Measurement of the of ²³⁵U(n,γ) cross-section with fission tagging

PhD Thesis of J. Balibrea, <u>D. Cano-Ott</u>, E. Mendoza and the n_TOF collaboration

CIEMAT - Spain

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

Energéticas, Medioambientales y Tecnológicas

Measurement of (n,y) cross-sections of fissile isotopes

- γ-ray background due to fission: the (n,f) channel has a larger cross-section and produces higher γ-ray multiplicity & energy cascades (m_v~8-9) with γ-energy up to 20 MeV (+ prompt fission neutrons, \overline{v} ~2.43 and $\overline{E_n}$ ~1.1 MeV).
- Same neutron energy dependence.

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

The fission tagging technique

- **Developed** in the early **1960s** at Los Alamos.
- Measure simultaneously fission and capture by means of fission and electromagnetic detectors, respectively.
- The fission γ-ray cascades are tagged from the time coincidences between both detection systems.
- <u>C. Guerrero</u> et al. (2010). n_TOF facility (Pilot experiment)
- <u>M. Jandel et al.</u> (2012). DANCE @ LANL
- This work (2012). n_TOF facility
- Y. Danon (2017). RPI

 $\int \text{Normalised to } \sigma_{\gamma}(E_i), \sigma_f(E_i), \sigma_$

The CERN n_TOF facility

The n_TOF facility is a high instantaneous intensity spallation neutron source driven by the CERN PS synchrotron (20 GeV/c with up to 8×10^{17} ppp)

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

Energéticas, Medioambientales y Tecnológicas

IAEA meeting "On the resonance parameters of actinides"

-1.1.100 1.1.100 1.1.100 1.1.100 1.1.100 1.1.100 1.1.100 1.1.100 1.1.100 1.1.100

n_TOF-EAR1

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

Energéticas, Medioambientales y Tecnológicas

TAC & FTMG experimental setup

Time of Flight spectra registered by the TAC

NTOF

Deposited energy registered by the TAC

Normalization of the measurement

The neutron-induced **fission cross section** has been normalized to the **integral value** from **7.8 to 11.0 eV** which is accurately well known (**< 0.5%**):

$$\int_{7.8eV}^{11eV} \sigma_f(E_n) dE_n = (246 \pm 1) \, barns \cdot eV$$

The results does neither depend on the mass samples nor on the integral neutron fluence. The ratio doesn't depend on the neutron fluence energy dependence.

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD Ciemat Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Sensitivity of α and the (n, γ) cross-section to ϵ_f

The neutron capture cross-section and α are very sensitve to the fission tagging detection efficiency.

$$\left(\frac{\Delta \alpha(E_n)}{\alpha(E_n)}\right)_{\epsilon_f} \approx \left(1 + \frac{\sigma_f(E_n)}{\sigma_\gamma(E_n)}\right) \frac{\Delta \epsilon_f}{\epsilon_f}$$

 ϵ_f is critical for the accurate determination of the neutron capture cross-section.

Energéticas, Medioambientales y Tecnológicas

The subtraction of the ²³⁵U(n,f) γ-ray cascades

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

Energéticas, Medioambientales y Tecnológicas

Calculation of the fission detection efficiency

The fission detection efficiency ε_f is calculated using cuts in the E_{sum} in the TAC above the neutron separation energy, where no counts due to the (n,γ) electromagnetic cascades are detected (except for pileup or summing).

y Tecnológicas

Prompt fission γ-ray cascades

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

Energéticas, Medioambientales y Tecnológicas

Fission tagging detection efficiency for (n,γ) conditions

The correction accounts for prompt fission events detected by the TAC but not by the FTMG (large emission angles and self-absorption in the ²³⁵U targets):

- FTMG detectors have individual efficiencies close to 85%.
- We have assumed that the shape of the \sim 15% of non-tagged fissions have a similar prompt fission γ -shape to the low fission amplitude tagged fissions.

TAC detection efficiency to $^{235}U(n,\gamma)$ events

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

Energéticas, Medioambientales y Tecnológicas

Determination of the detection efficiency for the (n,γ) channel

Realistic cascade generator depends on:

- Known nuclear level scheme.
- Statistical model for the high excitation nuclear levels.
- Photon strength functions (PSF).
- Population and half-life of known long-lived isomers.

Ciemat

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

IAEA meeting "On the resonance parameters of actinides"

Detailed implementation of the TAC+FTMG geometry GEANT4, for the transport of the cascades

Monte Carlo simulations: TAC efficiency

The capture γ-ray cascades have been provided by Milan Kritcka using DICEBOX code .

The parameters of the EM cascades have been adjusted from DANCE experimental data.

The cascades have been simulated in the detailed **TAC+FTMG geometry** already implemented in GEANT4 for **two different configurations**:

• 2FTMG with the neutron absorber.

• 2FTMG without the neutron absorber.

An excellent agreement is obtained for all the multiplicities in the TAC between the MC simulations and the experimental data. $\Delta \varepsilon_{\gamma} = 1.7\%$

Results

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

y Tecnológicas

²³⁵U(n,y) cross-section and CIELO

The experimental ²³⁵U(n,γ) cross-section data were made available to the CIELO **project** for its evaluation together with all experimental data sets available.

MINISTERIO

Differences between evaluated libraries for capture

Our data have contributed to **the increase of the capture cross-section** (8%) in the **largest capture resonances in the range from 2.2 to 20 eV**.

Summary and conclusions

- The ²³⁵U(n,γ) cross-section was measured at the n_TOF facility at CERN using the fission tagging technique in the neutron energy range from 0.2 to 200 eV.
- We have improved/developed a methodology for measuring the **absolute** α**-ratio**:
 - Accurate determination of the ϵ_f and subtraction of the prompt fission γ -ray background $\Delta \epsilon_f$ =2.2%.

We have observed a correlation observed detecting prompt fission γ-ray events which wasn't reported in previous experiments with similar experimental setups.

- Accurate determination of the (n,γ) **TAC detection efficiency.** $\Delta \varepsilon_v = 1.7\%$.
- Our data has contributed mainly to the ENDFB/VII.0 evaluated library (IAEA CIELO) for the neutron resonances between 2.2 and 20.0 eV. The ²³⁵U capture cross-section has been increased by ~8%.
- Measuring the (n,γ) cross section is a very difficult thing. Eol on the ²³⁹Pu(n,γ) CIEMAT, JRC-Geel & U. Lodz– for the new Nuclear Data project CHANDA-2.

Summary and conclusions

Acknowledgements

This work was supported partially by the Spanish national company for radioactive waste management ENRESA, through the CIEMAT-ENRESA agreements on 'Transmutación de residuos radiactivos de alta actividad' the Spanish Plan Nacional de I+D+i de Física de Partículas (project FPA2014-53290-C2-1) and the CHANDA project of the 7th Framework Programme.

Special thanks to the n_TOF Collaboration.

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

y Tecnológicas

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

y Tecnológicas

²³⁵U(n,γ) cross-section and uncertainties

- TAC conditions with a satisfactory compromise between the TAC detection efficiency and the improvement of the signal-to-background ratio:
 2.5 < E_{sum} < 7.0 and 2 < m_{cr} < 6
- The experimental ²³⁵U(n,γ) cross-section obtained for both experimental configurations is compatible within 2% in the largest first neutron resonances.
- Careful identification of uncertainty components for analysis conditions.

