Generalized Reich-Moore *R*-matrix Approximation

Goran Arbanas, ORNL

Vladimir Sobes, ORNL

Andrew Holcomb, ORNL

Pablo Ducru, MIT

Marco Pigni, ORNL

Dorothea Wiarda, ORNL

Consultant's Meeting on R-Matrix Codes for Charged-Particle Reactions in the Resolved Resonance Region, IAEA Headquarters, Vienna, Austria December 5-7, 2016

ORNL is managed by UT-Battelle for the US Department of Energy

Talk outline

- History of Reich-Moore (RM) approximation
- Motivation for generalized RM
 - Considerations of Unitarity, Brune alternative R-matrix parameters
- Derivation
 - like RM but retain level-level interference via γ -ray channels
- Implications
 - Total capture cross section fitted by fewer parameters than full R-matrix
 - Manifest Unitarity
 - Froehner's prescription
 - Insight about statistics of level-level interference via γ -channels
- SAMMY 8.1

RM History and use Reich a

- Reich-Moore divides full *R*-matrix into particle and γ -ray blocks
 - Formal expressions derived for reduced R-matrix of particle channels
 - The effect of γ -ray channels on particle-channels approx. by a diagonal
 - Level-level interference among γ -ray channels neglected

$$R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E - i\Gamma_{\lambda \gamma}/2} \qquad (c, c' \notin \gamma), \qquad (194)$$

corresponding SLBW level matrix. Otherwise it is so exact that although the reduced collision matrix cannot be unitary - because of transitions into eliminated channels - the overall collision matrix can still be considered as unitary, i. e. as conserving probability flux, so that the capture cross section may alternatively be obtained as the difference

$$\sigma_{c\gamma} = \sigma_c - \sum_{c' \notin \gamma} \sigma_{cc'} , \qquad (196)$$

with σ_c calculated from the reduced collision matrix element U_{cc} according to Eq. 153.

$$\sigma_c \equiv \sum_{c'} \sigma_{cc'} = 2\pi \lambda_c^2 g_c (1 - \operatorname{Re} U_{cc}), \qquad (153)$$

Motivation for generalized Reich-Moore

- Conversion of RM R-matrix parameters
 - Between formal and alternative (a.k.a. physical) ones (C. Brune, 2002)
- Investigate whether Reich-Moore (RM) approx. is unitary
 - It may appear not to be as particle-channel R-matrix is complex (not real)
 - RM derivation was revisited to investigate unitarity
 - In this process a generalization of RM was found
 - This generalization is manifestly unitary
 - Corollary: Conventional RM is also unitary
 - It provides basis for Fritz Froehner's prescription used by SAMMY
- Other potential benefits Generalized RMA (gRMA)
 - May provide better fits to total capture (and other cross sections)
 - Because gRMA reproduces total cross section formally
 - May shed light on resonant-interference effects neglected by conv. RM
 - Including statistical properties of capture widths

Derivation uses full R-matrix via level-matrix A

$$A^{-1} = e - E\mathbf{1} + \boldsymbol{\gamma}(\boldsymbol{L} - \boldsymbol{B})\boldsymbol{\gamma}^{T}$$

• Separate channel space into particle and γ -ray channels:

$$\gamma \equiv (\gamma_c, \gamma_\gamma)$$
$$L - B \equiv \begin{pmatrix} L_c - B_c & 0\\ 0 & L_\gamma - B_\gamma \end{pmatrix}$$

$$A^{-1} = \boldsymbol{e} - E\boldsymbol{1} + \boldsymbol{\gamma}_{\boldsymbol{\gamma}}(\boldsymbol{L}_{\boldsymbol{\gamma}} - \boldsymbol{B}_{\boldsymbol{\gamma}})\boldsymbol{\gamma}_{\boldsymbol{\gamma}}^{T} + \boldsymbol{\gamma}_{\boldsymbol{c}}(\boldsymbol{L}_{\boldsymbol{c}} - \boldsymbol{B}_{\boldsymbol{c}})\boldsymbol{\gamma}_{\boldsymbol{c}}^{T}$$

Full R-matrix g-ray channels

• γ -ray channels

- defined by EM multipolarity, helicity, and final state quantum numbers
- Selection rules based on f.s. quantum numbers, γ -ray multipolarity
- Electric: E1, E2, E3, ...
- Magnetic: M1, M2, M3, ...
- Level-level interference takes place via identical γ -ray channels
 - Use conventional approximation S-B=0
 - Or use Brune alternative R-matrix parameters for which S-B=0 always

 $i\boldsymbol{\gamma}_{\boldsymbol{\gamma}}\boldsymbol{P}_{\boldsymbol{\gamma}}^{1/2}\boldsymbol{P}_{\boldsymbol{\gamma}}^{1/2}\boldsymbol{\gamma}_{\boldsymbol{\gamma}}^{T}$

Generalized RM Derivation

• Consider capture-width matrix Γ_{γ} inside the level matrix **A**

 $\gamma_{\gamma} = N_{\lambda} \times N_{\gamma}$ matrix of physical capture channel widths $\gamma_{gRM} = N_{\lambda} \times N_{\lambda}$ matrix of gRMA capture channel widths

• Since *total capture* cross section depends on Γ_{γ} , it could be fit equally well by N_{λ} as it could by all N_{γ} capture channels

7 Generalized Reich-Moore *rotal* capture only (individual γ-channels require full reaction of the reaction o

Total capture of gRMA equals that of full R-matrix

Working with alternative R-matrix parameters since S(E)-B=0

$$A^{-1} = e - E\mathbf{1} + \frac{\gamma_{\gamma}(L_{\gamma} - B_{\gamma})\gamma_{\gamma}^{T}}{P_{\gamma}^{T}} + \gamma_{c}(L_{c} - B_{c})\gamma_{c}^{T}$$
$$A^{-1} \approx e - E\mathbf{1} + \frac{i\gamma_{\gamma}P_{\gamma}^{1/2}P_{\gamma}^{1/2}\gamma_{\gamma}^{T}}{\gamma_{\gamma}} + \gamma_{c}(L_{c} - B_{c})\gamma_{c}^{T}$$
$$= e - E\mathbf{1} + \frac{i\Gamma^{(\gamma)}/2}{P_{\gamma}^{T}} + \frac{\gamma_{c}(L_{c} - B_{c})\gamma_{c}^{T}}{P_{c}^{T}}$$

• The total capture cross section is proportional to:

8 (

$$U_{c\gamma}U_{c\gamma}^{*T} = \Omega_{c}P_{c}^{1/2}\gamma_{c}^{T}A\gamma_{c}^{\gamma}P_{\gamma}^{1/2}\Omega_{\gamma}\Omega_{\gamma}^{*}P_{\gamma}^{*1/2}\gamma_{\gamma}^{\gamma}A\gamma_{c}^{T}P_{c}^{*1/2}\Omega_{c}^{*}$$

$$= \Omega_{c}P_{c}^{1/2}\gamma_{c}^{T}A(\gamma_{\gamma}P_{\gamma}^{1/2}P_{\gamma}^{1/2}\gamma_{\gamma}^{T})A\gamma_{c}^{T}P_{c}^{*1/2} \qquad (14)$$

$$= \Omega_{c}P_{c}^{1/2}\gamma_{c}^{T}A(\Gamma^{(\gamma)}/2)A\gamma_{c}^{T}P_{c}^{*1/2}\Omega_{c}^{*} \qquad (15)$$

Full R-matrix vs. conventional RM: total capture

• full R-matrix equivalent to gRMA; 2-level SAMMY example:

Table II B2.1. Parameter values used to illustrate Reich-Moore vs. full R-matrix calculations

					Sign
	λ	Energy (MeV)	$\overline{\Gamma}_{\lambda\gamma}(\mathrm{eV})$	$\Gamma_{\lambda n}(\mathrm{eV})$	$\times \Gamma_{\lambda\gamma} (\mathrm{eV})^a$
Reich Moore	1	1.0	1.0	10000.	
	2	1.1	1.1	11000.	
Pseudo-full R-matrix # 1	1	1.0	10^{-8}	10000.	1.0
	2	1.1	10 ⁻⁸	11000.	1.1
Pseudo-full R-matrix # 2	1	1.0	10^{-8}	10000.	1.0
	2	1.1	10 ⁻⁸	11000.	-1.1

Figure II B2.1. Reich-Moore approximation vs. full R-matrix for artificial example of test case tr110.

- → Solid line = Reich Moore
- → Dot-dash = full R-matrix # 1
- → Dash = full R-matrix # 2

9 Generalized Reich-Moore R-matrix Approximation

¹⁶O Full R-matrix vs. conventional RM toy case

(Reich-Moore vs R-Matrix calculations)

Capture cross sections (b)

$Cu(n,\gamma)$ evaluation

Note: other ways to improve the fit besides resorting to gRMA
 - ^{63,65}Cu evaluation by V. Sobes (ORNL)

Tungsten ¹⁸³W evaluation

- By M. Pigni (ORNL)
- Slight room for improvement:

FIG. 1. Neutron capture cross sections (top) and transmission data (bottom) of 183 W in the energy range of 2.5-3.6 keV. The solid red lines calculated by the resonance parameters are compared with the experimental data.

Implications: Unitarity

- Generalized RM *R*-matrix is manifestly unitary
 - its *R*-matrix is real, its resonance energies are real
 - A reduced number (N_{λ}) of "resonant" γ -ray channels is retained
 - R-matrix particle-channel sub-matrix alone is not unitary
- Insight: γ -ray channels retained in gRMA make *R*-matrix unitary
- Consequently, conventional RMA is unitary
- gRMA thus provides foundation for Froehner's prescription
 - Total cross section is computed assuming a unitary S- or U-matrix
 - Capture cross section is then a deviation of particle R-matrix from unitarity
 - Total capture computed as difference between total and particle channels
 - Implemented in SAMMY

Implications: Statistics

- Related to Wishart matrices
 - Marginal distribution of diagonal and off-diagonal elements
 - Correlations may affect marginal distrib.'s
- Diagonal elements
 - Related to conventional RM capture widths
 - Approximately χ^2 -distribution with N_{γ} degrees of freedom (DOF)
 - Dominant γ-rays may reduce the effective number of DOF
 - P. Koehler finds DOF is smaller than expected in data
- Off-diagonal elements
 - "XY" distribution with mean 0 and variance $\frac{1}{2}$ that of the diagonal
- → Variance of RM widths estimates neglected off-diagonal
 - May be useful to estimate isotopes to re-evaluate.

Statistics of conventional RM widths on ^{182,183}W

Their variance is approx. twice that of (neglected) off-diagonal:

Implications: Brune's alternative R-matrix

- Brune alternative R-matrix parameterization:
 - Independent of boundary conditions thanks to
 - $-S_c(E)-B_c=0$ energy-dependent boundary conditions
 - The real part of Kapur-Peierls $L_c(E)-B_c=S_c(E)+iP_c(E)-B_c=0$
 - Alternative resonance energies aligned with resonant peaks
 - Intuitive parameterization
 - C. Brune Phys. Rev. C66 044611 (2002)
- Generalized RM capture widths
 - Brune transformation matrices not affected by γ -channels, if $S_{\gamma}(E)=B_{\gamma}=0$
 - Unambiguous transformation to/from Brune alternative capture widths
 - Also true for conventional RM widths (diagonal only)
 - But these will not remain diagonal when transformed

Alternative R-matrix parameterization

• C. Brune transform C. R. BRUNE PHYSICAL REVIEW C 66, 044611 (2002)

$$U_{c'c} = \Omega_{c'} \Omega_c [\delta_{c'c} + 2i(P_{c'}P_c)^{1/2} \boldsymbol{\gamma}_{c'}^T A \boldsymbol{\gamma}_c]$$

$$\boldsymbol{A}^{-1} = \boldsymbol{e} - E \boldsymbol{1} - \boldsymbol{\gamma} (\boldsymbol{L} - \boldsymbol{B}) \boldsymbol{\gamma}^{T} \qquad \boldsymbol{e}_{\lambda \mu} = E_{\lambda} \delta_{\lambda \mu}$$

- Transform from Formal to alternative parameters:
 - a non-linear eigenvalue problem:

$$\boldsymbol{\mathcal{E}} = \boldsymbol{e} - \sum_{c} \boldsymbol{\gamma}_{c} \boldsymbol{\gamma}_{c}^{T} (\boldsymbol{S}_{c} - \boldsymbol{B}_{c})$$
$$\boldsymbol{\mathcal{E}} \boldsymbol{a}_{i} = \widetilde{\boldsymbol{E}}_{i} \boldsymbol{a}_{i}$$

- All widths in generalized Reich-Moore approximation transform as:

$$\widetilde{\boldsymbol{\gamma}}_{ic} = \boldsymbol{a}_i^T \boldsymbol{\gamma}_c$$

- This shows that exact Brune transform is possible in gRM, not in RM Tr Genera Alternative A- and R-matrix derived by C. Brune (2002)

Generalized RM (gRM): Conclusions and Outlook

- gRM provides a better way to fit *total* capture cross sections
 - It is analytically equivalent to full R-matrix when S_{γ} - B_{γ} =0
 - It will likely improve fitting of total and other partial cross sections too
- gRM is manifestly unitary because its R-matrix is real
 - Justifies Froehner's prescription for unitary conventional RM in SAMMY
- gRM alternative resonance parameters are unambiguous
 Carl Brune (2002) transform can be applied exactly when S_y-B_y=0
- gRM yields insight on distributions of capture matrix elements
 - Deviations from statistics of Wishart matrices may reveal doorways
 - Variance of gRM capture matrix diagonal is 2x that of off-diagonal el.'s
 - Elements near the diagonal (e.g. tri-diagonal) may be sufficient for fitting
- Identify evaluations that may benefit from gRMA

Implement it and apply it in a future publication
 18 Generalized Reich-Moore *R*-matrix Approximation

SAMMY 8.1 coming soon to RSICC.ornl.gov

- Includes SAMINT program designed to adjust nuclear data parameters based on integral data: <u>http://www.osti.gov/scitech/biblio/1185560/</u>
 - In multi-group or continuous-energy framework
 - Informs the evaluation of resolved resonance parameters
 - Leverages ORNL expertise in sensitivity studies of IBE's and applications
 - SCALE modules TSUNAMI and TSURFER
- New detector resolution functions based on MCNP simulations
 - In collaboration with Y. Danon (RPI)
- SAMMY CI and SQA
 - Cmake/ctest build and test on Linux/Mac/Windows, gfortran/ifort
 - Helped identify and resolve several minor problems
- SAMMY code modernization on the way:
 - SAMRML already rewritten into C++
- Many thanks for feedback and inquires from SAMMY users!

Backup SAMMY slides

20 Generalized Reich-Moore R-matrix Approximation

History

- Developed by Dr. Nancy Larson since 1970's through 2008
- Includes SAMMY + 25 auxiliary codes
 - e.g. SAMRML
- Architecture
 - Large Fortran (77) container array for memory management
- 185 multi-step test cases + 10 tutorial examples
- Comprehensive Documentation:
 - <u>http://info.ornl.gov/sites/publications/files/Pub13056.pdf</u>
- Employed for resolved resonance evaluations in ENDF
- Distributed via RSICC <u>https://rsicc.ornl.gov/</u>
 - SAMMY 8.1 is forthcoming

Capabilities

- Multi-level Multi-channel R-matrix code
- Bayesian fitting of R-matrix resonance parameters (RP)
 - a.k.a. Generalized Least Squares
 - yields covariance matrix of RP
- Data reduction:
 - Experimental Facility Resolution functions: ORELA, RPI, GELINA
 - Normalization, background
- Detector resolution functions
 - Configurable for variety of detectors
- Doppler broadening
 - Solbrig's kernel, Leal-Hwang method
- Multiple scattering effects, and other target effects
- Charged projectiles (p, α)
- ²² ••• Unresolved Resonance Range (FITACS by F. Froehner)

Capabilities: R-matrix and Reich-Moore Approx.

- Reich-Moore approximation (RMA)
 - For channels approximated statistically via Random Phase Hypothesis
 - Applied mostly for capture channels
 - penetrability *P*=1 for capture in RMA (and in exact R-matrix below)
- R-matrix w/o RMA
 - Make capture channels as reaction channels in SAMMY input files
 - Marco Pigni's talk:
 - Quantify accuracy of RMA relative to R-matrix on ¹⁶O using 5 γ -rays/level

Capabilities: Resolution broadening

- Experimental Resolution broadening
 - Convolution of 4 components:
 - The electron burst
 - a square function of time
 - Neutron sources:
 - tantalum target
 - water moderator
 - Neutron detectors
 - model NE-110 recoil proton detector
 - lithium glass detector
 - Time-of-flight channel width
 - a square function of time
- Doppler broadening (DB)
 - numerical convolution of cross sections by Solbrig kernel over E
 - Double-differential c.s. DB-ed approximately by SAMMY now
 - our group developed and published an exact method

24 GeneratizeLeal+Hwang:Aefficient, used by SCALE

Capabilities: configurable energy mesh

- Auxiliary energy mesh for computations
 - Includes data energy points and additional points
 - especially at and near resonance peaks to trace their shapes completely
 - Needed because resonance are narrower at T=0 K before Doppler broadening to room temperature for data
 - Useful for comparing results from various codes

SAMINT: Nuclear Data Adjustment Based on Integral Benchmark Experiments (IBE)

- SAMINT is an auxiliary program designed to allow SAMMY to adjust nuclear data parameters based on integral data.
- Enables coupling of differential and integral data evaluation in a continuous-energy framework
- Informs the evaluation of resolved resonance parameters
 - Based on performance in simulations of IBE's
- Leverages RNSD (ORNL) expertise in sensitivity studies of nuclear IBE's and applications
 - SCALE modules TSUNAMI and TSURFER

Integral Experiments to Aid Nuclear Data Evaluation

- SAMINT can be used to extract information from integral benchmarks to aid the nuclear data evaluation process.
- Near the end of the evaluation based on differential experimental data, integral data can be used to:
 - Resolve remaining ambiguity between differential data sets
 - Guide the evaluator to troublesome energy regions
 - Inform the evaluator of the most important nuclear data parameters to integral benchmark calculations
 - Improve the nuclear data covariance matrix evaluation

Cross Section Changes: Finer Scale than Differential Experimental Data

Inelastic cross section of ⁵⁶Fe before (χ^2 = 23.6023) and after (χ^2 = 22.9036) the adjustment based on integral experimental data plotted on top of differential experimental data of Perey, presented with one standard deviation error bars.

Connections to AMPX and SCALE

- AMPX: data processing suite for SCALE data libraries
 - Dorothea Wiarda, Andrew Holcomb, Michael Dunn (ORNL)
 - Shipped with SCALE 6.2 via https://rsicc.ornl.gov
- SCALE: nuclear modeling suite for design, safety, licensing
 - http://scale.ornl.gov Brad Rearden (ORNL) Manager
- SAMMY modernization follows AMPX and SCALE
 - Mercurial version control system
 - Cmake automated build and ctest automated testing
 - Fogbugz Bug tracking system
- SAMMY Module SAMRML "shared" with AMPX:
 - Stripped-down SAMMY for computing resonant cross sections
 - no parameter fitting, no Doppler or resolution broadening
 - also used in data processing codes: AMPX, NJOY, PREPRO
 - Modernized into C++ by Andrew Holcomb

²⁹ Generalized Reich-More Provides a framework for modernizing SAMMY

Modernization: SQA

- Version control of source code and test cases using Mercurial
- Bug tracking and workflow
- Cmake: auto configuration build (make –j)
- 25 executables built automatically on several platforms
- Ctest: auto testing tool
 - Test whether result are within a prescribed tolerance (1E-4)
 - SAMMY files tested: LST, PAR, LPT...
 - Makes it much easier to notice discrepancies.
 - 178 test cases from SAMMY 8.0.0 and
 - 4 new test cases for SAMINT
 - 1 new test case for RPI Lithium Glass detector resolution function
 - (All test cases include subcases.)

Supported Platforms and Compilers

- Mac: gfortran
- Linux: gfortran, ifort
- Windows: ifort
 - Revealed few remaining issues that were corrected

Modernization cont.'d

Proposed SAMMY re-organization

- Delineate modules that compute cross sections from those that fit resonance parameters to the data
- i.e. keep SAMRML a standalone module called by a fitting program
- Fitting method could remain Bayesian or Generalized Least Squares

⁶Li-glass Neutron Detector Array MELINDA

- Improved parameterization
 - Based on MCNP simulations by Amanda Youmans (RPI) •

Before:
$$I(l) = \begin{cases} Dg & for \ 0 < t < d \\ De^{-f(t-d)} & for \ d < t \end{cases}$$

After:

 $d(E) = d_0 + \ln(E) * (d_1 + d_2 * \ln(E))$ $f(E) = f_0 + \ln(E) * (f_1 + f_2 * \ln(E))$

8600

Liquid Scintillator Detector liquid CH_{1.212}

Based on MCNP simulations by Amanda Youmans (RPI)

Table IV: Cross Sections for EJ-301 SAMMY				
Input				
Energy [eV]	Cross section [b]			
500,000	7.967348			
600,000	6.963397			
750,000	5.958675			
1,000,000	4.953201			
2,000,000	3.101132			
3,000,000	2.329274			
5,000,000	1.683733			
7,500,000	1.554593			
10,000,000	1.172541			
15,000,000	0.877705			
20,000,000	0.663136			

Minor improvements in SAMMY 8.1

Updated physical constants

- Consistent with SAMRML
- SAMMY and SAMRML yield identical results now
- Corrected a misplaced index causing incorrect matrix multiplication for non-diagonal data covariance matrix
 - (uncovered and corrected by Vlad Sobes)
- Several other minor bug fixes
 - Revealed by compiler or platform idiosyncrasies

Recent Developments

- Convert SAMMY resonance parameters to formal R-matrix
 - SAMMY evaluations set $S_c(E)$ - B_c =0 boundary condition (b.c.)
 - Advantage: resonance energies coincide with resonance peaks
 - Disadvantage: slight deviations from formal R-matrix
 - SAMMY does support formal R-matrix B_c =-1 b.c.
 - Andrew Holcomb programmed conversion to/from formal R-matrix
 - Converted ¹⁶O S_c(E)-B_c=0 into formal parameters for Marco Pigni's talk
 - and is extending it to $L_c(E)$ - $B_c=0$ in complex plane
- S-matrix pole representation of R-matrix
 - via e.g. Brune transform of R-matrix param.'s for $L_c(E)$ - B_c =0 b.c.
 - Useful for on-the-fly Doppler broadening in neutron transport app.'s
 - Developed by Hwang (ANL) and Fritz Froehner (INR, Karlsruhe)
 - Ongoing collaboration Vlad Sobes and N.E. at M.I.T. (Pablo Ducru)
 - Talk by Vlad Sobes this Friday
 - Use Nicolas Michel's complex Coulomb w.f. library (CPC, 176 (2007) 232)

Conclusions and outlook

ORNL has enlarged SAMMY user and developer expertise

- various RRR evaluations ongoing and upcoming
 - Marco Pigni, Vlad Sobes, Luiz Leal
 - Klaus Guber collecting data at GELINA
- SAMMY modernization continuing in a modern SQA framework
- code sharing with AMPX modules
 - e.g. SAMRML modernized into C++ by Andrew Holcomb
- Interaction with other R-matrix and data evaluation codes is encouraged.

