SPECIFICATIONS FOR THE CALCULATIONAL ACTIVATION BENCHMARK Mohamed E. Sawan Fusion Technology Institute The University of Wisconsin Madison, Wisconsin 53706 U.S.A. 26 October 1994 Calculational Activation Benchmark Description The benchmark represents the reference steel/water shielding blanket design in the ITER outline design. The first wall is 14 mm thick consisting of 8 mm thick Be coating and 5 mm Cu attached to 1 mm thick SS. The shielding blanket is 526 mm thick with alternating layers of 316 SS and water. A double wall Inconel 625 vacuum vessel is used with single size water cooled 316 SS balls. The VV walls are 50 mm thick. A 50 mm thick back shield zone made of lead and boron carbide is used at the back of the VV. The total VV thickness is 455 mm in inboard region and 619 mm in outboard region. 1-D toroidal cylindrical model with inboard and outboard regions modeled simultaneously is used. The model includes 51 zones divided into 468 intervals. A maximum fine mesh interval width of 1 cm is used in the model except i n plasma and void zones. A uniform 14.1 MeV isotropic neutron source in the plasma zone. The source in the plasma zone is normalized to 6.1E17 n/cm.s yielding inboard and outboard neutron wall loadings of 1 and 1.5 MW/m2, respectively. Calculations are to be performed for two irradiation histories: 1- Continuous irradiation for 3 years (9.45x107 s). 2- Uniform pulsed operation with 94500 pulses each is 1000 s wide with dwell time of 1200 s between pulses. Neutron Flux and Adjoint Gamma Flux Files The neutron flux is provided at all fine mesh intervals in the VITAMIN-J 175 energy group structure. The flux was calculated using the ONEDANT code with the processed FENDL multi-group cross section data library FENDL/MG. An ASCII file containing the neutron flux can be accessed from the IAEA NDS online system. The file name is NFLUX.ACT. The neutron flux in the 175 energy groups is listed for each of the 468 mesh intervals in 6(1PE12.5) format. A header card (format A3,I6) with the interval number precedes the spectrum for each interval. The adjoint gamma flux is provided at all fine mesh intervals in the VITAMIN-J 42 energy group structure. The adjoint flux was determined using the ONEDANT code with the FENDL/MG data. The source spectrum in the adjoint calculation represents the tissue kerma factor (flux-to-dose conversion factor) and is located at the outer surface of the outboard B4C/Pb shield (interval # 468). An ASCII file containing the gamma adjoint flux can be accessed from the IAEA NDS online system. The file name is GAMMA.ADJ. The adjoint gamma flux in the 42 energy groups is listed for each of the 468 mesh intervals in 6(1PE12.5) format. A header card (format A3,I6) with the interval number precedes the spectrum for each interval. In addition, based on the suggestion of Robin Forrest, UKAEA, Culham, the zone (coarse mesh) averaged neutron flux and adjoint gamma flux have been generated. The files can be accessed from the IAEA NDS online system. The names of the files are GAMMA.ADJZ;1 and NFLUX.ACTZ;1. The format in these files is the same as that in the previous files for the fine mesh intervals. The flux is given here for the non-void zones (total of 44) and the ID numbers given for each zone in the file start from the inboard magnet with the void zones skiped. The biological dose rate (micro Sv per hr) at the back of shield can be calculated at any time following shutdown by performing energy and volume integration for the product of the adjoint flux and the decay gamma source (g/ cm2.s) and dividing the result by the volume of interval # 468. Zone Specifications Zone Number Material Thickness Number of (cm) Intervals Central Zone 1 void 287.5 29 Inboard Magnet 2 47% 316SS 89.4 90 12% Cu 17.2% Liq. He 13.3% R-glass epoxy 3% Nb3Sn 7.5% bronze 3 R-glass epoxy 0.1 1 Gap 4 void 13.5 14 Inboard VV 5 60% Pb 5 5 40% B4C 6 Inconel 625 5 5 7 60% 316SS 30.5 31 40% H2O 8 Inconel 625 5 5 Gap 9 void 5 5 Inboard Blanket 10 316SS 6.9 7 11 H2O 3.1 4 12 316SS 4.2 5 13 H2O 3 3 14 316SS 7 7 15 H2O 3 3 16 316SS 5.5 6 17 H2O 3 3 18 316SS 5 5 19 H2O 3 3 20 316SS 2.3 3 21 H2O 2 2 22 316SS 1 1 23 H2O 3.6 4 Inboard FW 24 316SS 0.1 1 25 Cu-Be-Ni 0.5 1 26 Be 0.8 1 Inboard Scrapeoff 27 void 11.6 2 Plasma 28 void 608.4 61 Outboard Scrapeoff 29 void 16.3 2 Outboard FW 30 Be 0.8 1 31 Cu-Be-Ni 0.5 1 32 316SS 0.1 1 Outboard Blanket 33 H2O 3.6 4 34 316SS 1 1 35 H2O 2 2 36 316SS 2.3 3 37 H2O 3 3 38 316SS 5 5 39 H2O 3 3 40 316SS 5.5 6 41 H2O 3 3 42 316SS 7 7 43 H2O 3 3 44 316SS 4.2 5 45 H2O 3.1 4 46 316SS 6.9 7 Gap 47 void 37.5 38 Outboard VV 48 Inconel 625 5 5 49 60% 316SS 46.9 47 40% H2O 50 Inconel 625 5 5 51 60% Pb 5 5 40% B4C Material Composition Elemental composition is given. Natural abundances of the isotopes in each element should be used to calculate the isotopic composition. Material Constituent Element Nuclide Density (nuclei/b.cm) R-glass epoxy H 2.16300E-02 C 1.89200E-02 N 2.06000E-03 O 2.70600E-02 Mg 1.19000E-03 Al 3.93000E-03 Si 8.00000E-03 S 5.10000E-04 Cu 9.10000E-04 Cu Cu 8.29204E-02 Nb3Sn Nb 4.09117E-02 Sn 1.36372E-02 Liq. He He 1.83643E-02 Pb Pb 3.29558E-02 B4C B 1.09849E-01 C 2.74621E-02 H2O H 6.68560E-02 O 3.34280E-02 Cu-Be-Ni Be 2.97000E-03 Ni 1.82000E-03 Cu 8.20000E-02 Be Be 1.23619E-01 Bronze Cu 7.67230E-02 Sn 3.57200E-03 SS316 B 4.37546E-06 C 7.08895E-05 N 2.36402E-04 O 5.91306E-06 Al 5.25950E-04 Si 7.74757E-04 P 3.97072E-05 S 1.47526E-05 K 6.04926E-07 Ti 3.95194E-05 V 3.71431E-06 Cr 1.55566E-02 Mn 1.46375E-03 Fe 5.45732E-02 Co 2.40797E-05 Ni 1.06384E-02 Cu 7.44397E-05 As 3.15700E-07 Zr 1.03900E-06 Nb 1.01830E-06 Mo 1.23274E-03 Ag 8.77100E-08 Cd 8.41500E-08 Sn 7.96952E-07 Sb 1.94200E-07 Ba 1.72200E-07 Tb 1.48800E-07 Ta 1.30709E-07 W 2.57300E-07 Ir 1.23000E-07 Pb 1.82623E-07 Bi 1.81082E-07 Inconel 625 C 1.68800E-04 Al 2.25000E-04 Si 3.42000E-04 S 1.27000E-05 Ti 2.01000E-04 Cr 2.16000E-02 Mn 3.68000E-05 Fe 2.32000E-03 Co 4.30000E-05 Ni 5.30000E-02 Cu 2.39000E-05 Nb 1.66800E-03 Mo 4.90000E-03 Ta 2.15500E-04 Isotopic Natural Abundances for Elements Used in the Calculational Activation Benchmark (From Chart of the Nuclides, 14th Edition, April 1988) Element Z A % Abundance H 1 1 99.9850000 2 0.0150000 He 2 3 0.0001380 4 99.9998620 Be 4 9 100.0000000 B 5 10 19.9000000 11 80.1000000 C 6 12 98.9000000 13 1.1000000 N 7 14 99.6300000 15 0.3700000 O 8 16 99.7600000 17 0.0400000 18 0.2000000 Na 11 23 100.0000000 Mg 12 24 78.9900000 25 10.0000000 26 11.0100000 Al 13 27 100.0000000 Si 14 28 92.2300000 29 4.6700000 30 3.1000000 P 15 31 100.0000000 S 16 32 95.0200000 33 0.7500000 34 4.2100000 36 0.0200000 K 19 39 93.2581000 40 0.0117000 41 6.7302000 Ca 20 40 96.9410000 42 0.6470000 43 0.1350000 44 2.0860000 46 0.0040000 48 0.1870000 Ti 22 46 8.0000000 47 7.3000000 48 73.8000000 49 5.5000000 50 5.4000000 V 23 50 0.2500000 51 99.7500000 Cr 24 50 4.3450000 52 83.7900000 53 9.5000000 54 2.3650000 Mn 25 55 100.0000000 Fe 26 54 5.9000000 56 91.7200000 57 2.1000000 58 0.2800000 Co 27 59 100.0000000 Ni 28 58 68.2700000 60 26.1000000 61 1.1300000 62 3.5900000 64 0.9100000 Cu 29 63 69.1700000 65 30.8300000 As 33 75 100.0000000 Zr 40 90 51.4500000 91 11.2200000 92 17.1500000 94 17.3800000 96 2.8000000 Nb 41 93 100.0000000 Mo 42 92 14.8400000 94 9.2500000 95 15.9200000 96 16.6800000 97 9.5500000 98 24.1300000 100 9.6300000 Ag 47 107 51.8390000 109 48.1610000 Cd 48 106 1.2500000 108 0.8900000 110 12.4900000 111 12.8000000 112 24.1300000 113 12.2200000 114 28.7300000 116 7.4900000 Sn 50 112 0.9700000 114 0.6500000 115 0.3600000 116 14.5300000 117 7.6800000 118 24.2200000 119 8.5800000 120 32.5900000 122 4.6300000 124 5.7900000 Sb 51 121 57.4000000 123 42.6000000 Ba 56 130 0.1060000 132 0.1010000 134 2.4200000 135 6.5930000 136 7.8500000 137 11.2300000 138 71.7000000 Tb 65 159 100.0000000 Ta 73 180 0.0120000 181 99.9880000 W 74 180 0.1200000 182 26.3000000 183 14.2800000 184 30.7000000 186 28.6000000 Ir 77 191 37.3000000 193 62.7000000 Pb 82 204 1.4000000 206 24.1000000 207 22.1000000 208 52.4000000 Bi 83 209 100.0000000 Information Requested Codes and Data: 1- Activation code used. 2- Activation data evaluation used. 3- Processing codes used to generate the activation library. 4- Energy group structure. 5- Weight function used to generate multi-group data. 6- Decay data library used. 7- Computing facility and CPU time used. Calculation Results: 1- The specific activity (Bq/m3) in the non-void zones at cooling times of 0, 1 hour, 1 day, 1 week, 1 month, 1 year, and 100 years after end of full reactor operation. The ten major contributing nuclides should be identified and their contributions provided. 2- The specific decay heat (W/m3) in the non-void zones at cooling times of 0, 1 hour, 1 day, 1 week, 1 month, 1 year, and 100 years after end of full reactor operation. The ten major contributing nuclides should be identified and their contributions provided. 3- The energy spectra of decay gamma source in the non-void zones at the specified cooling times. 4- The biological dose rate (micro Sv/hr) at the back of the outboard shield at cooling times of 0, 1 hour, 1 day, 1 week, and 1 month after end of full reactor operation. __________________________________________________________________________ Mohamed E. Sawan Tel: (608)263-5093 Fusion Technology Institute Fax: (608)263-4499 University of Wisconsin-Madison E-Mail: sawan@engr.wisc.edu 1500 Johnson Dr., Madison, WI 53706 or u14517@f.nersc.gov __________________________________________________________________________