5)�u for 26Na,
and ii) the Mistral one giving �7366:7 (6:8)�u, where
the error bar has been multiplied by the � value (see
Table VI). These two data are in disagreement, with
� = 2:0 for their average. However, such an average
is adopted, without scaling by �, following the policies
of the mass evaluation [1], and yields for 26Na a mass
value of �7370:8 (6:5)�u. This value has been used in
the calibration of run #2d (see Section IIIA) where one
of the two measurements of the mass of 30Na has been
performed.

The result for the mass of 27Na is 63 keV higher than
in the 1995 mass table. The latter value was mainly de-
termined from the average of two 26Mg(18O,17F) reaction
energy data [48,49]. The mass we derive agrees perfectly
with the measurement of Fi�eld et al. [48], but strongly
disagrees with the result of the Munich group [49]. Ex-
amination of the two papers shows that the former has
50 times higher statistics and a more correct peak shape.
Therefore its agreement with the present result gives con-
�dence in our mass for 27Na.

The Mistral masses for 28Na and 29Na are in agree-
ment with - but much more precise than - the Ame'95
ones. Our knowledge for these masses is thus improved
by a factor �ve. For both masses we are left with only
one signi�cant datum: the one from the present work.
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This value of 28Na has been used in the calibration of
run #2d (see Section IIIA).

FIG. 8. Comparison of the results of all experiments in
which the mass of 26Na has been determined. The dashed
area represents the 1� limit of theAme'95 value, based on the
four data represented by full symbols. The measurements rep-
resented here were obtained, from left to right, by: (7Li,7Be)
reaction energy [46]; � end-point energy E� [47]; (t,3He) re-
action energy [45]; mass spectrometry [2] by the Orsay group
at Cern; and by RF mass spectrometry (this work).

FIG. 9. Comparison of the results of all experiments in
which the mass of 30Na has been determined. The dashed
area represents the 1 � limit of the Ame'95 value, based on
the four data represented by full symbols. The two data with
open symbols were superseded by more recent measurements
of the same groups. The measurements represented here were
obtained, from left to right, by: mass spectrometry [2] and
� end-point energy E� [3] by the Orsay group at Cern; four
time-of-ight technique (Tof) mass determinations by two
groups at Lampf [4], Ganil [5], Ganil [6] and Lampf [7];
and by RF mass spectrometry (this work).

Finally, the mass we derive for 30Na strongly disagrees
with the mass table. A closer examination locates the
disagreement (see Fig. 9) to only one experiment [7] in
which the mass of 30Na was derived from a time-of-ight
(Tof) measurement at Lampf. This datum, given with
a higher precision than all the older ones, weighed dom-
inantly in the Ame'95 adjustment. One can notice in
Fig. 9 that this discrepant result superseded an earlier
Tof measurement of the same group [4] which is also at
strong variance with our result, but in the opposite direc-
tion. In the most recent of these two publications, Zhou
et al. [7] explained the contradictory results by an iso-
baric contamination of 30Na by 30Mg in the earlier work.
Fig. 9 shows that the Mistral result agrees nicely with
all other data, but is at least one order of magnitude
more precise.
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FIG. 10. Two-neutron separation energies S2n for the very
neutron-rich sodium isotopes (Z = 11). In order to more
clearly illustrate the �ner structure of these curves, the fol-
lowing empirical function of N and Z has been subtracted:
f = �3300N + 100NZ + 700Z + 39800. The lines corre-
sponding to Z = 15, phosphorus (P) and Z = 16, sulfur (S)
show the tendency observed for higher Z where N = 20 is
still considered magic. The strong increase at N = 19 in the
Hartree-Fock predictions (open circles) is clearly closer to the
Mistral result (full squares and thick lines) than it was to
the Ame'95 table.

B. Comparison to Mass Models

The resulting value for the mass of 30Na con�rms and
even slightly enhances the overbinding of Na isotopes at
N = 19 (Fig. 10). This tendency contradicts even more
N = 20 being a magic number at Z = 11 as exhibited
at higher Z (see the Z = 15 (P) and Z = 16 (S) curves
in Fig. 10) and reinforces the strength of the deformation
starting at N = 19 as shown in Fig. 10 by the Mistral
data.
The list of binding energy predictions is quite re-

strained. Apart from the early Hartree-Fock calculations
of Campi et al. [15], the shell model work of Warbur-
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ton, Becker and Brown [19] and more recently, Caurier
et al. [21], \modern," microscopic methods (e.g. [50,51])
have yet to produce calculations for odd-Z nuclides. This
shortfall, and the fact that microscopic models, for all
their intense computing power requirements, have not
done a very good job in calculating the total binding
energy, has promoted the development of mass models
and mass formulas based on either approximations e.g.,
the Extended Thomas-Fermi Strutinski Integral (ETFSI)
[52] or parameterizations e.g., the Finite-Range Droplet
Model (FRDM) [53].

The binding energy enhancement measured in this
work pulls the mass surface closer to the Hartree-Fock
calculations of Campi et al. [15] (Fig. 10) where strong
deformation, stabilized by rotational energy, was consid-
ered.

Shell model calculations [54], considering neutron ex-
citations populating single particle states in the fp shell
(intruder con�gurations), predict also quadrupole collec-
tivity in this region. Such collectivity has recently been
con�rmed [55] by a microscopic angular momentum pro-
jection calculation with the Gogny force.

V. CONCLUSION

We have presented results for the masses of neutron-
rich Na isotopes using a new technology for mass mea-
surements that is especially suitable for very short-lived
species. These mass measurements, exploiting a radiofre-
quency modulation technique, are accurate to the preci-
sion that was originally aimed for: 14 keV, or 5�10�7 for
the shortest-lived measured nuclide, 28Na (30.5 ms). The
method also has a reasonable sensitivity limit of about
103 ions per pulse delivered by the on-line mass separator
Isolde at Cern.

The results represent the most accurate measurements
to date for the short-lived nuclides 28�30Na which lie in
the so-called \island of inversion" around the N = 20
shell closure. The measurements not only con�rm the
previous values but even show an enhancement of the
binding energy which further argues for the erosion of
the normally-stabilizing \magic" number shell e�ect.

These results are the �rst fruit of the commissioning of
the Mistral program at Isolde. E�orts are currently
underway to eliminate the systematic error using a set of
current shims to correct for the measured magnetic �eld
residual gradients [43]. We are also developing a device
consisting of a gas-�lled quadrupole ion guide [56] in or-
der to reduce the incident beam emittance and increase
the sensitivity of the spectrometer. These improvements
will allow Mistral to realize its full potential for ac-
curate mass measurements of the shortest-lived nuclides
approaching the drip line.

VI. ACKNOWLEDGEMENTS

We would like to acknowledge the expert technical as-
sistance of M. Dedieu, M. Jacotin, J.-F. K�epinski and
G. Le Scornet from Csnsm, G. Leb�ee from Cern, and
M. Duma from Iap. We would also like to acknowledge
two colleagues who have moved on since their impor-
tant involvement in the initial development of the spec-
trometer: A. Coc and R. Fergeau. We would like to
thank D. Guillemaud-Mueller, B. Jonson, G. Hansen,
H.-J. Kluge, R.B. Moore, A.C. Mueller, G. Nyman and
H. Wollnik for their support of the initial proposal to the
Isolde committee in 1993. D. Lunney would like to ac-
knowledge a one-year Scienti�c Associateship at Cern
during 1997-1998.

1 e-mail: lunney@csnsm.in2p3.fr
2 also at IAP, Bucharest
3 present address: CERN, CH-1211, Geneva
4 also at GSI, D-64291 Darmstadt; present address: NSCL,
Michigan State U., East Lansing MI, USA

[1] G. Audi and A.H. Wapstra, Nucl. Phys. A 595 (1995)
409.

[2] C. Thibault, R. Klapisch, C. Rigaud, A. M. Poskanzer,
R. Prieels, L. Lessard and W. Reisdorf, Phys. Rev. 12
(1975) 644.

[3] C. D�etraz, M. Langevin, M. C. Go�ri-Kouassi, D. Guille-
maud, M. Epherre, G. Audi, C. Thibault and
F. Touchard, Nucl. Phys. A 394 (1983) 378.

[4] D.J. Vieira, J.M. Wouters, K. Vaziri, R.H. Krauss, Jr.,
H. Wollnik, G.W. Butler, F.K. Wohn and A.H. Wapstra,
Phys. Rev. Lett. 57 (1986) 3253.

[5] A. Gillibert, W. Mittig, L. Bianchi, A. Cunsolo, B. Fer-
nandez, A. Foti, J. Gastebois, C. Gr�egoire, Y. Schutz and
C. St�ephan, Phys. Lett. B 192 (1987) 39.

[6] N.A. Orr, W. Mittig, L.K. Fi�eld, M. Lewitowicz,
E. Plagnol, Y. Schutz, W.L. Zhan, L. Bianchi, A. Gillib-
ert, A.V. Belozyorov, S.M. Lukyanov, Yu.E. Penionzhke-
vich, A.C.C. Villari, A. Cunsolo, A. Foti, G. Audi,
C. St�ephan and L. Tassan-Got, Phys. Lett. B 258 (1991)
29 and erratum Phys. Lett. B 271 (1991) 468.

[7] X.G. Zhou, X.L. Tu, J.M. Wouters, D.J. Vieira,
K.E.G. Lobner, H.L. Seifert, Z.Y. Zhou and G.W. Butler,
Phys. Lett. B 260 (1991) 285.

[8] G. Huber, F. Touchard, S. B�uttgenbach, C. Thibault,
R. Klapisch, H.T. Duong, S. Liberman, J. Pinard,
J.L. Vialle, P. Juncar, and P. Jacquinot Phys. Rev. C
18 (1978) 2342.

[9] C. D�etraz, D. Guillemaud, G. Huber, R. Klapisch,
M. Langevin, F. Naulin, C. Thibault, L.C. Carraz, and
F. Touchard Phys. Rev. C 19 (1979) 164.

[10] D. Guillemaud-Mueller, C. D�etraz, M. Langevin,
F. Naulin, M. de Saint Simon, C. Thibault, F. Touchard
and M. Epherre, Nucl. Phys. A 426 (1984) 37.

12



[11] G. Klotz, P. Baumann, M. Bounajma, A. Huck, A. Knip-
per, G. Walter, G. Marguier, C. Richard-Serre, A. Poves,
and J. Retamosa, Phys. Rev. C 47 (1993) 2502.

[12] T. Motobayashi, Y. Ikeda, Y. Ando, K. Ieki, M. In-
oue, N. Iwasa, T. Kikuchi, M. Kurokawa, S. Moriya,
S. Ogawa, H. Murakami, S. Shimoura, Y. Yanagisawa,
T. Nakamura, Y. Watanabe, M. Ishihara, T. Teranishi,
H. Okuno, and R.F. Casten, Phys. Lett. B 346 (1995) 9.

[13] S. Wilbert et al., in Proceedings of the International Con-
ference on Exotic Nuclei and Atomic Masses (ENAM98),
AIP Conf. Proc. No. 455, edited by B.M. Sherrill,
D.J. Morrissey, and C.N. Davids, (AIP, New York, 1998),
p. 142.

[14] M. Keim, in Proceedings of the International Conference
on Exotic Nuclei and Atomic Masses (ENAM98), AIP
Conf. Proc. No. 455, edited by B.M. Sherrill, D.J. Mor-
rissey, and C.N. Davids, (AIP, New York, 1998), p. 50.

[15] X. Campi, H. Flocard, A.K. Kerman and S. Koonin,
Nucl. Phys. A 251 (1975) 193.

[16] J. Terasaki, H. Flocard, P.-H. Heenen, and P. Bonche,
Nucl. Phys. A 621 (1997) 706.

[17] W. Chung and B.H. Wildenthal, Phys. Rev. C 22 (1980)
2260.

[18] A. Poves and J. Retamosa, Phys. Lett. B 184 (1987) 311
[19] E.K. Warburton, J.A. Becker and B.A. Brown, Phys.

Rev. C 41 (1990) 1147.
[20] N. Fukunishi, T. Otsuka and T. Sebe, Phys. Lett. B 296

(1992) 279.
[21] E. Caurier, F. Didierjean, F. Nowacki, and G. Walter,

Phys. Rev. C 58 (1998) 2033.
[22] S.K. Patra and C.R. Praharaj, Phys. Lett. B 273 (1991)

13.
[23] Z. Ren, Z.Y. Zhu, Y.H. Cai, and G. Xu, Phys. Lett. B

380 (1996) 241.
[24] W. Mittig, A. L�epine-Szily and N.A. Orr, Annu. Rev.

Nucl. Sci. 47 (1997) 27.
[25] B.V. Pritychenko, T. Glasmacher, P.D. Cottle, M. Fauer-

bach, R.W. Ibbotson, K.W. Kemper, V. Maddalena,
A. Navin, R. Ronningen, A. Sakharuk, H. Scheit, and
V.G. Zelevinsky, Phys. Lett. B 461 (1999) 322.

[26] F. Sarazin et al., Phys. Rev. Lett. 84 (2000) 5062; Doc-
toral Thesis, University of Caen, 1999 (GANIL preprint
T 99 03).

[27] G. Bollen, Nucl. Phys. A 626 (1997) 297c.
[28] Proceedings of the 2nd Euroconference on Atomic

Physics at Accelerators: Mass Spectrometry, Carg�ese
(France), D. Lunney, G. Audi and H.-J. Kluge, editors,
Hyp. Int. (2001) in print.

[29] B. Fogelberg, K.A. Mezilev, H. Mach, V.I. Isakov, and
J. Slivova, Phys. Rev. Lett. 82 (1999) 1823.

[30] X. Lu, J. Guo, K. Zhao, Y. Cheng, Y. Ma, Z. Li, S. Li,
and M. Ruan, Eur. Phys. J. A 2 (1998) 149.

[31] G. Bollen, S. Becker, H.-J. Kluge, M. Konig,
R.B. Moore, T. Otto, H. Raimbault-Hartmann,
G. Savard, L. Schweikhard, H. Stolzenberg, and the
Isolde Collaboration, Nucl. Instrum. Meth. A 368
(1996) 675.

[32] B. Schlitt et al., Nucl. Phys. A 626 (1997) 315c.
[33] T. Radon et al., Phys. Rev. Lett. 78 (1997) 4701.
[34] H. Geissel et al., Proc. Int. Conf. Exotic on Nuclei and

Atomic Masses (ENAM 98), June 1998, Bellaire, USA,
AIP Conf. Proc. 455, p.11.

[35] C. Toader, Doctoral Thesis #5820, Universit�e Paris-
Sud, Orsay, 1999; http://csnwww.in2p3.fr/AMDC/
experimental/th-toader.pdf

[36] L.G. Smith, Proc. Int. Conf. Nuclidic Masses, H. Duck-
worth, ed. (University of Toronto Press, Canada, 1960)
p. 418.

[37] L.G. Smith, Proc. 3rd Int. Conf. Atomic Masses, R. Bar-
ber, ed. (University of Manitoba Press, Canada, 1967) p.
811.

[38] M. de Saint Simon, C. Thibault, G. Audi, A. Coc,
H. Doubre, M. Jacotin, J.F. K�epinski, R. Le Gac, G. Le
Scornet, D. Lunney and F. Touchard, Phys. Scripta T59
(1995) 406.

[39] M.D. Lunney, G. Audi, C. Borcea, M. Dedieu, H. Doubre,
M. Duma, M. Jacotin, J.F. K�epinski, G. Le Scornet,
M. de Saint Simon, and C. Thibault, Hyp. Int. 99 (1996)
105.

[40] B. Jonson, H.L. Ravn and G. Walter, Nuclear Physics
News 3 (1993), 5.

[41] A. Coc, R. Le Gac, M. de Saint Simon, C. Thibault and
F. Touchard, Nucl. Instr. and Meth. A 271 (1988) 512.

[42] C. Monsanglant, Doctoral Thesis #6283, Univer-
sit�e Paris-Sud, Orsay, 2000; http://csnwww.in2p3.fr/
AMDC/experimental/th-monsangl.pdf

[43] A. Coc, R. Fergeau, R. Grabit, M. Jacotin, J.F. Kpinski,
R. Le Gac, G. Le Scornet, G. Petrucci, M. de Saint Si-
mon, G. Stefanini, C. Thibault, and F. Touchard, Nucl.
Instrum. Meth. A 305 (1991) 143.

[44] G. Audi, A.H. Wapstra and M. Dedieu, Nucl. Phys. A
565 (1993) 193.

[45] E.R. Flynn and J.D. Garrett, Phys. Rev. C 9 (1974) 210.
[46] G.C. Ball, W.G. Davies, J.S. Forster and J.C. Hardy,

Phys. Rev. Lett. 28 (1972) 1069.
[47] D.E. Alburger, D.R. Goosman and C.N. Davids, Phys.

Rev. C 8 (1973) 1011.
[48] L.K. Fi�eld, C.L. Woods, R.A. Bark, P.V. Drumm and

M.A.C. Hotchkis, Nucl. Phys. A 440 (1985) 531.
[49] I. Paschopoulos, E. M�uller, H.J. K�orner, I.C. Oelrich,

K.E. Rehm and H.J. Scheerer, Phys. Rev. C 18 (1978)
1277.

[50] T. Otsuka and N. Fukunishi, Phys. Rep. 264 (1996) 297.
[51] Y. Utsono et al., to be published.
[52] Y. Aboussir, J.M. Pearson, A.K. Dutta, and F. Tondeur,

At. Data Nucl. Data Tables 61 (1995) 127.
[53] P. M�oller, J.R. Nix, W.D. Myers, and W.J. Swiatecki,

At. Data Nucl. Data Tables 59 (1995) 185.
[54] A. Poves and J. Retamosa, Nucl. Phys. A 571 (1994)

221.
[55] R. Rodr��guez-Guzm�an, J.L. Egido and L.M. Robledo,

Phys. Lett. B 454 (2000) 15.
[56] M.D. Lunney and R.B. Moore, Int. J. Mass Spectrom.

190/191 (1999) 153.

13


	I. INTRODUCTION
	II. DESCRIPTION OF THE MISTRAL
	A. Static, mass-separation mode
	B. Dynamic, mass-measurement mode
	C. Control system and data acquisition
	D. Data analysis
	III. RESULTS
	A. Calibration procedure
	B. Results after calibration
	C. Isobaric comparisons
	D. Final results
	IV. DISCUSSION OF THE RESULTS
	A. Evaluation
	B. Comparison to Mass Models
	V. CONCLUSION
	VI. ACKNOWLEDGEMENTS
	References

