IAEA/TM on Primary Radiation Damage: from nuclear reaction to point defect 1-4 Oct. 2012, VIC, Room A2712, IAEA, Vienna, Austria

A Calculation Method of PKA, KERMA and DPA from Evaluated Nuclear Data with an Effective Singleparticle Emission Approximation (ESPEA) & Introduction of Event Generator Mode in PHITS Code

Tokio FUKAHORI and Yosuke IWAMOTO

Japan Atomic Energy Agency fukahori.tokio@jaea.go.jp

Microscopic Effects on Material

Japan Atomic Energy Agency

- Purpose

to supply fundamental data for the estimation of the radiation damage in solid materials

to supply the PKA data to the FENDL-2 project as a trial task of ESPERANT, processing from the JENDL Fusion File below 20 MeV

- Incident Particle: neutron (< 50 MeV)

Elements Included in the File: 29 elements, 78 isotopes
H, Li, Be, B, C, N, O, Na, Mg, Al, Si, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ge, Zr, Nb, Mo, W, Pb, Bi

ESPERANT Code

Processed from Neutron Data in the JENDL High Energy File up to 50 MeV by Using Effective Single-Particle Emission Approximation (ESPEA)

Japan Atomic Energy Agency

JENDL PKA/KERMA File (JENDL/PK)

Target Quantities and Proposal for MF Numbers

MF	Quantities (PKA File)	Quantities (KERMA File)
3	cross sections	KERMA factors
4	angular distributions for discrete levels	_
6	double-differential light particles and PKA cross sections	_
63	-	DPA cross sections
66	damage energy spectra	_

Introduction

 $DDX_{1C}(E_{pL}, E_{1C}, \mu_{1C})$:

 $DDX_{2C}(E_{pL}, E_{2C}, \mu_{2C})$:

p, t, 1, 2 : incident particle, target nucleus, outgoing particle and residual nucleus

E, *V*, *m*, **\theta**: energy, velocity, mass and emitted angle ($\mu = \cos \theta$)

DDX of emitted particle in CMS (given)

PKA spectrum in CMS

IAEA/TM on Primary Radiation Damage, 1-4 Oct. 2012, IAEA, Vienna

Target Quantities

PKA Spectrum for particle $DDX_2^C(E_p^L, E_2^C, \mu_2^C) = \frac{m_2}{m_1} DDX_1^C(E_p^L, E_1^C, \mu_1^C)$ $E_2^C = \frac{m_1}{m_2} E_1^C \qquad \mu_2^C = -\mu_1^C$

PKA Spectrum for γ-ray

$$DDX_2^C(E_p^L, E_2^C, \mu_2^C) = \frac{m_2 c^2}{E_{\gamma}} DDX_{\gamma}(E_p^L, E_{\gamma}, \mu_{\gamma})$$
$$E_2^C = \frac{E_{\gamma}^2}{2m_2 c^2} \qquad \mu_2^C = -\mu_{\gamma}$$

Introduction

Target Quantities

Damage Energy Spectra: σ_D $\sigma_D(E_p^L, E_2^L, \mu_2^L) = E_D(E_2^L) \cdot DDX_2^L(E_p^L, E_2^L, \mu_2^L)$

 $E_{\rm D}$ by Lindhard-Robinson in energy unit of eV

$$\boldsymbol{E}_{\boldsymbol{D}}(\boldsymbol{E}_{2}^{\boldsymbol{L}}) = \frac{\boldsymbol{E}_{2}^{\boldsymbol{L}}}{1 + \boldsymbol{k} \cdot \boldsymbol{g}(\boldsymbol{\varepsilon})}$$

$$\boldsymbol{k} = 0.13372 \cdot \boldsymbol{Z}^{2/3} / \boldsymbol{A}^{1/2}$$
$$\boldsymbol{g}(\boldsymbol{\varepsilon}) = 3.48008\boldsymbol{\varepsilon}^{1/6} + 0.40244\boldsymbol{\varepsilon}^{3/4} + \boldsymbol{\varepsilon}$$
$$\boldsymbol{\varepsilon} = \boldsymbol{E}_2^{L} / 86.931\boldsymbol{Z}^{7/3}$$

DPA Cross Section: σ_{DPA}

 σ

 ε_{d} : threshold energy for displacement

KERMA Factor for *x*-Reaction: $KERMAx(E_p^L)$

 $KERMA_{x}(E_{p}^{L}) = \iint (E_{1x}^{L} + E_{2x}^{L})DDX_{2x}^{L}(E_{p}^{L}, E_{2x}^{L}, \mu_{2x}^{L})dE_{2x}^{L}d\mu_{2x}^{L}$

Normalization Factor for ESPEA

$$R = \frac{\sigma_R}{\sum_x \int_{\varepsilon_x^{(\min)}} d\varepsilon_x \int d\mu_x \sigma_x(E_p^L, \varepsilon_x, \mu_x))}$$

total reaction cross section σ_{R} : σ_{x} : each particle emission channel $\boldsymbol{\varepsilon}_{x}^{(min)}$: lower limit of energy for spectrum considered.

$$\int_{\varepsilon_x^{(\min)}} \varepsilon_x f_x(\varepsilon_x) d\varepsilon_x = \left[\frac{m_t}{m_p + m_t} E_p^L + Q_x\right] / \left[1 + \left(\frac{m_{1x}}{m_{2x}}\right)^2\right]$$
$$\int_0^\infty f_x(\varepsilon_x) d\varepsilon_x = 1$$

Q_x: Q-value of reaction x **f**_:

normalized **DDX**1C of reaction x

Effective Single-Particle Emission Approximation

Particle Multiplicity

Japan Atomic Energy Agency

Compilation of threshold energy for displacement: ε_d

Atomic Number	Symbol	$rac{oldsymbol{arepsilon}_{\mathrm{d}}}{[\mathrm{eV}]}$	Atomic Number	Symbol	$egin{array}{c} eta_{d} \ [eV] \end{array}$
4	Be	31	27	Со	40
6	С	31	28	Ni	40
12	Mg	25	29	Cu	40
13	Al	27	40	Zr	40
14	Si	25	41	Nb	40
20	Ca	40	42	Мо	60
22	Ti	40	47	Ag	60
23	V	40	74	W	90
24	Cr	40	79	Au	30
25	Mn	40	82	Pb	25
26	Fe	40		others	25

Japan Atomic Energy Agency

KERMA Factor of ¹²C

Japan Atomic Energy Agency 🕻

Particle and PKA Spectra of ²⁷Al at 10 and 20 MeV

IAEA/TM on Primary Radiation Damage, 1-4 Oct. 2012, IAEA, Vienna

Japan Atomic Energy Agency

Particle and PKA Spectra of ⁵⁶Fe at 10 and 20 MeV

IAEA/TM on Primary Radiation Damage, 1-4 Oct. 2012, IAEA, Vienna

Japan Atomic Energy Agency (

PKA Spectra of ²⁷Al and ⁵⁶Fe at Other Incident Energies

DPA Cross Sections of ²⁷Al and ⁵⁶Fe

Japan Atomic Energy Agency

KERMA Factors of ²⁷Al and ⁵⁶Fe

Japan Atomic Energy Agency

Displacement Damage Calculation in PHITS

Nuclear Reaction Model

Simulate many body phenomena by generating an event in the calculation

Any observables

- Coincident data, pulse height...
- Energy is conserved in an "Event"

Nuclear Data Library

Solve the Boltzmann Equation using the test particle method for one-body phase space distribution

- Only one-body observables
- No correlated quantities
- Energy is conserved in average

Event Generator

Not Event Generator

We sometimes would like to know beyond one-body observables...

- Pulse-height distribution of detector irradiated by low-energy neutrons
- Dose equivalent based on Q(L) relationship (Siebert and Schuhmacher 1995)
- Deposition energy distribution in semi-conductor devices

NSED of the second

Y. Iwamoto et al., Nucl. Instr. and Meth. B 274, 57-64 (2012).

Event Generator Mode in PHITS

Japan Atomic Energy Agency

Using this mode, we can determine ...

- all ejectiles (neutrons, charged particles, recoil nucleus and photons) with keeping energy and momentum conservation
- deposit energy without using local approximation (Kerma factor)

Y. Iwamoto, et al., Proc. of ND2007.

Example of Event Generator Mode

Japan Atomic Energy Agency

Single Event Upset (SEU) of Semi-conductor Devices

- SEU occurs when deposition energy exceeds a certain threshold
- SEU probability = 0 from non-event generator simulation

 \rightarrow Critical mistake!

• SEU probability = 10⁻⁶/source from event generator simulation

Japan Atomic Energy Agency (

DPA is used to compare radiation damage by different radiation sources.

Not much is known for high energy protons, neutrons, and heavy-ions

Radiation Damage Calculation in PHITS

Effects of Nucl. Reaction and Elastic Scattering JAEA

10¹³

Implementation of DPA model in PHITS

(2) Energy transfer with Coulomb scattering in PHITS

(3) Cascade Damage Approximation in PHITS

l _{dam}at

0.8

 $2 \cdot T_d$

Displacement Cross Section (dcs)

$$\sigma_{dcs} = \int_{t_d}^{t_{max}} \frac{d\sigma_{Coul}(t)}{dt} \eta$$

Defect production efficiency

 No. of displaced atoms using phenomenological approach: N_{NRT} (Norgett, Robinson, Torrens: 1975)
 0.8: displacement efficiency derived from BCA simulation of Robinson, Torrens 1972

 T_d : threshold displacement energy. Bonds should be broken to displace an atom.

e.g. set to 30 eV in Cu but varies 15 – 90 eV in other atom

\rightarrow Large uncertainties

$$T_{dam} = \xi(\varepsilon)T(\varepsilon) = \frac{1}{1 + k_{cas} \cdot g(\varepsilon)}T(\varepsilon)$$

Damage energy: transferred to lattice atoms reduced by the losses for electronic stopping atoms in the displacement cascade

$$g(\varepsilon) = \varepsilon + 0.40244 \cdot \varepsilon^{3/4} + 3.4008 \cdot \varepsilon^{1/6}$$

$$k_{\text{cascade}} = 0.1337 Z_{\text{target}}^{\frac{1}{6}} (Z_{\text{target}} / A_{\text{target}})^{1/2}$$

Japan Atomic Energy Agency

IAEA/TM on Primary Radiation Damage, 1-4 Oct. 2012, IAEA, Vienna

PHITS calculates dcs and fluence of all charged particles event by event.

Japan Atomic Energy Agency

PHITS Simulation

Calculation Condition

Beam area: 1cm² Target: 5 cm radius x depth Cu

Japan Atomic Energy Agency

Codes: PHITS(Bertini/GEM), FLUKA(Peanut/ABLA), MARS

case	Incident particle	Energy(MeV/nucleon)	target	code
A)	proton	14, 50, 200, 800	Cu	PHITS,FLUKA
B)	neutron	14, 50, 200, 800	Cu	PHITS,FLUKA
C)	⁷⁶ Ge	130	W	PHITS, FLUKA, MARS

Japan Atomic Energy Agency

IAEA/TM on Primary Radiation Damage, 1-4 Oct. 2012, IAEA, Vienna

10⁴

C) Heavy Ion into W

Coulomb scattering cross section of ⁷⁶Ge is much higher than that of light ion.
 Characteristic of developed hadronic cascades is not appeared.
 Agreement is good.

Japan Atomic Energy Agency 🤇

Japan Atomic Energy Agency

Japan Atomic Energy Agency

Concept of DPA Model for Neutrons

Japan Atomic Energy Agency

Summary of Effect of Nuclear Reactions

	Ratio of Partial DPA to Total (%)						
	proton	⁴⁸ Ca	Fe	Со	Ni	Cu	others
14 MeV proton	89	-	-	-	2	6	3
200 MeV proton	17	-	8	13	27	28	7
14MeV/u ⁴⁸ Ca	-	99.8	-	-	-	-	0.2
200MeV/u ⁴⁸ Ca	-	88	-	-	-	2	10
Reactor neutron	-	-	-	-	-	99	1
14 MeV neutron	-	-	-	1	31	68	-
200 MeV neutron	1	-	14	19	29	25	12

5 cm Radius and Depth Cu Target

Proton: DPA value created by projectile decreased with energy. DPA created by secondary (Cu, Ni) increase with energy.

Neutrons: reactor: n-Cu elastic scattering produce Cu and contribute to DPA. Secondary particles produced by nuclear reactions increase with neutron energy.

Summary

✓ The displacement calculation method from evaluated nuclear data file has been developed by using effective single-particle emission approximation (ESPEA).

✓The ESPEA can be used effectively below about 50 MeV, because of since multiplicity of emitted particles.

✓The displacement calculation method in PHITS has been developed.

✓In the high energy region (> 20 MeV) for proton and neutron beams, DPA created by secondary particles increase due to nuclear reactions.

✓ For heavy-ion beams, DPA created by the primaries are dominant to total DPA due to the large Coulomb scattering cross sections.

✓PHITS results agreement with FLUKA ones within a factor of 1.7. In the high-energy region above 10 MeV/nucleon, comparisons among codes and measurements of displacement damage cross section are necessary.

PHITS

Particle and Heavy Ion Transport code System

K. Niita¹, N. Matsuda², S. Hashimoto², Y. Iwamoto², H. Iwase³, T. Sato², S. Noda², H. Nakashima², T. Fukahori², S. Chiba^{4,2}, L. Sihver⁵

- 1. Research Organization for Information Science and Technology, RIST, Japan
 - 2. Japan Atomic Energy Agency, JAEA, Japan
 - 3. High Energy Accelerator Research Organization, KEK, Japan
 - 4. Tokyo Institute of Technology, TITech, Japan
 - 5. Chalmers University of Technology, Sweden

Last update 2012/6/1

What is PHITS?

Example of PHITS Calculation

Simulate the motion of each particle using the random walk method → Average behavior such as particle flux and mean deposition energy

Physical Processes included in PHITS

Map of Models used in PHITS

	Neutron	Other hadrons (proton, pion etc.)	Nucleus	Muon	Electron /Positron	Photon
	200 GeV		100 GeV/n		100 GeV	100 GeV
← Energy → High	Intra-Nuclear (JAN Evaporation (C 20 MeV Nuclear	Cascade Model 1, Bertini) + & Fission Model GEM)	Quantum Molecular Dynamics (JQMD) + Evaporation (GEM) 10 MeV/n		Atomic Data Library (JENDL / EPDL)	Atomic Data Library (JENDL) 20 MeV Photo-
Ň	Data Library – (JENDL-4.0)	Ionization 1 keV SPAR or ATIMA			1 keV	1 keV
10 ⁻⁵ eV → Event generator mode: Specify secondary charged particles produced from low-energy neutron interaction						

Switching energies can be changed in input file of PHITS

JAM (Jet AA Microscopic Transport) Model

- JAM is a Hadronic Cascade Model, which explicitly treats all established hadronic states including resonances with explicit spin and isospin as well as their antiparticles.
- We have parameterized all Hadron-Hadron Cross Sections, based on Resonance Model and String Model by fitting the available experimental data.

JQMD (JAERI Quantum Molecular Dynamics) Model

- JQMD can simulate the time evolution of nuclear reactions, considering the correlations between *every combination of nucleons* exist in the frame.
- Suit for simulating nucleus-nucleus interaction
- Time consumptive in comparison to cascade models

Nuclear Data Library

- Nuclear data libraries are necessary for simulating low-energy neutrons
 Cross sections of low-energy neutron significantly depend on shell structure
- PHITS Readable Format of nuclear data: *ACE format* (same as MCNP)
 Libraries: JENDL-4, ENDF etc. (for low-energy neutrons) LA150, JENDL-HE file (for high-energy neutrons and protons)

