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Abstract. We report measurements of mass ratios of 20 pairs of molecular ions with a
single ion Penning trap mass spectrometer having an accuracy exceeding one part in 1010.
The dominant source of error is random magnetic field fluctuations which cause a 2.6×10-10

rms scatter in measurements of the cyclotron frequency.  Robust statistical analysis of the
data ensures that nongaussian outliers are weighted less heavily in a smooth and consistent
manner.  Systematic errors are estimated to be 2×10-11 or below for doublet mass
comparisons.  The ratios form an overdetermined set, such that the atomic masses of nine
isotopes can be derived from at least two independent groups of ion mass ratios, providing
many consistency checks for systematic errors at the 10-10 level.  At this level of precision,
certain mass measurements have important implications in fundamental metrology.  Results
presented here are essential for defining a practical atomic standard of mass, for calibrating
γ-ray wavelengths, and for determining the molar Planck constant and the fine structure
constant.

1.  INTRODUCTION

The precision at which mass comparisons can be made has steadily improved
over the years.  Recently, the Penning trap has emerged as the most accurate
instrument for mass spectrometry.  A precision exceeding 10-10 is routinely
attained in our experiment at MIT (1).  The major purpose of this paper is to
present accurate measurements of twenty different mass ratios that determine ten
atomic masses and to present  a thorough analysis of the uncertainties in these
measurements.  We also describe several new metrological implications of our
mass comparisons.
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The basic advantages of a Penning trap for mass measurement are that the mass
is determined from a frequency measurement, that a long time is available to make
this measurement, and that the ion is confined to a small spatial region of a highly

uniform magnetic field.  A Penning trap consists of a strong magnetic field  
r
B

(providing radial confinement) and a weak quadrupole electric field   
r
E  (providing

axial confinement) (2).  In order to eliminate coulombic perturbations due to other
nearby ions and uncertainties due to unspecified internal motion of a cloud of
trapped ions, we perform measurements on a single trapped ion.

The physics of a single ion in a Penning trap is well understood and has been
described in detail in the literature (3).  The motion is a superposition of three
normal modes of oscillation:  the “axial” mode, the “trap cyclotron” mode, and the
“magnetron” mode.  The axial mode is harmonic oscillation along the magnetic
field lines at a frequency ωz that is proportional to the square root of the trap
voltage.  The trap cyclotron mode (at ′ωc ) is similar to ordinary cyclotron motion in
the radial plane, with the frequency slightly perturbed by the electric field.  The

magnetron mode (at ωm) is a much slower circular motion essentially due to  
r
E ×

r
B

drift.  The “free-space” cyclotron frequency ωc, which would be the frequency of
cyclotron motion if the electric field were removed, is obtained by adding the three
mode frequencies in quadrature:

ωc = ′ωc
2 + ω z

2 + ωm
2( )1 2

= qB

mc
 ,

(1)

where q and m are the charge and mass of the ion (in CGS units), and c is the
speed of light.  In our trap, B = 85000 G, and for an N2+ ion (mass 28 u, where
u ≡ atomic mass units), the mode frequencies ′ωc , ω z, and ωm are 4.6 MHz,
160 kHz, and 2.8 kHz, respectively.  Therefore, only the trap cyclotron
frequency ′ωc  must be measured to the desired precision of ωc.

For optimum precision, the frequency, phase and amplitude of the ion's axial
motion must be accurately extracted from the smallest possible signal. The ion’s
axial motion is observed by detecting the image current (~10-14 A) induced in the
endcaps of the trap.  A high-Q (~30,000) superconducting tuned circuit and an
rf SQUID are used to attain a sufficient signal-to-noise ratio (4).  The axial signal
is a sinusoid that decays as the ion loses its energy into the detector. This signal is
analysed by pre-multiplying the data with exp(-t/τ), where τ is the amplitude decay
time, and then taking a fourier transform. The ion's parameters are obtained by
finding the peak of the transform. This procedure works better than a simple digital
Fourier transform because it weights the data taken at later times progressively less
(5). We have shown (6) that this procedure gives unbiased estimates and gives
errors that are close to theoretical minimum bounds for a given signal to noise
ratio.

The radial modes are observed and cooled indirectly by coupling them to the
axial mode with a diagonally oriented quadrupole rf field (7).  The advantage of
this scheme is that the cyclotron mode is not damped by the detector (thus having a
nearly zero linewidth) and also does not experience tuned circuit pulling.
However, an indirect approach must be taken to measure ′ωc .
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We have developed two such approaches to determine ′ωc :  the “pulse and
phase” (PNP) method and the “separated oscillatory fields” (SOF) method.  Both
methods utilize “π-pulses” of the diagonal rf field at ′ωc − ω z  to coherently

exchange the amplitudes (scaled by ω1 2 ) and phases of the axial and trap
cyclotron modes, allowing the amplitude and phase of the trap cyclotron mode to
be determined (8).  With the PNP method, the trap cyclotron frequency is
measured by exciting the ion to a cyclotron amplitude ρc, allowing the ion to
evolve “in the dark” for a delay time T, and applying a π-pulse to measure the
accumulated phase (9).  With the SOF method(10), the ion is excited by a pair of
cyclotron pulses separated by a delay time T, so that the final cyclotron amplitude
varies sinusoidally with the phase accumulated between the pulses.  The amplitude
is then measured by a π-pulse.  The SOF method is well suited for measurements
of non doublets since the cyclotron motion of both ions can be studied with the
same electric fields, with the trap voltage then being changed just before the
π-pulse in order to bring the axial frequency into resonance with the detector.  With
both methods, ′ωc  is measured to 10-10 precision with a series of measurements,
the longest having a delay time of ~1 minute, so that proper phase unwrapping is
achieved.  Related techniques are used to cool the magnetron motion so that the ion
is located at the center of the trap before measuring ′ωc .

2.  DETERMINING A MASS RATIO

If the magnetic field were known as a function of time, a mass ratio of two
different ion species could be determined by comparing the free-space cyclotron
frequencies for two ions, measured at times t1 and t2,

m1

m2
= q1

q2

B(t1)
B(t2 )

ωc2(t2 )
ωc1(t1)

 , (2)

since the ratio q1 q2  is a known rational number, and the ratio ωc2 ωc1  is
measured to high precision.  Unfortunately, the magnetic field drifts unpredictably
in the time between and during two measurements and does not cancel exactly.
The field can change by processes internal or external to the magnet, the major
source during the day being external magnetic fields from a nearby subway.
Motion of the trap relative to the magnet may also change the field at the trap center
because of field gradients.  Although other sources of random error (such as trap
voltage fluctuation and thermal noise) contribute to temporal variations in repeated
measurements of the cyclotron frequency, the magnetic field fluctuations dominate
(see section 5).  We therefore model all temporal variation of ωc as if the magnetic
field were the only contributor.

Fitting to field drift

In order to account for the effects of temporal drift, measurements are repeated
while alternating between the two species being compared.  A plot of the cyclotron
frequency data for a typical run is shown in Fig. 1.  With this scheme, ωc is
measured for each ion at several different times, allowing the drift to be
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Figure 1.  Typical data for an ion mass ratio measurement.  The cyclotron frequency  is
measured alternately for the two ions in order to fit to the field drift and to determine the
mass ratio.

determined.  However, the field drift can be determined and corrected for only if it
occurs on a time scale longer than the time between measurements of different
ions, which is typically 10-20 minutes.  Short-term field fluctuations cannot be
modeled, and they contribute to the uncertainty in the mass ratio.  The time
dependence of the magnetic field can be written as:

B(t) = B(0) 1+ f (t) + δB(t)( )  , (3)

where f (t) is the modeled long-term field drift and δB(t) is the unknown short-
term field behavior.

The mass ratio is obtained by fitting to the data for both ions simultaneously.
If the fitting is done by the least squares method, then the quantity

j
∑ ωc1(t j )− f (t j )− ∆ωc( )2 σ j

2  +  r0 ωc2 (tk )− f (tk )( )2 σk
2

k
∑ (4)

is minimized with respect to the fitting function f (t) and the frequency difference
between the two curves ∆ωc .  Here, the indices j and k indicate individual
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measurements for the two ions, r0 is an initial guess of the mass ratio (obtained
from existing atomic mass data), and σ is the measurement uncertainty.  For a
doublet (a pair of ions of nominally the same mass, such as N2+ and CO+), r0 ≅ 1.
The best value of the frequency difference,

∆ωc = ωc1(0) − r0 ωc2(0) (5)

leads directly to the mass ratio r,

r  =  
m2
m1

 =  r0 +
∆ωc

ωc1(0)
(6)

The uncertainty in r arises from the short-term field fluctuations δB(t) and will be
discussed in the next section.

The simplest general functional form to use for f (t) is a polynomial.  The
order of the polynomial is critical.  If too few terms are used, the polynomial may
not fit the drift adequately.  Conversely, if too many terms are used, the
polynomial may exaggerate short-term fluctuations, giving unreliable results.  Thus
there is an optimal order of polynomial to use for a data set.

The data reported here were taken over a period exceeding one year, and the
roughly equal earlier and later portions were analyzed in two significantly different
ways.  For the earlier portion (6) we used our best judgement to determine the
order of the polynomials, and used conventional least squares fitting algorithms.
For the latter portion (11) we used a more conservative statistical test to determine
the number of polynomials, and a modification of least square statistics called
“robust” statistics which provides improved handling of points (called “outliers”
henceforth) that deviate from the mean by several standard deviations.

For the more recent portion of the data, the basis for deciding whether the next
higher-order term should be added to the polynomial is whether it produces a
significant statistical improvement in the fit.  Goodness of fit is characterized by the

χ2 statistic (the quantity minimized in Equation (4)):

χn
2 = ∆i σi( )i=1

N∑
2
 , (7)

where ∆ is the deviation from the fit, σ is the measurement uncertainty, n is the
order of the polynomial fit, and N is the total number of points for both ions.
Improvement in the fit due to an additional term (the F-test) (12) is characterized by

the relative change in χn
2:

Fχ (n)  =  
χn−1

2 − χn
2

χn
2 ν

 , (8)

where ν is the number of available degrees of freedom (to be discussed shortly).
Assuming purely random fluctuations, the quantity Fχ  follows the F distribution,

since it is a ratio of χ2 statistics.  The probability P that the term of order n is

statistically significant can be determined from tables of Fχ  vs  ν   (12).  (By

coincidence, a probability of 0.5 corresponds to a value of Fχ ~ 0.5 for low
orders of n.)  Our procedure is to increase the order of the polynomial until two
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consecutive fits give P < 0.5 (because the field may accidently have no variation
corresponding to a particular order).  The optimal order is chosen to be the last one
having P > 0.5.

In most statistical analyses, the number of degrees of freedom ν is taken to be
N − n −1, the number of data points minus the number of terms in the fit (n plus a
constant term).  This assumes that the data points are all uncorrelated, which is not
true in our case, since points within a “cluster” (a group of successive
measurements on the same ion – see Fig. 1) are more strongly correlated.  We
adopted a more conservative estimate for ν:

ν = N∗ − n − 2  ,
(9)

where N*  is the number of clusters in the data set.  (The “2” arises from the fact
that ∆ωc  is an extra parameter in the fit.)  This ensures that only long-term drift
affecting more than one cluster is considered and prevents the polynomial from
fitting to field jumps on a time scale smaller than the time between clusters.  Thus,
for example, a minimum of five clusters is needed for a quadratic ( n = 2 ) fit.

Figure 2 illustrates the dependence of χ2, Fχ , and the calculated mass ratio

on the order of the polynomial fit, for the CO+/N2+ measurement illustrated in

Fig. 1.  Fig. 2a shows that χ2 decreases quickly at first and later stabilizes as the
order is increased.  In Fig. 2b, Fχ  is plotted along with a dotted line

corresponding to P = 0.5, showing that n = 6 is the optimal order in this case.  As
seen in Fig. 2c, the calculated mass ratio did not vary much, although variations
on the order of 1 σ have been observed in other measurements for small n.

A result of this conservative treatment of the number of degrees of freedom has
been that some measurements needed to be discarded.  For certain runs (apparently
when the magnet’s liquid helium level was low), the magnetic field was
exceedingly erratic.  Polynomials whose order approached the number of clusters
of data seemed to be necessary in order to fit to the field fluctuations, indicating
significant field variation on the time scale required to change ions.  The above
definition for ν does not allow such a high-order fit, and we decided to discard
such data completely. These data included our earlier measurement of the
14N/CH2+ ratio (13), which was 1.5 sigma higher than the value of this ratio
determined from our more recent measurements of 14N2/C2H4+.
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Figure 2.  Choosing the order of the polynomial fit.  The χ2  statistic (a), the

Fχ  statistic (b), and the calculated mass ratio (c) are plotted as a function of the order

of the polynomial n  for the data in Fig. 1.  The dotted line in (b) indicates the value of
Fχ   corresponding to a 50% statistical probability that the observed value would be

exceeded if the data were normally distributed.  (Note that it increases slightly with n.)
In this case, a 6th order polynomial was determined to be optimal.



8

3.  MAGNETIC FIELD NOISE

The above procedure describes how we model long-term field drift and extract
the mass ratio from the data.  The unknown component of Equation (3), the short-
term field fluctuation δB(t), appears as scatter about the fit and leads to uncertainty
in the mass ratio.  This field noise is the dominant source of error in our
experiment, and its statistics must be well understood.  A detailed analysis of the
magnetic field noise and its effect on mass ratios is presented in this section.  Other
sources of error, both random and systematic, are considered in the next section
and shown to be insignificant.

Traditional statistics is based on the assumption that random variables follow
the normal (gaussian) distribution.  This assumption often does not apply to real
experiments, where some of the fluctuations may be due to a less frequent but
more intense external noise source, or where the fluctuations may not be normally
distributed (1 f  noise for example).  A qualitative model of such an observed
noise distribution P is a superposition of a dominant gaussian component PG along
with a small component PN that is much wider: (14)

P = 1− ε( )PG + ε PN
(10)

where ε « 1.  The effect of PN is to increase the probability of observing a large
fluctuation.  Although a gaussian distribution predicts that variations larger than
3 σ should only occur 0.3% of the time, they occur much more often in most real
experiments.  Thus, P is a nearly gaussian distribution for small variations, but
with tails that approach zero more slowly.

The magnetic field noise distribution P(δB)  for all the data in the second part
of our experiment has been observed to follow this model.  Experimentally, P(δB)
is measured by compiling a histogram of deviations from curve fits to the data from
many runs.  The histogram shown in Fig. 3a consists of about 1000
measurements and appears to be gaussian near the center with standard deviation
σ = 2.6×10-10.  When the histogram is plotted on a semi-logarithmic scale
(Fig. 3b), the gaussian central portion of the distribution is parabolic, and the extra
outliers are readily apparent.

These excess outliers can have adverse effects on data analysis, especially if the
least squares method from traditional statistics is used.  Since the goal is to
minimize the sum of squares of the deviations from the fit, outliers are heavily
weighted and could significantly pull the mean.  Data rejection methods exist which
attempt to identify and eliminate non-gaussian outliers, but these methods have
been shown to be biased for varying degrees of noise contamination (14).

Robust statistical analysis

Our approach has been to use robust statistics (14), which maintains the least
squares philosophy while accounting for outliers in a smooth and consistent
manner.  A class of robust statistics called “M-estimates” is a generalization of least
squares statistics and is easily implemented in nonlinear regression.  Near the
center, a robust distribution approximates a gaussian distribution.
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Figure 3.  Cyclotron frequency noise.  In (a), a histogram of the differences between
the measured ωc ’s and the fit to the field drift is plotted for ~1000 measurements,

along with a gaussian fit with s = 2.6 x10-10.  The excess number of outliers is
apparent in (b), where the histogram is folded and plotted on a logarithmic scale.  The
distribution corresponding to the Hampel estimator in Fig. 4 represents the observed
noise more accurately than the conventional gaussian (least-squares) distribution.

 Data with larger deviations from the fit ∆  are weighted less, and the
corresponding probability distribution P(∆) has larger tails than a gaussian to
account for extra outliers.  This distribution can be expressed in terms of an
“estimator” ψ (∆):

P(∆) = exp − ψ ( ′∆ )d ′∆
0

∆
∫





(11)

Since the maximum likelihood estimates of the fit parameters are obtained by
solving ψ (∆i )i∑ = 0 , the estimator ψ (∆) is proportional to the effect of a data
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Figure 4.  Hampel estimator.  The three-part descending Hampel estimator (12) used
for modeling fluctuations in ωc  (Fig. 3) is shown, along with the conventional least-
squares estimator.  Points with large deviations (> aσ ) are weighted  less and have a
smaller effect on fitting to field drift.

point with deviation ∆ on the fit.  The least squares case is given by ψ (∆) = ∆ , in
which all data points are weighted evenly and affect the fit in linear proportion to
their deviation from the fit, and the probability distribution is the familiar gaussian:

P(∆) = exp(−∆2 2).  A robust estimator, on the other hand, has ψ (∆) = ∆  for
points with small deviations (where gaussian statistics is valid) and ψ (∆) < ∆  for
points with large deviations (thus diminishing the importance of the outliers).

We use a three-part descending Hampel estimator ψ (x) (Fig. 4) to fit to the
field noise.  (Many statisticians consider this estimator to be well representative of
actual physical data (15).)

ψ (x) =

x for  x < a

a sgn(x) for  a < x < b

a(c − x ) (c − b) for  b < x < c

0 for  x > c










 ,

(12)

where x = ∆ σ , and where a , b, and c are parameters, chosen to be 1.6, 2.5, and
4.3, respectively.  These parameter values were selected to accurately reflect the
observed probability distribution in Fig. 3.  Points with deviations larger than aσ
have reduced weight, and those with deviations larger than cσ  are completely
rejected from the fit (i.e., ψ → 0).  Although only six points were seen outside
the range of Fig. 3(b), others may have been missed because their phase error
exceeded π, resulting in misassignment of the phase or in rejection of that datum
due to uncertainty in unwrapping the phase.

Fitting with robust statistics is equivalent to performing a weighted least
squares fit (14).  The assigned error in each measurement is weighted by a factor
of w = ψ (∆) ∆ .  Points with small ∆ thus receive full consideration by the fit
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( w = 1), and points with large ∆ receive reduced consideration ( w < 1).  Least

squares fitting is done iteratively (since ∆ changes after each attempt) until the fit
parameters converge.  The resultant uncertainty in the difference frequency ∆ωc  is

the standard statistical error (from χ2 curvature) from assigning an uncertainty of

2.6 ×10−10 w  to each point.  For a nighttime run, the statistical uncertainty in

∆ωc  and therefore in the associated mass ratio is typically 1×10-10.
Ultimately, the use of robust statistics has made relatively little difference in our

final results.  When robust and standard techniques were applied to the same data,
the results were usually within σ/2 of each other.  The standard deviations
observed in the later set of runs were generally close to 2.6×10-10 whereas
standard deviations of the earlier set of runs occasionally were as high as 4×10-10.
We believe this is primarily due to better shimming of the field ( so that movement
of the trap vacuum system in its dewar does not affect the results so much, but it
results partly from the fact that the robust statistics deweight the outliers somewhat.
As described below (see Consistency checks), comparisons of final results from
the two different sets of runs showed no statistically significant deviations.

4.  ATOMIC MASSES

Mass ratios were measured for a wide variety of molecular ions, and the results
are listed in Table 1.  The ion species were selected so that atomic masses of the
neutral isotopes could be determined in terms of m[12C], the basis of the atomic
mass scale.  In this section, the procedure for converting the ratios into atomic
masses is described.

The first step in converting ion mass ratios into masses of neutral atoms in the
ground state is to account for chemical binding energies and ionization energies:

m[AnBk
+] = m[nA(g) + kB(g) − e− ] + ∆E c2 (13)

The energy ∆E required to form a molecular ion from the neutral atoms is
calculated from the standard heats of formation of the species in the gaseous state at
0 K temperature (16).  Afterwards, the mass ratio r can be expressed in terms of
the individual atomic masses, as in this example:

r = m[AnBk
+]

m[CpDq
+]

= m[nA + kB − e− ] + ∆E1 c2

m[ pC + qD − e− ] + ∆E2 c2

(14)

For doublet measurements, (1− r) ~ O(10−3) , and the mass ratio should be
considered as a determination of a mass difference:

m[ pC + qD − nA − kB] = 1− r( ) m[ pC + qD − e− ]( ) + ∆ ′E c2 (15)
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Table 1.  Measured mass ratios and corresponding mass differences (in atomic mass
units).  The numbers in parentheses indicate the uncertainty in the last decimal places.
Several ratio measurements were repeated in order to reduce statistical error.

Ratio Value Runs Difference Value [u]

N2+ / C2H4+ 0.999 102 696 201 (55) 4 C + 2H – N 0.012 576 059 8 (8)
15N2+ / 0.998 547 569 780 (50) 4 C + D + H - 15N 0.021 817 911 9 (8)

CO+ / N2+ 0.999 598 887 572 (77) 3 2N – C – O 0.011 233 390 9 (22)

CO+ / C2H4+ 0.998 701 943 805 (66) 2 C + 4H – O 0.036 385 507 3 (19)
13C2H4+ / 0.999 805 486 870 (77) 2 C + D - 13C - H 0.002 921 908 6 (12)

Ar++ / Ne+ 0.999 437 341 275 (106) 2 2Ne – Ar 0.022 497 224 5 (42)

Ar+ / C3H4+ 0.998 278 399 350 (88) 2 3C + 4H – Ar 0.068 917 005 3 (35)

CD3+ / CD2H2+ 0.999 914 190 780 (100) 2 2H – D 0.001 548 283 6 (18)

Ne+ / CD4+ 0.996 810 562 610 (130) 1 C + 4D – Ne 0.063 966 932 9 (26)

Ar++ / CD4+ 0.996 249 698 100 (100) 1 2C + 8D – Ar 0.150 431 104 5 (40)

CD4+ / C+ 1.671 397 950 390 (310) 1 D 2.014 101 778 5 (9)

CD3+ / C+ 1.503 548 462 350 (200) 1 D 2.014 101 777 6 (6)

Ar+ / Ne+ 1.998 902 121 050 (300) 1 2Ne - Ar 0.0224972276 (60)

O+ / CH4+ 0.997 730 269 420 (80) 1 C + 4H – O 0.036 385 506 2 (13)

CH4+ / C+ 1.335 957 033 780 (230) 1 H 1.007 825 031 7 (7)

SiH2+ / 0.998 293 230 200 (80) 1 2C + 2D – Si 0.051 277 022 4 (24)

SiH2+ / 15N2+ 0.999 745 290 400 (80) 1 215N – Si – 2H 0.007 641 200 7 (24)
15N+ / CH3+ 0.998 444 631 990 (110) 1 C + 3H – 15N 0.023 366 197 9 (17)

CO2+ / C3H8+ 0.998 348 443 160 (100) 1 C + 4H – O 0.036 385 506 0 (22)
13CH4+ / 0.999 828 496 650 (90) 1 C + D - 13C - H 0.002 921 907 4 (15)

Although C and D also appear on the right side of the equation, they are multiplied
by the small factor (1− r)  and do not need to be known a priori to high precision.
Note that species which appear in both the numerator and the denominator cancel to
first order in the mass difference.  (For example, the ratio m[CD3

+ ] m[CD2H2
+]

determines the mass difference 2H − D.)
The mass differences and their uncertainties, also listed in Table 1, can be

expressed in matrix form:
x M = y ± σ (16)

where x is a P×Q matrix of the coefficients, M is a column vector of the Q atomic
masses, and y ± σ  is a column vector of the P mass differences and uncertainties.
(The reference atom 12C, which is defined to have a mass of exactly 12 u, is
included on the right side of the equation.)  The best values of the atomic masses
are obtained from a global least squares fit:
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M = X–1Y
(17)

where

X jk = xij xik σi
2

i=1

P

∑    ,    Y j = xij yi σi
2

i=1

P

∑
(18)

The inverted matrix X−1 is the covariance matrix, the diagonal elements of which
are the uncertainties in the atomic masses.

The ability to invert the X matrix depends on whether each individual species
can be directly related to 12C.  This is rather difficult to accomplish solely with
doublets in the mass range in which we operate (10-50 u).  (For example, the
three ratios N+/CH2+, O+/CH4+, and CO+/N2+ would seem sufficient to determine
the atomic masses of N, O, and H, but the resultant matrix is singular; i.e., the
mass differences from these ratios using (15) are linearly dependent.)  We have
measured one set of doublets (Ar+/C3H4+, Ar++/CD4+, and CD3+/CD2H2+) which
determines H and D directly in terms of C and breaks the singularity in the matrix.
We have also developed techniques to make non-doublet measurements (10), such
as CH4+/C+, which are very useful for providing links to invert the matrix.

Atomic mass table

An atomic mass table (Table 2) of nine isotopes and the neutron is obtained by
fitting to the entire set of our mass ratio measurements.  For comparison, the best
values from conventional mass spectrometry (the 1983 atomic mass
evaluation (17)) are also listed, showing that Penning trap measurments have
achieved an improvement in precision of a factor of 10-1000.  The latest (1993)
atomic mass evaluation (13) contains some data from Penning trap experiments,
including preliminary values of some results reported here.  Our latest results are
consistent with our earlier (6) results , except for the 1.5 σ adjustment in the 14N
mass that followed the new data analysis described previously (section two).

The neutron mass follows from the atomic masses of 1H, 2H, and the deuteron
binding energy from:

1H +  n → 2H +  γ   (2.2 MeV) ,
(19)

The most accurate measurement of the γ-ray wavelength (18) is accurate to 1×10-6

and limits the precision of our determination of the neutron mass to 2×10-9.

Other Penning trap measurements

Table 2 also compares our measurements with other Penning trap
experiments.  The results are in good agreement with our more precise values,
except for a two sigma difference for 16O.  Van Dyck et. al.  (19) have written a
detailed review of high precision mass measurements in Penning traps.  Their
group has measured the masses of several light isotopes (19), most notably 3He
and 3H (20), with uncertainties typically a factor of 2 larger than ours.  They use a
trap similar to ours, but having a small anharmonicity such that the axial frequency
is a weak function of the cyclotron amplitude.
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Table 2a.  Atomic mass table.  The masses (in u) of nine isotopes and the neutron are
listed as determined from this experiment, from the 1983 atomic mass evaluation [15],
and from other single-ion Penning trap experiments [17,19].  The numbers in
parentheses indicate the error in the rightmost figures.   The uncertainty in the neutron
mass from this experiment is limited by the error in the deuteron binding energy [16].

Species Mass (this work) Non-Penning trap

values [15]

Other Penning trap

values

1

2

13

14

15

16

20

28

40

Table 2b.  Atomic mass differences measured by the MIT Penning trap experiment and
the Ohio State FT-ICR experiment.

Mass difference MIT value [u] Ohio State value [u]

CH + – N+ 0.012 576 046 4 (6) 0.012 576 039 0 (190) [20]

H O+ – DO+ 0.001 548 279 4 (9) 0.001 548 296 0 (120) [21]

D O+ – 20Ne+ 0.030 677 980 2 (25) 0.030 677 480 0 (670) [22]

Measurements are made by monitoring the axial frequency while a drive is swept
through the (trap) cyclotron frequency.  They have solved the matrix inversion
problem by measuring q/m doublets containing highly ionized species  such as
12C3+ and 4He+. The Stockholm-Mainz group has measured the mass of 28Si with
10-9 precision (21).  Their technique is similar to one used for unstable nuclei (22).
Ions are ejected from the trap through a hole in the endcap.  As they leave the
magnetic field, their cyclotron energy is converted to additional axial velocity,
which is monitored by time of flight.  Fourier transform ion cyclotrometers are
widely used in analytical and physical chemistry.  (23)  These devices have a ring
that is divided into four quadrants, with two quadrants used to excite the cyclotron
motion and two used for detection.  The group at Ohio State has determined several
mass differences by FT-ICR spectrometry on ion clouds with uncertainties about
20 times larger than our corresponding values (24-26).
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5.  UNCERTAINTIES

In the previous discussion, it was assumed that random field fluctuations
dominated the uncertainty in the experiment.  There are several other sources of
error below 10-10 that prove negligible but still should be considered.  In this
section, the various uncertainties, both random and systematic, are summarized
and estimated.  In Table 3, the uncertainties contributed from the various sources
are listed for a single measurement of ωc as well as for a measurement of the mass
ratio during a nighttime run.  For the purpose of calculation, errors are estimated
for a typical ion of mass 30 u; Table 3 also lists how each error scales with the
mass of the ion being measured.

Random errors

The observed noise histogram in Fig. 3 is a composite of all short-term
fluctuations which contribute to the random error of the experiment.  The rms error
is 2.6×10-10 per measurement of ωc, and the resultant error in the mass ratio is

typically 1×10-10 for a nighttime run of ~60 measurements with ~15 alternations of
the ions.  Variations in the magnetic field at the site of the ion (from both internal
and external processes) are primarily responsible for this random error.

Electric field fluctuations also contribute to the random error, but to a lesser
extent.  The axial frequency ωz varies as the square root of the trap voltage, which
is subject to electrical noise and drift.  Since the trap cyclotron frequency ′ωc  is
measured over a ~1 min integration time, and ωz is measured immediately
afterwards, the trap voltage fluctuations do not cancel in Equation (1) and appear
as random fluctuations in ωc.  The shot-to-shot variation in ωz due to trap voltage
instability has been observed to be ~10 mHz.  For an ion of mass 30 u, this
corresponds to a 9×10-11 error in ωc per shot, resulting in a 3×10-11 random error
in the mass ratio from a typical run.

Thermal noise in the cyclotron amplitude also causes random error in ωc.
Since the ion is cooled by a resistive detector, there is thermal uncertainty in the
ion’s initial location in phase space.  The axial temperature Tz  has been measured
to be ~10 K, which is slightly higher than the 4 K liquid He bath because of
additional noise from the rf SQUID detector.  The cyclotron mode is thermally
coupled to the axial mode using sideband cooling (7), resulting in a cyclotron
temperature Tc  equal to Tz ′ωc ω z( ), which is ~300 K for a mass 30 u ion,
corresponding to a thermal rms amplitude of 0.0015 cm.  During a measurement,
this thermal amplitude adds vectorially to a mean amplitude of typically 0.025 cm
from the applied cyclotron excitation pulse, causing variations in the cyclotron
amplitude ρc from measurement to measurement.

Due to anharmonicities from relativity and higher-order field imperfections,
these variations in ρc lead to variations in the measured cyclotron frequency ωc.
To lowest order (3),

∆ δ ωc

ωc







= − ωc
2

2c2 − B2

2B0
+ 3ωmC4

2ωcd2






∆ ρc

2( )
(20)
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Table 3.  Summary of estimated random [R] and systematic [S] uncertainties for
doublet (d) and non-doublet (n) comparisons, in parts per trillion (10-12).  The first
column lists the error contributed from each source per measurement of the cyclotron
frequency wc, and the second column lists the resultant error in the mass ratio for a single
nighttime run.  Errors are calculated for mass 30 u ions, assuming a cyclotron amplitude

ρc = 0.025 cm , a magnetic bottle B2 B0 < 10−6 cm−2 , and a higher-order electric field

C4 < 10−4, among other assumptions described in the text.  The last column indicates
how each uncertainty scales with the mass m of the ion.

Source of uncertainty Error in ωc

(ppt)

Error in ratio

(ppt)

Scaling

Magnetic field fluctuations 260 [R] 100 [R] —

Electric field fluctuations 90 [R] 30 [R] m 30( )2
Thermal noise 30 [R] 10 [R] 30 m( )3 2

Spectral estimation (w ) 90 [R] 30 [R] m 30

Spectral estimation (phase) 100 [R] 30 [R] —

r  imbalance (relativity) 10(d), 20(n) [S] 10(d), 20(n) [S] 30 m

r  imbalance (B ) 10(d), 30(n) [S] 10(d), 30(n) [S] m 30

r  imbalance (C ) 9(d), 30(n) [S] 9(d), 30(n) [R] m 30( )3
C  imbalance 20 [S] 20 [R] 30 m

Surface patch charges 4(d), 0(n) [S] 4(d), 0(n) [S] 30 m

Trap tilt (magnetron) 0(d), 40(n) [S] 0(d), 40(n) [S] m 30( )4
Tuned circuit pulling 2 [S] 2 [R] m 30

where B2 B0  is the magnetic bottle, C4  is the fourth-order electric field
coefficient, and d2 = 0.3 cm2  is the characteristic trap size.  We have made the
field flaws B2 B0  and C4  smaller than 10-6 cm-2 and 2×10-4, respectively, by
adjusting the magnet’s shim coils and the trap’s guard ring electrodes.  After
shimming, the relativistic correction is the dominant term, particularly for light
ions.  Therefore thermal noise, in conjunction with these anharmonicities, causes a
random error of 3×10-11 per run for a mass 30 u ion and 1.6×10-10 per run for a
mass 10 u ion.  Although this error is insignificant now, it may be dominant in
two-ion mass spectrometry (27), in which both magnetic and electric field
fluctuations cancel.  We have proposed classical squeezing methods able to reduce
the effects of thermal noise by about a factor of 5 (28).  Recently, we have
demonstrated the ability to squeeze the thermal noise and to reduce amplitude
fluctuations by parametric amplification at 2ω z  (29).

Another source of random error is detector noise, limiting the ability to extract
frequency and phase information from the detected signal.  The axial frequency ωz
can be determined to ~10 mHz.  This adds to the random error in the same way as
trap voltage fluctuations, contributing an uncertainty of 9×10-11 in a typical mass
ratio.  The phase of the ion’s axial motion can be determined to ~10 degrees, out



17

of a total phase which is accumulated over an integration time T of typically
1 minute.  For a mass 30 u ion, this phase error contributes an uncertainty of
~1×10-10 per measurement of ωc.  This error depends inversely on T, and T is
chosen long enough so that the magnetic field fluctuations are dominant.

Systematic errors

The anharmonicities in Equation (20) could also lead to systematic errors in the
mass ratio.  Since ω c is measured with a nonzero cyclotron amplitude
(ρc ~ 0.02 cm), nonlinear terms cause a frequency shift of ~10-9.  For doublets,
this shift cancels to lowest order since the ions are pulsed to nearly the same
amplitude.  However, a systematic imbalance in ρc would cause a systematic error
in the mass ratio.  One source of  imbalance in ρc is the transfer function of the
cyclotron drive electronics.  The transfer function was characterized from the Rabi
frequencies of π-pulses, and the upper limit for ρc imbalance was found to be 2%
(11).  This limit leads to upper bounds on systematic error of 1×10-11 from both
relativity and the magnetic bottle B2.  The error from the higher-order electric field
C4 in conjunction with an imbalance in ρc  is below 2×10-11.

An imbalance in ρc  becomes an axial amplitude imbalance after the π-pulses,
causing different shifts in the axial frequencies if C4 is not zero.  If the gross
anharmonic shift in axial frequencies is 0.1 Hz, a 40 mHz difference will occur
between the two axial frequency shifts, causing an error of 6×10-11 in the heaviest
ratios we have measured, but for most ratios the error is closer to 2×10-11.

It is also possible to have an imbalance in C4 between the two ions, if the trap
is tuned differently for each.  Assuming a 50 µV difference in the scaled guard
ring potential, the resultant error in the mass ratio would be 2×10-11.  (This
estimate is based on an experimentally observed shift of 8×10-10 for a mass 40 u
ion with a 2.4 mV offset (6).)  This error is only significant for measurements on
heavy ions (>20 u), for which the present apparatus requires that the guard ring
potentials be set manually for both ions.  (In an earlier measurement of the
CO+/N2+ ratio, the guard ring potentials were set improperly, and a 2×10-10

correction subsequently had to be made in the ratio reported in (30).)  Although
the errors involving C4 are systematic over the course of one run, they are random
for ratio measurements on different nights because the trap is retuned (changing
C4) before each run.

For non-doublets, these anharmonic shifts do not cancel to lowest order.
Instead, the cyclotron amplitudes are controlled so that the relativistic shifts cancel,
and corrections are made for the B2 and C4 shifts (10).  The resultant systematic
errors are calculated to be ~6×10-11, small compared to the random error from field
noise.

Image charges moving in the electrodes at the cyclotron frequency lower that
frequency by about 50 microhertz per charge.  This has negligable effect on
doublet measurements, but measurements of different charge states and non-
doublet measurements can be shifted by at most 2×10-11.

Other sources of error contribute at the 10-12 level.  Surface charge patches on
the trap electrodes cause a shift in the ion’s equilibrium position, which is different
for the two ions because the trap voltage is different.  Because of magnetic field
gradients, the two ions experience different fields, causing a systematic error of
4×10-12 for doublets.  (Surface patches would not cause such an error in non-
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doublet measurements, since the two ions are measured with the same trap
voltage (10).)

The magnetron frequency ωm is not measured during the run; it does not need

to be known very accurately, since the effect of an error in ωm is scaled down by a

factor of ωm ωc( )2 .  In an ideal trap, ωm can be determined from ω z
2 2 ′ωc ;

however this relation is perturbed by a factor of 1+ (9 4)sin2 θ( ) when the trap is

tilted with an angle θ with respect to the magnetic field (3).  The magnetron
frequency is measured once per run by observing the avoided crossing with an rf
coupling drive (8) to determine the trap tilt (0.66(2)˚, in our case), so that ωm can

be deduced from subsequent measurements ofωz and ′ωc .  The correction factor

(9 4)sin2 θ  can be determined to about 5%.  The resultant error for a doublet
measurement is completely negligible — a few parts in 1014.  For non-doublets,
the error is a few parts in 1011, still considerably smaller than the random error.

Tuned circuit pulling also is a potential cause of systematic error.  Since the
ion’s axial mode is coupled to a high-Q tuned circuit, ωz is perturbed.  Assuming
an unlikely systematic difference of 50 mHz in the two ions’ axial frequencies
during one run, the resultant uncertainty in ωc is 2×10-12.

In summary, the magnetic field noise causes a random error of ~10-10 in one
mass ratio run, and other sources of random and systematic errors are calculated to
be about an order of magnitude smaller.  In the next section, it is shown that the
quoted uncertainties are verified by a series of checks.

Consistency Checks

In a precision experiment, the reported uncertainty is just as important as the
reported result, and there is a need to check for unknown errors to ensure that none
have been overlooked.  The fact that we measure mass ratios of molecular ions,
which involve various combinations of atomic species, affords an opportunity for
self-consistent checks of systematic and random errors.  We have done many such
checks to ensure that our uncertainties are accurate.  These checks may be classed
in several categories:  repeated measurements, closed loops of ratios, repeated
measurements after a complete reshimming of our magnet, redundant ratios, non-
doublet measurements, and the overall agreement of the global fit to all ratios.

Repeated measurements.  In many cases, measurements were repeated on the
same pair of ions on several nighttime runs.  The field fluctuations typically were
different for each run, therefore testing the method of fitting to the field drift.
There were 13 repeated measurements, having a reduced chi-square of
χν

2  = 0.75.  This test indicates that the random error from field fluctuations, as
determined by the histogram in Fig. 3, has not been underestimated.

Closed loops.  Another check involves “closed loops” of ratios.  Given three
ions A+, B+, and C+, there are three possible doublets that can be measured:
A+/B+, B+/C+, and C+/A+.  If the ratios are multiplied together, the product
should be equal to one, within experimental error.  Closed loops are basically a
check on the field fitting uncertainties, like repeated measurements, except that they
are also sensitive to any systematic errors which are nonlinear with respect to the
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difference in mass.  Three such closed loops were measured, having a reduced chi-
square of χν

2  = 1.53.  (Statistically, a reduced chi-square of this value or higher
should arise in 20% of the cases, so χν

2  = 1.53 is not anomalously high.)
Magnet reshimming.  In the midst of our measurements, our

superconducting magnet accidentally quenched.  This divided the data into “earlier”
and “later” categories which were analysed differently as discussed in sections 2
and 3.  The magnet was rebuilt, reenergized, and reshimmed, changing the higher-
order inhomogeneities in the magnetic field.  In this process, the trap was thermally
cycled between 300 K and 4 K, changing the surface patch charges on the trap
electrodes which contribute to higher-order terms in the electric field.  Comparison
of measurements done before and after the magnet rebuild therefore checks
systematic errors resulting from field imperfections.  There were three such
measurements, having a reduced chi-square of χν

2  = 0.26.
Redundant ratios.  A particularly powerful check for systematics is

provided by redundant ratios, measurements that determine the same mass
difference using different molecular ions.  For example, the ratios O+/CH4+,
CO+/C2H4+, and CO2+/C3H8+ all determine the mass difference C + 4H − O, but
the measurements are made at mass 16, 28, and 44 u, respectively.  Such
redundant ratios check for virtually all systematic errors, since the ratios are
measured under widely different experimental conditions.  For example, different
trap voltages test for errors from surface patch charge effects, different cyclotron
frequencies test for errors in the phase-coherent cyclotron mode coupling
techniques, and different chemical energies test for errors in the method of
calculating atomic masses from ratio measurements.  The ratios that were measured
contain a total of four redundancies with χν

2  = 0.39.
Non-doublet ratios. We have developed techniques (10) to measure ratios of

non-doublets, which are pairs of ions with greatly different mass.  Non-doublet
ratios were compared with measurements of doublet ratios, providing a test of

Table 4.  Summary of consistency checks.  The number of excess independent

measurements ν and the reduced chi-square χν
2  are listed.  The last column lists the

statistical probability P of exceeding the observed value of χν
2  for each check.

Check ν χν
2

P

Repeated measurements 13 0.75 71%

Closed loops 3 1.53 20%

Magnet rebuild 3 0.26 85%

Redundant ratios 4 0.39 82%

Doublet / non-doublet 3 0.16 92%

Overall 24 0.74 81%

possible systematic errors arising from differences in the measurement techniques.
Anharmonic frequency shifts which cancel to lowest order for doublets do not



20

naturally cancel for non-doublets.  The cyclotron modes are intentionally driven to
different amplitudes in order to cancel the relativistic shift, but a magnetic bottle
shift remains.  Three doublet / non-doublet redundancies resulted in χν

2  = 0.16,
indicating that such systematic errors are insignificant at the 10-10 level of
precision.

An additional test of the non-doublet comparison method is by the
measurement of the known ratios N2+/N+ and Ar+/Ar++ (10).  In each case, the
ratio is about equal to two, except for corrections from the electron mass and the
chemical energies.  Since N and Ar are compared against themselves, their atomic
masses with respect to C cancel to lowest order, and the ratios can be calculated
from existing mass data with an accuracy of ~10-12.  The measured ratios were
found to agree with the calculated values, adding further confidence to our non-
doublet measurement technique.

Overall agreement.  The final consistency check is the overall agreement of all
the results in the global least squares fit.  There are a total of 33 ratio measurements
and 9 atomic masses, and therefore 24 degrees of freedom.  The reduced chi-
square for the fit was χν

2  = 0.74.  Table 4 lists all the reduced chi-squares from
the different types of checks, as well as the statistical probability for exceeding the
observed value of χν

2 .  In all cases, χν
2  ~ 1, and the reported uncertainties can be

considered to be consistent with the data.  These consistency checks therefore are
compelling evidence that the errors in the mass ratios are dominated by the
observed statistical noise.  The checks also imply that if any systematic error had
been overlooked, it would have to be smaller than 10-10.

Every isotope in our mass table is derived from at least two independent sets of
ratios (except for the neutron, which depends on a single gamma-ray experiment).
This not only provides the same checks as the redundant ratios described above,
but also ensures that non-canceling calculational and measurement errors have been
avoided.

6.  APPLICATIONS TO METROLOGY

At the 10-10 level of precision, certain mass measurements have important
implications for fundamental metrology (1).  In this section, we discuss the
contributions of our measurements to defining an atom-based mass standard,
calibrating γ-ray wavelengths, and determining fundamental constants.

Atomic mass standard

Our demonstrated ability to compare atomic masses at the 10-10 level
establishes comparison of atomic masses as a more precise operation than
comparison of macroscopic masses, which is limited to a relative precision of
~10-9, especially for masses of different density (31).  This suggests the wisdom
of an atomic definition of mass, as might be achieved by defining the Avogadro
constant, NA .  Finding an accurate way to realize such a definition would have the
additional advantage of replacing the last artifact standard, the kilogram.

The S.I. unit of mass, the kilogram, is defined to be the mass of the prototype
platinum-iridium cylinder at Bureau International des Poids et Measures.  Besides
being unique, such an artifact mass standard has many disadvantages, including
the possibility of long-term drift and damage due to mishandling (31).  (To guard
against mishandling, the prototype kilogram has been compared to secondary
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standards only three times this century.)  A more desirable standard would be
based on an atomic mass, such as the mass of a 28Si atom, which avoids these
disadvantages (32).  However, replacing the artifact mass standard depends on the
ability to realize the kilogram (i.e., to develop a practical macroscopic mass
standard from this atomic definition).

One promising method for realizing an atomic kilogram is to accurately
measure the lattice constant and the mass density of a highly-pure silicon crystal
(33).  With the present mass standard, this experiment determines the Avogadro
constant NA ; with an atomic mass standard based on a defined value of NA , the
crystal becomes a mass density standard which would lead to a macroscopic
realization of the kilogram.  A precision in NA  of 1×10-6 has been attained so far
(33), and it is anticipated that modifications (including the use of a crystal
isotopically enriched with 28Si) will allow NA  to be measured to 10-8 in the future.
(Recently, a measurement of the silicon lattice constant d220 has been reported to
3×10-8 (34).)  Realizing the kilogram with 10-8 accuracy would at the very least
provide a check on the long-term drift of the artifact mass standard.  The previous
(non-Penning-trap) value of M(28Si) was accurate to 2.5×10-8 and would have
been a limitation in the accuracy of NA .  The value from our experiment, accurate
to 7×10-11 and confirmed to 10-9 (21), removes this limitation.

γ-ray calibration

Another application of precision mass spectrometry in the field of metrology is

to “weigh” γ-rays.  By Einstein’s principle, ∆E = ∆mc2, the energy released in a

nuclear process in the form of γ-rays can be measured as a difference in the mass

of the initial and final nuclei.  If the γ-ray energy is in the form of a single photon

with effective wavelength λ*, after correcting for nuclear recoil, then the energy
balance equation is:

Eγ = hc λ* = ∆mc2 (21)

Absolute measurements of γ-ray wavelengths are often imprecise.  For this reason,
neutron separation energies determined by mass spectrometry are used to calibrate
γ-ray wavelengths, particularly in the 2-13 MeV range (35).

The neutron capture reactions 14N(n, γ) and 12C(n, γ) are two processes that

are attractive for γ-ray wavelength calibration:
14N +  n → 15N +  γ1 +  γ 2  (10.8 MeV)
12C +  n → 13C +  γ  (4.9 MeV)

(22)

When combined with 1H(n, γ):
1H +  n → 2H +  γ   (2.2 MeV) ,

(23)

the neutron mass cancels, yielding the energy balance equations:

m[14N+2H−15N−1H]c2 = hc λ1
*

m[12C+2H−13C−1H]c2 = hc λ2
*

(24)
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Table 5.  Mass differences for determining α  and NAh .  The mass differences
associated with the neutron capture reactions 12C(n, γ) and 14N(n, γ) determined by
this experiment and by conventional mass spectrometry (33) are listed.  The new results
are a factor of 10 more accurate and show considerable discrepancy with the previous
value of 14N+2H–15N–1H.

Thus, precise measurements of the mass differences 14N+2H–15N–1H and
12C+2H–13C–1H are valuable for γ-ray spectroscopy.

Our best values for these mass differences (Table 5) are accurate to 1×10-7 and
4×10-7, respectively.  By selecting molecular ions which have optimal correlation
among the individual atoms, the final uncertainties in ∆M  are minimized.  The
mass difference 14N+2H–15N–1H would be most directly measured from
15NH3+/NDH2+, but technical difficulties prevented us from loading ammonia
ions into the trap.  Instead, the ratios N2+/C2H4+ and 15N2+/C2D2H2+ were
measured, leading to a value of 9 241 852.1 (1.1) nu  for ∆M .  As a redundancy
check, a value of 9 241 853.7 (1.7) nu  was obtained independently from all other
ratios (15N+/CH3+, N2+/CO+, etc.) and is in agreement.  The mass difference
12C+2H–13C–1H was also measured in two ways to verify its precision.  The
ratios 13CH4+/CDH3+ and 13C2H4+/C2D2H2+ determined this difference to be
2 921 907.4 (1.5) nu  and 2 921 908.6 (1.2) nu , respectively, and are also in
agreement.  Our best values for the mass differences, 9 241 852.7 (0.9) nu and
2 921 908.2 (1.1) nu , result from combining these values obtained by independent
routes.  It is important to note that we have pushed the errors of these critical mass
differences down by averaging several runs, with the result that these important
ratios have been measured to 5×10-11, an accuracy roughly a factor of two beyond
that at which our consistency checks indicate freedom from systematic error.  Thus
the quoted error depends on our theoretical analysis of systematics.

The previously accepted values of these mass differences from
conventional mass spectrometry (36) are also listed in Table 5.  Our values for
∆M  are about a factor of 10 more accurate than the prior values.  The 12C(n, γ)
mass differences are in good agreement; however, the 14N(n, γ) mass differences
do not agree, differing by nine times the reported uncertainty in the prior value.
The current γ-ray energy calibration (35) is based on the inconsistent prior value of
14N+2H–15N–1H.  Unlike our redundant Penning trap measurements, the earlier
result was based on a single mass comparison.  The improved mass difference
obtained by Penning trap mass spectrometry considerably increases the accuracy of
the energy calibration and suggests that an 8 ppm revision of this calibration is
necessary.  This is consistent with recent high precision measurements of γ-ray
energies with a Ge detector (37).

Mass difference This work [nu] Ref. [33] [nu]

14N+2H–15N–1H 9 241 852.7 (0.9) 9 241 780 (8)

12C+2H–13C–1H 2 921 908.2 (1.1) 2 921 911 (12)
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Fundamental constants

A collaboration of researchers using the High Flux Reactor in Grenoble,
France is undertaking precision experiments to measure absolute γ-ray wavelengths
corresponding to the above reactions 14N(n, γ), 12C(n, γ), and 1H(n, γ) (38).  A
precision of ~2×10-7 is expected for the effective wavelengths λ* (after taking into
account nuclear recoil) corresponding to the mass differences 14N+2H–15N–1H
and 12C+2H–13C–1H (39).  When this work is completed, the mass differences
would not be needed for calibration purposes.  Instead, the precise masses and
wavelengths could be combined to determine the fundamental constants NAh  and
α (40-41).

The molar Planck constant NAh  follows from the fact that the neutron
separation energies are measured in different systems of units.  We measure the
mass defect ∆M  in (microscopically defined) atomic mass units (u), while the
effective γ-ray wavelength λ* is measured in S.I. units (m).  Equating the energies
in Equation (21) leads to:

NAh = λ*∆M c ×10−3 (25)

where the Avogadro constant NA = 10−3 ∆M ∆m  is needed to convert ∆M  into the
mass difference ∆m  (in kg), required in Equation (21).

Other routes to the accurate determination of NAh  are based on measurements
of wavelengths associated with massive particles.  The product of the velocity and
deBroglie wavelength of a neutron has been measured at the 10-7 level (42), and
the recoil shift of photons scattered by Cs atoms has been measured at the 10-6

level (43).  NAh  can determined from either of these measurements combined with
measurements of the atomic masses of the respective particles.

The fine structure constant α  can also be determined from NAh , and therefore
from a measurement of λ* and ∆M :

α 2 = 2R∞
c

mp

me







NAh

Mp
×103

= 2R∞
mp

me






∆M

Mp
λ*

(26)

The Rydberg constant R∞ , the proton-electron mass ratio mp me , and the proton
atomic mass Mp  are known to 4×10-11 (44), 3×10-9 (45), and 5×10-10 (10),
respectively.  Therefore, measuring λ*  and ∆M  with a relative accuracy of
~2×10-7 also would determine α  to 10-7.  Although α  has been determined by
other experiments with accuracy as high as 10-8, this measurement would be
valuable as an independent check and also to verify the consistency of physical
theories (46), especially QED, which currently gives the best value of α (47).
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