SPECIFICATIONS FOR THE CALCULATIONAL NEUTRONICS AND SHIELDING BENCHMARK Mohamed E. Sawan Fusion Technology Institute The University of Wisconsin Madison, Wisconsin 53705 U.S.A. 6 October 1994 Calculational Neutronics and Shielding Benchmark Description The benchmark represents the reference steel/water shielding blanket design in the ITER outline design. The first wall is 14 mm thick consisting of 8 mm thick Be coating and 5 mm Cu attached to 1 mm thick SS. The shielding blanket is 526 mm thick with alternating layers of 316 SS and water. A double wall Inconel 625 vacuum vessel is used with single size water cooled 316 SS balls. The VV walls are 50 mm thick. A 50 mm thick back shield zone made of lead and boron carbide is used at the back of the VV. The total VV thickness is 455 mm in inboard region and 619 mm in outboard region. 1-D toroidal cylindrical model with inboard and outboard regions modeled simultaneously is used. The model includes 54 zones divided into 573 intervals. A maximum fine mesh interval width of 1 cm is used in the model except in plasma and void zones. A uniform 14.1 MeV isotropic neutron source in the plasma zone. The source in the plasma zone is normalized to 6.1E17 n/cm.s yielding inboard and outboard neutron wall loadings of 1 and 1.5 MW/m2, respectively. The end-of-life results are based on a total ITER lifetime of 3 FPY (9.45E8 s). Zone Specifications Zone Number Material Thickness Number of (cm) Intervals Central Zone 1 void 287.5 29 Inboard Magnet 2 47% 316SS 89.4 90 12% Cu 17.2% Liq. He 13.3% R-glass epoxy 3% Nb3Sn 7.5% bronze 3 R-glass epoxy 0.1 1 Gap 4 void 13.5 14 Inboard VV 5 60% Pb 5 5 40% B4C 6 Inconel 625 5 5 7 60% 316SS 30.5 31 40% H2O 8 Inconel 625 5 5 Gap 9 void 5 5 Inboard Blanket 10 316SS 6.9 7 11 H2O 3.1 4 12 316SS 4.2 5 13 H2O 3 3 14 316SS 7 7 15 H2O 3 3 16 316SS 5.5 6 17 H2O 3 3 18 316SS 5 5 19 H2O 3 3 20 316SS 2.3 3 21 H2O 2 2 22 316SS 1 1 23 H2O 3.6 4 Inboard FW 24 316SS 0.1 1 25 Cu-Be-Ni 0.5 1 26 Be 0.8 1 Inboard Scrapeoff 27 void 11.6 2 Plasma 28 void 608.4 61 Outboard Scrapeoff 29 void 16.3 2 Outboard FW 30 Be 0.8 1 31 Cu-Be-Ni 0.5 1 32 316SS 0.1 1 Outboard Blanket 33 H2O 3.6 4 34 316SS 1 1 35 H2O 2 2 36 316SS 2.3 3 37 H2O 3 3 38 316SS 5 5 39 H2O 3 3 40 316SS 5.5 6 41 H2O 3 3 42 316SS 7 7 43 H2O 3 3 44 316SS 4.2 5 45 H2O 3.1 4 46 316SS 6.9 7 Gap 47 void 37.5 38 Outboard VV 48 Inconel 625 5 5 49 60% 316SS 46.9 47 40% H2O 50 Inconel 625 5 5 51 60% Pb 5 5 40% B4C Gap 52 void 15.3 14 Outboard Magnet 53 R-glass epoxy 0.1 1 54 47% 316SS 89.4 90 12% Cu 17.2% Liq. He 13.3% R-glass epoxy 3% Nb3Sn 7.5% bronze Material Composition Material Constituent Element Nuclide Density (nuclei/b.cm) R-glass epoxy H 2.16300E-02 C 1.89200E-02 N 2.06000E-03 O 2.70600E-02 Mg 1.19000E-03 Al 3.93000E-03 Si 8.00000E-03 S 5.10000E-04 Cu 9.10000E-04 Cu Cu 8.29204E-02 Nb3Sn Nb 4.09117E-02 Sn 1.36372E-02 Liq. He He 1.83643E-02 Pb Pb 3.29558E-02 B4C B10 2.17280E-02 B11 8.81205E-02 C 2.74621E-02 H2O H 6.68560E-02 O 3.34280E-02 Cu-Be-Ni Be 2.97000E-03 Ni 1.82000E-03 Cu 8.20000E-02 Be Be 1.23619E-01 Bronze Cu 7.67230E-02 Sn 3.57200E-03 SS316 B10 8.70716E-07 B11 3.50474E-06 C 7.08895E-05 N 2.36402E-04 O 5.89895E-06 Al 5.25950E-04 Si 7.74757E-04 P 3.97072E-05 S 1.47526E-05 K 6.04926E-07 Ti 3.95194E-05 V 3.71431E-06 Cr 1.55566E-02 Mn 1.46375E-03 Fe 5.45732E-02 Co 2.40797E-05 Ni 1.06384E-02 Cu 7.44397E-05 Zr 1.03708E-06 Nb 1.01830E-06 Mo 1.23274E-03 Sn 7.96952E-07 Ta 1.30709E-07 W 2.56984E-07 Pb 1.82623E-07 Bi 1.81082E-07 Inconel 625 Ni 5.27000E-02 Cr 2.09000E-02 Fe 2.27000E-03 Mo 4.75000E-03 Si 4.50000E-04 Mn 2.30000E-04 Al 3.75000E-04 Ti 2.12000E-04 S 1.27000E-05 C 2.11000E-04 Nb 1.90700E-03 Information Requested Codes and Data: 1- Transport code used. 2- Angular quadrature order. 3- Legendre order of scattering. 4- Nuclear data evaluation used. 5- Nuclear data processing codes. 6- Energy group structure. 7- Weight function used to generate multi-group data. Calculation Results: 1- Neutron and gamma fluxes in the first wall layers (Be, Cu, SS). (Intervals # 244, 243, 242 inboard and 310, 311, 312 outboard) 2- Peak neutron and gamma fluxes in vacuum vessel and magnet. (Intervals # 180, 120 inboard and 407, 483 outboard) 3- Nuclear heating (W/cm) in each of the non-void zones. 4- Power density (W/cm3) in the first wall layers (Be, Cu, SS). (Intervals # 244, 243, 242 inboard and 310, 311, 312 outboard) 5- Peak power density (W/cm3) in vacuum vessel and magnet. (Intervals # 180, 119 inboard and 407, 484 outboard) 6- End-of-life dpa in Cu and SS layers of first wall. (Intervals # 243, 242 inboard and 311, 312 outboard) 7- Peak end-of-life dpa in Inconel vacuum vessel. (Intervals # 180 inboard and 407 outboard) 8- End-of-life appm gas production (tritium, hydrogen, helium) in FW layers. (Intervals # 244, 243, 242 inboard and 310, 311, 312 outboard) 9- Peak end-of-life appm gas production in Inconel VV. (Intervals # 180 inboard and 407 outboard) 10- Peak end-of-life fast neutron fluence (E>0.1 MeV) in magnet. (Intervals # 119 inboard and 484 outboard) 11- Peak end-of-life Cu dpa in magnet. (Intervals # 119 inboard and 484 outboard) 12- Peak end-of-life magnet insulator absorbed dose (eV/cm3). (Intervals # 120 inboard and 483 outboard) __________________________________________________________________________ Mohamed E. Sawan Tel: (608)263-5093 Fusion Technology Institute Fax: (608)263-4499 University of Wisconsin-Madison E-Mail: sawan@engr.wisc.edu 1500 Johnson Dr., Madison, WI 53706 or u14517@f.nersc.gov __________________________________________________________________________