Principal cross sections

Energy (MeV)

Cross section (barns)

- total
- absorption
- elastic
- gamma production
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
resonance total cross section

Energy (MeV)

Cross section (barns)

- total
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
resonance total cross section
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
resonance total cross section

![Graph showing energy vs. cross section in a log-log scale. The x-axis represents energy in MeV ranging from 10^{-3} to 10^{-2}, and the y-axis represents cross section in barns ranging from 10^{0} to 10^{3}. The graph has a line labeled 'total' indicating the total cross section behavior across different energy levels.](image-url)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
resonance total cross section

![Graph showing the total cross section for 56-BA-135 as a function of energy. The x-axis represents energy (MeV) ranging from 10^{-1} to 10^0, and the y-axis represents cross section (barns) ranging from 10^{-1} to 10^1. The line on the graph indicates an increase in cross section with increasing energy.]
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
resonance total cross section

Energy (MeV)

Cross section (barns)

- total

Energy (MeV)

Cross section (barns)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
resonance absorption cross sections

Cross section (barns)

Energy (MeV)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
resonance absorption cross sections

capture

Energy (MeV)

Cross section (barns)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
resonance absorption cross sections

Cross section (barns)

Energy (MeV)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
resonance absorption cross sections

- Cross section (barns) vs. Energy (MeV)
 - Capture cross section curve
 - Axes: 10^{-1} to 10^{0} for Energy (MeV) and 10^{-1} to 10^{0} for Cross section (barns)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
resonance absorption cross sections

.png
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
UR total cross section

Cross section (barns)

Energy (MeV)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+ UR elastic cross section

Cross section (barns)

Energy (MeV)

Inf. Dil.
100 b
1 b
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
UR capture cross section

Energy (MeV) vs. Cross section (barns)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+

Heating

Heating (MeV/reaction) vs. Energy (MeV)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60

Damage

Energy (MeV)

Damage (MeV-barns)
Non-threshold reactions

Energy (MeV) vs. Cross section (barns)

- (n,gma)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Principal cross sections

Cross section (barns)

Energy (MeV)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Heating

![Graph showing the relationship between energy (MeV) and heating (MeV/reaction).](image)

- **Y-axis (Heating)**: MeV/reaction
- **X-axis (Energy)**: MeV

The graph shows an increasing trend in heating as energy increases, indicating a positive correlation between energy and heating.
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Damage

![Graph showing damage as a function of energy.]
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Non-threshold reactions

Cross section (barns)

Energy (MeV)

10^{-1}

10^{-2}

10^{-3}

(n,gma)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Inelastic levels

Energy (MeV)

Cross section (barns)

(n,n^6) (n,n^7)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Threshold reactions

![Graph showing neutron reactions](image-url)
Threshold reactions

Energy (MeV)

Cross section (barns)

- (n,he3)
- (n,a)

Energy (MeV)

Cross section (barns)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Threshold reactions

Energy (MeV)

Cross section (barns)

(n,xp)
(n,xd)
(n,xt)
(n,xhe3)
(n,xa)
angular distribution for elastic
angular distribution for elastic
angular distribution for (n,2n)
angular distribution for \((n,3n) \)
angular distribution for \((n,n^*)a\)
angular distribution for (n,n*)p
angular distribution for \((n,n^*)d \)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
angular distribution for (n,n*1)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
angular distribution for (n,n*2)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
angular distribution for (n,n*3)
angular distribution for (n,n*4)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
angular distribution for (n,n*5)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
angular distribution for (n,n*6)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
angular distribution for \((n,n^*7)\)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
angular distribution for (n,n*c)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Neutron emission for (n,x)
Neutron emission for (n,2n)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Neutron emission for (n,3n)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Neutron emission for (n,n*)a
Neutron emission for \((n,n^*)p\)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Neutron emission for (n,n*)d
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Neutron emission for (n,n*c)
Photon emission for (n,x)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+

Particle heating contributions

- protons
- deuterons
- tritons
- he-3
- alphas

MeV/collision vs. Energy (MeV)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Recoil Heating

Energy (MeV) vs Heating (MeV/reaction)

- Heating increases with energy.
- The graph shows a clear trend of heating rising as energy increases.
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
Particle production cross sections

![Cross section vs Energy graph](image-url)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+ protons from (n,x)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
tritons from (n,x)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
he3s from (n,x)
56-BA-135 FOR FENDL-3.2 FROM FENDL-3.2 BY NJOY2016.60+
alphas from (n,x)