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2 Generalized Reich-Moore R-matrix Approximation 

Talk outline 

•  History of Reich-Moore (RM) approximation 
•  Motivation for generalized RM 

–  Considerations of Unitarity, Brune alternative R-matrix parameters 

•  Derivation 
–  like RM but retain level-level interference via γ-ray channels 

•  Implications 
–  Total capture cross section fitted by fewer parameters than full R-matrix 
–  Manifest Unitarity  
–  Froehner’s prescription 
–  Insight about statistics of level-level interference via γ-channels 

•  SAMMY 8.1 



3 Generalized Reich-Moore R-matrix Approximation 

RM History and use 
•  Reich-Moore divides full R-matrix into particle and γ-ray blocks 

–  Formal expressions derived for reduced R-matrix of particle channels 
–  The effect of γ-ray channels on particle-channels approx. by a diagonal 

•  Level-level interference among γ-ray channels neglected  
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Reich and Moore, Phys. Rev. 111, 929 (1958)  



4 Generalized Reich-Moore R-matrix Approximation 

Motivation for generalized Reich-Moore   
•  Conversion of RM R-matrix parameters 

–  Between formal and alternative (a.k.a. physical) ones (C. Brune, 2002) 

•  Investigate whether Reich-Moore (RM) approx. is unitary 
–  It may appear not to be as particle-channel R-matrix is complex (not real)  
–  RM derivation was revisited to investigate unitarity 
–  In this process a generalization of RM was found 

•  This generalization is manifestly unitary 
•  Corollary: Conventional RM is also unitary 
•  It provides basis for Fritz Froehner’s prescription used by SAMMY 

•  Other potential benefits Generalized RMA (gRMA) 
–  May provide better fits to total capture (and other cross sections) 

•  Because gRMA reproduces total cross section formally 
–  May shed light on resonant-interference effects neglected by conv. RM 

•  Including statistical properties of capture widths 
 



5 Generalized Reich-Moore R-matrix Approximation 

Derivation uses full R-matrix via level-matrix A 

•  Separate channel space into particle and γ-ray channels: 
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Abstract. A conventional Reich-Moore approximation (RMA) of R-matrix is generalized into a manifestly
unitary form by introducing a set of resonant capture channels that are treated explicitly in a generalized reduced
R-matrix. A dramatic reduction of channel space witnessed in conventional RMA, from N
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from N
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0 , where N
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+ N� and N� is the number of R-matrix levels. This
reduction, although not as dramatic as in the conventional RMA, could nonetheless be significant for medium
and heavy nuclides where N� ⌧ N�. The resonant capture channels introduced by generalized RMA are a
consequence of retaining level-level interference via capture channels neglected in conventional RMA. It is
shown that the expression for total capture cross section in generalized RMA is formally equal to that of the
full N

c

⇥ N

c

R-matrix. This suggests that generalized RMA could yield improved nuclear data evaluations in
the resolved resonance range. However, this would come at a cost of introducing N�(N� �1)/2 resonant capture
width parameters.
It is shown that manifest unitarity of generalized RMA may provide a formal basis for a method advocated
by Froehner and implemented in a nuclear data evaluation code SAMMY for restoring unitarity of conven-
tional RMA. A welcome byproduct of generalized RMA is that its capture widths are exactly convertible into
alternative R-matrix parameters via Brune tranform. Application of idealized statistical methods to generalized
RMA shows that variance among RMA capture widths could be used to estimate variance among o↵-diagonal
elements neglected in conventional RMA. Finally, it is shown that significant departure of capture widths dis-
tribution from an idealized one may indicate presence of underlying doorway states.
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Partial width amplitude matrix � could be projected 1

into its particle channel sub-matrix �c and its �-ray chan-
nel sub-matrix ��

� ⌘ (�c,��) (4)

and analogously for L � B

L � B ⌘
 

Lc � Bc 0

0 L� � B�

!
(5)

so that a level matrix A could be expressed as

A�1 = e � E1 + ��(L� � B�)�T

� + �c(Lc � Bc)�T

c . (6)

where L� is a logarithmic derivative of �-ray outgoing
wave function conventionally separated into shift function
S� ⌘ <(L�) and pentrability P� ⌘ =(L�). The shift factor
of �-ray channels is approximated by 0 and their boundary
conditions are set to 0, namely,

L� � B� ⌘ S� + iP� � B� ⇡ iP� (7)
1Note: the word projected is intentionally alluding to Feshbach’s pro-

jection operator formalism (P+Q=1) of which Reich-Moore eliminated
channels could be viewed as a special case of projected out channels, i.e.
Q = �.
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Full R-matrix g-ray channels 
•  γ-ray channels  

–  defined by EM multipolarity, helicity, and final state quantum numbers 
–  Selection rules based on f.s. quantum numbers, γ-ray multipolarity 
–  Electric: E1, E2, E3, … 
–  Magnetic: M1, M2, M3, … 

•  Level-level interference takes place via identical γ-ray channels 
–  Use conventional approximation S-B=0  

•  Or use Brune alternative R-matrix parameters for which S-B=0 always  

Consequently the level matrix A could be written as

A�1 ⇡ e � E1 + i��P1/2
� P1/2

� �
T

� + �c(Lc � Bc)�T

c (8)

where �-ray penetrability P� has been written as a prod-
uct of penetrability amplitudes P1/2

� = k

L+1/2
� where L

is �-ray multipolarity and k is its momentum wavenum-
ber so that E = ~k�c is its energy. (This form of �-ray
penetrabilities comes from expression for capture width
matrix elements in e.g. Section 3C-2 of Bohr and Mot-
tleson, Nuclear Structure, Vol. 1, rather than from the
logarithmic derivative of the outgoing wave function in
case of particle channels.) A �-ray channel is specified
by the energy and quantum numbers of the final reso-
nant state, E

f

, J
⇡

f

f

, and angular momentum quantum num-
bers L�ML� , and parity (or helicity) of the primary emit-
ted �-ray. Interferences between �-rays between di↵erent
capturing levels (e.g. µ and ⌫) that lead to o↵-diagonal
elements of �(�)

µ⌫ takes place among �-rays of the same
L�ML�⇡� into the same final level. For convenience one
could define generalized Reich-Moore capture width ma-
trix �(�)/2 ⌘ ��P1/2

� P1/2
� �

T

� so that

A�1 = e � E1 + i�(�)/2 + �c(Lc � Bc)�T

c . (9)

When �(�) is positive semidefinite, one could compute its
principal square root matrix of capture width amplitudes

�0�0 ⌘ [�(�)/2]1/2, (10)

that is to be used for fitting partial width amplitudes when
using R-matrix formalism. The partial width amplitude
matrix in gRMA would be a concatenation of particle and
capture width matrices, namely,

�0 = (�c,�
0
�0 ), (11)

in terms of which the gRMA reduced R-matrix is

R = �0T (e � E1)�1�0 (12)

where e is a diagonal matrix of R-matrix level energies,
eµ⌫ = Eµ�µ⌫.

(For level-matrix A formalism one could fit partial
capture widths in �(�) directly.) Matrix �(�) is positive
semidefinite because it is of the form M

T

M that implies
positive definiteness. Matrix �0�0 is a (N� ⇥ N�) matrix
while �� matrix is (N� ⇥ N�) . For the shift function ap-
proximation and boundary conditions mentioned above it
will be shown below that the total capture cross section
could be expressed via (N� ⇥ N�) �0�0 matrix in a way that
is equal to total capture computed via the original (N�⇥N�)
�� matrix. Since N� � N� for heavy nuclides this yields
a significantly smaller number of parameters needed to fit
total capture. However, this gain comes at a loss of infor-
mation needed to compute partial capture cross sections
contained in the original �� matrix. The unitarity of the
U-matrix is preserved when re-defining �-ray channels via
�0�0 , and in harmony with the conventional RMA penetra-
bility associated with these capture channels is 1 according
to definition in Eq. (10). Since the number of channels in

gRMA is N

c

0 = N

c

+ N�, there is slight advantage to us-
ing level-matrix A because it is slightly smaller than the
R-matrix in gRMA, although this advantage may not be
significant for N

c

⌧ N�. In contrast to gRMA, R-matrix
expressions are vastly advantageous in conventional RMA
because its reduced R-matrix is (N

c

⇥N

c

) where N

c

⌧ N�.
O↵-diagonal elements of �(�) matrix are set to zero in

conventional Reich-Moore approximation. The retained
diagonal elements are the capture width parameters of con-
ventional Reich-Moore approximation. The e↵ect of set-
ting o↵-diagonal elements to 0 in conventional RMA will
lead to a slight deviation between its fitted widths (mainly
the capture widths but other widths too to a smaller degree)
and those fitted using gRMA.

Note that a unitary matrix U could be divided into
blocks introduced above as

U ⌘
 

Ucc Uc�
U�c U��

!
(13)

so that a total capture cross section is proportional to (Note
that 1c� = 0)

Uc�U⇤Tc� = ⌦c P1/2
c �

T

c A��P1/2
� ⌦�⌦

⇤
�P⇤1/2� ��A�

T

c P⇤1/2c ⌦⇤c

= ⌦c P1/2
c �

T

c A(��P1/2
� P1/2

� �
T

� )A�T

c P⇤1/2c (14)

= ⌦c P1/2
c �

T

c A(�(�)/2)A�T

c P⇤1/2c ⌦⇤c (15)

since ⌦�⌦⇤� = 1�, and L� � B� = iP� was assumed on
the last line. In that case total capture is parameterized en-
tirely by �(�) appearing on the last line above, and implic-
itly in the level matrix A. Alternatively one could define
R-matrix using �0�0 matrix of partial width amplitudes to
be fitted in a standard R-matrix formalism.

3 Relationship to Fritz Froehner’s
prescription

The preservation of unitarity in the gRMA could be used
to justify FF’s prescription that enforces unitarity of the to-
tal cross section in the conventional RMA. When the con-
ventional RMA is viewed as a limit of gRMA in which o↵-
diagonal elements of capture matrix are set to 0, it is appar-
ent that this approximation of the capture matrix would not
violate unitarity. Consistently with this, FF’s method treats
the total cross section as if it has been computed from a
unitary scattering matrix, and capture cross section is then
computed as a di↵erence between the total cross section
(including capture), and the total particle cross section us-
ing particle-channel reduced R-matrix. Capture cross sec-
tion could be viewed as a deviation from unitarity of the
particle-channel scattering matrix, the latter by itself being
non-unitary; the total scattering matrix including particle
and resonant capture channels is nevertheless unitary.

4 Variance of gRMA matrix elements

Empirical fitting of Reich-Moore capture widths to
neutron capture and cross section data using conven-
tional Reich-Moore approximation often reveals variations
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Generalized RM Derivation 
•  Consider capture-width matrix Γγ inside the level matrix A 
 

= Γγ/2 = γgRMγgRM x x γγPγ
1/2 Pγ

1/2γγ

γγ       = Nλ x Nγ matrix of physical capture channel widths  
γgRM = Nλ x Nλ matrix of gRMA capture channel widths

Nλ

Nγ

Nλ

Nλ << Nγ 
 

•  Since total capture cross section depends on Γγ , it could be 
fit equally well by Nλ as it could by all Nγ capture channels 
–  True for total capture only (individual γ-channels require full R-matrix)    
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Abstract. A conventional Reich-Moore approximation (RMA) of R-matrix is generalized into a manifestly
unitary form by introducing a set of resonant capture channels that are treated explicitly in a generalized reduced
R-matrix. A dramatic reduction of channel space witnessed in conventional RMA, from N
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reduced R-matrix, where N
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+ N� and N� is the number of R-matrix levels. This
reduction, although not as dramatic as in the conventional RMA, could nonetheless be significant for medium
and heavy nuclides where N� ⌧ N�. The resonant capture channels introduced by generalized RMA are a
consequence of retaining level-level interference via capture channels neglected in conventional RMA. It is
shown that the expression for total capture cross section in generalized RMA is formally equal to that of the
full N

c

⇥ N

c

R-matrix. This suggests that generalized RMA could yield improved nuclear data evaluations in
the resolved resonance range. However, this would come at a cost of introducing N�(N� �1)/2 resonant capture
width parameters.
It is shown that manifest unitarity of generalized RMA may provide a formal basis for a method advocated
by Froehner and implemented in a nuclear data evaluation code SAMMY for restoring unitarity of conven-
tional RMA. A welcome byproduct of generalized RMA is that its capture widths are exactly convertible into
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elements neglected in conventional RMA. Finally, it is shown that significant departure of capture widths dis-
tribution from an idealized one may indicate presence of underlying doorway states.
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Partial width amplitude matrix � could be projected 1

into its particle channel sub-matrix �c and its �-ray chan-
nel sub-matrix ��

� ⌘ (�c,��) (4)

and analogously for L � B

L � B ⌘
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0 L� � B�

!
(5)

so that a level matrix A could be expressed as

A�1 = e � E1 + ��(L� � B�)�T

� + �c(Lc � Bc)�T

c . (6)

where L� is a logarithmic derivative of �-ray outgoing
wave function conventionally separated into shift function
S� ⌘ <(L�) and pentrability P� ⌘ =(L�). The shift factor
of �-ray channels is approximated by 0 and their boundary
conditions are set to 0, namely,

L� � B� ⌘ S� + iP� � B� ⇡ iP� (7)
1Note: the word projected is intentionally alluding to Feshbach’s pro-

jection operator formalism (P+Q=1) of which Reich-Moore eliminated
channels could be viewed as a special case of projected out channels, i.e.
Q = �.

Consequently the level matrix A could be written as

A�1 ⇡ e � E1 + i��P1/2
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c (8)

where �-ray penetrability P� has been written as a prod-
uct of penetrability amplitudes P1/2

� = k

L+1/2
� where L

is �-ray multipolarity and k is its momentum wavenum-
ber so that E = ~k�c is its energy. (This form of �-ray
penetrabilities comes from expression for capture width
matrix elements in e.g. Section 3C-2 of Bohr and Mot-
tleson, Nuclear Structure, Vol. 1, rather than from the
logarithmic derivative of the outgoing wave function in
case of particle channels.) A �-ray channel is specified
by the energy and quantum numbers of the final reso-
nant state, E

f

, J
⇡

f

f

, and angular momentum quantum num-
bers L�ML� , and parity (or helicity) of the primary emit-
ted �-ray. Interferences between �-rays between di↵erent
capturing levels (e.g. µ and ⌫) that lead to o↵-diagonal
elements of �(�)

µ⌫ takes place among �-rays of the same
L�ML�⇡� into the same final level. For convenience one
could define generalized Reich-Moore capture width ma-
trix �(�)/2 ⌘ ��P1/2
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� so that

A�1 = e � E1 + i�(�)/2 + �c(Lc � Bc)�T

c . (9)

When �(�) is positive semidefinite, one could compute its
principal square root matrix of capture width amplitudes

�0�0 ⌘ [�(�)/2]1/2, (10)

that is to be used for fitting partial width amplitudes when
using R-matrix formalism. The partial width amplitude
matrix in gRMA would be a concatenation of particle and
capture width matrices, namely,

�0 = (�c,�
0
�0 ), (11)

in terms of which the gRMA reduced R-matrix is

R = �0T (e � E1)�1�0 (12)

where e is a diagonal matrix of R-matrix level energies,
eµ⌫ = Eµ�µ⌫.

(For level-matrix A formalism one could fit partial
capture widths in �(�) directly.) Matrix �(�) is positive
semidefinite because it is of the form M

T

M that implies
positive definiteness. Matrix �0�0 is a (N� ⇥ N�) matrix
while �� matrix is (N� ⇥ N�) . For the shift function ap-
proximation and boundary conditions mentioned above it
will be shown below that the total capture cross section
could be expressed via (N� ⇥ N�) �0�0 matrix in a way that
is equal to total capture computed via the original (N�⇥N�)
�� matrix. Since N� � N� for heavy nuclides this yields
a significantly smaller number of parameters needed to fit
total capture. However, this gain comes at a loss of infor-
mation needed to compute partial capture cross sections
contained in the original �� matrix. The unitarity of the
U-matrix is preserved when re-defining �-ray channels via
�0�0 , and in harmony with the conventional RMA penetra-
bility associated with these capture channels is 1 according
to definition in Eq. (10). Since the number of channels in

gRMA is N

c

0 = N

c

+ N�, there is slight advantage to us-
ing level-matrix A because it is slightly smaller than the
R-matrix in gRMA, although this advantage may not be
significant for N

c

⌧ N�. In contrast to gRMA, R-matrix
expressions are vastly advantageous in conventional RMA
because its reduced R-matrix is (N

c

⇥N

c

) where N

c

⌧ N�.
O↵-diagonal elements of �(�) matrix are set to zero in

conventional Reich-Moore approximation. The retained
diagonal elements are the capture width parameters of con-
ventional Reich-Moore approximation. The e↵ect of set-
ting o↵-diagonal elements to 0 in conventional RMA will
lead to a slight deviation between its fitted widths (mainly
the capture widths but other widths too to a smaller degree)
and those fitted using gRMA.

Note that a unitary matrix U could be divided into
blocks introduced above as

U ⌘
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!
(13)

so that a total capture cross section is proportional to (Note
that 1c� = 0)
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since ⌦�⌦⇤� = 1�, and L� � B� = iP� was assumed on
the last line. In that case total capture is parameterized en-
tirely by �(�) appearing on the last line above, and implic-
itly in the level matrix A. Alternatively one could define
R-matrix using �0�0 matrix of partial width amplitudes to
be fitted in a standard R-matrix formalism.

3 Relationship to Fritz Froehner’s
prescription

The preservation of unitarity in the gRMA could be used
to justify FF’s prescription that enforces unitarity of the to-
tal cross section in the conventional RMA. When the con-
ventional RMA is viewed as a limit of gRMA in which o↵-
diagonal elements of capture matrix are set to 0, it is appar-
ent that this approximation of the capture matrix would not
violate unitarity. Consistently with this, FF’s method treats
the total cross section as if it has been computed from a
unitary scattering matrix, and capture cross section is then
computed as a di↵erence between the total cross section
(including capture), and the total particle cross section us-
ing particle-channel reduced R-matrix. Capture cross sec-
tion could be viewed as a deviation from unitarity of the
particle-channel scattering matrix, the latter by itself being
non-unitary; the total scattering matrix including particle
and resonant capture channels is nevertheless unitary.

4 Variance of gRMA matrix elements

Empirical fitting of Reich-Moore capture widths to
neutron capture and cross section data using conven-
tional Reich-Moore approximation often reveals variations
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Total capture of gRMA equals that of full R-matrix 
•  Working with alternative R-matrix parameters since S(E)-B=0  
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while �� matrix is (N� ⇥ N�) . For the shift function ap-
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will be shown below that the total capture cross section
could be expressed via (N� ⇥ N�) �0�0 matrix in a way that
is equal to total capture computed via the original (N�⇥N�)
�� matrix. Since N� � N� for heavy nuclides this yields
a significantly smaller number of parameters needed to fit
total capture. However, this gain comes at a loss of infor-
mation needed to compute partial capture cross sections
contained in the original �� matrix. The unitarity of the
U-matrix is preserved when re-defining �-ray channels via
�0�0 , and in harmony with the conventional RMA penetra-
bility associated with these capture channels is 1 according
to definition in Eq. (10). Since the number of channels in
gRMA is N
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0 = N

c

+ N�, there is slight advantage to us-
ing level-matrix A because it is slightly smaller than the
R-matrix in gRMA, although this advantage may not be
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⌧ N�. In contrast to gRMA, R-matrix
expressions are vastly advantageous in conventional RMA
because its reduced R-matrix is (N
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) where N
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⌧ N�.
O↵-diagonal elements of �(�) matrix are set to zero in

conventional Reich-Moore approximation. The retained
diagonal elements are the capture width parameters of con-
ventional Reich-Moore approximation. The e↵ect of set-
ting o↵-diagonal elements to 0 in conventional RMA will
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and those fitted using gRMA.
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tirely by �(�) appearing on the last line above, and implic-
itly in the level matrix A. Alternatively one could define
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9 Generalized Reich-Moore R-matrix Approximation 

Full R-matrix vs. conventional RM: total capture 
•  full R-matrix equivalent to gRMA; 2-level SAMMY example: 

Section II.B.2, page 2 (R8) Page 44 

Section II.B.2, page 2 (R8) Page 44 

Table II B2.1.  Parameter values used to illustrate Reich-Moore vs. full R-matrix calculations 
 

 O  Energy (MeV) OJ* (eV) nO* (eV) 
Sign 

u OJ* (eV)a

Reich Moore 1 1.0 1.0 10000.  
 2 1.1 1.1 11000.  

Pseudo-full R-matrix # 1 1 1.0 810 �  10000.   1.0 
 2 1.1 810 �  11000.   1.1 
Pseudo-full R-matrix # 2 1 1.0 810 �  10000.   1.0 
 2 1.1 810 �  11000. í1.1 
a Remember that the value given in the SAMMY PARameter file is not the partial width ī (which is always a positive 
number); rather, it is the sign of the reduced-width amplitude Ȗ multiplied by the partial width ī.  Hence, the negative 
sign in the final entry of this table is actually associated with the reduced-width amplitude for the capture channel.  See 
Section II.B.1 for further discussion. 
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10 Generalized Reich-Moore R-matrix Approximation 

16O Full R-matrix vs. conventional RM toy case 

10 M. T. Pigni 

Treatment of the Capture Channels 
(Reich-Moore vs R-Matrix calculations) 
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•  R-matrix case (five states for 17O) generated by 
randomly sampling capture widths (in black) 
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to obtain capture widths in Reich-Moore 
approximation and related capture cross 
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11 Generalized Reich-Moore R-matrix Approximation 

Cu(n,γ) evaluation 
•  Note: other ways to improve the fit besides resorting to gRMA  

–  63,65Cu evaluation by V. Sobes (ORNL) 
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12 Generalized Reich-Moore R-matrix Approximation 

Tungsten 183W evaluation 
•  By M. Pigni (ORNL) 
•  Slight room for improvement: Evaluation of Tungsten . . . NUCLEAR DATA SHEETS M.T. Pigni et al.

criticality benchmarks needs to be tested. In the current
ENDF/B-VII.1 nuclear data library, the tungsten isotope
evaluations were performed and tested by Trkov [8] by
the use of benchmark models taken from the SINBAD [9]
and the ICSBEP [10] compilation. The number of bench-
marks used in that analysis involved neutron flux spectra
in the intermediate and fast energy range. Since this
energy range is only slightly sensitive to the extended
resonance 182,183,184,186W evaluations, we first tested the
183W resonance evaluation on the basis of LSD bench-
marks [11]. Preliminary results of the evaluation work on
the neutron spectrum obtained by including the new set
of 183W resonance parameters in ENDF/B-VII.1 library
are presented and briefly discussed in Section II.

II. RESULTS AND DATA ANALYSIS

Based on the set of resonance parameters described in
Ref. [3], a new set of parameters for 342 resonances is
obtained in the energy range up to 5 keV for 183W. The
values of resonance parameters are updated from the fit
of a new set of transmission data [2]. Based on the R-
matrix code SAMMY Reich-Moore approximation, the
calculated cross sections for total, elastic, and capture
reaction channels took into account the isotopic composi-
tion of the sample used in the measurements. Altogether,
four isotopes of tungsten and related resonance parame-
ters were simultaneously considered in the SAMMY re-
gression calculations. For the transmission data, the iso-
topic compositions were 182W (6.44%), 183W (80.9%),
184W (9.52%), and 186W (3.14%). For the resolution
function related to the experimental facility, we used the
GELINA parameterization taken from Ref. [5].

In Fig. 1, the calculated capture cross sections (in con-
tinuous red lines) and transmission data (in continuous
magenta lines) are compared with the experimental data
in the energy range of 2.5-3.6 keV. As shown in the figure,
the improved set of experimental data allowed us to ob-
tain meaningful values of the neutron and capture widths
in the mentioned energy range. In addition, it was possi-
ble to redefine the contribution of external levels on the
basis of statistical properties of the new set of resonance
parameters. Fig. 2 shows the total and scattering cross
section of n+183W at incident energies between 10−4 eV
and 5 keV. The cross sections (black continuous line) are
the contribution of the potential scattering cross section
which, for s-waves, is given by

σpot = 4πa2
c

∑

J

gJ(1−RJ,∞
c )2 = 4πR′2 , (1)

where the effective scattering radius R′ is defined by the
product of the channel radius ac and the contribution of
the distant-level parameter RJ,∞

c weighted by the spin
statistical factor gJ . For this case, the distant-level pa-
rameter was kept equal to zero and the channel radius
was set to 7.3 fm. As expected, σpot is constant almost
over the entire energy range, and the effect of positive
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FIG. 1. Neutron capture cross sections (top) and transmis-
sion data (bottom) of 183W in the energy range of 2.5-3.6 keV.
The solid red lines calculated by the resonance parameters are
compared with the experimental data.
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FIG. 2. The potential scattering cross section for n+183W
calculated for a channel radius ac = 7.3 fm and different val-
ues of the distant-level parameter RJ,∞

c . The full and partial
contributions of the bound level(s) E− < 0 and the level(s)
E+ above the RRR 5 keV upper limit are shown.

distant-level parameters is to decrease the scattering cross
section (dashed black line). The effect of the two exter-
nal levels, one for each spin below (E < 0) and above
(E = Emax > 5 keV) the RRR, is shown in solid and
dashed red lines along with the partial contribution of
the external levels for different values of J . The two
external levels are modeled on the assumption that the
edges of the evaluated resonance region are represented
by two very broad and symmetrically located resonances
of equal strength [12]. Namely, for s-waves and Γγ ≪ I,
this yields external levels ΓJ

n± ≃ (3/2)ISJ
0

√
|E±|/1 eV

calculated at energies E± ≃ E ±
√

3I/2 with mid-energy
E = (Emax + Emin)/2. The components of the s-wave
strength function for different spin populations, namely,
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13 Generalized Reich-Moore R-matrix Approximation 

Implications: Unitarity 

•  Generalized RM R-matrix is manifestly unitary 
–  its R-matrix is real, its resonance energies are real  
–  A reduced number (Nλ) of “resonant” γ-ray channels is retained 
–  R-matrix particle-channel sub-matrix alone is not unitary 

•  Insight: γ-ray channels retained in gRMA make R-matrix unitary 

•  Consequently, conventional RMA is unitary 

•  gRMA thus provides foundation for Froehner’s prescription 
–  Total cross section is computed assuming a unitary S- or U-matrix 
–  Capture cross section is then a deviation of particle R-matrix from unitarity 
–  Total capture computed as difference between total and particle channels   
–  Implemented in SAMMY 



14 Generalized Reich-Moore R-matrix Approximation 

Implications: Statistics 
•  Related to Wishart matrices 

–  Marginal distribution of diagonal and off-diagonal elements 
–  Correlations may affect marginal distrib.’s 

•  Diagonal elements  
–  Related to conventional RM capture widths 
–  Approximately χ2-distribution with Nγ degrees of freedom (DOF) 

•  Dominant γ-rays may reduce the effective number of DOF 
•  P. Koehler finds DOF is smaller than expected in data 

•  Off-diagonal elements 
–  “XY” distribution with mean 0 and variance ½ that of the diagonal 

• à Variance of RM widths estimates neglected off-diagonal 
–  May be useful to estimate isotopes to re-evaluate.
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Statistics of conventional RM widths on 182,183W 

•  Their variance is approx. twice that of (neglected) off-diagonal: 
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16 Generalized Reich-Moore R-matrix Approximation 

Implications: Brune’s alternative R-matrix 

•  Brune alternative R-matrix parameterization: 
–  Independent of boundary conditions thanks to 
–  Sc(E)-Bc=0 energy-dependent boundary conditions 

•  The real part of Kapur-Peierls Lc(E)-Bc=Sc(E)+iPc(E)-Bc=0  
–  Alternative resonance energies aligned with resonant peaks 

•  Intuitive parameterization 
–  C. Brune Phys. Rev. C66 044611 (2002) 

•  Generalized RM capture widths 
–  Brune transformation matrices not affected by γ-channels, if Sγ (E)=Bγ=0  
–  Unambiguous transformation to/from Brune alternative capture widths 
–  Also true for conventional RM widths (diagonal only) 

•  But these will not remain diagonal when transformed 
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Alternative R-matrix parameterization 
•  C. Brune transform 

A!1"e!E1!!!L!B"!T. !7"

The equivalence of these two forms for the collision matrix
is discussed in !LT, Sec. IX.1" and in the Appendix. In addi-
tion the elements of the collision matrix connecting open
channels in Eq. !6" can also be expressed as

Uc!c"#c!#c$%c!c#2i!Pc!Pc"
1/2!c!

T A!c& , !8"

using the definitions of the Coulomb functions.
An interesting feature of R-matrix theory is that the col-

lision matrix is invariant under changes in the Bc , provided
that the E' and ('c are suitably adjusted. This result remains
true even for the case of finite N' $4&. The transformation is
most easily described using matrix equations in level space.
Let us consider the transformation Bc→Bc! , E'→E'! , and
('c→('c! . One first constructs the real and symmetric ma-
trix C defined by

C"e!)
c

!c!c
T!Bc!!Bc", !9"

which is diagonalized by the orthogonal matrix K such that
D"KCKT, with D'*"D'%'* . The necessary transforma-
tion of the R-matrix parameters is then given by $4&

E'!"D' !10"

and

!c!"K!c . !11"

It is straightforward to verify by substitution into Eqs. !6"
and !7" that these transformations leave U invariant.

III. THE ALTERNATIVE PARAMETRIZATION

A. Definition of the parametrization

We begin by defining the real and symmetric matrix E:

E"e!)
c

!c!c
T!Sc!Bc", !12"

and consider the eigenvalue equation

Eai"Ẽ iai , !13"

where Ẽ i is the eigenvalue and ai is the corresponding eigen-
vector. Note that E is implicitly dependent upon Ẽ i through
Sc , so the eigenvalue problem is nonlinear. We will assume
for convenience that the eigenvectors are normalized so that
ai
Tai"1.
Before proceeding further we would like to point out two

important properties of this eigenvalue equation: !1" The ei-
genvalues Ẽ i are invariant if the Bc are changed and the E'
and ('c are changed according to Eqs. !10" and !11". This
result is easily shown by substituting Eqs. !9"–!11" into Eqs.
!12" and !13". !2" If Bc"Sc(E'), the matrix E is diagonal
for the energy E' and hence E' is an eigenvalue. For this

choice of Bc the R-matrix level energy E' is often taken to
be the ‘‘observed resonance energy.’’ This definition is par-
ticularly useful in the present context and we will thus adopt
the Ẽ i as the observed resonance energies. The Ẽ i also cor-
respond exactly to the level energies found using boundary-
condition constant transformations yielding Bc"Sc(E')
such as described by Barker $2& and Azuma et al. $5&.
In addition one can define a new set of reduced width

parameters (̃ ic via

(̃ ic"ai
T!c . !14"

These new reduced width parameters are also invariant under
changes in Bc . When Bc"Sc(E'), we have also (̃'c

"('c . The quantities Ẽ i and (̃ ic can be taken as an alterna-
tive parametrization of R-matrix theory. We will derive be-
low efficient methods to convert Ẽ i and (̃ ic into the standard
R-matrix parameters E' and ('c , or to the collision matrix
U. Also note that Ẽ i and (̃ ic are equivalent to the ‘‘super-
script (')’’ parameters of Barker $2&, and essentially equiva-
lent to the ‘‘observed’’R-matrix parameters described by An-
gulo and Descouvemont $1&.
Our Eq. !13" is closely related to the complex eigenvalue

equation introduced by Hale, Brown, and Jarmie $6& to locate
the poles of the collision matrix—in fact it is just the real
part of their eigenvalue equation. For bound states our Ẽ i are
thus equivalent to the eigenvalues discussed in Ref. $6& since
Pc"0. For these states we can also introduce the asymptotic
normalization constant Cic which is given by $7&

Cic
2 "

2*cac
+2Oc

2 ! (̃ ic
2

1#)
c

(̃ ic
2 " dScdE #

Ẽi

$ , !15"

where *c is the reduced mass. This quantity is simply related
to the pole residues described by Eq. !4" of Ref. $6&. For
unbound states there appears to be no simple relation be-
tween Ẽ' and (̃'c and the pole parameters of Ref. $6&. One
may, however, define the observed partial width of a level in
terms of our parameters by

, ic"
2Pc(̃ ic

2

1#)
c

(̃ ic
2 " dScdE #

Ẽi

!16"

!see LT, Eqs. XII.3.5 and XII.3.6". One should bear in mind,
however, that there are many different definitions of ob-
served resonance energies and widths in use; generally the
differences between definitions are significant only for broad
states.

B. Relation to standard parameters

We will next show the method to convert Ẽ' and (̃'c to
standard R-matrix parameters. It is assumed that the eigen-
values are distinct, so that Ẽ i-Ẽ j provided i- j . Note that if
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for the energy E' and hence E' is an eigenvalue. For this

choice of Bc the R-matrix level energy E' is often taken to
be the ‘‘observed resonance energy.’’ This definition is par-
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respond exactly to the level energies found using boundary-
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I. INTRODUCTION

The R-matrix theory of reactions has proven over the
course of time to be very useful in nuclear and atomic phys-
ics, both for the fitting of experimental data and as a tool for
theoretical calculations. In this paper we explore a math-
ematically equivalent alternative formulation of R-matrix
theory which will be especially useful for the fitting of ex-
perimental nuclear physics data.
In a recent paper an alternative parametrization R-matrix

theory was described by Angulo and Descouvemont #1$. In
their framework there are no level shifts and it is straightfor-
ward to incorporate known information about level energies
and partial widths. They presented an approximate iterative
relation between the alternative parameters and the standard
R-matrix parameters. In addition consideration was limited
to the single-channel case with a boundary-condition con-
stant of zero. Some aspects of these alternative parameters
have also been discussed in a paper by Barker #2$. In this
paper we further develop the concept of an alternative
R-matrix parametrization. The description is generalized to
allow nonzero boundary-condition constants and an arbitrary
number of channels. We present an exact method for con-
verting the alternative parameters to the standard R-matrix
parameters which only requires a matrix diagonalization. We
also found a rather surprising result, that the collision matrix
can be calculated directly from the alternative parameters
using alternative formulations of the level matrix or R ma-
trix. We then discuss the solution of the nonlinear eigenvalue
equation required to extract the alternative parameters from
the standard parametrization, and demonstrate some of these
ideas using a simple example. Finally we briefly discuss the
application of the alternative parametrization to % rays and &
decays.

II. REVIEW OF STANDARD R-MATRIX THEORY

We begin by reviewing some of the notation and results of
standard R-matrix theory as described by Lane and Thomas
!LT" #3$. The R matrix is a function of the energy E and is
defined by

Rc!c"'
(

%(c!%(c

E(!E , !1"

where E( are the level energies, %(c are the reduced width
amplitudes, ( is the level label, and c is the channel label. We
will assume that the numbers of levels and channels are finite
and given by N( and Nc , respectively. One must also specify
the constants Bc , which determine the boundary conditions
satisfied by the underlying eigenfunctions.
In order to calculate physical observables one must em-

ploy various combinations of the Coulomb wave functions,
evaluated at the channel radius rc"ac . The quantities Ic and
Oc are defined by !LT, Eq. II.2.13". For closed channels the
outgoing solution Oc is taken to be the exponentially-
decaying Whittaker function !LT, Eq. II.2.17". In addition
one defines )c"(Ic /Oc)1/2 and

Lc"! acOc

*Oc

*rc
"
ac

"Sc#iPc , !2"

where the shift factor Sc and penetration factor Pc are real
quantities. The collision matrix U is an Nc$Nc matrix which
determines the observable quantities; it is related to the R
matrix via !LT, Eq. VII.1",

U"2i!1/2O!1#1!R!L!B"$!1R!1/2O!1#IO!1, !3"

where O, I, L, B, and ! are purely diagonal with elements
Oc , Ic , Lc , Bc , and kcac , respectively; 1 is the unit matrix,
and kc is the wave number.
It is convenient to form the level-space column vector "c

from the %(c , and to then form the rectangular matrix "
from the "c such that the matrix " has N( rows and Nc
columns. In addition, the diagonal matrix e is defined by

e(+"E(,(+ . !4"

The R matrix defined by Eq. !1" can now be written suc-
cinctly as

R""T!e!E1"!1". !5"

The collision matrix can also be expressed as

U"2i!1/2O!1"TA"!1/2O!1#IO!1, !6"

where A is an N($N( matrix defined by its inverse,
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The equivalence of these two forms for the collision matrix
is discussed in !LT, Sec. IX.1" and in the Appendix. In addi-
tion the elements of the collision matrix connecting open
channels in Eq. !6" can also be expressed as

Uc!c"#c!#c$%c!c#2i!Pc!Pc"
1/2!c!

T A!c& , !8"

using the definitions of the Coulomb functions.
An interesting feature of R-matrix theory is that the col-

lision matrix is invariant under changes in the Bc , provided
that the E' and ('c are suitably adjusted. This result remains
true even for the case of finite N' $4&. The transformation is
most easily described using matrix equations in level space.
Let us consider the transformation Bc→Bc! , E'→E'! , and
('c→('c! . One first constructs the real and symmetric ma-
trix C defined by

C"e!)
c

!c!c
T!Bc!!Bc", !9"

which is diagonalized by the orthogonal matrix K such that
D"KCKT, with D'*"D'%'* . The necessary transforma-
tion of the R-matrix parameters is then given by $4&

E'!"D' !10"

and

!c!"K!c . !11"

It is straightforward to verify by substitution into Eqs. !6"
and !7" that these transformations leave U invariant.

III. THE ALTERNATIVE PARAMETRIZATION

A. Definition of the parametrization

We begin by defining the real and symmetric matrix E:

E"e!)
c

!c!c
T!Sc!Bc", !12"

and consider the eigenvalue equation

Eai"Ẽ iai , !13"

where Ẽ i is the eigenvalue and ai is the corresponding eigen-
vector. Note that E is implicitly dependent upon Ẽ i through
Sc , so the eigenvalue problem is nonlinear. We will assume
for convenience that the eigenvectors are normalized so that
ai
Tai"1.
Before proceeding further we would like to point out two

important properties of this eigenvalue equation: !1" The ei-
genvalues Ẽ i are invariant if the Bc are changed and the E'
and ('c are changed according to Eqs. !10" and !11". This
result is easily shown by substituting Eqs. !9"–!11" into Eqs.
!12" and !13". !2" If Bc"Sc(E'), the matrix E is diagonal
for the energy E' and hence E' is an eigenvalue. For this

choice of Bc the R-matrix level energy E' is often taken to
be the ‘‘observed resonance energy.’’ This definition is par-
ticularly useful in the present context and we will thus adopt
the Ẽ i as the observed resonance energies. The Ẽ i also cor-
respond exactly to the level energies found using boundary-
condition constant transformations yielding Bc"Sc(E')
such as described by Barker $2& and Azuma et al. $5&.
In addition one can define a new set of reduced width

parameters (̃ ic via

(̃ ic"ai
T!c . !14"

These new reduced width parameters are also invariant under
changes in Bc . When Bc"Sc(E'), we have also (̃'c

"('c . The quantities Ẽ i and (̃ ic can be taken as an alterna-
tive parametrization of R-matrix theory. We will derive be-
low efficient methods to convert Ẽ i and (̃ ic into the standard
R-matrix parameters E' and ('c , or to the collision matrix
U. Also note that Ẽ i and (̃ ic are equivalent to the ‘‘super-
script (')’’ parameters of Barker $2&, and essentially equiva-
lent to the ‘‘observed’’R-matrix parameters described by An-
gulo and Descouvemont $1&.
Our Eq. !13" is closely related to the complex eigenvalue

equation introduced by Hale, Brown, and Jarmie $6& to locate
the poles of the collision matrix—in fact it is just the real
part of their eigenvalue equation. For bound states our Ẽ i are
thus equivalent to the eigenvalues discussed in Ref. $6& since
Pc"0. For these states we can also introduce the asymptotic
normalization constant Cic which is given by $7&
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+2Oc

2 ! (̃ ic
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where *c is the reduced mass. This quantity is simply related
to the pole residues described by Eq. !4" of Ref. $6&. For
unbound states there appears to be no simple relation be-
tween Ẽ' and (̃'c and the pole parameters of Ref. $6&. One
may, however, define the observed partial width of a level in
terms of our parameters by
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the poles of the collision matrix—in fact it is just the real
part of their eigenvalue equation. For bound states our Ẽ i are
thus equivalent to the eigenvalues discussed in Ref. $6& since
Pc"0. For these states we can also introduce the asymptotic
normalization constant Cic which is given by $7&
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where *c is the reduced mass. This quantity is simply related
to the pole residues described by Eq. !4" of Ref. $6&. For
unbound states there appears to be no simple relation be-
tween Ẽ' and (̃'c and the pole parameters of Ref. $6&. One
may, however, define the observed partial width of a level in
terms of our parameters by
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!see LT, Eqs. XII.3.5 and XII.3.6". One should bear in mind,
however, that there are many different definitions of ob-
served resonance energies and widths in use; generally the
differences between definitions are significant only for broad
states.

B. Relation to standard parameters

We will next show the method to convert Ẽ' and (̃'c to
standard R-matrix parameters. It is assumed that the eigen-
values are distinct, so that Ẽ i-Ẽ j provided i- j . Note that if
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The equivalence of these two forms for the collision matrix
is discussed in !LT, Sec. IX.1" and in the Appendix. In addi-
tion the elements of the collision matrix connecting open
channels in Eq. !6" can also be expressed as

Uc!c"#c!#c$%c!c#2i!Pc!Pc"
1/2!c!

T A!c& , !8"

using the definitions of the Coulomb functions.
An interesting feature of R-matrix theory is that the col-

lision matrix is invariant under changes in the Bc , provided
that the E' and ('c are suitably adjusted. This result remains
true even for the case of finite N' $4&. The transformation is
most easily described using matrix equations in level space.
Let us consider the transformation Bc→Bc! , E'→E'! , and
('c→('c! . One first constructs the real and symmetric ma-
trix C defined by

C"e!)
c

!c!c
T!Bc!!Bc", !9"

which is diagonalized by the orthogonal matrix K such that
D"KCKT, with D'*"D'%'* . The necessary transforma-
tion of the R-matrix parameters is then given by $4&

E'!"D' !10"

and

!c!"K!c . !11"

It is straightforward to verify by substitution into Eqs. !6"
and !7" that these transformations leave U invariant.

III. THE ALTERNATIVE PARAMETRIZATION

A. Definition of the parametrization

We begin by defining the real and symmetric matrix E:

E"e!)
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and consider the eigenvalue equation
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where Ẽ i is the eigenvalue and ai is the corresponding eigen-
vector. Note that E is implicitly dependent upon Ẽ i through
Sc , so the eigenvalue problem is nonlinear. We will assume
for convenience that the eigenvectors are normalized so that
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Tai"1.
Before proceeding further we would like to point out two

important properties of this eigenvalue equation: !1" The ei-
genvalues Ẽ i are invariant if the Bc are changed and the E'
and ('c are changed according to Eqs. !10" and !11". This
result is easily shown by substituting Eqs. !9"–!11" into Eqs.
!12" and !13". !2" If Bc"Sc(E'), the matrix E is diagonal
for the energy E' and hence E' is an eigenvalue. For this

choice of Bc the R-matrix level energy E' is often taken to
be the ‘‘observed resonance energy.’’ This definition is par-
ticularly useful in the present context and we will thus adopt
the Ẽ i as the observed resonance energies. The Ẽ i also cor-
respond exactly to the level energies found using boundary-
condition constant transformations yielding Bc"Sc(E')
such as described by Barker $2& and Azuma et al. $5&.
In addition one can define a new set of reduced width
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Our Eq. !13" is closely related to the complex eigenvalue

equation introduced by Hale, Brown, and Jarmie $6& to locate
the poles of the collision matrix—in fact it is just the real
part of their eigenvalue equation. For bound states our Ẽ i are
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–  Transform from Formal to alternative parameters:  
•  a non-linear eigenvalue problem: 

–  All widths in generalized Reich-Moore approximation transform as: 
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the Ẽ i as the observed resonance energies. The Ẽ i also cor-
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–  This shows that exact Brune transform is possible in gRM, not in RM 
–  Alternative A- and R-matrix derived by C. Brune (2002) 



18 Generalized Reich-Moore R-matrix Approximation 

Generalized RM (gRM): Conclusions and Outlook 

•  gRM provides a better way to fit total capture cross sections  
–  It is analytically equivalent to full R-matrix when Sγ-Bγ=0 
–  It will likely improve fitting of total and other partial cross sections too 

•  gRM is manifestly unitary because its R-matrix is real 
–  Justifies Froehner’s prescription for unitary conventional RM in SAMMY 

•  gRM alternative resonance parameters are unambiguous 
–  Carl Brune (2002) transform can be applied exactly when Sγ-Bγ=0 

•  gRM yields insight on distributions of capture matrix elements 
–  Deviations from statistics of Wishart matrices may reveal doorways 
–  Variance of gRM capture matrix diagonal is 2x that of off-diagonal el.’s 
–  Elements near the diagonal (e.g. tri-diagonal) may be sufficient for fitting 

•  Identify evaluations that may benefit from gRMA 
–  Implement it and apply it in a future publication 



19 Generalized Reich-Moore R-matrix Approximation 

SAMMY 8.1  coming soon to RSICC.ornl.gov 
•  Includes SAMINT program designed to adjust nuclear data 

parameters based on integral data: http://www.osti.gov/scitech/biblio/1185560/ 

–  In multi-group or continuous-energy framework 
–  Informs the evaluation of resolved resonance parameters 
–  Leverages ORNL expertise in sensitivity studies of IBE’s and applications 

•  SCALE modules TSUNAMI and TSURFER 

•  New detector resolution functions based on MCNP simulations 
–  In collaboration with Y. Danon (RPI) 

•  SAMMY CI and SQA 
–  Cmake/ctest build and test on Linux/Mac/Windows, gfortran/ifort 
–  Helped identify and resolve several minor problems 

•  SAMMY code modernization on the way: 
–  SAMRML already rewritten into C++ 

•  Many thanks for feedback and inquires from SAMMY users! 



20 Generalized Reich-Moore R-matrix Approximation 

Backup SAMMY slides 



21 Generalized Reich-Moore R-matrix Approximation 

History 
•  Developed by Dr. Nancy Larson since 1970’s through 2008  
•  Includes SAMMY + 25 auxiliary codes  

–  e.g. SAMRML 

•  Architecture 
–  Large Fortran (77) container array for memory management 

•  185 multi-step test cases + 10 tutorial examples 

•  Comprehensive Documentation: 
–  http://info.ornl.gov/sites/publications/files/Pub13056.pdf 

•  Employed for resolved resonance evaluations in ENDF 

•  Distributed via RSICC https://rsicc.ornl.gov/ 
–  SAMMY 8.1 is forthcoming 



22 Generalized Reich-Moore R-matrix Approximation 

Capabilities 
•  Multi-level Multi-channel R-matrix code 
•  Bayesian fitting of R-matrix resonance parameters (RP) 

–  a.k.a. Generalized Least Squares  
–  yields covariance matrix of RP 

•  Data reduction: 
–  Experimental Facility Resolution functions: ORELA, RPI, GELINA 
–  Normalization, background  

•  Detector resolution functions 
–  Configurable for variety of detectors 

•  Doppler broadening 
–  Solbrig’s kernel, Leal-Hwang method 

•  Multiple scattering effects, and other target effects 

•  Charged projectiles (p, α) 

•  Unresolved Resonance Range (FITACS by F. Froehner) 



23 Generalized Reich-Moore R-matrix Approximation 

Capabilities: R-matrix and Reich-Moore Approx. 

•  Reich-Moore approximation (RMA)  
–  For channels approximated statistically via Random Phase Hypothesis 
–  Applied mostly for capture channels 

•  penetrability P=1 for capture in RMA (and in exact R-matrix below) 

•  R-matrix w/o RMA  
–  Make capture channels as reaction channels in SAMMY input files 
–  Marco Pigni’s talk:  

•  Quantify accuracy of RMA relative to R-matrix on 16O using 5 γ-rays/level 



24 Generalized Reich-Moore R-matrix Approximation 

Capabilities: Resolution broadening 
•  Experimental Resolution broadening 

–  Convolution of 4 components: 
•  The electron burst  

– a square function of time 

•  Neutron sources: 
–  tantalum target 
– water moderator 

•  Neutron detectors 
– model NE-110 recoil proton detector 
–  lithium glass detector 

•  Time-of-flight channel width  
– a square function of time 

•  Doppler broadening (DB) 
–  numerical convolution of cross sections by Solbrig kernel over E 
–  Double-differential c.s. DB-ed approximately by SAMMY now 

•       our group developed and published an exact method 
–  Leal-Hwang: efficient, used by SCALE 



25 Generalized Reich-Moore R-matrix Approximation 

Capabilities: configurable energy mesh 
•  Auxiliary energy mesh for computations  

–  Includes data energy points and additional points 
•  especially at and near resonance peaks to trace their shapes completely 
•  Needed because resonance are narrower at T=0 K before Doppler 

broadening to room temperature for data 
–  Useful for comparing results from various codes 
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III.A.1.  Analyst’s Responsibility for Auxiliary Energy Grid 

 
In SAMMY, the user/analyst (not the author) is responsible for being sure that the numerical 

integrations are performed properly.  That is to say, the auxiliary energy grid (discussed in detail in 
Section III.A.2) must be sufficiently dense so that the numerical integration scheme produces the 
correct results. 
 

Why must the grid be dense?  Unbroadened cross sections would not be well defined on a 
sparse grid.  Hence, the integrations would not be accurate.  This is illustrated in Figures III A1.1 –
 4, which are greatly exaggerated for demonstration purposes.  In the first figure, red dots indicate 
the default grid points on which the unbroadened cross section might be calculated.  The dashed 
curve represents the actual unbroadened cross section, while the solid curve represents the 
approximate cross section found by interpolating between grid points.  With this sparse grid, 
agreement between the two curves in poor. 

 
 
 
 
 

Figure III A1.1.  Unbroadened cross 
section calculated using too few  

points in the auxiliary grid. 
 
 
 

  
 
 

Figure III A1.2 shows the Doppler-broadened cross section (solid curve) that would result 
from using the auxiliary grid of Figure III A1.1 to perform the numerical integration.  The calculated 
Doppler-broadened cross section is significantly larger than the actual Doppler-broadened cross 
section.  

 
 
 
 
 

Figure III A1.2.  Incorrect Doppler-
broadened cross section calculated 

with too few points in the  
auxiliary grid. 

 
 
 

Dotted curve = actual 
unbroadened cross section

Solid curve = linear 
interpolation between 
grid points

Dashed curve = actual Doppler-
broadened cross section

Solid curve = Doppler-broadened 
cross section calculated with too 
few points in auxiliary grid
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In contrast, Figure III A1.3 shows a denser auxiliary grid, one which adequately describes 
the unbroadened cross section.  The Doppler-broadened cross section calculated with this grid is 
shown in Figure III A1.4, in which the actual and the calculated Doppler-broadened cross sections 
are indistinguishable.  (Note that the “experimental” grid is the same in Figures III A1.2 and 
III A1.4.) 
 
 

 
 

Figure III A1.3.   Unbroadened 
cross section calculated using an 

adequate number of points  
in the auxiliary grid. 

Figure III A1.4.  Doppler-broadened 
cross section calculated with an  
adequate number of points in  

the auxiliary grid. 
 
 
 The reader may ask why SAMMY does not automatically check to be certain that the 
auxiliary grid is adequate, especially since this is done by other codes (e.g., processor codes such as 
AMPX [MD02] or NJOY [RM82]) which calculate Doppler-broadened cross sections.  Significant 
amounts of computation time are required for such checks.  With processor codes, the Doppler-
broadened cross section is generally calculated only once, and then used many times, so accuracy is 
far more important than speed of computation.  With analysis codes such as SAMMY, the Doppler-
broadened cross section is recalculated whenever new resonance parameters are used, so speed of 
computation can be an issue.  During initial stages of an analysis, the user may wish to sacrifice 
accuracy to gain speed.  During later stages of the analysis, the user will want to test whether there is 
sufficient accuracy. 
 

Options for increasing the density of points in the auxiliary grid are given in line 2 of the 
INPut file, Table VI A.1.  These should be used to make comparisons between Doppler- and 
resolution-broadened results from dense vs. sparse grids.  (For example, if the number of points is 
doubled by setting NXTRA = 1, and broadened cross sections are nearly the same as with 
NXTRA = 0, then the sparser grid is adequate.)  Early in the analysis, it is probably sufficient to use 
the sparsest grid that gives reasonable results.  Near the end of the project, a denser grid might be 
used to ensure greater accuracy. 
 

Dashed and solid curves 
are virtually identical.

Calculation agrees with actual Doppler-
broadened cross sections at the grid points.
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In contrast, Figure III A1.3 shows a denser auxiliary grid, one which adequately describes 
the unbroadened cross section.  The Doppler-broadened cross section calculated with this grid is 
shown in Figure III A1.4, in which the actual and the calculated Doppler-broadened cross sections 
are indistinguishable.  (Note that the “experimental” grid is the same in Figures III A1.2 and 
III A1.4.) 
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III.A.1.  Analyst’s Responsibility for Auxiliary Energy Grid 

 
In SAMMY, the user/analyst (not the author) is responsible for being sure that the numerical 

integrations are performed properly.  That is to say, the auxiliary energy grid (discussed in detail in 
Section III.A.2) must be sufficiently dense so that the numerical integration scheme produces the 
correct results. 
 

Why must the grid be dense?  Unbroadened cross sections would not be well defined on a 
sparse grid.  Hence, the integrations would not be accurate.  This is illustrated in Figures III A1.1 –
 4, which are greatly exaggerated for demonstration purposes.  In the first figure, red dots indicate 
the default grid points on which the unbroadened cross section might be calculated.  The dashed 
curve represents the actual unbroadened cross section, while the solid curve represents the 
approximate cross section found by interpolating between grid points.  With this sparse grid, 
agreement between the two curves in poor. 

 
 
 
 
 

Figure III A1.1.  Unbroadened cross 
section calculated using too few  

points in the auxiliary grid. 
 
 
 

  
 
 

Figure III A1.2 shows the Doppler-broadened cross section (solid curve) that would result 
from using the auxiliary grid of Figure III A1.1 to perform the numerical integration.  The calculated 
Doppler-broadened cross section is significantly larger than the actual Doppler-broadened cross 
section.  

 
 
 
 
 

Figure III A1.2.  Incorrect Doppler-
broadened cross section calculated 

with too few points in the  
auxiliary grid. 

 
 
 

Dotted curve = actual 
unbroadened cross section

Solid curve = linear 
interpolation between 
grid points

Dashed curve = actual Doppler-
broadened cross section

Solid curve = Doppler-broadened 
cross section calculated with too 
few points in auxiliary grid

Figures from SAMMY 
Users’ Guide: 



26 Generalized Reich-Moore R-matrix Approximation 

SAMINT: Nuclear Data Adjustment Based on 
Integral Benchmark Experiments (IBE) 

•  SAMINT is an auxiliary program designed to allow SAMMY 
to adjust nuclear data parameters based on integral data. 

•  Enables coupling of differential and integral data evaluation 
in a continuous-energy framework 

•  Informs the evaluation of resolved resonance parameters 
–  Based on performance in simulations of IBE’s 

•  Leverages RNSD (ORNL) expertise in sensitivity studies of 
nuclear IBE’s and applications 
–  SCALE modules TSUNAMI and TSURFER 

 



Integral Experiments to Aid 
Nuclear Data Evaluation 

•  SAMINT can be used to extract information 
from integral benchmarks to aid the nuclear 
data evaluation process. 

•  Near the end of the evaluation based on 
differential experimental data, integral data 
can be used to: 
•  Resolve remaining ambiguity between 

differential data sets 
•  Guide the evaluator to troublesome energy 

regions 
•  Inform the evaluator of the most important 

nuclear data parameters to integral benchmark 
calculations 

•  Improve the nuclear data covariance matrix 
evaluation 
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Cross Section Changes: Finer Scale than 
Differential Experimental Data 
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Connections to AMPX and SCALE 
•  AMPX: data processing suite for SCALE data libraries 

–  Dorothea Wiarda, Andrew Holcomb, Michael Dunn (ORNL) 
–  Shipped with SCALE 6.2 via https://rsicc.ornl.gov 

•  SCALE: nuclear modeling suite for design, safety, licensing 
–  http://scale.ornl.gov Brad Rearden (ORNL) Manager 

•  SAMMY modernization follows AMPX and SCALE 
–  Mercurial version control system 
–  Cmake automated build and ctest automated testing 
–  Fogbugz Bug tracking system 

•  SAMMY Module SAMRML “shared” with AMPX:  
–  Stripped-down SAMMY for computing resonant cross sections  

•  no parameter fitting, no Doppler or resolution broadening 
–  also used in data processing codes: AMPX, NJOY, PREPRO 
–  Modernized into C++ by Andrew Holcomb 

•        Provides a framework for modernizing SAMMY 
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Modernization: SQA 
•  Version control of source code and test cases using Mercurial 
•  Bug tracking and workflow 

•  Cmake: auto configuration build (make –j) 

•  25 executables built automatically on several platforms 

•  Ctest: auto testing tool 
–  Test whether result are within a prescribed tolerance (1E-4) 

•  SAMMY files tested: LST, PAR, LPT… 
•  Makes it much easier to notice discrepancies. 

–  178 test cases from SAMMY 8.0.0 and 
–  4 new test cases for SAMINT 
–  1 new test case for RPI Lithium Glass detector resolution function 
–  (All test cases include subcases.) 
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Supported Platforms and Compilers 

•  Mac: gfortran 
•  Linux: gfortran, ifort 

•  Windows: ifort 
–  Revealed few remaining issues that were corrected 
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Modernization cont.’d 

•  Proposed SAMMY re-organization 
–  Delineate modules that compute cross sections from those that fit 

resonance parameters to the data 
–  i.e. keep SAMRML a standalone module called by a fitting program 
–  Fitting method could remain Bayesian or Generalized Least Squares    
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6Li-glass Neutron Detector Array MELINDA 
–  Improved parameterization  

•  Based on MCNP simulations by Amanda Youmans (RPI) 
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Liquid Scintillator Detector liquid CH1.212  

–  Based on MCNP simulations by Amanda Youmans (RPI) 
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Minor improvements in SAMMY 8.1 

•  Updated physical constants 
–  Consistent with SAMRML 
–  SAMMY and SAMRML yield identical results now 

•  Corrected a misplaced index causing incorrect matrix 
multiplication for non-diagonal data covariance matrix 
–  (uncovered and corrected by Vlad Sobes) 

•  Several other minor bug fixes 
–  Revealed by compiler or platform idiosyncrasies   
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Recent Developments 
•  Convert SAMMY resonance parameters to formal R-matrix 

–  SAMMY evaluations set Sc(E)-Bc=0 boundary condition (b.c.) 
•  Advantage: resonance energies coincide with resonance peaks 
•  Disadvantage: slight deviations from formal R-matrix 
•  SAMMY does support formal R-matrix Bc=-l b.c.  

–  Andrew Holcomb programmed conversion to/from formal R-matrix 
•  Converted 16O Sc(E)-Bc=0 into formal parameters for Marco Pigni’s talk   
•  and is extending it to Lc(E)-Bc=0  in complex plane 

•  S-matrix pole representation of R-matrix 
–  via e.g. Brune transform of R-matrix param.’s for Lc(E)-Bc=0 b.c. 
–  Useful for on-the-fly Doppler broadening in neutron transport app.’s 

•  Developed by Hwang (ANL) and Fritz Froehner (INR, Karlsruhe) 
•  Ongoing collaboration Vlad Sobes and N.E. at M.I.T. (Pablo Ducru) 

– Talk by Vlad Sobes this Friday 

–  Use Nicolas Michel’s complex Coulomb w.f. library (CPC, 176 (2007) 232) 
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Conclusions and outlook 

•  ORNL has enlarged SAMMY user and developer expertise   
–  various RRR evaluations ongoing and upcoming 

•  Marco Pigni, Vlad Sobes, Luiz Leal 
•  Klaus Guber collecting data at GELINA  

–  SAMMY modernization continuing in a modern SQA framework 
–  code sharing with AMPX modules 

•  e.g. SAMRML modernized into C++ by Andrew Holcomb 
–  Interaction with other R-matrix and data evaluation codes is encouraged. 

 


