

Decay Heat in Reactor and Fuel Cycle Applications

B. Roque, R. Jacqmin CEA, Cadarache, France

Background

Motivation

(2	7	
	L	~	

✓ Short cooling times (< 1 year) \rightarrow short-lived FPs dominate

Reactor operators → Shorter refueling times
Ex.: for EdF, 4% increase in decay heat ⇒ 1 day of shutdown of the French park ~ ½ fuel reload
⇒ very strong economic incentive in accurate knowledge of DH Target accuracy ~ 10% (2σ) or better

o Reactor designers \rightarrow Better estimation of margins to avoid excessive conservative

Ex.: Innovative GFR studies at CEA

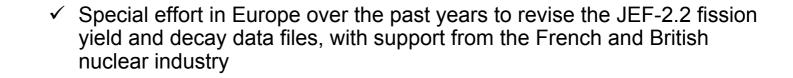
- Core definition conditioned by DH at t < 1 minute after shutdown (LOCA) + Very sensitive to it !
- Further complication with full actinide recycling because of relatively poor knowledge of MA fission yields

Background

Motivation

- ✓ Intermediate to long cooling times (> 1 year) \rightarrow FPs + actinides
 - o Fuel cycle plant operators \rightarrow Better estimation of margins to avoid excessive conservative
 - Ex.: spent fuel subassembly transfers and transportation
 - fuel reprocessing plant
 - storage of spent fuel or nuclear waste
 - \Rightarrow strong incentive in accurate knowledge of decay heat
 - Target accuracy ~ 10% (2σ) or better

□ Current performance of JEF-2.2 data + CEA codes

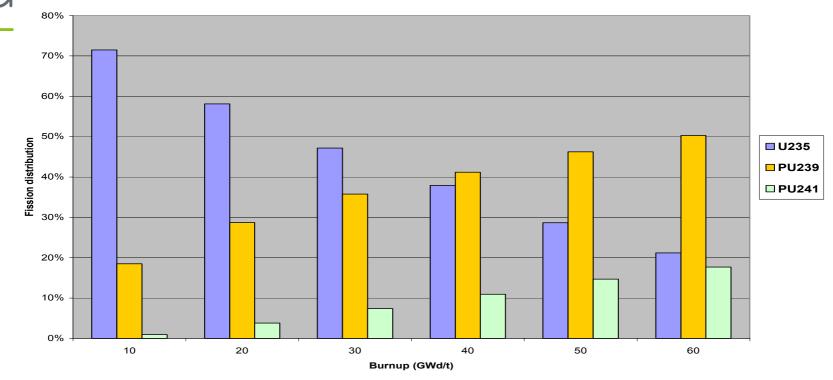

✓ Short cooling times

- o Validation based on code-to-code comparisons and pulse fission experiments (Akiyama, Dickens)
- o Estimated uncertainty for UOX and MOX fuels is ~15% (2σ)
- o New experiment at CEA: MERCI \rightarrow fuel rod irradiation in OSIRIS, followed by accurate calorimetric measurements (2007-2010)

✓ Intermediate to long cooling times

- o Leading contributors
 - Actinides: Cm244, Cm-242, Pu238, Am241, Pu239, Pu240, Am243
 - FPs: Cs137+Ba137m, Ru106+Rh106, Sr90+Y90, Ce144+Pr144, Eu154, Zr95+Nb95, Cs134
- o Validation is only partial as it relies on PIE experiments (fuel rods, irradiated samples)
- o Estimated uncertainty for UOX and MOX is ~12% (2σ) for cooling times between 1 and 10 years, and between 4 and 7% for longer cooling times

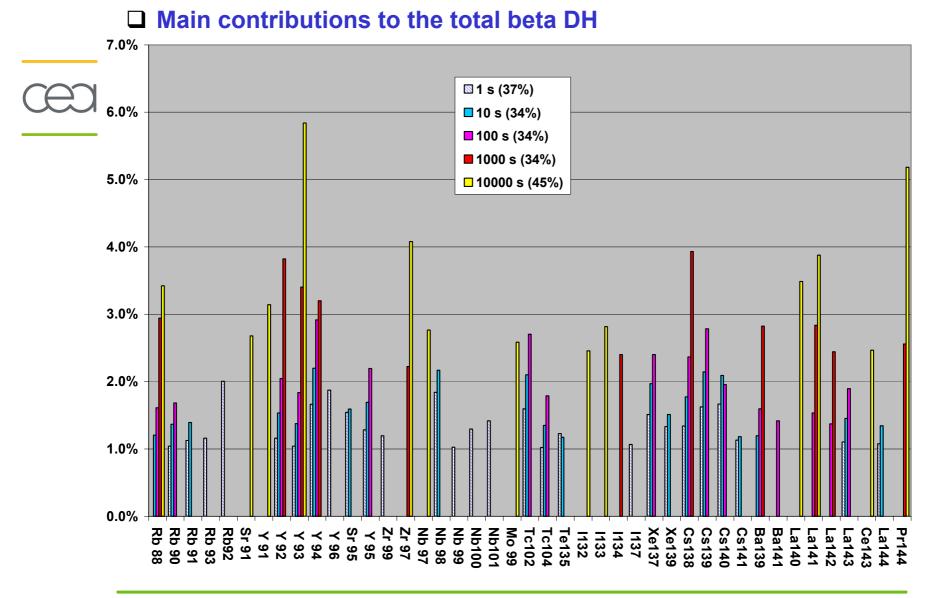
Recent developments

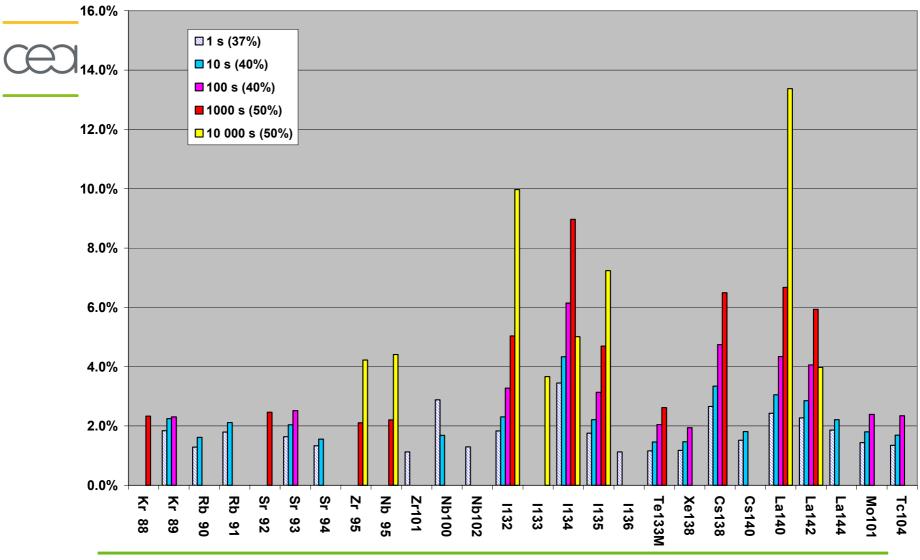

- ✓ New JEFF-3.1 FY and DD files released in May 2005 Also, recently released JENDL-3 decay data file
- Production libraries based on JEFF-3.1 files are currently being prepared CEA is committed to
 - o Validating those libraries for its users
 - o Contributing to the future file improvements
- ✓ Some shortcomings already recognized at short cooling times \rightarrow to be addressed by the international NEA/WPEC/SG25
 - o Pending the availability of JEFF-3.1-based libraries, some preliminary calculations have been done with JEF-2.2
 - o Focus on JEF-vs-JENDL discrepancies in beta/gamma DH between ~ 20 s and 2000 s \rightarrow try to identify the responsible nuclides

Calculations of Irradiated UOX Fuel (4,5% U235) in a PWR

□ Leading fissile contributions as a function of burn-up

✓ Burn-up = 20 and 60 GWd/t




U235, Pu239 and Pu241 relative contributions versus burn-up (UOX fuel)

Although the main contributing actinides change with burn-up, it is essentially **the same** FPs provide the leading contributions to the DH at burn-ups of 20 and 60 GWd/t

Calculations of Irradiated UOX Fuel (4,5% U235) in a PWR

□ Main contributions to the total gamma DH

Strong incentive in reducing the uncertainty in DH predictions at all cooling times

- ✓ Target ~ 10% (2σ) or better
- ✓ Is this achievable ?

Recent JEFF-3 files have to be further improved to reach this objective

- \checkmark Which nuclides ? \rightarrow Sensitivity studies, direct substitutions, ...
- ✓ Use of Rudstam average energies ?
- ✓ New, accurate measurements needed

CEA will contribute to the on-going international efforts on this topic