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Abstract

The high-energy, high-intensity nevtron fluxes produced by the fusion plasma will have a significant Life-limiting
impact on reactor components in both experimental and commercial fusion devices. As well as producing defects,
the neutrons bombarding the materials initiate nuclear reactions, leading to transmutation of the elemental atoms.
Products of many of these reactions are gases, particularly helium, which can canse swelling and embrittlement of
materials.

This paper integrates several different compuotational techniques to produce 8 comprehensive picture of the
response of materials to neotron irradiation, enabling the assessment of structural integrity of components in a
fusion power plant. MNeutron-transport calculations for a model of the next-step fusion device DEMO reveal
the variation in exposure conditions in different components of the vessel, while inventory calculations guantify
the associated implications for transmutation and gas production. The helivm prodoction rates are then used, in
conjonction with a simple model for He-induced grain-boundary embrittlement based on electronic-structune density
functional theory calculations, to estimate the timescales for susceptibility to grain-boundary failure in different
fusion-relevant materials. There is wide varation in the predicted grain-boundary-failure lifetimes as a function of
both microstructure and chemical composition, with some conservative predictions indicating much less than the
required lifetime for components in a fusion power plant.

{Some figures may appear in colour only in the online journal)

L. Introdwection

In magnetic-confinement fusion devices 2 large number
of high-energy newtrons are gemerated in the plasma by
denterium—tritium fusion reactions. These peotrons escape
from the plasma and irradiate the materials that make up the
reactor vessel. One of the key cutstanding issues for the fusion
materials programme is in the understanding of how neutrons
influence the properties of materials over the projected lifetime
of a fusion power plant. Mot only do the incident newtrons
cause atomic displacements within the materials, leading to
the genemtion and acowmulation of radiation defects, which
cause hardening, embrittlement, and irradistion creep, but
they also initiate non-elestic nuclear reactions that alter the
oatuge of the constitwent atoms. This process, known as
transmutation or bum-up, changes the chemical composition
of materials, leading in furnto measurabde changes in structaral
and mechanical properties.

[NI2G- 551 57 203015 1 253300

Perhaps aven more problematic are the noclear reactions
initiated by fusion neutrons that give rise to the ransmutation
production of gas atoms, such as heliom (He) and hydrogen
(H). These reactions, which inclede neutron capture followed
by e-particle (*He™) emission, ofien writien as {ne), and
peatron capure and proton (TH*) emission (np), generally
oceur less frequently than the major (n,)-) reactions, but have
a muoch more significant effect on properties of materials,
particularly metals and alloys. Even at bow concentrations,
gas particles can have severe life-limiting consequences for
materials, with Hi being a particular problem becawse, with
its low solobility in the crystal lattice, it forms clusters and
accumulates af defects, dislocations and at grain boundaries,
leading to swelling or embrittlement.

In fusion, the isspe of ransmotation gas production is
likely to be a more significant problem than in fission because
of the higher neutron fluxes and higher average newtron
energies. For example, in figure | where a fission spectrum
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An integrated model for materials in a fusion power plant
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Helium embrittlement
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Helium embrittlement is a potential cause of failure of materials in a fusion device. Experimental
observations (left) show that the production of helium in the bulk of the grains through transmutation
38 nuclear reactions, migration of helium to grain boundaries (right), and the accumulation of helium at
W grain boundaries give rise to grain boundary decohesion. Decohesion occurs if the concentration of =

#M helium at the boundaries reaches a certain critical level. -
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Helium embrittlement
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Observables and “non-observables”

*Transmutation calculations have made it possible to evaluate observable
quantities (concentrations of helium and transmutation-generated impurities as
functions of dose/irradiation time). Using the data derived from transmutation
calculations, it is possible to find a condition for the onset of structural instability
due to helium-assisted grain boundary fracture.

«Calculations of dpa values have not yet produced usable information of similar
quality going beyond the dpa values themselves.

It remains unclear how to relate the calculated dpa values to the (observed)
changes of properties of materials due to irradiation.

*dpa values depend sensitively on the energy-dependent elastic and inelastic
neutron scattering cross-sections.
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Direct observation of accumulation of radiation defects

In-situ electron microscope observation of accumulation of radiation defects
under self-ion irradiation. Left: Fe ion irradiation of Fe-8%Cr alloys at 300°C,
irradiation dose between 5 and 8 dpa, viewed at x80 real time. Right: self-
ion irradiation of ultra-high purity iron at 400°C, viewed at x30 real time.
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Effects of irradiation on steels

O. K. Chopra, NUREG/CR-7027
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LEFT: fracture toughness of austenitic Fe-Cr-Ni steels exposed to neutron irradiation
at temperatures between 25°C and 427°C. Severe embrittlement (loss of fracture
toughness) is observed for all the irradiation temperatures for doses > 10 dpa.

RIGHT: fracture toughness of ferritic-martensitic steel EUROFER97 irradiated to 15
s | dpa by fast neutrons at various temperatures. No irradiation embrittlement is observed
o if irradiation is performed at temperatures higher than ~370°C.
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Visualization of defect structures
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A self-interstitial atom defect in iron.
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Visualization of defect structures
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A self-interstitial atom defect in iron.

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority
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Visualization of defect structures

A self-interstitial atom defect in iron.

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority
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Self-interstitial atom defects in bcc metals
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Density functional theory models for radiation defects

Vacancies: formation and migration energies (eV)
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Ta 5.83° (.38 7.00° 6. 772 7.10°
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3810 3.80 (hexagonal) | 3.85 (caged) 1.07° 1.80 (conc. exch.) 185
Kingdom &
~ Atomic S.L. Dudarev, Ann. Rev. Mat. Res. (2013) in preparation ~ CC F E
'? Energy s




Vienna, |IAEA, 1-5 October 2012

The structure and magnetism of defects in bcc metals
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Huang X-ray diffuse scattering by radiation-induced defects
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Huang X-ray diffuse scattering by radiation-induced defects

32 beo metals

For bce metals only resulis from measurernents of
the Huang scattering are available at present [23].
Results of measurements of the diffuse intensity from
e~ -rradiated Mo are shown in fig, @ for all directions
necessary for the determination of the symmetry of
the long ranpe displacement field of the defect (see
tig. 3}. There is intensity that can be described by a
g~ % law within the experimental error, both in the
[110] direction at the {220) reflection and in the
[011] direction at the (200) reflection. This clearly
shows an arthorhombic displacement field. From the
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different interstitial confipurations proposed for hee
metals therefore only the {110ksplit interstitial con-
figuration is compatible with the expenimental data.
The quantitative results are surmmarized in: table 2. As
there are no reliable results on the relaxation of the
vacancy in Mo, a value of —0.1 was assumed. {The
influenece of this parameter is discussed in detail else-
where [18].) Compared to fec metals the volume
relaxation of the interstitial is quite small; this may be
explained by the more open bcc lattice that has more
room for an interstitial than the close packed fec
lattice. The value of pp seems to be in pood agreement
with recent results of damage-rate measurements [24].
The anisatropy of the defect is characterized by
the directly measured parameters 72 and 7% that
ate normalized by 7''}; in addition the parameters
A; — Ay and 3(h +A;) — Ay of the strain tensor A’
are included. The more probable signs are chosen by a
comparison to the results of a model ealeulation for
the {110}-split {25]. The anisotropy iz quite large; the
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Huang X-ray diffuse scattering by radiation-induced defects

1 | I | ! | _I I_ | ! |
Direct experimental observations proved
inconclusive and contradictory. Density
functional calculations resolved the
problem of defect structures at a very
small fraction of the cost associated
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Te—g----

with experimental tests. )

- T

©
]
|

-y

0

0.1

g (Angstrom'1)

L

—
S

diffuse intensity (r

—
ct.ﬂ

10

I ‘ TTTT

-01 0 01
g (Angstrom'1)

=
Lo

X-ray Huang diffuse scattering by
a 111 self-interstitial atom defect

‘E

X-ray Huang diffuse scattering by
i ¢« @ 110 self-interstitial atom defect

Plots of diffuse scattering intensity calculated for scattering vectors (in
reciprocal space) lying on straight lines parallel to (022).




Vienna, |IAEA, 1-5 October 2012

Electron microscope imaging of
radiation defects
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Electron microscope imaging of radiation defects

Hitachi H-9000

« Source: e.g. 150keV W* ions

* lon beam direction:

~30° from the electron beam (300kV);
~15° from the thin foil normal.

« Double tilt specimen holder: T<900°C
 TEM data recorded by Gatan 622 video
rate camera, at ~15 frames per second.
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Theory: the Howie-Basinski Equations

Imperfect crystal Bloch wave theorem

= Y e RO) () = 3 [pg(r)etn et

I R A

h?
—5— V' 9(r) + V(0)e(r) = Ey(r)
-
0¢ 0¢ 0¢
(k+ g+ (k+ g)ya—; (k+g+sg).—>
= —milopg — Y (1 — 8y )mill, ,e*™ 8 -8V RI)2milsy ~sa)z gy
g.f

LILIL %

L = ngdom

rZ AN . 5
; 4 Atomic Z. Zhou, S.L. Dudarev, M.L. Jenkins etal., | CCF E
3 '} Energy &
O MIN e A A i

Authority J. Nucl. Mater. 367-370 (2007) 305-310




Vienna, |IAEA, 1-5 October 2012

Theory: the Howie-Basinski Equations

Removes the refractive-index effect.

Transfer excitation error to amplitude.

\
Transfer the depedence of local displacement filed
v to Fourier components of potential to the amplitude.
0d 0P od
k+g+sg)omrt+(k+g+sg)y-—+ (k+g+sg).—~
( g + Sg)s oz ( 8+ Sg)y By ( g + Sg) 92
= =D (1= 0yg)milUs_y®y + 2mi(k + g + 8g) 254 rDy
g!
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Atomic o~
4 5:“?:'.?& CCFE is the fusion resear Z.Zhou et al. (2007) Atomic Energy Authority 5 b




Vienna, |IAEA, 1-5 October 2012

A Model for Solving the Howie-Basinski Equations Numerically

f f J J f Incident Zone X
beam Axis (2) Zone
Slice the Axis (2)
sample
Win
A small cell
in the sample (Numerlcally s _ _y 1 U,y By + 2misy ndy
Treated as \ solved ¢ e
perfect crystal where 5 — (k + g+ sg),

Get the amplitude for

Wout

Equivalent to

A A4

each cell in the next
Slice by interpolation
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Interpolation procedure for a slice

Pg(z,z + Az) = Pg(z + Az)
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Distortion Fields of Defects

How can we ‘see’ diffraction amplitude contrast from dislocations?

Physically: Mathematically:
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Effects of the Column Approximation

®b=1/3[111 _— g=[220]
Zone axis

Simulated Weak-Beam images
loop size: 10 nm

Image size: 20 nm x 20 nm

f — Sample foil normal
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Imaging Conditions:

Sample: Flat on loop in Silicon
Foil thickness: 150 nm
Accelerating voltage: 100 kV

g — Diffraction vector (9. 59)
L4 b — Burgers vector
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Simulated WB images of small dislocation loops

__,-":-".-
o S
2 r;'g.-""‘-
elofe 00D t;.-::r-;; W
'I-"'.-'I
vkt !
AN
: e
A )
N,
: o
e hak
B o,
N P
o |.F = I-'_'ii i~
. e |, I ks
E = u
=, lad
This figure is from D B Williams
and C Barry Carter, Transmission
Electron Microscopy, 1996

Simulated Weak-Beam images
from hexagonal loops
Sample: Silicon
Loop size: 5 nm
Image size: 10 nm x 10 nm
Imaging Conditions:
Foil thickness: 30 nm
Zone Axis: [11 1]

Accelerating voltage: 100 kV
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Comparison between the simulated and experimental images

Simulated and experimental WB images of inclined interstitial Frank loops
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Burgers vector, b=1/3[-11-1] Experimental images,

. The beam direction is close to [111] Courtesy of M L Jenkins
sg~0 2 nm-1 for (a) g=[-220] and (b) g=[2-20]. J. Mlcroscopy 98:155,1973
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The effect of changing the diffraction conditions

(9,ng) g=002
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The influence of the foil thickness
(inclined loops, 1 — 5 nm diameter)

(9,4.259g) g=002

d=5 nm

d=3 nm

3.00nm 3.0nm 3.00nm

d=2 nm

d=1 nm
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Z. Zhou et al. (2007)
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Determination of loop size
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Determination of loop size

(9,4.75g) g=002
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For ~1nm loops, size fluctuations are comparable to the loop size itself.
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Electron microscope observations of
radiation defects
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A High Voltage Electron Microscope
at Osaka University, Japan
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Real-time dynamics of radiation defects.

4

L AR T ;
T

. In-situ electron microscope observation of dynamic behaviour of radiation
| defects formed in iron at 300°C. (K. Arakawa, Osaka University, Japan)

Energy
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Real-time dynamics of radiation defects.

Dislocation loops migrating in high purity iron at 675K. The loops are
u Pproduced by in-situ self-ion irradiation (Z. Yao, M.L. Jenkins, and M.A. Kirk,
K University of Oxford and Argonne National Laboratory).
UFE
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Z. Yao and M.L. Jenkins (2008)

diated samples.
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Trajectories of loops migrat

Trajectories of dislocation loops migrating in ion-irradiated iron. The trajectories
show evidence of that mobile loops are trapped by some invisible objects.
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Langevin dynamics simulations of interacting nano-loops

30 T | T T T 40 T I
L experiment _ - simulation
20 - | 20—
E 10— _| %
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g | | 8 L
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2 . 8 40
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20 — 8oL _
1 | I | I | | L | L | ! | L | 1
0 5 10 15 20 0 10 20 30 40 50
Time (s) Time (s)

Left: experimentally observed trajectories of loops in ion-irradiated iron (Yao and
Jenkins). Right: trajectories of motion simulated using Langevin dynamics, taking into
account interaction with the “invisible” vacancy clusters. Loops sizes match those

, observed experimentally.
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The dose rate effects
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The low dose rate limit. Defects diffuse independently and are
eventually absorbed by the pre-existing line dislocations.

Unikecw
Kingdom
Atomic
PR Energy
Authority

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

=CCFE



Vienna, |IAEA, 1-5 October 2012

S

The dose rate effects
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The high dose rate limit. Defects interact, form clusters and rafts,

and eventually form microstructure different from the microstructure

Y formed in the low dose rate limit.
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The dose rate effects.

Dose rates characterizing various types of irradiation:

. Electron irradiation in an ultra-high-voltage electron microscope
(3 MeV electron irradiation, Osaka University, Japan)
10-3 dpa/sec ( = 80 dpa/24 hours).

. lon irradiation in an in-situ electron microscope facility (Argonne
National Laboratory, USA)
8:10-4 dpa/sec ( = 70 dpa/24 hours)

. lon irradiation facilities (e.g. JANNUS at CEA Saclay, France)
10 to 100 dpa/24 hours

. Neutron irradiation typically involves much lower dose rates:
0.1-106 to 1-10-6 dpa/sec ( = 0.008 to 0.08 dpa/24 hours)
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Dose rate effects ( = effects of interaction between radiation
defects) are observed even for neutron irradiation

Effect of dpa rate on swelling of Fe-153Cr-16Ni
alloys at ~423°C in FFTF-MOTA

Okita, Sekimura and Garner, 2002

Fe-15Cr-16Ni Fe-15Cr-16Ni-0.25Ti

a0 — - —_— . ; : -
naidpa [/ 1% idpa, \
a5 oA , i 0/l ; /B

;054 /E J,’ i ; Dose rate: 10 dpa/sec
= O 08 dpa/24 hours)

Swelling (%)
@

HH-\'I.I_L L=
=
~1
=)
-\-\-\-\"-.
e

[
07 0,31 ”"r f
{Lﬂq ) _."I / X ].{I
51 L
i’r“’;iff’ dpa/sec /5/': ’/ seven different dose rates
o
ﬂ | - i I E—— _I
0 10 20 30 40 50 B0 © 10 20 30 40 S0 &0 70

Low dose rate — high Cumulative Dose (dpa)
radiation swelling

Facific Moribhwest Mational Labsoratory

Batlelle F.A. Garner, presentation given in June 2006 LS. Dapament of Energy > P F E
s -

PR Energy
Authority

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority



Vienna, IAEA, 1-5 October 2012

Dislocation loop structures formed in Fe under ion irradiation.

Z. Yao and M.L. Jenkins (2008)

Ordered dislocation loop structures formed in ultra-high pure Fe irradiated
{ with 150 keV Fe+ ions at 300K up to the dose of 10!° ion/m (~6 dpa).
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Langevin dynamics simulations of interacting nano-loops

Simulated dynamics of interacting nano-dislocation loops. Loop mobility
U matches that of in-situ observations. The simulation cell is ~500nm across.
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The dose rate effects in ion implantation hardening

Hardness
(GPa)

Fe 5%Cr
Hardness vs Displacement Into Surface

Low Dose Rate 3 x 10 dpals

Total dose is 0.6 dpa
in both cases

High Dose Rate 6 x 10 dpa/s

Un-irradiated

500 1000 1500 2000 .
Displacement Into Surface (nm) -
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Temperature dependence of irradiation-induced microstructure

X. Yi et al. (2012)
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Temperature dependence of irradiation-induced microstructure

Frequency (%)

Size distribution of defects in W: 0.01dpa, RT-800°C

100%
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X. Yi et al. (2012) .
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A 100 keV cascade in tungsten

Self-interstitial
atoms
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Temperature dependence of irradiation-induced microstructure

» Defect yield
The ratio between the number of visible loops per unit area and the number
of ion impact events in the same area.

» Cascade efficiency

The ratio between the number of vacancies retained per visible loop and the
number of vacancies produced by a single ion impact according to SRIM
calculations. In this experiment, the SRIM estimate is 1172 vacancies/ion.

*Note — see next slide — that the number of visible defects produced in a
cascade, according to observations, is less than 3% of the NRT dpa value.
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Temperature dependence of irradiation-induced microstructure
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The relevant variables and observables

* The relevant variables are:
1. Dose
2. Dose rate
3. Temperature
4. Initial microstructure

«  The relevant observables are:

1. Concentrations of transmutation products (these are relatively easy
to derive from nuclear data)

2. Defect types (e.g. Burgers vectors of defects) and the topology of
defect structures

3. Real space distribution of defects produced by irradiation

4. The visible defects

5.

This information is required as input for models describing microstructural
evolution. Microstructural evolution models can then be used to compute
. and predict embrittlement, swelling, creep, loss of thermal conductivity etc.
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