TM on "Primary radiation Damage: from nuclear reactions to point defects "

1-4 Oct 2012 – IAEA HQ Vienna

Annex by Rafael Vila and Fernando Mota

IAEA meeting -Oct 2012.

1. Specific aspects of insulators

- What do we normally need in insulators ?
 → Fusion Diagnostics and H&CD
- Very specific properties: Electrical, optical, HF dielectric properties, coatings....
- Normally these properties degrade long before mechanical integrity is an issue.

Two Examples

Electrical conductivity:
 → prompt effect (RIC)
 → degradation (RIED)

Dpa vs Grays in insulators

RIED (Radiation Induced Electrical Degradation) does not scale at all with dpa, but depends on ionization level of incident radiation:

From electrons (higher ionization) \rightarrow to neutrons (lower)

e-h creation: "A primary defect creation" → it's a matter of IONIZING level

Figure 3 Representative data for RIC as a function of dose rate for different oxide materials. Irradiation with electrons, protons, and neutrons. Reproduced from Shikama, T.; Pells, G. P. J. Nucl. Mater. **1994**, 212–215, 80.

Materials List - Nuclear Data

- * Main interest at this precise moment:
 - $\operatorname{Al}_2 \operatorname{O}_3 \qquad \operatorname{SiO}_2$
 - SiC

- BeO
- C (diamond windows) ...
- Secondary materials:
 - AIN, SiN CaO, Er_2O_3
 - Si, Ge, ZnSe (IR windows)
 - MgAl₂O₄

R. Vila and F. Mota

Swift heavy ions (Se>1-10 keV/nm) can introduce new physical phenomena in metals compared to conventional particle irradiations → Avoid for experiments

Material	Thermal conductivity (W/m-K)	Threshold dE/dx) _e for ion track damage
MgAl ₂ O ₄	20	8 keV/nm
β -Si ₃ N ₄	29	15 keV/nm
Al_2O_3	32	~20 keV/nm
AIN	177	>34 keV/nm
SiC	350	>34 keV/nm
U ₃ Si		19 keV/nm [Hou 2003]
UO ₂		22-29 keV/nm [Matzke 2000]

Compilation By S.Zinkle