

Features of Fe evaluations emerging from data validation

Andrej Trkov, R. Capote International Atomic Energy Agency Vienna, Austria

- Iron is an important structural material, affecting almost all benchmarks
- Several features/problems are similar to those encountered in actinides

Scope

- ⁵⁶Fe resonance file in CIELO-1 is essentially by Froehner
 - Background to capture added at E 10-30 keV
 - Bound level at -24 keV ? Direct capture?
 - Minimum total x.s. consistent with Liou & Chrien, NSE 70, 150-154 (1979)
 - Background reduced at the upper end of RRR
 - RPI measurements
- Inelastic ⁵⁶Fe cross section scaled-down (post ENDF/B-VIII.0)
 - nELBE & IRMM new experiments
 - Evidence from ²⁵²Cf leakage benchmarks
- Total ⁵⁶Fe cross section slightly reduced near 3 MeV
- Inelastic ⁵⁷Fe increased (low threshold)
 - Important contribution in some criticality benchmarks

ENDF Request 379, 2018-May-08, 19:01:10

ENDF Request 383, 2018-May-08, 19:32:00

Cross Section (barns)

Integral performance

- Leakage spectra from spheres with ²⁵²Cf(sf) source
 - All libraries overestimate spectrum near 300 keV
 - ENDF/B-VIII underestimated leakage spectrum above ~2 MeV; the improved file "Xoj" removes this deficiency by:
 - Reducing inelastic, increasing elastic (fixed total)
 - Slightly decreasing the total near 3 MeV

More details in INDC(NDS)-0757

Integral performance (cont.)

- Criticality benchmarks from ICSBEP
 - Performance with improved evaluations "Xoj" is maintained
 - Net effect of the increase of the inelastic cross section of ⁵⁷Fe is very large for ZPR-9/34 (label "NF33j"

More details in INDC(NDS)-0757

⁵⁷Fe(n,inl)

Section (barns)

Cross

No.	ICSBEP Label	Short name	Common name
1	HEU-MET-FAST-013	hmf013	VNIITF-CTF-SS-13
2	HEU-MET-FAST-021	hmf021	VNIITF-CTF-SS-21
3	HEU-MET-FAST-024	hmf024	VNIITF-CTF-SS-24
4	HEU-MET-FAST-087	hmf087	VNIITF-CTF-Fe
5	HEU-MET-FAST-088	hmf088-001	FKBN-2/SS-PE-1
6	HEU-MET-FAST-088	hmf088-002	FKBN-2/SS-PE-2
7	HEU-MET-INTER-001	hmi001	ZPR-9/34
8	HEU-MET-THERM-013	hmt013-002	Planet Fe-2
9	HEU-MET-THERM-015	hmt015	_
10	IEU-MET-FAST-005	imf005	VNIIEF-CTF-5
11	IEU-MET-FAST-006	imf006	VNIIEF-CTF-6
12	LEU-COMP-THERM-042	lct042-001	lct042-001
13	LEU-COMP-THERM-042	lct042-002	lct042-002
14	LEU-COMP-THERM-043	lct043-002	IPEN/MB-01
15	LEU-MET-THERM-015	lmt015-001	RB-Vinca(01)
16	MIX-COMP-FAST-001	mcf001	ZPR-6/7
17	MIX-COMP-FAST-005	mcf005-s	ZPR-9/31
18	MIX-COMP-FAST-006	mcf006-s	ZPPR-2
19	PU-MET-FAST-015	pmf015	BR-1-3
20	PU-MET-FAST-025	pmf025	pmf025
21	PU-MET-FAST-026	pmf026	pmf026
22	PU-MET-FAST-028	pmf028	pmf028
23	PU-MET-FAST-032	pmf032	pmf032
24	PU-MET-INTER-002	pmi002	ZPR-6/10
25	PU-MET-INTER-003	pmi003-001s	ZPR-3/58(U)
26	PU-MET-INTER-004	pmi004-001s	ZPR-4/59(Pb)
27	IEU-COMP-INTER-005	ici005	ZPR-6/6A

Conclusions

- ⁵⁶Fe resonance data need re-evaluation
 - Be careful with energy calibration
 - Check bound levels, direct capture
 - Match newly-available experimental data
 - Do not miss observed resonances (e.g. Berthold data)
 - Check $\sigma_{inl} / \sigma_{el}$ ratio (e.g. RPI data)
- ⁵⁷Fe inelastic has low threshold and resonance structure – match model calculations on average

Thank you!

