57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
resonance total cross section

![Graph showing the resonance total cross section against energy in MeV. The x-axis represents energy in MeV ranging from 10^{-6} to 10^{-5}, while the y-axis represents cross section in barns ranging from 10^1 to 10^3. The peak of the curve indicates a sharp increase in cross section at a specific energy.]
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
resonance total cross section

![Graph showing cross section vs. energy in barns for a specific energy range. The graph has a logarithmic scale on both axes, with 'total' line indicating cross section peaks at certain energy levels.](image-url)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
resonance total cross section

![Cross section vs Energy plot](image-url)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
resonance total cross section

Cross section (barns)

Energy (MeV)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
resonance absorption cross sections

- Energy (MeV)
- Cross section (barns)

Capture
Cross section (barns)

Energy (MeV)

57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
resonance absorption cross sections
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
resonance absorption cross sections

capture
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
UR total cross section

![Graph showing total cross section vs. energy (MeV)](image)

- **Inf. Dil.**: 100 b
- **100 b**: 10 b
- **1 b**: 1 b

Energy (MeV)

Cross section (barns)
UR elastic cross section

Cross section (barns) vs. Energy (MeV)

- Inf. Dil.
- 100 b
- 1 b
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
UR capture cross section
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+

Heating

Heating (MeV/reaction) vs. Energy (MeV)
Energy (MeV) vs. Cross section (barns) for non-threshold reactions.
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+

Heating

Heating (MeV/reaction) vs. Energy (MeV)

- Heating

Energy range: 0 to 200 MeV
Heating range: 0 to 40 MeV/reaction
Damage

Energy (MeV)

Damage (MeV-barns)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Non-threshold reactions

Energy (MeV)

Cross section (barns)

- (n,γma)
- (n,p)
- (n,a)
- (n,xp)
- (n,xa)
Inelastic levels

Cross section (barns) vs. Energy (MeV) for different inelastic levels:
- (n,n*16)
- (n,n*17)
- (n,n*18)
- (n,n*19)
- (n,n*20)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Inelastic levels

Cross section (barns)

Energy (MeV)

(n,n*21)
(n,n*22)
(n,n*23)
(n,n*24)
(n,n*25)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Threshold reactions

![Graph showing cross section vs energy for various reactions](graph.png)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Threshold reactions

Cross section (barns) vs. Energy (MeV)

- (n,2np)
- (n,3np)
- (n,2np)
- (n,n^a)
- (n,n^c)

Note: The diagram shows the cross sections for different reactions as functions of energy.
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Threshold reactions

Cross section (barns)

Energy (MeV)

- (n,nda)
- (n,2npa)
- (n,5np)
- (n,6np)
- (n,4na)

*10^{-3}
Threshold reactions

- (n,5na)
- (n,6na)
- (n,4nd)
- (n,5nd)
- (n,3nt)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Threshold reactions

Energy (MeV)

Cross section (barns)

- (n,nphe3)
- (n,ndhe3)
- (n,nthe3)
- (n,nta)
- (n,2n2p)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Threshold reactions

![Graph showing cross-sections for different reactions vs. energy.]

- (n,5n2p)
- (n,xd)
- (n,xt)
- (n,xhe3)
angular distribution for elastic
angular distribution for (n,n*1)
angular distribution for (n,n*1)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*2)
angular distribution for (n,n*2)
angular distribution for \((n,n^*3)\)
angular distribution for (n,n*3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*4)
angular distribution for (n,n*4)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*5)
angular distribution for (n,n*5)
angular distribution for (n,n*6)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for \((n,n*6)\)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*7)
angular distribution for (n,n*7)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*8)
angular distribution for (n,n*8)
angular distribution for (n,n*9)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*9)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*10)
angular distribution for \((n,n^{*10})\)
angular distribution for (n,n*11)
angular distribution for (n,n*11)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*12)
angular distribution for (n,n*12)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for \((n,n^*13)\)
angular distribution for \((n,n^{*13})\)
angular distribution for (n,n*14)
angular distribution for (n,n*14)
angular distribution for (n,n*15)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for \((n,n'15)\)
angular distribution for (n,n*16)
angular distribution for \((n,n^{*16})\)
angular distribution for (n,n*17)
angular distribution for (n,n*17)
angular distribution for (n,n*18)
angular distribution for (n,n*18)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*19)
angular distribution for (n,n*19)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*20)
angular distribution for (n,n*20)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*21)
angular distribution for (n,n*21)
angular distribution for (n,n*22)
angular distribution for (n,n*22)
angular distribution for (n,n*23)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*24)
angular distribution for (n,n*25)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*26)
angular distribution for (n,n*26)
angular distribution for (n,n*27)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
anglular distribution for (n,n*27)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for \((n,n*28)\)
angular distribution for (n,n*28)
angular distribution for (n,n*29)
angular distribution for (n,n*29)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
angular distribution for (n,n*30)
angular distribution for (n,n*30)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,x)
Neutron emission for (n,2nd)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,2n)
Neutron emission for (n,3n)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,n*)a
Neutron emission for (n,2n)a
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,3n)a
Neutron emission for (n,n*)p
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,n*)2a
Neutron emission for (n,2n)2a
Neutron emission for \((n,n^*)d\)
Neutron emission for \((n,n^*)t\)
Neutron emission for \((n,n^*)\text{he}_3 \)
Neutron emission for \((n,n^*)d2a\)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,4n)
Neutron emission for (n,2np)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,2np)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,npa)
Neutron emission for \((n,n^*c)\)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,5n)
Neutron emission for (n,6n)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,2nt)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,4np)
Neutron emission for (n,3nd)
Neutron emission for (n,nda)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,2npa)
Neutron emission for (n,5np)
Neutron emission for (n,6np)
Neutron emission for (n,4na)
Neutron emission for (n,6na)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,4nd)

![Graph of neutron emission for (n,4nd) with energy on the x-axis, secondary energy on the y-axis, and probability on the z-axis. The graph shows multiple modes in the energy distribution.]
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,5nd)
Neutron emission for (n,4nt)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,2nhe3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,3nhe3)
Neutron emission for (n,4nhe3)
Neutron emission for (n,3n2p)
Neutron emission for (n,3n2a)
Neutron emission for (n,npd)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,npt)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,ndt)
Neutron emission for (n,nphe3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,ndhe3)
Neutron emission for (n,nthe3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,4n2p)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,2n2a)

![Graph showing neutron emission probability as a function of energy and secondary energy](image-url)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,n3p)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,3n2pa)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Neutron emission for (n,5n2p)
Photon emission for (n,2n)
Photon emission for (n,3n)
Photon emission for (n,n*)a
Photon emission for (n,2n)a
Photon emission for (n,3n)a
Photon emission for (n,n*)p
Photon emission for (n,n*)2a

57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+

![Graph showing photon emission for (n,n*)2a](image-url)
Photon emission for (n,2n)2a
Photon emission for \((n,n^*)d\)
Photon emission for (n,n*)t
Photon emission for (n,n*)he3
Photon emission for (n,n*)d2a
Photon emission for (n,4n)
Photon emission for (n,2np)
Photon emission for (n,3np)
Photon emission for (n,2np)
Photon emission for (n,npa)
Photon emission for (n,n*c)
Photon emission for (n,gma)
Photon emission for (n,p)
Photon emission for (n,d)
Photon emission for (n,t)
Photon emission for (n,he3)
Photon emission for (n,a)
Photon emission for \((n,2a)\)
Photon emission for (n,2p)
Photon emission for (n,pa)
Photon emission for (n,d$_2$α)

![3D graph showing photon emission probabilities as a function of $E_γ$ (MeV) and E_n (MeV).]
Photon emission for (n,pt)
Photon emission for (n,da)
Photon emission for (n, 5n)
Photon emission for \((\text{n,6n})\)
Photon emission for (n,2nt)
Photon emission for (n,\textit{ta})
Photon emission for (n,4np)
Photon emission for (n,3nd)
Photon emission for (n,nda)
Photon emission for (n,2npa)
Photon emission for (n,5np)
Photon emission for (n,6np)
Photon emission for (n,4na)
Photon emission for (n,5na)
Photon emission for (n,6na)
Photon emission for (n,4nd)
Photon emission for \((n,5nd)\)
Photon emission for (n,3nt)
Photon emission for \((n,2n\text{he}3)\)
Photon emission for (n,3nhe3)
Photon emission for \((n,4n\text{he}3) \)
Photon emission for \((n,3n2p)\)
Photon emission for \((n,3n2a)\)
Photon emission for (n,3npa)
Photon emission for (n,dt)
Photon emission for (n,npd)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Photon emission for (n,npt)
Photon emission for (n, ndt)
Photon emission for \((n, nphe3)\)
Photon emission for (n, ndhe3)
Photon emission for (n,nthe3)
Photon emission for (n,nta)
Photon emission for (n,2n2p)
Photon emission for (n,phe3)
Photon emission for (n,dhe3)
Photon emission for (n, he3a)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Photon emission for (n,4n2p)
Photon emission for (n,2n2a)
Photon emission for (n,4npa)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
Photon emission for \((n,3p)\)
Photon emission for (n,5n2p)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
thermal capture photon spectrum
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
14 MeV photon spectrum

![Graph showing the gamma production rate versus gamma energy. The x-axis represents gamma energy in MeV, ranging from 0 to 30. The y-axis represents gamma production rate in barns/MeV, ranging from 10^{-15} to 10^0. The graph shows a decrease in gamma production rate as gamma energy increases, with a notable dip around 10 MeV.]
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ protons from (n,x)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,n*)p
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ protons from (n,2np)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ protons from (n,3np)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,npa)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,2p)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,pa)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,pd)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,4np)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ protons from (n,2npa)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,6np)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,3n2p)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,3npa)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,npd)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,npt)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ protons from (n,nphe3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,2n2p)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,phe3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,4n2p)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,4npa)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ protons from \((n,3p)\)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,n3p)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
protons from (n,3n2pa)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ deuterons from (n,x)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ deuterons from (n,2nd)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
deuterons from (n,n*)d
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
deuterons from (n,n*)d2a
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ deuterons from (n,d)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
deuterons from (n,da)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ deuterons from (n,4nd)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ deuterons from (n,dt)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ deuterons from (n,npd)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
deuterons from (n,ndt)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
deuterons from (n,dhe3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ tritons from (n,x)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
tritons from (n,n*)t
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ tritons from (n,t)

![Graph showing the distribution of secondary energies and particle probabilities as a function of energy (MeV).]
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
tritons from (n,2nt)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
tritons from (n,ta)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ tritons from (n,3nt)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
tritons from (n,4nt)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
tritons from (n,dt)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
tritons from (n,npt)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
tritons from (n,nthe3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
tritons from (n,nta)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
he3s from (n,x)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
he3s from (n,n*)he3
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
he3s from (n,he3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
he3s from (n,3nhe3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
he3s from (n,ndhe3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
he3s from (n,nthe3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ he3s from (n,phe3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ he3s from (n,dhe3)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ he3s from (n,he3a)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,x)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,n*)a
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,2n)2a

![3D plot diagram]
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ alphas from (n,n*)d2a
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,npa)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ alphas from (n,a)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,2a)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,pa)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,d2a)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,da)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,ta)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ alphas from (n,nda)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,2npa)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,4na)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,6na)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,3n2a)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,3npa)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,nta)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,he3a)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+ alphas from (n,4npa)
57-LA-138 FOR FENDL-3.2 PROCESSED BY NJOY2016.60+
alphas from (n,3n2pa)