
1 
 

SUPLLYMANTARY INFORMATION (SI) FOR: 

Astrophysical S factor and Reaction Rate of 
12

C (α, γ)
 16

O Calculatted with 

Reduced R-matrix Theory 
 

Zhenpeng Chen1, Zhendong An2, Jiankai Yu3, Yeying Sun4, Gongtao Fan2, Yugang Ma2,
 
Kan Wang3 

 
Preface 

This SI includes 8 chapters of main body and 7 sections of appendix, part of the content is in the text briefly introduces, described in 

detail in the appendix, strive to be complete and rigorous, in order to facilitate the review and application. This work is essentially a kind of 

nuclear data evaluation with high accuracy, it is the pursuit of scientific, objective and accurate. If need be, you can run the Code RAC2015 

to make verification for all examples which are relative to this work, we are glad to send all relative files to you. 

This work is of scientific significance as follow: The astrophysical S factors of 12C (α, γ) 16O are the most important basic data for 

determining the result of cosmogony, determination of accurate values of the S factors (error < 10%) has been regard as a ‘holy grail’ of 

nuclear astrophysics for decades. The world’s tremendous efforts over 40 years have not reached this goal. We skillfully combines the 

formulae of the classical R-Matrix theory and the γ transition theory, with the coordination of covariance statistics and error propagation 

theory, a global fitting for almost all available experimental data of 16O system formed by 12C+α have been done. A set of reliable, accurate 

S factors and reaction rate of 12C (α, γ) 16O have been obtained. At E=0.3 MeV total S factor is 159.7±9.2 keV b with error <5.9%, reaction 

rate is 7.82±0.44 mol.s-1.cm-3 (5.7 %), for the first time meet the required precision. 

Three effective approaches for using global fitting and a powerful Code RAC2015 have been developed to get a set of unique, reliable, 

accurate and self-consistent S factors and Reaction Rate of 12C (α, γ) 16O. The principal value and error of STOT depend on the data-base 

used principally, on the width information of bound states (11
−1 𝑎𝑛𝑑 21

+1) especially, on the cross sections of 12C (α, γ) 16O for E<1.5 MeV 

very sensitively. Keep going to make new measurements about these data will have possibility to improve the accuracy of STOT. As long 

as the data-base and the global fitting are good enough, the obtained S factors must be very well. Anyway we believe that if you want to 

resolve the problem about 12C (α, γ) 16O you have to do with the ways created in this paper. 

For this project, two groups of researchers, Tsinghua University and SINAP (Shanghai Institute of Applied Physics), by using the 

same RAC13 Code and according to the same principle and method, independently carry out analysis, fitting and operation. The purpose is 

to get through the comparison of two independent sets of results, Determining and improving the objectivity and reliability of the final 

recommendation values. They work together on the scheme RAC-Lane-all, which is a kind of pure phonominalogical fitting, then more 

schemes ware studied in more detail independently. The schemes RAC-Lane-11234 and RAC2015 in this paper were finished by 

Tsinghua University group. The SINAP group adoped different way to calculate the cross section of (α,γ), but the final obtained S 

factors are very close to these obtained by Tsinghua University group, the results of SINAP group will be published elsewhere.  

In this paper all SF is with unit keV b, all energy is in CM system and with unit MeV, The keV b and MeV may be omitted sometimes. 

Welcome to get more information by E-Mail to zhpchen@tsinghua.edu.cn. 
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In the first stage of stellar helium burning the triple-α reaction is the dominating process, while in the later stage of this phase the 

C12 (α, γ) O16  reaction then converts part of the C12  nuclei into O16  nuclei and the ratio of the rates of these two reactions effectively 

determines the mass fractions of C12  and O16  at the end of helium burning. When the 3α → C12  process is relatively fast, the end 

product of helium burning will be mainly C12  and when it is relatively slow, the end product will be mainly O16 , because of the absence of 

appropriate states (resonances) near the O16 + α  threshold. The C12 (α, γ) O16  cross section has been called ‘the single greatest 

experimental uncertainty in explosive nucleosynthetic’ at low energies (W. Arnett1973). W. Fowler, a Nobel laureate in physics in 1983, 

definitely held the view that the ratio of oxygen to carbon and the solar neutrino problem are serious difficulties in the most basic concepts 

of nuclear astrophysics (Claus1983), and consequently refer to C12 (α, γ) O16  reaction as the ‘holy grail’ of nuclear astrophysics. 

Numerous studies have shown that the ratio of the cross sections for the two reactions, and the resultant C12 / O16  abundance ratio, are 

extremely important and sensitive parameter in the later aspects of stellar evolution, not only the nucleosynthetic of elements up to the iron 

core region but also the subsequent evolution of massive stars, the dynamics of a supernova, and the kind of remnant after a supernova 

explosion, e.g. a direct influence on type II Supernova (SN) nucleosynthetic (Woosley2007, Tur2007), the yield of the neutrino-process 

isotopes 7Li, 11B, 19F, 138La, and 180Ta in core-collapse supernovae (Austin2011), the production of the important radioactive nuclei 26Al, 

44Ti, and 60Fe (Tur2010), the maximum luminosity and kinetic energy of type I SN (Inma2001), weak s-process yields occurring at the end 

of convective core-He burning and during shell carbon burning (Pignatari2010), the composition of C/O white dwarfs in the case of 

intermediate mass stars (Metcalfe2002), and the final state of massive stars: neutron stars, or black holes (Brown2001).  

As usual, the astrophysical S-factor (SF) is given in terms of the cross section by  

S(E) = E. exp(2πη) . σ(E)                                               S1.1 

An uncertainty of ≤10% in the astrophysical S(E = 0.3MeV) of 12 C (α, γ) 16O reaction is needed to advance the modeling, despite five 

decades of experimental and theoretical investigations yet, the uncertainty associated with the 12C (α, γ) 16O reaction continues to be an 

obstacle, which the published values of SF and reaction rate in the Table S1 and S2 contradict each other strongly and their uncertainties 

are 2 times larger than the required precision. 

    The most direct and trustworthy way to obtain the astrophysical rate of the C12 (α, γ) O16  reaction is to measure the cross section for 

that reaction to as low an energy as possible, and to extrapolate to energies of astrophysical interest. However, the difficulty in 

experimentally determining the rate of 12C (α, γ) 16O for quiescent helium burning, which typically takes place around 

center-of-mass-energies of 0.3 MeV in the α+12C system, arises from the fact that the cross section is very small (≈ 10−17 b) and far beyond 

direct measurements. In recent two collaborations have pursued complementary approaches to measuring the inverse 16O (γ, α) 

12C O16 (γ, α) C12  reaction to energies lower than currently achieved at HIGS, which could offer significant advantages over traditional 

approaches (Rehm2012, Gai2012). No longer before, a proposal (6) suggest to measure the SF of 12C (α, γ) 16O at lower energy than that 

have done before, it will need a very reliable theory model to deal with data. R-matrix analysis is the most effective method for the fitting 

of existing data of 16O system and the absolutely necessary progress for extrapolation at present, creating a new model to get satisfactory 

SF and RR of 12C (α, γ) 16O is the object of this work. 

The classical R-Matrix theory (lane1958) deduced the standard R-matrix formulae (SRF) to describe two body nuclear reaction, but it 

thinks that these formulae are not justified for γ radiative capture, because maybe particles are created or destroyed, and it is hard to select 

suitable channel radium for electromagnetic interaction. After that, Ref. (Lane1960) described the collision matrix for radiative capture in a 

sum of three parts, internal resonant, external resonant and direct radiative capture (ETRT). Based on this conclusion, the detailed formulae 

are deduced for angle-integrated cross section in the Ref. (Holt1978, Barker1991), which include adjustable parameter of external collision 

matrix in practical applications. On the models mentioned above, a vital progress in R-matrix code AZURE allows simultaneous analysis 

the integrated and differential data (Azmua2010, deBoer2013), but has not be used to produce the SF down to 0.3 MeV (App. VII. 3). Some 

papers (Schurmann2012) think the E1 and E2 multipoles in ETRT have different energy dependencies, one must have an independent and 

precise information on each multipole for an extrapolation to E≈0.3MeV, so only the secondary data of E10 and E20 multipoles were used 
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for the R-matrix analysis, which were got from Legendre polynomials fitting for experimental angular distribution (AD) of 12C (α, γ) 16O. 

In addition, the literature (Katsuma2008) Questions the R- matrix fitting of previous work with enhanced contribution of SE10 in advance, 

then Using the potential theory to calculate S factor, but the calculated results and the experimental data have very large differences. The 

detail introductions for previous works are put in Appendix. V.II. Due to the R-Matrix model is based on a complete level-set, and the 

channels and levels have intimate correlation and strong interference, its analysis result can be accurate and unique only when it can 

describe the whole database for a nuclear system simultaneously (called global fitting). Examples for detail explain include that, if the 

used theory model is not complete, if the selected level scheme is not complete, if the types of channel and the set of sub-channel are not 

complete, if the types of dataset and the energy region of data are not complete, and so on, these defects will bring out the results with 

multi-values and have very larger uncertainty. These problems existing in the previous works.  

In recent 40 years, ETRT have got popular application with the procedure mentioned above, but the produced results have very larger 

difference and very larger uncertainty (Table S1.1, S1.2), and have not anyone use it to do a global fitting for whole 16O system. For that 

reason, based on (Lane1958) we create a ‘Reduced R-matrix theory with relativistic calculation for energy’ (RRRT), with the most 

advanced theory and methods for evaluation nuclear data (Smith1991, Carlson2007), which include the theory for systematical error 

distribution the theory for error propagation, the formulae for covariance fitting, the theory of generalized least squares, the experience 

method for modification of PPP, and the Lettes criteria for minimize the effect from occasional ‘outliers’, the test for the definite of 

covariance matrix, and so on, by using the powerful R-Matrix code RAC which were used to produce the accurate (error˂1%) International 

Neutron Cross section Standards (NDS-IAEA2007), to make the global fitting for the special problem to search the SF of C12 (α, γ) O16 . A 

very complete global database has been used for fitting. All available ED about 16O system formed by α+12C and the previous works were 

evaluated in detail, the sets of evaluated integrated data have complete types, inter-consistent values and continuous data in whole energy 

region. Near all of ED are selected to use, which include 12 types, 4404 data for E = -1.113 to17.51 MeV (Table S6.3). For example, STOT, 

Sg.s.., S6.05, S6.13, S6.92, S7.12, AD of C12 (α, γ0) O16 , α-Spectrum, AD of 12C (ɑ, ɑ) 12C, and width information for 31 levels. Have obtained 

unique, accurate and consistent astrophysical SF of C12 (α, γ) O16  with high precision, At E=0.3 MeV total S factor is 159.7±9.2 keV b 

with error <5.9%, reaction rate is 7.78±0.44 mol.s-1.cm-3 (5.7 %), for the first time meet the required precision. (Table. S1.1, S1.2).  

Table S1.1 Astrophysical SF of 𝐂𝟏𝟐 (𝛂, 𝛄) 𝐎𝟏𝟔  (keV b, E =300keV) 

Reference STOT SE10 SE20 S6.05 S6.13 S6.92 S7.12 

RAC2015 159±7.3 ≈94 ≈61 0.35±0.14 0.15±0.10 2.41±1.25 0.80±0.51 

Schurman2012 161±21 83.4 73.4 0.3 0.3 3.3 0.5 

Oulebsir2012 175±63 100±28 50±19     

Katsuma2008  3 150     

Sayre2012   62−6
±9     

Tang2010  84±21      

Matei2008      7±1.6  

Belhout2007  80.6−16
±17      

Matei2006    25−16
±15    

Hammer2005 162±39 77±17 81±22 4±4 

Tischhau2002 149±29 80±20 53−18
±13 16±16 

Kunz2001 165±50 76±20 85±30 4±4 

NACRE1999 224−96
±97 79±21 120±60  

Brune1999 170−55
±52 101±17 44−23

±19  

Ouellet1996  79±16 36±6  
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Buchmann1996 165±39 79±21 70±70 16±16 

Azuma1994  79±21      

Barker1991 280−140
±230 150−50

±170 120−70
±60     

Redder1987 219 140−80
±120 80±25     

Kettner1982 430−120
±160 Sg. s = 420−120

±160   12±2  

CF88  60−30
±60 40−20

±40     

Average difference >25% >20% >45% >600%  >99%  

 

Table S1.2. The Reaction Rate (10-15 mol/ s/cm3) at T=0.2*109 K 

 Adopted High Low Error/ % 

RAC2015 7.81 8.4 7.4 5.70* 

NACREII 6.78 8.98 5.59 25.0 

Katsuma2012 8.20 10.2 7.30 17.7 

Kunz2002 7.58 10.2 5.25 32.7 

Buchmann96 7.04 13.4 3.04 71.0 

CF88 11.3 no no no 

                 * Up limit, the calculated principal value is 4.10 

 

2. Reduced R-matrix theory with relativistic calculation for energy 

This paragraph give the experimental and theoretical basis of the Reduced R-matrix theory with relativistic calculation for energy. 

2.1 The reaction mechanism of ɑ+12C 

The ɑ and 12C particle collide each other with the center-of-mass energy E to form the entrance channel ɑ+12C. The elastic scattering of 

ɑ +12C include Coulomb scattering, potential elastic scattering and compound nuclear elastic scattering. In the entire meaningful analysis 

energy region, from E=0.6 MeV to 8.5 MeV, the elastic scattering is overwhelmingly dominant. According to partial wave expansion of the 

orbital angular momentum l, seven the partial waves (0 to 6) should be considered in the entrance channel ɑ+12C, to corresponding to the 

initial state spin and parity 0 +, 1-, 2 +, 3-, 4+, 5–and 6+ respectively. 

The probability of resonance elastic scattering changes with the center-of-mass energy E, which is well represented by γɑ, reduced 

amplitude of elastic scattering. The value of γɑ is determined by fitting the ED. The scattering states γɑ describe the real nuclear reaction 

that exist in the scattering states, which constitutes the major part of the level width of the scattering state. The 𝛾𝛼
2 of bound state is ɑ 

reduced width, the elastic scattering width is defined as zero. 

The compound nucleus capture occupy a dominant position in the capture reaction of 12C (α, γ) 16O, direct capture also exist in some 

extent. The following excited state need to be considered throughout the whole analytical energy region (Fig. S3.1).  

The first 4 excited states of Jπ =0+ are considered. For the ground state (Jπ= 0+), the γ transition is forbidden. The E1 and E2 cascade 

transition to the bound state 01
+

(-1.113) have been measured in experiments. The transition from 01
+

(-1.113) to 0+
0 is by (e+, e-) effect with very 

small probability. Overall the contribution of excited states 0+ are very weak for the SF.  

The first 5 excited states of Jπ =1- are considered. For the ground state, the levels of Jπ =1- can produce E10 transitions. The E1 and M1 

cascade transition to the bound state  11
−

(-0.045) have been measured. The levels 11
−

(-0.045) and  12
−

(2.423) at the 2 sides of the Gamow of 

E=0.3 MeV, occupy a dominant role for E10 capture processes into the ground state. Owing to the large binding energy(7.2 MeV) of the 

16O with respect to the α+12C threshold, its wave function decreases rapidly when the radium larger than a certain value, and the effective 

charge for 1- state near zero (Barker1991), so the external contribution and direct capture of E10 can be neglected. The levels 13
−

(5.280) and 

 14
−

(5.858) play dominant function in higher energy rigion. 
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The first 5 excited states of Jπ =3- are considered of 16O. For the ground state, the levels of Jπ =3-can produce E30 transitions. The E1 

and E2 cascade transition to  31
−

(-1.032) have been measured. Overall the contribution of excited states 3- is weak for the SF, the external 

contribution and direct capture can be ignored.  

The first 4 excited states of Jπ =4+are considered. For the ground state, the level  41
+

(3.194) can produce E40-transitions. The overall 

contribution of excited states 4+ is very weak for the SF, the external contribution and direct capture can be ignored.  

The first 2 excited states of Jπ=5- and Jπ=6+ are considered, but they have elastic scattering width data only, no observed γ transitions.  

So except the states of 2+ the states of Jπ=0+, 1-, 3-, 4+ , 5- and 6+can be well described by the standard R matrix theory for the system 

formed by ɑ+12C. 

The first 5 excited states of Jπ =2+are considered. For the ground state, the levels 2+ can produce E20 transitions; The E1, E2 and M1 

cascade transition to the bound state 21
+

(-0.242) have been measured  The width of the level  22
+

(2.683) is very narrow, has little effect on the 

S-factor at E=0.3 MeV. The levels 21
+

(-0.242) and  23
+

(4.385) at the 2 sides of the Gamow of E=0.3 MeV occupy a dominant role for E20. 

Some literature suggest that, for the 2+ states external contribution and direct capture are non-negligible. However, Ref. (Angulo2000, 

Dufour2008) think the external contribution can be neglected; (Buchmann1996) indicate that the direct capture part is about 4 keV b, about 

2.5% of STOT(0.3MeV) only; (Kettner1982) and this work shown that the contribution from direct capture is less than 2.5% of 

STOT(0.3MeV) (refer to S5.1.9). For these reasons, it is reasonable to describe the direct capture of E20 with the parameters of distant 

levels. Due to the contribution of E10 and E20 play absolute dominate function for of 12C(α, γ)16O , So there is such possibility that a 

global fitting for whole 16O system formed by ɑ+12C can be done using the Standard R-matrix formula with a suitable channel radium. 

One distant levels for each state were introduced for representing the contribution of all the distant level, which form a smooth 

background in the low energy scales. 

2.2 The reduced R-matrix theory with relativistic calculation for energy 

For the special problem to search the SF of C12 (α, γ) O16 , we create a Reduced R-Matrix Theory. This paragraph give the derivation of 

a qualitative description for the model of physical concepts. In the subsequent paragraphs, the quantitative description will be given. 

The sum of probability for all γn+
16On just is the production cross section of 16O0. It is not necessary to consider how to decay to 16O0 

finally, so the problem of ‘particles are created or destroyed’ is avoided. The reactions of primary radioactive decay to ground or 4 

bound states are regards as ‘two body particle reaction channels’, denoted by γn+
16On, the reduced masses of these channels are 

represented by relativistic energy. The sum of integral cross sections of each reaction channel equal to the cross section of 16O production. 

The primary wave function 𝛹 can be unfold with𝛹c, set c = {𝛼, 𝑠, 𝑙}, where 𝛼 refer to particle pair, s is channel spins and l is channel 

orbital angular momentums. 𝛹c Can be expended with level wave functionΨαslλ, which have different total angular momentum and parity 

𝐽𝜋 andEλ. Finally 𝛹 is expressed with the equation V.2. (2.6) in (7): 

 Ψ = ∑ [∑
𝑋𝜆𝛾𝜆𝑐

𝐸𝜆−𝐸𝜆 ]𝑐                                                  S2.2.1 

The total wave function for the initial state of 16O can be expanded by the complete orthogonal set, the coefficient of the expanded formula 

represent the probability of different reaction channel of all sorts of resonance energy state. Formula (S2.2.1) demonstrates that, if the 

primary gamma decay (γn+
16On) as the independent two body reaction channel, the 16O initial state can be expanded with 𝛹c and 𝛹c can 

be unfold with level wave functionΨαslλ, the wave function set of the theoretical model contain all types of γ- transition, whether direct 

decay to the ground state transition or cascade transition, both the compound nuclear transition or direct transition. 

To sum up, the characteristics of ' Reduced R- matrix Theory' as follows:  

A. The sum of probability for all γn+
16On primary radiative is just the production cross section of 16O0, it’s not necessary to consider how 

to decay to 16O0 finally, so the problem of ‘particles are created or destroyed’ is avoided;  

B. All particles and gamma mass using energy representation by the relativistic method, so the reactions of primary radioactive decay to 

ground or 4 bound states can be regarded as two body particle reaction channels to calculate easily. 
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C. The wave function set contain all the ground gamma transition and cascade gamma transition in this model; 

D. Using distant level parameter of compound nucleus to represent the smooth contribution of direct capture;  

E. Using the total width of reduced channel Γ𝜆
𝑒 to represent all other reaction channel except the 12C (ɑ, ɑ) 12C, 12C (α, γ) 16O, 12C (α, 

α1)16O and 12C (α, p) 16O reaction, so it’s convenient to expend the analysis to higher energy region; 

F. It can analyze and calculate all ED of 16O systems to achieve the enhanced reliability S-factors at Gamow window. 

G. The covariance fitting and error propagation theory are adopted, which can accurately give the expected value and the covariance of 

SF. 

 

Figure 2.2 shows the transition processes to ground-state (0+
0) described by ETRT and RRRT for 16O system. In ETRT model L only has 

one value for each initial state. In the RRRT model, the ‘relative orbital angular momentum l’ is introduced in formulae, the angular 

momentum coupling mechanism is considered, the quantum state set which RRRT can provide are complete for each state, there are 3 

sub-reaction channels included in the states 1-, 2+ and 3- respectively. When ιmax=4, these reaction channel sets are able to describe all 

kinds of data directly and perfectly.  

 

3. Construction of the best set of sub-reaction channel 

To construct optimal sub reaction channel set is the key point in the R- matrix analysis. Sub reaction channel set in our work is strict set 

up in accordance with the decay scheme of 16O energy levels. The details are as follows. 

3.1. Level scheme of the 16O nucleus and the gamma transition 

Figure S3.1 show the position, width or life of 16O levels below the 17.5MeV energy region. Except the level Jπ=2-(Ex=8.872 MeV), the 

other 31 levels contain α+12C reaction channel. The blue line with arrow on the left side represent the reaction channel of the initial 

transition to the ground and four bound states. The red line represents the calculation of total SF in the analysis area. The branching ratio 

for the β-delayed α decay spectrum of 16N shown on the right with the green lines. There are 4 bound states close to the threshold 7.162 

MeV with respect to 12C(ɑ, ɑ)12C reaction, however these states are positive energy state for transfer reaction which have many ED of 

reduced width. For low-energy region (Ex<11.6 MeV), only 12C (α, α) 12C and 12C (α, γ) 16O are opened, more than 11.60 MeV and 12.13 

MeV the 12C (α, α1) 12C* and 12C (α, p) 15N will be opened respectively. If the contribution of other reactions, such as 12C (α, α2)12C*, are 

represented by the total width of reduced channelΓ𝜆
𝑒, the analysis area can be extended to the Ex = 14.2 MeV, where have many ED. The 

region from Ex = 14.2 MeV to 17.5MeV, there are 12 levels which the widths of different reaction channel can be used to restrain the 
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contribution of background levels. The above energy region from 7.2 MeV to 17.5MeV are just to satisfy this requirement of the 

calculation of the reaction rate of C12 (α, γ) O16  from 𝑇9=0.01 to 10.  

 

 

Fig. S3.1. Level scheme of the 16O nucleus. All states relevant for the analysis are indicated. All published gamma transition (vertical 

line with arrows) are shown in Figure S3.1, which contain a latest confirmed cascade transition exists (3- → 1- vertical dotted line with an 

arrow), a pair decay (e++ e-→γ). The sub reaction channel of gamma particles in this analysis are strictly set up by referring to figure S3.1 

data, and some new results (deBoer2013), . So this analysis has strong objectivity. 

The relationship between width and life or half-life is: 

T1/2=0.693147τ,                                                   S3.1.1 

Γ= ħ/τ , ħ=6.582173×10-22
 MeV∙s                                            S3.1.2 
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Using the above relationship the level lifetime is converted to energy level width in this fitting. 

 

3.2. Construction of the best set of reaction channel  

   The considered levels of compound nucleus 16O in the analysis are determined by the incident channel α+12C. The intrinsic spin of α 

and 12C are zero, so the channel spin S is constant 0. The total angular momentum of α+12C, J≡ l, where l is the relative orbital angular 

momentum. The parity π of α and 12C are +1 respectively, then the parity of compound nuclear of α+12C is πα*πC*(-1) l. When l =0, 2, 4 and 

6, the spin and parity Jπ are 0+, 2+ , 4+ and 6+ respectively; when l =1, 3, 5, the Jπ=1-, 3- and 5- respectively .In the work the levels only of the 

actual measured with accurate information are set up in the energy region for the analysis. According to the Table 16.15: Resonances in 

12C+α, in [Tilley1993], 31 level with available information up to 17.52 MeV are adopted in our analysis. There are six kinds of levels, 0+, 

1-, 2+, 3-, 4+, 5-, and 6+. In addition to 6+, each type of Jπ Level is set up a distant level for making contribution of background. Hence, 37 

levels in the complete set are considered in our fitting. 

The decay channel of compound nucleus have the same total angular momentum J and parity as the entrance channel. The intrinsic spin 

of γ is 1. Supposing the compound nucleus decay a gamma ray from initial state φi to the final state φf, according to the principle of 

conservation of parity, the definition of parity of the emitted γn particle is 

 πγ = πi/πf,                                                 S3.2.1 

According to the principle of conservation of angular momentum, the angular momentum of gamma particles is 

 Jγ=|𝐼𝑖 − 𝐼𝑓|, |𝐼𝑖 − 𝐼𝑓|+1,⋯ |𝐼𝑖 + 𝐼𝑓|                                    S3.2.2 

If the γn+
16On as a class of two body reaction channel, due to the intrinsic spin Iγ is 1, the intrinsic spin of 16O*

n Io=Jn, the channel spin 

γn+
16On is 

 Sn=|1 − 𝐼𝑜|, |1 − 𝐼𝑜|+1,⋯ |1 + 𝐼𝑜|                                   S3.2.3 

The relative orbital angular momentum, Ln, of γn+
16O*

n meet the formula of vector summation:  

 Ln=|𝐽𝑛 − 𝑆𝑛|, |𝐽𝑛 − 𝑆𝑛|+1,⋯ |𝐽𝑛 − 𝑆𝑛|                                 S3.2.4 

For the heavy particle decay channel, due to its parity of angular momentum is (−1)𝜄 only, in a resonant level, the l can only be odd or 

even. For the γ particle decay channel, the symbol [ ] = 
1

2
 [1 + (−1)𝐿′+𝐿+𝑘+𝜖+𝜖′

] indicates a parity restrication, in a resonant level, the l 

might be odd and even. 

In each resonance state, according to the constraints of conservation law, can meet the requirements of gamma is a transverse wave, 

and actual need, the following reaction channels are set up: 

A. elastic scattering channel α+12C, which must be set up in each resonance states; 

B. gamma particles channel γ0+
16O0, the first decay from initial state to the ground state;   

C. gamma particles channel γ1+
16O1, the first decay from initial state to the first excited state (0+, 6.05 MeV); 

D. gamma particles channel γ2+
16O2; the first decay from initial state to second excited states (3-, 6.13 MeV); 

E. gamma particles channel γ3+
16O3, the first decay from initial state to third excited states (2+, 6.92 MeV); 

F. gamma particles channel γ4+
16O4, the first decay from initial state to fourth excited states (1-, 7.12MeV); 

G. inelastic scattering channel ɑ1+
12C*, which is set up in the opened levels for the ɑ1+

12C*; 

H particles channel p+15N, which is set up in the opened levels for the p+15N; 

I. reduced channel α+x, the total width Γλ
e represent the contribution of other reaction channel except the above channels mentioned. 

For settings of sub-reaction channel and relevant parameter, the following principles should be obeyed: 

 A. The following conservation laws: the parity conservation, angular momentum conservation, energy conservation, momentum 

conservation and the conservation of charge should be satisfied. For gamma particle reaction channel the γ - transition selection rule should 

be met simultaneously. 
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 B. The data should be obtained in the relevant experiment. Those reaction channel which meet the theoretical requirements, but no 

measured ED are not set up in this fitting. 

 C. In the distant level, the sub reaction channel are set up to describe the sum of smooth background of resonance capture and non- 

resonance capture.  

 D. The reduced width Γλ are established in the necessary energy area which can improve the fitting.  

E. According to the physical principles, some parameters can be fixed with constants 

   For example, the radius value (7 parameters), the position of bound state and distant level (15 parameter), reduced total width of high 

level without competition from the other ED (8 parameters) 

F. Using the error propagation law and covariance calculation to reduce the non-essential parameter as far as possible. 

By using the error propagation law and covariance calculation the relative error of a reduced width amplitude 𝛾𝑐′𝑠′𝜄′ can be 

obtained. The 𝛾𝑐′𝑠′𝜄′ which must be set up in the physical and with Rerr≥200% should be keep; The 𝛾𝑐′𝑠′𝜄′ which is not must b

e set up in the physical and with Rerr≥200% should be given up; After getting rid of this kind of parameter, there may be sli

ght increase the total 𝜒2, the average 𝜒2 per degree of freedom could be reduced. The detail information about reduced width 

amplitude 𝛾𝑐𝑠𝜄 and  𝛾𝑐′𝑠′𝜄′ are put in Table S3-C for RAC2015. 

 

3.3. The R-Matrix parameters for RAC13 

The formula S3.3.1 and S3.3.2 are the concrete expression in the RAC code, where 𝑎𝑠𝑙 and 𝑎′𝑠′𝑙′ are the entrance and exit channel 

respectively (𝑎 = 𝑐), Δ𝜆𝜇 is energy matrix, Eel is the position of resonance level, Δ𝜆𝜇 is the energy shift, Γ𝜆𝜇
𝑒  the total reduced channel 

width.  

[R(𝐸)
𝐽

]𝛼′𝑠′𝑙′,𝛼𝑠𝑙 = ∑ 𝛾
𝛼′𝑠′𝑙′
𝐽

𝛾𝛼𝑠𝑙
𝐽

𝐴𝜆𝜇𝛿𝐽𝐽0

𝑁
𝜆𝜇                                   S3.3.1 

[𝐴−1]𝜆𝜇 = [𝐸𝜆
𝑟 − 𝐸 − Δ𝜆𝜇

𝑟 (𝐸𝜆
𝑟)]𝛿𝜆𝜇 + Δ𝜆𝜇

𝑒 (𝐸𝜆
𝑟) −

𝑖

2
Γ𝜆𝜇

𝑒                              S3.3.2 

Δ𝜆𝜇 = − ∑ [S𝜆𝜇 − B𝛼]𝛾𝛼′𝑠′𝑙′𝛾𝛼𝑠𝑙
𝑁
𝛼𝑠𝑙                                      S3.3.3 

About details R-matrix parameters see the Table S3-A, -B, -C, which is the input parameters file of our RAC program. For the first level 

of different JP, let S𝜆𝜇 ≡ B𝛼 to getΔ𝜆𝜇 ≡ 0, but other levels will haveΔ𝜆𝜇 ≠ 0, which are called Standard R-matrix formula. When let 

Δ𝜆𝜇 ≡ 0 for all level, the standard R-matrix formula will be simplified to R-matrix Physical formula.  

Table S3-A.  The parameters of reaction channel 

NO. Channel R(fm) lmax Th(MeV) NO. Channel R(fm) lmax Th(MeV) 

C1 α, 12C 6.5 6 0.0000 C5  γ3, 16O3 6.5 2 0.3449 

C2  γ0, 16O0 6.5 4 7.1620 C6  γ4, 16O3 6.5 2 0.1452 

C3  γ1, 16O0 6.5 3 1.2126 C7 α1, 
12C*

1 6.5 3 -4.4380 

C4  γ2, 16O1 6.5 2 1.1321 C8 p, 15N 6.5 3 -4.9680 

 

Table S3-B.  The parameters of reaction channel 

Channel MT MI Th(MeV) R(fm) lmax ZT ZI ST SI PT PI 

α, 12C 12.0000648499 4.0015063286 0.0000 6.5 5 6 2 0 0 + + 

 γ0, 
16O0 15.9970233044 0.0000000000 7.1620 6.5 4 8 0 0 1 +   

 γ1, 
16O1 16.0035163226 0.0000000000 1.2126 6.5 2 8 0 0 1 +   

 γ2, 
16O2 16.0036076157 0.0000000000 1.1321 6.5 2 8 0 3 1 -   

 γ3, 
16O3 16.0044561723 0.0000000000 0.3449 6.5 6.5 8 0 2 1 +   

 γ4, 
16O4 16.0046677857 0.0000000000 0.1452 6.5 6.5 8 0 1 1 -   
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α1, 
12C*

1 12.0047583003 4.0015063286 -4.4380 6.5 6.5 6 2 2 1 + - 

p, 15N 15.0004677857 1.0076000000 -4.9680 6.5 6.5 7 1 1/2 1/2 - + 

 

Table S3-C. Level position Eλ, Total Reduced width Γλ and Reduced Width Amplitude γ of sub-reaction channel 

Note: JP refer to total spin and parity, Eλ the position of level, Γλ total width of reduced channels; Csl (csl) refer to Reduced Width 

Αmplitude γ of sub-reαction chαnnel, c is channel number, s is spin, l is orbitαl αnγulαr momentum. +γn means l is even number, -γn 

means l is odd number. Both the +γn and -γn are used to represent the γn.  

1. '12C (α, α) 12C  ' ,  l=0 to 6.                         

2. '12C (α,+γ0)
16O0 ' ,   l is even number.             3. '12C(α,-γ0)

16O0  ' ,  l is odd number.                   

4. '12C(α,+γ1)
16O*1 ' ,  l is even number.             5. '12C(α,-γ1)

16O*1 ' ,  l is odd number.                   

6. '12C(α,+γ2)
16O*2 ' ,  l is even number.             7. '12C(α,-γ2)

16O*2 ' ,  l is odd number.                   

8. '12C(α,+γ3)
16O*3 ' ,  l is even number.             9. '12C(α,-γ3)

16O*3 '   l is odd number.                  

10. '12C(α,+γ4)
16O*4 ' ,  l is even number.            11. '12C(α,-γ4)

16O*4 ' ,  l is odd number.                  

12. '12C(α, α1)
16O* ' ,   l=0 to 3.                   13. '12C(α, p)15N   '  ,  l=0 to 3. 

 

  JP(+0) E1=-1.112600  Γ1=0.000000     JP(+0) E2= 4.653949  Γ2=0.000250     JP(+0) E3= 6.912000  Γ3=0.020000 

    Csl( 100) γ=-1.37357022221E-1       Csl( 100) γ= 1.26144826647E-3       Csl( 100) γ= 1.08337226583E-1 

    Csl( 311) γ= 2.21482433448E-5       Csl( 311) γ=-1.08499237494E-1                                     

  JP(+0) E4= 7.904000  Γ4=0.000030     JP(+0) E5=30.577400  Γ5=0.000000                                     

    Csl( 100) γ= 1.32983007346E-1       Csl( 100) γ= 3.12572752454E+0                                     

    Csl(1222) γ= 7.77723722468E-2       Csl( 311) γ= 8.08269108368E-4                                     

    Csl(1311) γ= 2.78468615985E-1       Csl(1311) γ= 1.79296986129E+0                                     

  JP(-1) E1=1-0.045150  Γ1=0.000000     JP(-1) E2= 2.291539  Γ2=0.000100     JP(-1) E3= 5.280427  Γ3=0.000010 

    Csl( 101) γ= 8.44370207619E-2       Csl( 101) γ= 3.39925845722E-1       Csl( 101) γ= 1.09146620649E-1 

    Csl( 211) γ=-1.58448049396E-3       Csl( 211) γ= 9.97525491644E-5       Csl( 211) γ=-5.65442297691E-4 

    Csl( 411) γ=-5.62112989995E-5       Csl( 310) γ=-2.12573539295E-4       Csl( 310) γ= 1.08188648159E-3 

    Csl( 622) γ= 6.21361657784E-2       Csl( 312) γ= 2.75626200896E-3       Csl( 312) γ= 1.80523326359E-2 

    Csl( 811) γ= 3.40285001537E-4       Csl( 411) γ= 5.07192357190E-4       Csl( 411) γ=-1.79724663738E-3 

    Csl(1010) γ=-5.34083118643E-5       Csl( 510) γ= 8.15736162362E-5       Csl( 510) γ=-9.62373998192E-4 

                                        Csl( 512) γ=-2.76161883245E-3       Csl( 622) γ= 3.31591811335E-2 

                                        Csl( 811) γ= 2.61449522821E-4       Csl(1010) γ= 2.11600514649E-4 

                                        Csl( 910) γ=-2.36222128253E-5       Csl(1012) γ=-3.72938086476E-3 

                                        Csl( 912) γ= 1.22209102885E-3       Csl(1221) γ= 1.04128928160E-1 

                                        Csl(1010) γ= 1.15307356084E-4       Csl(1223) γ= 1.59063021315E-1 

                                        Csl(1012) γ= 2.60956141574E-3       Csl(1310) γ= 7.68436255639E-2 

  JP(-1) E4= 5.873027  Γ4=0.000100     JP(-1) E5= 9.710000  Γ5=0.153000     JP(-1) E6=11.417600  Γ6=0.000000 

    Csl( 101) γ=-6.63761389403E-2       Csl( 101) γ=-1.02545132591E-1       Csl( 101) γ= 1.25001655375E+0 

    Csl( 211) γ=-1.86181898909E-3                                           Csl( 211) γ=-7.55125346307E-4 

    Csl( 310) γ= 5.98173991573E-3                                           Csl( 312) γ= 1.21693323256E-3 

    Csl( 312) γ=-4.40211735360E-2                                           Csl( 411) γ=-4.17054092420E-3 

    Csl( 411) γ=-1.71631841388E-3                                           Csl( 510) γ= 1.07127529613E-4 
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    Csl( 510) γ= 5.04165132058E-4                                           Csl( 512) γ= 8.31928561650E-3 

    Csl( 622) γ= 6.21724864416E-2                                           Csl( 622) γ= 2.91641743544E-2 

    Csl(1101) γ=-1.00599912529E-2                                           Csl( 910) γ=-7.62940983415E-5 

    Csl(1221) γ=-5.33725325864E-2                                           Csl(1010) γ= 3.93033119104E-5 

    Csl(1223) γ= 2.40957646982E-1                                           Csl(1310) γ=-4.73171801302E-2 

    Csl(1310) γ= 1.61843128628E-1                                           Csl(1312) γ= 6.48034733891E-2 

    Csl(1312) γ= 3.47009993614E-2                                                                         

  JP(+2) E1=-0.2449000  Γ1=0.00000     JP(+2) E2= 2.6854552  Γ2=0.00001     JP(+2) E3= 4.3157254  Γ3=0.00682 

    Csl( 102) γ= 1.67923100136E-1       Csl( 102) γ= 1.80332798509E-2       Csl( 102) γ= 6.79653901836E-2 

    Csl( 212) γ= 3.76420733969E-2       Csl( 212) γ=-2.33008909808E-3       Csl( 212) γ= 2.14186458616E-2 

    Csl( 511) γ= 2.45764253686E-3       Csl( 311) γ=-1.32999435887E-4       Csl( 311) γ= 1.16302632848E-3 

    Csl( 513) γ= 8.39205117920E-2       Csl( 313) γ=-2.60717478928E-3       Csl( 313) γ=-1.23536768531E-2 

    Csl( 621) γ= 4.71733773052E-4       Csl( 412) γ= 2.00269029024E-2       Csl( 412) γ= 3.21421164882E-2 

                                        Csl( 511) γ=-1.64874946783E-3       Csl( 511) γ= 9.28287231701E-4 

                                        Csl( 820) γ=-4.92653642416E-2       Csl( 621) γ= 6.53503659796E-4 

                                        Csl( 911) γ=-1.28426002736E-4       Csl( 722) γ= 1.24416624317E-3 

                                                                            Csl( 820) γ= 2.01222186976E-3 

                                                                            Csl( 911) γ= 6.11734218678E-4 

                                                                            Csl(1011) γ= 5.67189563373E-4 

  JP(+2) E4= 5.7847193  Γ4=0.00010     JP(+2) E5= 8.3000000  Γ5=0.00100     JP(+2) E6=22.5322000  Γ6=0.00000 

    Csl( 102) γ= 1.15811078787E-1       Csl( 102) γ= 2.30560181580E-1       Csl( 102) γ= 2.43492902626E+0 

    Csl( 212) γ=-1.06004370152E-2       Csl( 212) γ= 1.10871682149E-2       Csl( 212) γ= 2.74341571961E-2 

    Csl( 311) γ= 1.94661501123E-3                                           Csl( 311) γ=-4.48966698410E-3 

    Csl( 313) γ=-1.56626245372E-2                                           Csl( 313) γ=-8.67125381330E-2 

    Csl(1220) γ=-4.44948552966E-2                                           Csl( 412) γ=-4.13860940097E-2 

    Csl(1222) γ= 6.19365068121E-2                                           Csl( 511) γ= 1.53928858057E-2 

    Csl(1311) γ=-1.09992849621E-1                                           Csl( 621) γ= 2.61409608720E-3 

    Csl(1313) γ= 1.90557933653E-1                                           Csl( 812) γ=-1.16163111579E-1 

                                                                            Csl( 820) γ= 1.52857928413E-2 

                                                                            Csl( 911) γ= 6.91209289724E-3 

                                                                            Csl(1011) γ= 5.78246357892E-3 

                                                                            Csl(1220) γ=-4.23867016757E-2 

                                                                            Csl(1222) γ=-8.52532915671E-1 

                                                                            Csl(1311) γ=-6.99750335353E-1 

                                                                            Csl(1313) γ=-6.57242078420E-1 

  JP(-3) E1=-1.0321000  Γ1=0.00000     JP(-3) E2= 3.9814730  Γ2=0.04577     JP(-3) E3= 6.0935188  Γ3=0.00005 

    Csl( 103) γ=-7.58573378626E-2       Csl( 103) γ= 3.15699626669E-1       Csl( 103) γ= 1.02590858250E-1 

    Csl( 312) γ=-7.57434384405E-4       Csl( 622) γ= 1.07763846271E-3       Csl( 312) γ= 3.81680145936E-3 

                                        Csl( 932) γ= 1.44330831315E-3       Csl( 622) γ=-2.04100966590E-2 

                                        Csl(1022) γ= 4.08327680512E-2       Csl( 721) γ= 2.83721511100E-3 

                                                                            Csl(1221) γ=-2.78642900324E-1 
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                                                                            Csl(1223) γ=-4.53693627698E-2 

                                                                            Csl(1312) γ= 1.44205077016E-3 

  JP(-3) E4= 6.0637369  Γ4=0.00005     JP(-3) E5= 6.9380000  Γ5=0.00010     JP(-3) E6=26.0851000  Γ6=0.00000 

    Csl( 103) γ=-3.81775480296E-2       Csl( 103) γ= 4.80647188706E-2       Csl( 103) γ=-1.83818521282E+0 

    Csl( 622) γ= 1.23128495415E-2       Csl(1221) γ=-2.73841800415E-1       Csl( 512) γ=-4.12072112241E-2 

    Csl( 721) γ= 1.46963833925E-2       Csl(1223) γ= 4.29660963150E-1       Csl( 622) γ= 3.08386819710E-2 

    Csl(1221) γ= 4.37076466020E-2                                           Csl(1223) γ= 4.50728380213E-1 

    Csl(1223) γ= 4.75674935781E-2                                                                         

    Csl(1312) γ= 3.99081285942E-1                                                                         

  JP(+4) E1= 3.1956118  Γ1=0.00300     JP(+4) E2= 3.9339949  Γ2=0.00020     JP(+4) E3= 6.7373100  Γ3=0.00060 

    Csl( 104) γ= 2.16252005682E-1       Csl( 104) γ= 7.24137908365E-3       Csl( 104) γ=-5.15781085230E-2 

    Csl( 313) γ= 1.47324734860E-4       Csl( 641) γ= 6.77771308113E-4       Csl(1222) γ=-2.48574249270E-1 

    Csl( 722) γ= 3.12895915419E-4       Csl( 832) γ=-1.80637833527E-2                                     

    Csl( 822) γ=-1.40291047964E-1                                                                         

    Csl( 832) γ=-6.54674651634E-2                                                                         

  JP(+4) E4= 9.6820000  Γ4=0.40800     JP(+4) E5=30.4404000  Γ5=0.00000                                     

    Csl( 104) γ= 1.00077927154E-1       Csl( 104) γ= 2.23470318620E+0                                     

                                        Csl( 513) γ= 4.74240166724E-1                                     

                                        Csl( 822) γ=-2.32369380649E+0                                     

                                        Csl( 832) γ=-5.00150284383E-1                                     

                                        Csl(1222) γ=-4.67653436371E-1                                     

  JP(-5) E1= 7.4980000  Γ1=0.00000     JP(-5) E2= 9.7480000  Γ2=0.00000     JP(-5) E3=23.3775000  Γ3=0.00000 

    Csl( 105) γ= 3.93028414880E-1       Csl( 105) γ= 2.93138753413E-1       Csl( 105) γ= 1.19299405418E+0 

    Csl(1223) γ=-1.26957859941E-1                                                                         

  JP(+6) E1= 7.6430000  Γ1=0.04800     JP(+6) E2= 9.1330000  Γ2=0.02950                                     

Csl( 106) γ= 8.30814046411E-2       Csl( 106) γ= 2.85943713264E-1                                     

 

4. Advanced theory and Code RAC for evaluation of nuclear data 

4.1. Covariance statistic, Generalized least squares and error propagation law (Smith1991)  

The book (Smith1991) is the modern classical literature which include the most advanced theory for evaluation of nuclear data, and an 

Encyclopedia to guide program composition. The literatures (Carlson2009; STD-NDS-IAEA-2007) are the best example of applied the 

theory and summary of experiences. In the theory and self-contained methods, the theory for error distribution, the theory for error 

propagation, the formulae for covariance fitting, the theory of generalized least squares, the experience method for modification of PPP, 

and the Lettes criteria for minimize the effect from occasional ‘outliers’, the test for the definite of covariance matrix, and so on, are the 

key elements for trying to get accurate evaluating value, in which no anyone can be ignored. This is because only with a suitable model in 

which using these theories and methods the experimental nuclear data can be described objectively with high precision. The basic evidence 

is that in the measure process for nuclear data, the long range error, middle range error and short range error of observables are existing 

objectively, which are never be avoided absolutely. The long range and middle range error have correlation ship. The code RAC13 make 

use of the suitable theory model, employ the most advanced evaluation theory and methods, is able to use the most complete global 

database, the obtained evaluated values must be the closest to the expectation value, and the obtained error information must be the most 

reasonable. The previous work are the 'ordinary least squares' fitting, in theory which cannot give the unbiased estimation for complex 
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samples, but without the PPP problem introduced under the paragraph. In our work the 'covariance fitting' is quoted, this is because, in 

theory, the system error does always exist no matter how exact the evaluation of ED is. As long as the system error existed, the correlation 

of ED and the off-diagonal elements of the covariance matrix can never be removed. The ‘ordinary least squares’ fitting only considered 

the diagonal elements of the covariance matrix, which ignore the off-diagonal element and the part of correlation of ED. So the optimal 

calculation is only a rough approximation of the expected value according to the 'maximum like lihood principle'. The covariance fitting is 

an accurate method, inverse of the covariance matrix using in the optimization, the obtained values of SF are expected to the accurately 

estimate value. Table 4.1 shows the significant difference of SF between the ‘Common least squares fitting (DIA)’ and the ‘Covariance 

Fitting’ (COV). In next section to introduce how to construct covariance matrix with error information of experimental data. 

 

    Suppose 𝑈𝑖
2, 𝑆𝑖

2, 𝐿𝑖
2, 𝑀𝑖

2 and 𝑌𝑖
2 are total variance, statistical variance, long-range component (LERC) of systematic variance, 

medium-range component (MERC) of systematic variance and total systematic variance of the ith ED point respectively, and let 𝑈𝑖
2 = 𝑆𝑖

2 +

 𝐿𝑖
2+𝑀𝑖

2,  𝑌𝑖
2 = 𝐿𝑖

2+𝑀𝑖
2. The diagonal elements 𝐶𝑗𝑗  of correlation coefficient matrix C are 1 for all. The non-diagonal elements for integral 

cross section are 

𝐶𝑖𝑗 = 𝐶𝑖𝑗
𝐿 + 𝐶𝑖𝑗

𝑀                                               S4.1.1 

Here 𝐶𝑖𝑗
𝐿  refers to the LERC of systematic errors, 𝐶𝑖𝑗

𝑀to the MERC of systematic errors, and   

𝐶𝑖𝑗
𝐿 = 𝐿𝑖 𝐿𝑗 (𝑈𝑖𝑈𝑗)⁄                                            S4.1.2 

𝐶𝑖𝑗
𝑀 = 𝑀𝑖 𝑀𝑗 (𝑈𝑖𝑈𝑗) ∙⁄ 𝑓𝑖𝑗                                            S4.1.3 

𝑓𝑖𝑗 = Exp {− [(𝐸𝑖 − 𝐸𝑗)/W]2 2⁄ }                                         S4.1.4 

Where, W is a distribution width parameter, and 𝐸𝑖 and 𝐸𝑗  stand for energy points of the data. The non-diagonal elements of C for AD 

are  

𝐶𝑖𝑗 = (𝐶𝑖𝑗
𝐿 + 𝐶𝑖𝑗

𝑀) ∙ 𝐺𝑖𝑗                                            S4.1.5 

𝐺𝑖𝑗 = Exp {− [(𝜃𝑖 − 𝜃𝑗)/160]2 2⁄ }                                     S4.1.6 

Here 160 is a distribution parameter related to angle, 𝜃𝑖  and 𝜃𝑗  are angle values. 

It can be seen from the formulas given above that correlation coefficient is determined by total error and systematic error, and a larger 

systematic error leads to a larger correlation coefficient. The absolute covariance matrix elements of simulation data can be calculated from 

the corresponding correlation coefficients as follows:    

𝑉𝑖𝑗 = 𝐶𝑖𝑗 ∙ 𝑈𝑖 ∙ 𝑈𝑗                                            S4.1.7 

The theoretical formula about error propagation with R-matrix model fitting is as following:     

y − 𝑦0 = 𝐷(𝑃 − 𝑃0)                                        S4.1.8 

𝐷𝑘𝑖 = (𝜕𝑦𝑘/𝜕𝑃𝑖)0                                          S4.1.9 

Here y refers to vector of calculated values, 𝐷 to sensitivity matrix, 𝑃 to vector of R-matrix parameters. Subscript 0 means optimized 

original value, k and i are for fitted data and R-matrix parameter subscript respectively.  The covariance matrix of parameter 𝑃 is   

𝑉𝑃 = (𝐷+𝑉−1𝐷)−1                                            S4.1.10 

Here V refers to covariance matrix of the data to be fitted, and its inversion matrix can be expressed as following: 

𝑉−1 = (
𝑉1

−1

0

𝑉2
−1

⋱

0

𝑉𝑘
−1

)                                          S4.1.11 

Here V1, V2⋯Vk refer to the covariance matrixes of the sub-set data, which are independent with each other. The covariance matrix of 

calculated values is 

𝑉𝑦 = 𝐷𝑉𝑃𝐷+                                           S4.1.12 
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Formula adopted for optimizing with R-matrix fitting is 

𝝌𝟐 = (𝜼 − 𝒚)+𝑽−𝟏(𝜼 − 𝒚) ⇒ 𝑚𝑖𝑛𝑖𝑚𝑢𝑛                            S4.1.13 

Here 𝜂 refers to the vector of ED, 𝑦 refers to the vector of calculated values. 

4.2. Modification about Peelle Pertinent Puzzle 

The fact that the principal values of fitting lower than the experimental value was called Peelle Pertinent Puzzle (PPP) in the field of 

evaluation of nuclear data. In theory, the basis of covariance fitting is maximum likelihood principle which apply to the statistical sample, 

and the PPP is due to the large systematic error of ED depart from the statistical sample. For the ordinary least squares fitting, a big χ2 

data stem from only the contribution of the diagonal matrix element itself; For the covariance fitting, the source of a large χ2 data are the 

large contribution of line and column of matrix element from this point. The great dimensions of the matrix the stronger influence of χ2 

value, so it is a disadvantage for a large number of ED analysis. 

The PPP occurrence for the data sets is mainly due to the existence of some data points which are very much discrepant from others. In 

the data sets, all errors are given in percentage, so that for a datum value higher than its expected value, it has a larger absolute error and a 

larger associate covariance, and consequently has a relative smaller weight. On the contrary, for a datum lower than its expected value, it 

has a relative larger weight. When both the errors and discrepancy of a data sets are sufficiently large to some extent, the PPP may occur. 

So any method, which is able to remove the phenomena mentioned above, will have the effect to avoid PPP.  

As long as the covariance fitting, the fitting have PPP in varying degrees, and require revision. For the comprehensive fitting to the 

huge ED, there are many methods created to the PPP revision, one of the simplest way: the expected value times the relative error as the 

absolute error (IAEA-NDS2009). 

     The Table S4.2 shows the SF (E=0.3MeV, keV) and Chi square information of three fitting methods. The RAC2014-COV refers to a 

fitting procedure with covariance and with PPP modification. The RAC2014-DIA refers to a fitting procedure with variance and without 

PPP modification, its calculated STOT (153.52) is lower than that of RAC2014-COV (158.64) .The RAC2014-PPP refers to a fitting 

procedure with covariance and without PPP modification, its calculated STOT (148.82) is much lower than that of RAC2014-COV 

(158.64), and its Chi squares are much higher than those of RAC2014-COV. The Fig. 4.2 shows the calculated STOT of the three methods. 

It is very clear that the fitting values of RAC2014-PPP are lower than the experimental values systematically in the energy range of peak 

1-
2 (2.35).  

     These results explain that using the fitting procedure with covariance and with PPP modification is necessary absolutely. 

 

Table S4.2. The SF (E=0.3MeV, keV) and 𝛘𝟐 information of the three fitting methods 

Method STOT SE10 SE20 Scas STOTED S𝛂𝛄𝟎 𝛂𝛄𝟎AD ScasED 𝛂Spec 𝛂𝛂AD SAll𝛂𝛄 All*ED Width 

RAC2014*COV 158.64 108.49 46.16 3.99 1.6116 1.8699 1.9834 1.2129 1.3978 1.3189 1.7814 1.4729 1.2328 

RAC2014*PPP 148.82 099.37 45.25 4.20 1.9596 2.0095 2.2533 1.1980 1.2951 1.2377 1.9840 1.4879 1.3663 

RAC2014*DIA 153.52 102.73 46.58 4.21 1.4573 2.0887 2.2577 1.2478 3.0732 1.2812 1.9616 1.6304 1.5470 
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Fig. 4.2. Calculated STOT of the three methods. 

In this paper, the character string as follow in Table S4.2 and all other Tables have definite meaning. 

STOT--The total S factor at E=0.3 MeV for all (α, γ) reaction channel; 

SE10--The S factor at E=0.3 MeV for the (α, 𝜸𝟎) from all 1- levels to ground state 0+
0; 

SE20--The S factor at E=0.3 MeV for the (α, 𝜸𝟎) from all 2+ levels to ground state 0+
0; 

Scas--The S factor at E=0.3 MeV for (α, 𝜸𝟏) + ( α, 𝜸𝟐) + ( α, 𝜸𝟑) + (α, 𝜸𝟒); 

STOTED--All the STOT factor data; 

Α-Spec--Alpha Spectrum;  

Sαγ0--The S factor for the (α, 𝜸𝟎) from all levels to ground state 0+
0; 

αγ0AD--The angular distribution for (α, 𝜸𝟎) from all levels to ground state 0+
0; 

ScasED--The S factor for all cascade data; some data are normalized; 

ααAD--The angulear distribution for the (𝛂, 𝛂) reaction channel; 

SAllαγ--The S factor for all data which are reletive to (α, 𝜸 ) reaction directly;  

AllED--Whole data-base; 

Width--Width data set for a level or a sub-reaction channel; 

4.3. The new formulae for level width, energy shift and normalized  

4.3.1. The level width and energy shift 

The width formulas as follow, only approximate solutions may be obtained even in the single level. 

  Γλ = ∑  Γλc𝑐 ,  Γλc = 2Pcγλc
2

                                                         S4.3.1.1 

    The literature (Lane1958, P273, 1.17, 1.18, 1.19) gives the correction formula on the level width and level shift:   

  𝛤𝜆𝑐 = 2𝑃𝑐𝛾𝜆𝑐
2 𝑑𝑐⁄                                          S4.3.1.2 

 𝛥𝜆𝑐 =
𝑃𝑐(𝑅𝑐𝑐

0 𝑃𝑐)−𝑆𝑐
0(1−𝑅𝑐𝑐

0 𝑆𝑐
0)

𝑑𝑐
𝛾𝜆𝑐

2                                     S4.3.1.3 

  𝑑𝑐 = (1 − 𝑅𝑐𝑐
0 𝑆𝑐

0)2 + (𝑅𝑐𝑐
0 𝑃𝑐)2                                   S4.3.1.4 
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Here, λ is the level of c reaction channel, and notation zero is the constant background. These formulas is workable only on an 

approximation of single level. RAC is the multi-channel and multi-level R- matrix formula without constant background. Therefore, in the 

calculation of an energy level’s width and shift, the remaining level value as a constant background, it is an accurately replaceable 

algorithm. Due to the involved algorithm extremely complex, the calculation time of adjustment parameter increases more than 5 times in 

the fitting. This work uses all level widths and branching ratios of experimental information, which is absolutely essential to accurately 

calculate the width and shift. 

  Γ𝜆𝛾
𝑜𝑏𝑠 = 2P𝑐 𝛾𝜆𝑐

2 /(1 + ∑ 𝑘  𝛾𝜆𝑘   
2 (

𝑑𝑆𝑘

𝑑𝐸
)𝐸𝜆

)                                S4.3.1.5 

In Eqs. S4.3.1.5 the Γ𝜆𝛾
𝑜𝑏𝑠 represent observed width, Pc is the penetrability, 𝛾𝜆𝑐

2  the reduced width amplitudes in calculation. 

The accurate wave functions of positive energy were mainly obtained by the continued fractions method in the channel of (α, α) and 

gamma particle channel. Ensures that wave functions calculated by RAC are in conformance with the results of [Barnett1974], more than 

fourteen significant figures. 

4.3.2. The formula of α-particles spectrum  

The number of α-particles per unit energy is given by the expression  

 𝑊𝛼(𝐸) = 𝑓𝛽(𝐸) ∑ 𝑃𝑙(𝐸𝑙=1,3 , 𝑎𝑙) |
∑

𝐴𝜆𝑙
𝐸𝜆𝑙−𝐸

𝑞𝑙
𝜆=1

1−[𝑆𝑙(E,𝑎𝑙)−𝐵𝑙−𝑖𝑃𝑙(E,𝑎𝑙)]𝑅𝑙(E)
|

2

                       S4.3.2.1 

Where, 𝑓𝛽(𝐸) is the integrated Fermi function, and 𝐴𝜆𝑙are the β-feeding amplitudes.    

 𝑅𝑙(E) = ∑
𝛾𝜆𝑙

2

𝐸𝜆𝑙−𝐸

𝑞𝑙

𝜆=1                                         S4.3.2.2 

 𝑓𝛽(𝑊0, 𝑍) = ∫ 𝐹(𝑊, 𝑍)𝑃𝑊(𝑊 − 𝑊0)2𝑑𝑊 
𝑊0

1
                          S4.3.2.3 

 𝐴1𝑙
2 =

𝑁𝛼𝑌1𝑙

𝑌(9.59)𝐼1𝑙𝑓1𝑙
                                        S4.3.2.4 

 𝐼1𝑙 = 𝜋𝛾1𝑙
−2(1 + 𝛾1𝑙

2 )𝐸1𝑙

−1                                       S4.3.2.5 

 Γ1𝛾
𝑜𝑏𝑠 = Γ1𝛾(1 + 𝛾1𝑙

2 𝑑𝑆𝑙

𝑑𝐸
)𝐸1𝑙

−1                                     S4.3.2.6 

Here Nα is the total number of counts in the α spectrum, 𝑌1𝑙 𝑌(9.59)⁄  is the branching ratio to the sub threshold level relative to that of 

the level with 𝐸𝑥= 9.59 MeV in 16O, the 𝑓1𝑙 = 𝑓𝛽(𝐸1𝑙). 

The first 3 levels and 1 distant level of 𝐽𝜋 =1- were adopted in the fitting than the previous analysis using third level; the first 2 levels 

and 1 far level of 𝐽𝜋 =3-, as in previous analysis were used in the fitting. The Fermi function, Fβ (E) (S4.5.2) were calculated by the 

interpolation with the Fermi function table in the literature (Gove1971). In the bound states of (α, α), the Wittaker function (S4.5.3), partial 

differential of negative energy were obtained by the formula (4-5.1) and formula (4-5.4) respectively. 

𝑊 (−𝜂, 𝑙 +
1

2
, 2𝜌) =

𝑒𝑥𝑝 (−𝜌−𝜂𝑙𝑜𝑔2𝜌)

𝛤(1+𝑙+𝜂)
∫ 𝑡𝑙+𝜂𝑒−𝑡(1 +

𝑡

2𝜌
)𝑙−𝜂∞

0
                       S4.3.2.7 

 
dW

dE
=

{[W(E+3Δ)−W(E−3Δ)]+9[W(E+2Δ)−W(E−2Δ)]+45[W(E+Δ)−W(E−Δ)]}

60Δ
                    S4.3.2.8 

4.4 The comparison of R matrix Codes  

4.4.1 The comparison for RAC13 with EDA, SAMMY and NJOY 

 EDA is an R-matrix program for light nucleus system evaluation at LANL of the United States, which hold the absolute dominant 

position in the work of international light nuclear evaluation. A systematic comparison between EDA and RAC was finished in the 

international cooperation projects about ' Neutron cross section standards ' hold by the International Atomic Energy Agency. The 

calculation of 6Li (t, α) 4He neutron standard section reaches a value of 5 or 6 digits consistent. In figure S4.4-A the black line indicates 

calculated values of EDA, the red line represents the calculation by RAC, two lines are agreement with each other without significant 

difference. 



18 
 

   SAMMY (Larson2006) is the R-Matrix code of ORNL (USA) used to evaluate resonance parameter, which hold the absolute 

dominant position in the work of international resonance parameter evaluation. NJOY (MacFarlane1994) is an R-Matrix code of USA used 

to reconstructive resonance cross section, which hold the absolute dominant position in the work of international macroscopic nuclear data 

evaluation. Using the same R-Matrix parameters produced by SAMMY, the reconstructed cross section of RAC and NJOY have the same 4 

to 6 effective figures. In figure S4.4-B the black line indicates calculated values of NJOY, the red line represents the calculation by RAC, 

and these two lines are agreement with each other without significant difference. 

  

S4.4-A. The calculation of cross section of RAC           Fig. S4.4-B. The reconstructive resonance cross section 

and EDA with the same parameters.              of RAC and NJOY with the same parameters of SAMMY. 

4.4.2. Comparison between RAC and [Tang2010] for Alpha spectrum 

The delay Alpha spectrum follow β decay in 16N (Alpha spectrum) are calculated by RAC with the original parameters given in 

(TANG2010). Fig. S4.4-C show the curve of Alpha spectrum of RAC is very similar to that curve of (TANG2010), and is very close to the 

normalized Alpha spectrums of the 3 groups. The calculated wave contribution of RAC is similar to that of (Buchmann2009) very much. 

The conclusion is that the calculation for Alpha spectrum of RAC is complete correct.  

 

S4.4-C. The data and calculated normalized Alpha spectrum  

4.5. How to describe 'external contribution' and 'direct capture' 

For 'external contribution' and 'direct capture', many literatures have many views and different treatment methods, It is because of this 

cause great differences were produced in their works, so this work gives a detailed study on the problem. The external and direct capture 

being very small is the main physical basis for creating RAC2015 model. 
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Physically speaking, the 'direct capture' is a direct collision of ɑ and 12C, where γ releases by electromagnetic interaction and residual 

nucleus directly converts into 16O in the ground state or some excited states. Since no other 16O excited states of compound nucleus are 

involved, 'direct capture' cross section, starting from 0, increases with the increase of energy of ɑ particle, then in certain energy point more 

than a Coulomb barrier, it rises to a maximum. After that, 'direct capture' cross section decline as 'resonance capture' competition is more 

and more strengthening and low wave component decreases with increase of energy. Such type of direct capture is a smoothly varying with 

energy, but mixed together with the tail contribution from high energy level resonance capture, which is hard to be distinguished from them. 

Therefore, direct capture for 12C (ɑ, γ) 16O has no their own characteristic experimental information. 

  In the currently popular theory (Barker1991), for the 'external contribution' and 'direct capture' to the ground-state transition, the 1- 

and 3-can be ignored, but 2+ states cannot. Document (Angulo2000) states theoretically that for the low-energy collisions of ɑ and 12C, due 

to a high threshold (7.17 MeV) of formation of 16O, external contribution of capture reaction is negligible. Literature (Schürmann2012) 

states that, for the cascade transitions (S6.92) to 2+
1 bound state, direct capture plays a dominant role. Some Literature (deboer2013) states 

for the cascade transitions (S7.13) to 1-
1 bound state, direct capture has contribution too. The methods to deal with the non-resonant capture 

in this work are depicted as follows. 

Some of the literatures add 'direct capture' part in the theoretical calculation formula. Literature (Barker1991) gives (Kettner1982) 

and his own description of ‘direct capture ‘empirical formula’ for SF the ground state, their calculated values being varying very smoothly, 

but more than five times in the overall difference (Fig. S4.5-F). In E = 0.3MeV area, the result of (Barker1991) for direct capture accounted 

for 16% of STOT, (Barker1991) accounting for about 1.8%, (Buchmann1996) states that direct capture in 2+ is 4keV.b, accounting for 2.5% 

of STOT (165keV.b). These cases illustrate to a certain extent that, plus the currently envisaged description part of direct capture in the 

theoretical calculation formula, did not get the desired benefits, but increased multi-value characteristic of fitting and uncertainty of the 

results instead. 

Since the R-Matrix analysis is a kind of phenomenological fitting, some special ‘background parameter Rj
0/ (E-Ej

0)’ which changed 

along with the change of energy and ‘reduced width amplitude γj
dis’ in distant levels can be settled to simultaneously describe the 

background of resonant capture and non-resonant capture contribution. Ej
0 can select a suitable value by some test fitting just same as done 

for the energy parameter of distant level. The Rj
0 and γj

dis have to be searched by multi-iteration procedure to take the best values. 

The Table. S4.5 shows the final results of two fitting schemes. In A scheme the R0E20, R06.92 and R07.12 are fixed as 0.0, the data for 

transition to ground state can be fitted very well, but the data for cascade transition about S6.92 and S7.12 cannot be fitted well. (Fig. S4.5-A, 

B). In B scheme the R0E20, R06.92 and R07.12 are searched freely, the data for all transitions can be fitted very well (Fig. S4.5-C, -D, -E). It 

should be noted that the R0E20 has a trend to be 0. 

Table S4.5. The final results of the 2 schemes (E=0.3 MeV, E-1
0 =0.3 MeV, E+2

0=0.4 MeV) 

 R0E20 R06.92 R07.12 STOT SE10 SE20 S6.05 S6.13 S6.92 S7.12 SE20dc 𝛘2
AG 𝛘2

all All 𝛘2
AG3  

A. 0.00 0.00 0.00 159.5 101.9 56.8 0.52 0.28 0.047 0.001 2.54 2358 6676 3.01 2.69 

B. 0.00 0.38 0.19 162.2 101.2 56.9 0.72 0.28 2.484 0.588 2.54 2140 6488 1.26 1.96 
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Table. S4.5-A. The result of S6.92 with R06.92=0                      Fig. 4.5-B. The result of S7.12 with R07.12=0  

When all the reduced width amplitudes γ2+
c in resonant levels of 2+were settled as 0.0, and only the γ2+

dis in distant levels and the 

background parameters Rj
0/(E-Ej

0) were used to make calculation, the background of resonant capture and non-resonant capture 

contribution in low energy range(E<1 MeV)can be got.(Fig. S4.5- C).It is about 4.5 keV at E=0.3 MeV. When all the reduced width 

amplitudes γj
c in resonant levels of 1- and 2+  were settled as 0.0, and only the γj

dis in distant levels and the background parameters 

Rj
0/(E-Ej

0) were used to make calculation, the background of resonant capture and non-resonant capture contribution in low energy 

range(E<1 MeV)can be got (Fig. S4.5- D, E). For S6.92 and S7.12, the contribution of Rj
0 / (E-Ej

0) is much larger than that of γj
dis, and the γj

dis 

and Rj
0 / (E-Ej

0) have negative correction. In the bound states 2+ 
1 and 1- 

1 not exist any correlative γj
c and the γj

dis about S6.92 and S7.12, so the 

calculated value are accurately. 

 In E=0.3 MeV GAMOW energy point, about the direct capture S factor SDC, the value of [Kettner1982] is 9 keVb, the ratio for 

SDC/STOT is 2.5% ; the value of (Buchmann1996) is 4 keVb, the ratio for SDC/STOT is 2.5% ; the value of this work is 4.5 keVb, the ratio 

for SDC/STOT is 2.8%. These data show that, due to very small contribution of direct capture for 12C (ɑ, γ) 16O, it is entirely feasible for 

compound nucleus model to be used in the system 16O produced by ɑ+12C. 

  

 Fig. S4.5-C The background of resonant capture                 Fig. S4.5-D The background of resonant capture 

 and non-resonant capture for 0+
0 from 2+ levels                    and non-resonant capture for 2+

6.92 
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Fig. S4.5-E The background of resonant capture                 Fig. S4.5-F The calculated direct capture for 0+
0 

and non-resonant capture for 1-
7.12                           in Ref. Kettner1982 and Barker1991 

 

4.6 Skillfully combines the formulae of the classical R-Matrix theory and γ capture theory 

In this work we have adopted 3 schemes on the same data-base and energy level construction to calculate the cross section of 12C (α, γ) 

16O. 

The first scheme (RAC-Lane-all) is the formulae used for all channels are those in ref. 6, the formulae for AD of all channels are as 

follow: 

𝑑𝜎𝛼𝛼′ 𝑑Ω𝛼′⁄ = 1 ((2𝐼1 + 1)(2𝐼2 + 1))⁄ ∑ |𝐴𝛼′𝑠′𝜈′,𝑎𝑠𝜈(Ω𝛼′)|
2

𝑠𝑠′𝜈𝜈′         4.6. 1  

𝐴𝛼′𝑠′𝜈′,𝛼𝑠𝜈 = √𝜋 𝜅𝛼⁄ [−𝐶𝛼′(𝜃𝛼′)𝛿𝛼′𝑠′𝜈′,𝛼𝑠𝜈 + 

𝑖 ∑ √2𝑙 + 1(𝑠𝑙𝜈0|𝐽𝑀)(𝑠′𝑙′𝜈′𝑚′|𝐽𝑀)𝑇
𝛼′𝑠′𝑙′,𝛼𝑠𝑙
𝐽

𝑌
𝑚′
(𝑙′)

(Ω𝛼′)]𝐽𝑀𝑙𝑙′𝑚′           4.6. 2 

Here, channel c ≡ (α s ι, JM), α refer to channel particle pair, s channel spin, ι channel relative orbital angular momentum, J and M total 

angular momentum and its project, This is a kind of pure phenomenological fitting, did not consider the demand for γ being transverse 

wave, this way include rather large approximation, but the fittings for all data sets are excellent, is the best one in the 3 ways used.  

The second scheme (RAC-Lane-11234) is the formulae used for all channels are those in ref. 6, but for Jπ = 0+, 1-, 2+, 3-, 4+ levels the 

wave number of γ particle channel only take 𝜄=1, 1, 2, 3, 4 respectively.  

      RAC2015 use the angular momentum coupling formulae defined in Literature (Lane19586) as follow: 

    𝑠i+𝑠 t=𝑆𝑖,                    4.6. 3 

    𝜄i+ 𝑆𝑖=𝐼i,                    4.6. 4 

     𝐼γ+𝐼 f=𝑠 c                    4.6. 5 

  𝜄c+𝑠 c=𝐼i,                   4.6. 6 

The γ is transverse wave, its intrinsic spin is 1, and it means that γ spin projection can be -1 and +1, cannot be 0. For the transition 

with 𝐼 f =0, when 𝜈’=0 the γ spin projection is 0. So when using the formula 4.6.1 to calculate the angular distribution of γ, as long as 

ignored the loop for 𝜈’=0, that γ spin projection will not be 0 in calculation.  

For Jπ = 0+, 1-, 2+, 3-, 4+ levels, the main contribution of γ transition to ground state ( γ0, 
16O0) and to the first bound state ( γ1, 

16O1) 

come from 𝜄=1, 1, 2, 3, 4 respectively. Here has a very useful coincidence, that is if only use these partial wave, in the CG coefficients set 

which relative to the calculation about the transitions of ( γ0, 
16O0) and ( γ1, 

16O1), all the CG coefficients with 𝜈’=0 are 0! So the 

contribution to differential cross section from 𝜈’=0 is 0. This means that the AD of (γ0, 
16O0) described by 4.6.1 and 4.6.2 essentially 

satisfactory the demand for γ being transverse wave, in the integral cross section of (γ0, 
16O0)

 not exist the component from 𝜈’=0, the 

integrated cross section and AD of (γ0, 
16O0) are essentially consistent. This is an especial useful result for calculating the Astrophysical SF.  
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Table 4.6.1. All CG coefficients (𝒔′𝝂′𝒍′𝒎′|𝑱𝑴) used in calculation about (γ0, 
16O0) and (+γ1, 

16O1) 

(𝒔′𝝂′𝒍′𝒎′|𝑱𝑴) CG (𝒔′𝝂′𝒍′𝒎′|𝑱𝑴) CG (𝒔′𝝂′𝒍′𝒎′|𝑱𝑴) CG (𝒔′𝝂′𝒍′𝒎′|𝑱𝑴) CG 

1-1 1 1|1 0 -0.707107 1-1 2 1|2 0 -0.707107 1-1 3 1|3 0 -0.707107 1-1 4 1|4 0 -0.707107 

1 0 1 0|1 0 0.000000 1 0 2 0|2 0 0.000000 1 0 3 0|3 0 0.000000 1 0 4 0|4 0 0.000000 

1 1 1-1|1 0 0.707107 1 1 2-1|2 0 0.707107 1 1 3-1|3 0 0.707107 1 1 4-1|4 0 0.707107 

 

For the transitions (γ2, 
16O2), (γ3, 

16O3) and (γ4, 
16O4), the spin of final state 𝐼 f>0, so for 𝜈’=0 the projection value of spin of γ is not 

must be 0. Practical calculations show that for a part of 𝑙′ (marked with 𝑙′
0) their all CG coefficients with 𝜈’=0 are 0, for a part of 𝑙′ 

(marked with 𝑙′
0+1) their all CG coefficients with 𝜈’=0 are not 0. The ED for (γ2, 

16O2), (γ3, 
16O3) and (γ4, 

16O4) only involve integral data, 

usually only using one 𝑙′ is able to get satisfactory fitting. So if only using the 𝑙′
0 wave to fit the ED the demand for γ being transverse 

wave will be meet briefly. As long as the integrated ED are fitting very well, the obtained calculation value will be correct. 

The third scheme (RAC- EMT-STET, RAC2015) is the formulae used for haven particle channels are those in ref. 6, but, for γ 

particle channels are those in Seyler1979 and Azuma2010, that is the Electric-Magnetic Transition Model (EMT) with 

Statistical-Tensor-Efficiency-Tensor Approach (STET). The expressions for the Legendre coefficients in the channel spin representation 

were derived as formulae 4.6.7 to 4.6.11, which satisfactory the demand for γ being transverse wave. It should be especially point out that 

the 𝜄 in ref. 6 and the  𝜄γ in ref. Seyler1979 and Azuma2010 have different physical mean, the 𝜄γ appear in formula 𝜄γ+𝐼 γ=𝐿⃑⃑, which is an 

indispensable angular momentum coupling formula for constructing the Electromagnetic vector potential, 𝜄γ is called ‘unobservable’ orbital 

angular momentum, it never appears in the formulae used for calculation; 𝐼 γ the intrinsic spin of γ, 𝐿⃑⃑ the total angular momentum of γ 

(Seyler1979, P20). 

For γ particle channel p ≡ (ε L λf), here λf refers to final state, ε to indicate magnetic or electric transitions, let Ω p=1.  ΓλP = 2k𝛾
2𝐿+1γλP

2  is 

the normal formula defined in EMT, it is accurate only for using Electromagnetic vector potential. In RAC2015 the wave function used is 

Coulomb wave function, so a modifying factor has to be used to get accurate fitting values for data set about AD. The formulae used for 

calculate AD of γ particle channels are 

  ΓλP = 2k𝛾
2𝐿+1γλP

2  (2L-1)/4                      4.6. 7 

𝑑𝜎𝛼→𝜆𝑓
𝑑Ω⁄ =  1 ((2𝐼𝛼1 + 1)(2𝐼𝛼2 + 1))⁄

1

𝑘𝛼
2

∑ 𝐵𝑘𝑃𝑘𝑘 (𝜃)     4.6. 8 

With the definitions 

 𝐵𝑘 = ∑ [ ] 𝑠,𝐿,𝐿′,𝑙,𝑙′𝐽,𝐽′𝜖,𝜖′ (−1)1+𝑠−𝐽𝑓 4⁄  𝑍1(𝜄, 𝐽, ι′, 𝐽′; 𝑠𝑘)  

      × 𝑍2 (𝐿 𝐽 𝐿′ 𝐽′ ;  𝐽𝑓𝑘) 𝑇
𝛼𝑠𝜄′,𝜖′𝐿′𝜆𝑓

∗𝐽′

 𝑇𝛼𝑠𝜄,𝜖𝐿𝜆𝑓

𝐽
,            4.6. 9 

   𝑍1(𝜄 𝐽 ι′ 𝐽′; 𝑠𝑘) = 𝜄 ̂ 𝐽′ 𝑗̂ 𝑗̂′ (𝜄 ̂0 𝜄 ̂′0│𝑘0)W(ιJ𝜄′𝐽′; 𝑠𝑘),       4.6. 10 

   𝑍2 (𝐿𝐽𝐿′𝐽′; 𝐽𝑓𝑘) = 𝐿̂ 𝐿̂′ 𝐽 𝐽′ (𝐿1𝐿′ − 1|k0)𝑊(𝐿𝐽𝐿′𝐽′; 𝐽𝑓𝑘).   4.6. 11 

 Where the symbol [ ] indicates a parity restriction defined by 

   [ ] = 
1

2
 [1 + (−1)𝐿′+𝐿+𝑘+𝜖+𝜖′

]                         4.6.12 

  𝜄 ̂ = (2𝜄 + 1)1/2 , 𝐽 = (2𝐽 + 1)1/2                       4.6.13 

Here, α refer to incident particle pair (α1, α2), s incident channel spin, 𝜄  incident channel relative orbital angular momentum, J is total 

angular momentum. It should be especially point out that, for γ particle channel the calculated transition matrix elements T J
α’ s’ l’, α s l are 

obtained with (α s ι, JM) scheme, the T J
α’ s’ l’, α s l include all required T*J’

α s l’, ε’ L’ λ f  and T J
α s l, ε L λ f , the formula [ ]=1/2(-1+(-1)L+L’+ k+ ε+ ε’) 

is used to select the suitable T*J’
α s l’, ε’ L’ λ f  and T J

α s l, ε L λ f  which satisfactory the constraints of all conservation law, the selection is 

finished in the calculation process for AD of 12C (α,γ) 16O with formulae (4.6.9 to 4.6.11) above. In this scheme the original theory formula 
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for integrated data become inconsistent with the formula used above. The integrated data of 12C (α, γ) 16O is calculated by mathematical 

integrating corresponding calculated AD of 12C (α, γ) 16O, the integrating precision is better 0.5%.  

It has been known that in the 16O system formed by (α+12C), s=0, Iα1=0, Iα2=0, all γ capture are electric transition, so ε≡1, ε’ ≡1. When 

𝜆𝑓and k are selected already, for a selected set of (L, L’, l, l’, J, J’), there have a pair relative T* J’
α s l’ ,ε’ L’ λ f  and T J

α s l, ε L λ f,, which have 

one or more corresponding T J
α’s’ l’, α s l, these T J

α’s’ l’, α s l will be used in calculation actually. The final calculated result will satisfactory the 

constraints of all conservation law and the demand for γ being transverse wave. The AD of 12C (ɑ, γ0)
16O at 66 energies have got good 

fitting, but the fitting is not as perfect as the fitting obtained in the first way. 

 

4.7. How to get a unique evaluated Stot of 12C (α, γ) 16O 

The optimization objective function for is 

 𝝌𝟐 = (𝜼 − 𝒚)+𝑽−𝟏(𝜼 − 𝒚) ⇒ 𝑚𝑖𝑛𝑖𝑚𝑢𝑛                                                                        S4.7.1. 

It is a multidimensional high order polynomial function determined by the initial parameter-set and data-base. With different parameter-set 

or data-base will have different local minimum. In order to get a unique evaluated Stot of 12C (α, γ) 16O, some methods have been adopted 

as follow.  

A. The key data set Stot of Schurmann2005 and SG.S of Brochard1975 are set with higher weight in 2 times. 

B. Some key data points are set with higher weight, which include: 

SG.S at Elab= 0.313384E+01, 0.318412E+01, 0.312451E+01 and 0.316585E+01 MeV for the main resonance level 1-
2; 

SG.S at Elab =0.357000E+01 MeV for the resonance level 2+
2; 

SG.S at Elab = 0.572250E+01 MeV for the main resonance level 2+
3; 

S 6.05 at Elab= 0.321252E+01 MeV for the main resonance level 1-
2; 

AD of 12C (α, γ0) 16O at Elab = 0.357000E+01 MeV for the resonance level 2+
2; 

Γ2,𝛼𝛾
2+  at Ecm =0.268771E+01 MeV for the nerow resonance level 2+

2; 

C. The most important method is that the width information for bound states 2 + and 1 – (γ2
α1-exp, γ

2
α2-exp, Γ𝛾1−𝑒𝑥𝑝,

1−  Γ𝛾1−𝑒𝑥𝑝
2+ ) were used as 

ED to fit, the deviation have to be less 0.5 time of the original error, see 5.1.1. 

D. For the 7 data of width without error information, a suitable error have been given out. A resonable way is to take Error=50% in 

iterative procedures.  

 

5. Characteristic special research procedures  

In order to get a unique and reliable SF, some special procedures are developed, which include: 

5.1 Systematical study.  

This item also includes ‘the Research for six configurations of multi-channels and multi-levels’ and ‘the Studying of eight 

schemes for practical application’. The 2 items are very long, so put them in Appendix. III.  

5.2 Iiteration fitting procedure.  

5.1. Systematic study 

The so-called 'systematic study' refers to research’s in some types of identical conditions, which are performed by a variety of 

possibilities analysis for certain types of key factors in order to make the best choice; After all key factors are best choose, the most reliable 

results for overall analysis will be obtained. 

5.1.1. Width information in bound states taking different weights 

The width information for bound states, especially 2 + and 1 - bound states, plays a particularly important role in the data fitting, which 

is done by some considerate researches. 

Table S5.1.1-A. The α-reduced widths and SF 
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Experiment 
γα 

2  (0+) 

/(keV) 

γα 
2  (3-) 

/( keV) 

γα 
2  (2+) 

/( keV) 

γ 2 α (1−) 

/( keV) 

SE10/ 

keV b 

SE20/ 

keV b 

Oulebsir2012 19.7±5.5 2.35±0.8 26.7±10.3 7.8±2.7 100±28 50±19 

Belhout2007 / / 26.6−17.2
+19.2 4.59 ± 2.91 80.6−16

+17  

Adopted Values 19.7±5.5 2.35±0.8 26.65±9.022 6.195±1.979   

Evaluated value 18.7±2             2.35±0.3 26.65±5.86 6.195±0.76   

 

Reduced width γ2
α in bound states are the results (see Table S5.1.1 above) obtained by measuring and analyzing 12C (7Li, t) 16O or 12C 

(7Li, d) 16O transfer reaction data, and the data used is the weighted averaged values for the data of two experiments.  

Fitting process shows that γ2
α0 in 0 +

1 has a very little impact on the SF, Additionally, the ' γ width Γ𝛾1
0+ ' in 0+

1 is a formal parameter 

representing the 'electron-pair transition ' possibility of actually happening in this energy level, so it has something very small to do with SF 

Similarly, for 3
-

1, the 'α reduced width γ2
α3 ' and ' γ width Γ𝛾1

3−' hardly influence the SF.  

Fitting process also illustrates that, the ‘α reduced width’ γ2
α1 in bound states 1-

1 and γ2
α2 in bound states 2 +

1 are sensitive elements on 

the SF，but duo to γ2
α1 and γ2

α2 have relative larger error( 33.4% and 34.4% respectively) and the delay Alpha spectrum is used, their effect 

is not much high.  

Fitting process also illustrates that, the 'γ width’ Γ𝛾1
1− in bound states 1-

1 and Γ𝛾1
2+ in bound states 2 +

1 are the most sensitive elements 

on the SF. The experimental values of Γ𝛾1
1− and  Γ𝛾1

2+ have relative small error (5.8% and 3.1% respectively). 

There are two kinds of methods for using of such data. At first, used them as R- matrix parameter directly, so their original value are 

used to determine the scale of S factor. This approach ignores the contribution from other types of ED, that is overestimates the weights of 

the transfer reaction data mentioned above. The calculated S factors at E=0.3 MeV and the Chi-squares for the 3 schemes are shown In 

Table S5.1.1-B as RAC-LANE-All-ORI, RAC-LANE-11234-ORI, RAC-EMT-STET-ORI respectively.   

Then on the base of data-sets and parameter-sets obtained in the first way, the experimental values γ2
α1-exp, γ2

α2-exp, Γ𝛾1−𝑒𝑥𝑝
1−  and 

Γ𝛾1−𝑒𝑥𝑝
2+  were used as ED to fit, in fitting procedure their corresponding fitting parameter walues will deviate from the original 

experimental values. The crition is that the deviation have to be less or eqval to 0.5 time of original error, that is γ2
α1-fit ≈γ2

α1-exp (1±0.167), 

γ2
α2-fit ≈γ2

α2-exp (1±0.172), Γ𝛾1−𝑓𝑖𝑡
1− ≈ Γ𝛾1−𝑒𝑥𝑝

1− (1±0.029), Γ𝛾1−𝑓𝑖𝑡
2+ ≈ Γ𝛾1−𝑒𝑥𝑝

2+ (1±0.016).This fitting process taking into account the effect 

from other types of ED which should have for the fitting parameter walues. The calculated S factors at E=0.3 MeV and the Chi-squares for 

the 3 schemes are shown In Table S5.1.1-B with RAC-LANE-All-0.5S, RAC-LANE-11234-0.5S, RAC-EMT-STET-0.5S respectively. 

 

Table S5.1.1-B. The calculated S factors at E=0.3 MeV and the Chi-squares for the 3 schemes 

 S Factor at E=0.3MeV(keV b) Integrated 𝜒2  Mean  𝜒2  Mean  𝜒2  Err% 

Scheme Stot Se10 Se20 Scas SAll𝛂𝛄 AllED Stot S𝛂𝛄𝟎 𝛂𝛄𝟎AD Scas 𝛂 −Spec 𝛂𝛂AD Stot 

RAC-LANE-All-ORI 149.87 088.94 57.03 3.89 1856 6346 1.346 1.574 1.867 1.458 1.607 1.393 6.1 

RAC-LANE-11234-ORI 150.30 088.85 56.95 4.49 1858 6355 1.352 1.579 1.867 1.465 1.675 1.387 6.2 

RAC2015-ORI 156.27 ≈93.0 ≈59.7 3.57 2430 6880 2.470 1.862 2.499 1.417 1.647 1.356 4.5 

RAC-LANE-All-0.5σ 156.58±8.3 100.52 52.15 3.89 1780 6246 1.211 1.455 1.833 1.332 1.461 1.373 5.3 

RAC-LANE-11234-0.5σ 158.96±8.3 104.62 48.57 5.76 1832 6298 1.320 1.486 1.842 1.513 1.511 1.370 5.2 

RAC2015-0.5σ 159.71±9.3 ≈94.2 ≈61.4 4.10 2290 6809 1.299 1.867 2.421 1.622 1.447 1.415 5.9 

 

 

Table S5.1.1-B Shows that in the second method (0.5σ) all kinds of Chi-squares are smaller than the corresponding Chi-squares in the 

first method (ORI). So the S factors obtained in the second method should be taken as the recommend values. In the second method (0.5σ), 

the astrophysical S Factors obtained in its 3 schemes are near identical. The first scheme RAC-LANE-All-0.5𝛔 has the best fitting, the 
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integrated 𝜒2  of whole data-base is 6246, but it’s a kind of pure phenomenological fitting; his scientific significant is that it verified the 

reliability of S Factors obtained in the 3 schemes in mathematical evaluation aspect. The fitting of the second scheme 

RAC-LANE-11234-0.5𝛔 is better, the integrated 𝜒2  of whole data-base is 6298, the（γ0,
16O0）and（γ1,

16O1）naturally meet the requirements 

of gamma being a transverse wave, its contribution play dominate function. This is the most striking quantitative successes with this 

scheme. In other way, the AD of 12C (ɑ, γ0)
16O at 66 energies have got the best fittings, and play very important role for ascertain of SE10 

and SE20. The results show SE10 is much greater than SE20, they are the objective results obtained by fitting objective experimental data 

sets, there is no any subjective constraints, not set the SE10 with enhanced values in advance as that ref. 43 challenged. But, there exist a 

little approximation in calculation about cascade transition. The fitting of the third scheme RAC2015-0.5𝛔 is good too, the integrated 𝜒2  

of whole data-base is 6809, it’s the strictest one in theory formulae used. The S factors obtained in this scheme are taken as the final 

recommended values. 

 

Fig. S5.1.1-A. ED and calculated values for SE10  

Figure S5.1.1-A shows both ED and theoretical calculated values for SE10, where RAC2013, Brune1999 and Ouelebslr2012 use the 

ED values of α reduced width in bound state (γ2
α). Consequently, in low energy extrapolation energy region (E <0.7 MeV), they agree very 

well with each other for the theoretical values. Additionally, in the energy area where existing ED, the calculated value of Brune1999 and 

Ouelebslr2012 show slightly high. Since others did not use the ED of α reduced width in bound state (γ2
α), the calculated values are 

systematically lower in the low energy range (E <0.7 MeV). The calculated values of Schurmann2012 and Kunz02 show systematically 

lower in the energy range where there exist ED. 
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    Fig. S5.1.1-B. ED and calculated values for SE20 

Figure S5.1.1-B demonstrates the ED and theoretical values of SE20, where RAC2013, Brune1999 and Ouelebsir2012 use the ED 

values of α reduced width in bound state (γ2
α). Therefore, in lower extrapolation energy region (E <0.7 MeV), they agree very well with 

each other. In the energy region where there exist ED, the calculated values by Brun1999 and Ouelebsir2012 are significantly lower. Since 

others did not use ED for α reduced width in bound state (γ2
α), the calculated values are systematically higher in the low energy range (E 

<0.7 MeV). The theoretical values calculated by Schurmann12 and Kunz02 show systematically lower in the energy range where there 

exists ED. 

As describe in the chapter 7.8, it is the RAC2013 that the theoretical calculations and ED show the closest. 

5.1.2. Searching best Scaling factor of AD for 12C (ɑ, γ0)16O  

In the ED set, there are two units, 23 energy points, 120 data points of absolute values of AD for 12C(ɑ, γ0)
16O, it is necessary to search 

the normalization coefficient for every unit.. Moreover, 7 units, 42 energy points, 493 data points of relative values of AD for 12C (ɑ, γ0) 

16O, it is necessary to search the Scaling factor for every energy point. Analysis indicate that such type of data plays very important role in 

determining the proportion of SE10 and SE20, and STOT. One of the strengths for R-matrix analysis is that it can normalize the ED to the 

expected value, to obtain the 'Scaling factor' or 'normalization coefficients' for relative values, determining the systematic errors in the last. 

Thus, some particularly detailed studies are performed on these factors. 

It is provided in this work that the in ' covariance fitting ' to take into account the ' long-range energy correlation and middle-range 

energy correlation ' of covariance, only the data in the same group is related to each other. For this reason, at first, with the condition that 

taking one energy point as a group, data fitting is performed to find the Scaling factor without the consideration of long-range correlation, 

then to get the primary absolute values of AD for every energy point. Secondly, in the case that taking a unit of data as a group, data fitting 

is performed to find preliminary normalization coefficients with the consideration ‘long-range correlation and middle-range energy 

correlation' for every unit. Next, repeating the first step to find improved Scaling factor for every energy point, repeating the second step to 

find improved normalization coefficients for every unit. Similar procedures are repeated several times to get the ideal Scaling factors set 

(including 42 elements ) and the normalization coefficients set (including 7 elements) , and obtain the expected absolute value of AD for 

12C(ɑ, γ0)16O. 
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The Best Scaling factor is the term compared to fitted relative values. By principles of error propagation law, the uncertainty is 

addressed by using the systematic error of relevant data. Theoretical, the systematic error is equivalent to mean square error of fitted values. 

(Note: The systematic error here does not refer to that existed in experimental measurements). By using the best Scaling factor, relative 

values can be converted into absolute ones. When the absolute values are used in such type of data, the normalization coefficients should be 

1. As the errors of 'Scaling factor' have been presented by the 'systematic error', 'Scaling factors' are no longer to be regards as adjustable 

parameters when calculating the errors of fitted values by 'error propagation law’. The 'Scaling factor’ column in APPENDIX IV, The Table 

2 list 'Scaling factor' for each energy and 'normalization coefficient' for each group in detail. 

 

5.1.3. Determine the optimum Schürmann2011 normalization coefficient 

S-factors of the reaction channel in ref. (Schürmann2005) and (Schürmann2011) are extremely important ED which influence whole 

fitting, providing their systematic errors are both 6.5%. Due to the experimental value of STOT in the main energy region (1.3 to 4MeV) is 

less than the sum = SG.S. + S6.05+S6.13+S6.92+ S7.12, it can be identified that Schürmann's STOT is on the lower. To this end, the 

normalization coefficients for Schürmann's STOT were taken 1.01, 1.02, 1.03, 1.04 and 1.05 respectively to make testing run, and their 

systematic errors are taken the errors of the corresponding fitted values. It is found by fitting that the normalization coefficient of 1.03 can 

result in the minimum Chi-square for the most important data-set SAllαγ and All-ED, which is seen in Table S5.1.3. 

Table S5.1.3.  The results for different normalization coefficient of [Schürmann2005] 

Schü-NF STOT SE10 SE20 Scas SAll𝛂𝛄 AllED STOTED S𝛂𝛄𝟎 𝛂𝛄𝟎AD ScasED 𝛂-Spec 𝛂𝛂AD Width 

Sch-1.01 158.78 109.07 45.62 4.09 2050.6 6374.8 1.5557 1.8886 1.9851 1.2059 1.3997 1.3196 1.2459 

Sch-1.02 158.69 109.49 45.15 4.05 2054.0 6374.8 1.6163 1.8904 1.9813 1.2026 1.4001 1.3197 1.2187 

Sch-1.03 158.99 110.20 44.80 3.99 2049.7 6368.8 1.6052 1.8651 1.9810 1.2072 1.4008 1.3195 1.2054 

Sch-1.04 159.06 110.41 44.69 3.96 2053.4 6371.4 1.6441 1.8604 1.9798 1.2123 1.4008 1.3196 1.1960 

Sch-1.05 158.65 109.22 45.54 3.89 2061.0 6382.4 1.6808 1.8607 1.9826 1.2206 1.3983 1.3196 1.2020 

 

5.1.4. Determining appropriate weights for AD of 12C (ɑ, ɑ) 12C 

In this work we use 5 groups of elastic scattering AD for reaction 12C (ɑ, ɑ) 12C, their energy Eα (Lab) including from 1.446 to 10.00 

MeV. For energy region larger than 4.5MeV, because of absence of ED of Alpha spectrum, the width of 12C (ɑ, ɑ) 12C is determined by the 

AD of 12C (ɑ, ɑ) 12C only. In the main energy range from 1.3 to 4 MeV, such type of ED along with three groups of Alpha spectrum ED 

jointly determines the width of 12C (ɑ, ɑ)12C in 1-
2 level, but there is a competition between them, while ED of Alpha spectrum are 

dominant. The ED for 12C (ɑ, ɑ) 12C will be taken different weights so that the average chi-squared 𝜒𝒆𝒍𝒂
2  are 0.50, 1.0, and 2.00 times of 

averaged value of chi-squared of Alpha spectrum separately. Since then, various SF factors show very close to each other (Table S5. 1.4), 

and in the end of iterative fitting, 𝜒𝒆𝒍𝒂
2 is made to be approximately to equal 𝜒𝒂𝒍𝒑

2 . 

Table S5.1.4.  The different weights for AD of 12C (ɑ, ɑ) 12C 

𝝌𝒆𝒍𝒂
𝟐 /𝝌𝒂𝒍𝒑

𝟐  STOT SE10 SE20 Scas STOTED S𝛂𝛄𝟎 𝛂𝛄𝟎AD ScasED 𝛂-Spec 𝛂𝛂AD SAll𝛂𝛄 AllED Width 

0.50 157.97 110.87 43.31 3.79 1.5664 1.8451 1.9730 1.2030 1.4261 0.9342 1.7660 1.2416 1.1080 

1.00 158.43 110.15 44.29 3.99 1.6575 1.8513 1.9775 1.2097 1.4404 1.3197 1.7790 1.4798 1.0823 

2.00 157.62 110.33 43.51 3.78 1.6028 1.8499 1.9747 1.2095 1.4094 1.6806 1.7722 1.6956 1.1809 

 

5.1.5. Determining appropriate weights for three groups of ED of Alpha spectrum  

In this work we use three units of ED of Alpha spectrum, i.e. [Azuma1994], [Tang2010] and [Zhao1993]. In the energy region there 

existing ED of Alpha spectrum, both Alpha spectrum and 12C (ɑ, ɑ) 12C elastic scattering AD jointly determine channel width for (ɑ, 12C), 

where there is a very strong competition between them. Moreover, the normalized Alpha spectrum, in which the total error is very small, 
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plays a dominant role in determining channel width for (ɑ, 12C). These three units of normalized Alpha spectrum show different shapes, and 

real fitting procedures indicate that [Aruma1994] is the most accurate one, which is needed to be ensured to plays a dominant role. After 

Adjusting the weighting factor of 0.72, 1.00 and 1.43 for other two units compared to [Aruma1994] respectively, it is found that calculated 

values of all types of SF change very little (Table S5.1.5), thus, it can be determined that W is equal to 1.00. 

Table S5.1.5.    Alpha Spectrum taking different weights 

𝛂-Spec-w STOT SE10 SE20 Scas STOTED S𝛂𝛄𝟎 𝛂𝛄𝟎AD ScasED 𝛂-Spec 𝛂𝛂AD SAll𝛂𝛄 AllED Width 

Alpha-w0.72 158.35 110.63 43.80 3.92 1.6440 1.8778 1.9801 1.2045 1.7800 1.3210 1.7819 1.4914 1.0950 

Alpha-w1.00 158.43 110.31 44.20 3.92 1.6182 1.8618 1.9794 1.2152 1.4001 1.3195 1.7791 1.4676 1.0717 

Alpha-w1.43 158.56 110.54 44.09 3.94 1.6484 1.8832 1.9753 1.2090 1.1241 1.3183 1.7812 1.4502 1.0902 

 

5.1.6. Determining the appropriate weight for ED of [Plag2012]  

By Fitting discovers that, the ED in the low-energy point of [Plag2012], especially AD for 12C (ɑ, γ0) 16O, is the most sensitive data 

on SF in all kinds of cross sections, when change their weights can let SF change very significantly. Table S5.1.6 show the SF and 𝜒2 for 

its weight-factors are set as 2, 1, 0.25 and 0.01 respectively. It is very useful and necessary to make direct experimental measurements in 

low energy area, which is proved by the fact that ED in low energy area is the most sensitive to SF factors. 

Table S5.1.6. The ED of [Plag2012] taken different weights 

plag-wf STOT SE10 SE20 Scas STOTED S𝛂𝛄𝟎 𝛂𝛄𝟎AD ScasED 𝛂-Spec 𝛂𝛂AD SAll𝛂𝛄 AllED Width 

plag-w2.00 154.30 106.87 43.43 4.00 1.7663 2.1075 2.1985 1.2124 1.4095 1.3185 1.9515 1.5072 1.2307 

plag-w1.00 158.66 108.85 45.72 4.09 1.5523 1.8947 1.9852 1.2039 1.3966 1.3197 1.7787 1.4712 1.2362 

plag-w0.25 160.72 110.31 46.25 4.16 1.4165 1.7928 1.8608 1.1957 1.4113 1.3207 1.6794 1.4364 1.2157 

plag-w0.01 161.57 110.74 46.64 4.18 1.3459 1.7571 1.7987 1.1952 1.4090 1.3213 1.6323 1.4239 1.2010 

 

5.1.7. Processing anomalies straggling ED by Leit’s criteria 

According to Letts criteria, when observational data follow a normal distribution, the probability of that residual lies in range of three 

times of standard deviation [± 3σ] is over 99.7 %, while the probability of lying outside this area is less than 0.3%. In some cases, the 

measured data, their residual lying outsides, can be considered the occasional ‘outliers’, which is maybe caused by the presence of large 

systematic errors in some data set , and the very little nominal error between them. For data points with a very large residual, they can be 

removed, or retained by increasing their nominal error, which is depending on the actual cause of them. In this work, we prefer the latter 

one to retain them. In the cases of using ± 2σ, ± 3σ, ± 4σ and ± 8σ as amended criteria, it is found that although the maximum difference of 

finally calculated STOT (7 keVb) (Table. S5.1.7) are smaller than the error of expecting value (about 11 keVb) obviously, but for the high 

accurate demand for SF, this difference should be considered carefully. The Table. S5.1.7 show that when taking ± 3σ as the amended 

criteria, the amended data number is 372, about 8.3% of total number, the STOT=159.02. Taking ± 2σ as amended criteria looks excessive, 

it make the STOT drops 1.1 keVb. The result for taking ± 2σ as amended criteria is very close to that for ± 3σ. It should be noted that using 

±8σ has only 11 amended data, it is almost no making any amend. It make the STOT increase 6 keVb. So the conclusion is processing 

anomalies straggling ED by Leit’s criteria is absolutely necessary. 

Table S5.1.7. The results using 2σ, 3σ, 4σ and 8σ as criteria respectively 

Method STOT SE10 SE20 Scas STOTED S𝛂𝛄𝟎 𝛂𝛄𝟎AD ScasED 𝛂-Spec 𝛂𝛂AD SAll𝛂𝛄 AllED Width D-No. 

Leit±2σ 157.93 109.25 44.63 4.04 1.1427 1.4075 1.5100 0.9093 0.8982 1.3162 1.3436 1.3045 0.9575 551 

leit±3σ 159.02 109.57 45.39 4.06 1.5731 1.8788 1.9826 1.2019 1.3991 1.3194 1.7765 1.4701 1.2222 372 

leit±4σ 159.25 109.78 45.39 4.07 1.7514 2.2532 2.2028 1.3828 1.9458 1.3225 2.0065 1.5708 1.2648 296 
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leit±8σ 165.14 113.65 47.20 4.28 1.7260 2.9586 2.5332 1.7878 3.8085 1.3245 2.3713 1.7917 1.6585 11 

 

5.1.8. Determining the appropriate channel radius 

In the R-matrix analysis, in the condition of only considering the effect of compound nucleus, only if ED is an ideal statistical sample, 

the channel radius can be taken any real number within a certain range, you can getting a better analysis result. In the contrary, in the case 

of considering the effect of non-nuclear complex with a complexity ED samples, the different channel radius result in different analyzed 

results, and there is a group of channel radius close to the best results. The study finds, for determining astrophysical SF of 12C (ɑ, γ) 16O, 

channel radius, especially elastic scattering channel radius, is the very critical and very sensitive parameter. In the condition of taking the 

same value for all channel radius, 6.0, 6.5, and 7.00 fm were chosen in the parameter fitting, which is shown in Table S5.1.8. It is found the 

best results is in the case of 6.5fm. On the other hand, the experimental data of Alpha reduced width 𝜸𝜶
𝟐  in 4 bound states are given in the 

condition with channel radius equal 6.5 fm (Oulebsir2012), so all the channel radius are taken as 6.5 fm in this work. 

Table S5.1.8.   The SF and 𝝌𝟐 with different radius 

Radiixxx STOT SE10 SE20 Scas STOTED S𝛂𝛄𝟎 𝛂𝛄𝟎AD ScasED 𝛂Spec 𝛂𝛂AD SAll𝛂𝛄 AllED Width 

Radi6.00 132.54 095.97 33.57 2.99 1.8189 1.9719 2.0072 1.2870 2.1438 1.3265 1.8427 1.5652 1.5498 

Radi6.50 158.43 110.31 44.20 3.92 1.6182 1.8618 1.9794 1.2152 1.4001 1.3195 1.7791 1.4676 1.0717 

Radi7.00 178.53 118.17 54.82 5.55 1.5474 1.9988 1.9890 1.2065 2.8542 1.3745 1.7954 1.5988 1.8259 

 

Fig. 5.1.8. The calculated SF and 𝜒2 for different radius with fixed parameters 

In the Tables except 5.1.8, all the SF and 𝜒2 are the data in a local minimum point which is got by adjusting parameters to fit 

experimental data under the condition of fixed radius. The error propagation law is used to calculate the STD of parameters and s factors.  

In the Table 5.1.8, all the SF and 𝜒2 are the data in a local minimum point which is got by adjusting parameters to fit experimental 

data under the condition of with a given radius. The error propagation law is used to calculate the STD of parameters and s factors. 

In the Fig. 5.1.8, all the SF and 𝜒2 are the data calculated with the parameters of a selected local minimum point and a given 𝑅𝛼𝛼 

which changed with the step length𝜎𝛼𝛼. The SF and 𝜒2 are not the calculated values a local minimum point. Using the error propagation 

law to calculate the STD of parameters and S factors will be of no practical value. But in the previous study works which did not use the 

error propagation law, the ways to get the STD of someone parameter just is this kind of calculus of differences for the parameter. Or was it, 

the calculus of differences for the parameter is used to select the best fitting. It is clear that, if we consider 2 Parameters will need 2 
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dimensional grid computing, if consider n parameters will need n dimensional grid computing. If each parameter considered in M grids, 

then will need operation for mn times. The practical calculation shows that when all kinds of parameters have a good estimate, need to take 

M ≥ 7. This work needs to consider 140 parameters, then need to do 7140 times operations, this is absolutely not feasible. Using the error 

propagation theorem in RAC13 , in a complete procedure for fitting data, each of the parameters need to adjust about 100 times, so will 

need a total of 14000 times operation. It can be completed in 6 hours with ordinary microcomputer. 

 

5.1.9. The effect of systematic middle range correlation error (SMRCE) 

The systematic long range correlation error (SLRCE) describe the systematic deviation of experimental condition or standard for deal 

with detected data, e.g., the used detect efficiency is lower than real value 2%; The systematic middle range correlation error (SMRCE) 

describe the inhomogeneity of experimental condition or standard for deal with detected data, e.g., the used detect efficiency changed 5% 

with energy change. The systematic short range error is just refer to the statistic error. In the detect process these error are existing 

objectively. Now a days in most of experimental articles, the SLRCE information is given out, but, very few article give out the 

information about SMRCE. In general, its estimate values is from 0% to 20%.  Table S5.12 show the results for SMRCE taking 0%, 10%, 

20% respectively. It looks that the SMRCE have little effect on STOT, taking mean value 10% is a good choice.  

Table S5.1.9. The SF (E=0.3 MeV) and𝝌𝒊
𝟐, 𝝌𝜶𝜸

𝟐  for different middle range error item 

SMRCE-% STOT SE10 SE20 Scas STOTED S𝛂𝛄𝟎 𝛂𝛄𝟎AD ScasED 𝛂-Spec 𝛂𝛂AD SAll𝛂𝛄 AllED Width 

midl-00% 158.21 111.29 42.87 4.05 1.7289 1.8805 2.1415 1.2531 1.4514 1.3212 1.8920 1.5058 1.2139 

midl-10% 158.19 111.22 42.90 4.07 1.6514 1.8700 2.0970 1.2464 1.4710 1.3213 1.8567 1.4963 1.2201 

midl-20% 158.25 111.20 42.97 4.08 1.6122 1.8654 2.0932 1.2401 1.4997 1.3207 1.8491 1.4955 1.2047 

 

5.2. Repeated Iterative fitting 

With the use of systematic research, some of the best selection and the initial values of the key factors in the fitting are obtained, these 

best choices including: 8 reaction channels, 37 levels, 128 to 144 adjustable parameters, 6.5 fm of channel radius, ±3σ of Letts criteria , 

Schürmann STOT taking 1.03 as the normalization coefficient, and so on. The system error is the deviation from expectation value, due to 

the expectation value will be get only by global fitting, the deduced conclusion is that the systematic error for someone data set cannot be 

obtained by isolated analysis, it can be get only with systematical and accurate analysis. According to the error propagation law, if a 

sub-Dataset get its normalized absolute values, then its relative statistic errors take its original values, its systematic error takes the relative 

value of the root of its STD.  

Two ED input files are needed in RAC. The file named CA12.AE--ORI is a fixed record file of the original ED, which function is to 

provide the original statistical error. File CA12.AE--EVA is a dynamic ED file recording the evaluation process, which role is to provide 

the actually used ED in fitting and is updated in the iterative process, where the original relative values of the ED are replaced with the new 

absolute value, the systematic error values are updated by the mean square errors of newly fitted values, the statistical errors are renewed 

with the original one at the beginning, but corrected according to the Letts criteria. The ratio of the corresponding data in there two 

documents is the new 'Scaling factor' or 'normalization coefficient'. The Scaling factor is adjustable in RAC, which is recorded in the 

parameter file CA12.APAR together with the new R-matrix parameters. Figure S5.2 shows the iterative fitting procedure flow chart. 
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Table S5.2. The flow chart for the iterative fitting procedure. 

So, with the continuity of iterative fitting, the variation of scaling factor will be getting smaller and smaller, and the principal values of 

relative ED will be closer to their expectations. Similarly, the variation of R-matrix parameters, fitted values and mean square error of fitted 

values will also be getting smaller and smaller, related systematic error of experiments data will be more accurate; their chi-squared smaller 

changes more and more slightly; at last, all calculated values tend to have very slight fluctuations. Finally take the .loop in which the 

averaged 𝜒𝑚
2  is smallest as the best one. Refer to Table S5.2.1, in which the loop with STOT=159.72 has the minimum of𝜒𝑚

2 .  

Table S5.2.1. The SF, 𝜒𝑖
2 and the average weighted value 𝜒𝑚

2  for Scheme S3-012-123-3-4 

STOT SE10 SE20 Scas STOTED S𝛂𝛄𝟎 𝛂𝛄𝟎AD ScasED 𝛂-Spec 𝛂𝛂AD SAll𝛂𝛄 AllED Width 𝝌𝒎
𝟐   

157.52 103.64 49.88 4.00 1.852 1.763 1.906 1.202 1.421 1.324 1.742 1.460 1.125 1.6125 L 

160.95 98.88 57.98 4.10 1.708 1.760 1.970 1.211 1.395 1.321 1.767 1.463 1.166 1.5896 H 

160.82 99.11 57.61 4.10 1.712 1.751 1.973 1.209 1.396 1.321 1.767 1.463 1.163 1.5892 H 

160.33 99.13 57.11 4.09 1.712 1.753 1.971 1.211 1.395 1.320 1.767 1.462 1.165 1.5893 H 

160.22 99.56 56.57 4.09 1.712 1.753 1.971 1.210 1.396 1.320 1.767 1.462 1.163 1.5892 H 

159.92 100.03 55.80 4.08 1.715 1.747 1.973 1.210 1.398 1.320 1.767 1.461 1.161 1.5892 H 

159.72 100.05 55.60 4.08 1.715 1.746 1.971 1.210 1.398 1.320 1.766 1.461 1.163 1.5890 H 

159.50 100.05 55.37 4.07 1.716 1.748 1.971 1.210 1.399 1.320 1.766 1.464 1.164 1.5900 H 

159.32 100.04 55.20 4.07 1.719 1.748 1.972 1.209 1.395 1.319 1.767 1.464 1.173 1.5905 H 

159.16 100.07 55.02 4.07 1.721 1.749 1.972 1.209 1.395 1.320 1.767 1.464 1.157 1.5902 H 

 

As can be seen from the above description, through the 'systematic research' and 'iterative fitting', with the gradual optimization of 

parameters to fit the ED with gradually optimized factors, the probable priori factors and subjective factors being excluded in the analysis 

processing, instead the posterior factors, objective factors playing a decisive role, it is guaranteed that the objective, accurate, 

self-consistent and unique interior and good astrophysical SF will be obtained in the end. 

 

6. Evaluation and selection of experimental data (ED)  
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Usally in a set of experimental data the largist uncertainty is its systematical error, becase it’s very hard to give out the error accurately 

according to the experiment alone; and it’s very hard to determine the error accurately by analisis of a few sets of data. In evaluation of 

nuclear data the most important problem is to ascertain the systematical error, which means to get the most reasonable normalization factor 

for absolute data, and the scaling factor for relative data. In order to approach this object the unique effective way is to do a gloable fitting 

for the whole data-sets of a nuclear system; the evaluation procedure is included in the gloable fitting procedure.  

So far, about astrophysics SF of 𝐶12 (α, γ) 𝑂16 , more than 30 experiments have been carried out with the minimum energy down to E= 

0.9 MeV. There are two main experiment method of the capture reaction, direct measurement and indirect measurement. Indirect 

measurement included the β-delayed α decay spectrum of 16N, Coulomb dissociation, and transfer reaction etc. In this work, The 

Experimental data have been evaluated very carefully, for the previous research did analysis and reference to very carefully, the specific 

situation is described in detail in Appendix VII. In this chapter only introduce the principles for evaluation and selection of ED. 

 

6.1. The principle of data evaluation 

The basic principle of the data evaluation is that the evaluation data set can reflect the information of nuclear structure and nuclear 

reaction accurately and objectively, no matter which is to use the original data or the appropriate amendment.  

R-matrix fitting require the ED covering full energy region with complete energy points and continuous values, especially in the 

resonance peaks area with the different types of data. Reliable ED sub-set should satisfy the following requirements: 

A. In the resonance peak area, the sum of SF in different reaction channel should be equal to the total SF;  

B. The peak position of the different types of ED should be consistent within the range of error;  

C. The principal value of different groups should be consistent within the range of uncertainty;  

D. The width data of resonance peaks is matched to the implied width information of the other data;  

E. The integral value of the differential data should be equal to the corresponding integral data within the range of error; 

F. The integral data of different groups should span a broad energy range with a number of data points and have a good match with 

each other. 

According to the principle of maximum likelihood, fitting a data set with many types and large amount of points needs to meet the 

approximate statistical distribution, so the revisions of some data set is reasonable.  

A. If one experimental point deviates from the expectations obviously, such as the residual error larger than three times of 

uncertainty, the error of this point can be enlarged with the Letts’ criteria;  

B. In the same type of ED, if the difference of principal value are far greater than their uncertainties, the some error of 

corresponding data should be amplified in the fitting; 

C. If the principal value in one group data deviate from the expected value wholly, the normalization to this data set is needed in the 

fitting;  

D. If one high precision data set are selected as the standard data in the evaluation, then some data with systematic deviation should 

be normalized to the standard data. 

 

6.2. The principle of ED selection 

The basic principle of the data selection is that the fitting data set can reflect the information of nuclear structure and nuclear reaction 

accurately, wholly and objectively, no matter which is to use or to give up. 

All the available data about the SF are adopted in the fitting, unless there is enough evidence to show the problem of one group data. 

The rare and important low-energy ED are paid special attention in our fitting.  

The original and reliable data are paid attention to use, such as 4 group total STOT, 5 group AD of 12C(ɑ, ɑ)12C, 3 α-spectrum data, 71 

width data, 7 groups AD of 12C(ɑ, γ0)
16O, 7 groups of Sg.s , and 7 groups of cascade transition data about S6.05, S6.13, S6.92 and S7.12 etc. 

http://dict.youdao.com/w/types/
http://dict.youdao.com/w/of/
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6.3. The comprehensive information about experimental data set 

    The final fitting used 12 types, 55 groups of data-sets. The mass center energy range is -1.112→17.51 (MeV), 1282 energy

 points, 4404 data points, the details are shown in table S6.3 and Appendix IV. 

Table S6.3.  Channels and experimental database for making global fitting 

Channel 𝛊max 
Thro. 

/MeV 

Data 

 types 
E / MeV 

Eα- 

No. 

Data  

No. 
12C(α, α)12C 6 0.0000 AD 1.002→7.500 83 2602 

12C(α, γ0)16O0 4 7.1620 

AD 

AD-EX 

Sg.s . 

1.362→6.075 

4.898→6.103 

0.940→6.413 

67 

 

160 

514 

146 

160 
12C(α, γ1)16O1 3 1.2126 S6.05 2.223→4.493 39 39 
12C(α, γ2)16O2 2 1.1321 S6.13 2.222→4.493 15 15 
12C(α, γ3)16O3 2 0.3449 S6.92 1.370→4.493 70 70 
12C(α, γ4)16O4 2 0.1452 S7.12 1.399→4.493 48 48 

12C(α, α1)12C*
1 3 -4.4380 

CS 

AD 

AD-EX 

5.904→6.317 

5.962→6.105 

5.789→6.164 

22 

14 

 

22 

198 

67 
12C(α, p)15N0 3 -4.9680 AD-EX 5.712→6.158 22 86 
   STOT 1.002→5.918 105 105 
   α-Spec. 0.600→3.240 259 259 
   γ𝛼

2 , Γ𝜆𝑐 -1.113→17.51 31 81 

Note: All channel radium is 6.5 fm. SG.S. Refer to SF for ground state capture, S6.05, S6.13, S6.92 and S7.12 to the four bound state captures 

respectively. Total S Factor STOT =Sg.s. + S6.05 + S6.13 + S6.92 + S7.12, 𝛾𝛼
2 is α reduced width of bound state, Γ𝜆𝑐  is width of channel. 

 

7. Evaluation, fit and result for integrated data  

Essentially, the fitting of R- matrix is a semi-classical phenomenological fitting. The criterions to assess the performance of an R-matrix 

model include whether it could fit the reliable ED sets of a nuclear system uniformly and accurately and give reliable extrapolation. Next, 

we will illustrate how we choose various kinds of integral ED, the agreement degree between the data value and the fitting value, and the 

contributions of each energy level and partial reaction channel to the fitting value. The situation about differential ED is described in detail 

in APPENDIX I. In this paper all SF is in keV b. all energy in CM system and MeV, The keV b and MeV will be omitted in sometime. 

In this SI file the calculated STOT and Sg.s of RAC2013 or RAC2014 are identical with these in RAC2015, the calculated S6.05, S6.13, 

S6.92, S7.12, of RAC2013 or RAC2014 are near identical with these in RAC2015. In order to make more items of comparisions, in this SI file 

the plots include the contributions of each energy level and partial reaction channel to the fitting value, and more evaluated values of 

previous wroks. The Ref. Kastuma, 2008 thinks that in previous wroks ‘an enhancement of the E1 component in the cross section is 

presumed to fit the experimental data in the Ec.m. = 1–2 MeV region. The enhancement originates from the subthreshold 1−1 state (Ex = 

7.12 MeV). The resulting low-energy extrapolation strongly depends on the expected contribution from this state.’ The SE10 of 

Kastuma2008 is very small (about 3 keV b), the SE20 is very high (about 150 keV b). The plots in SI Chp.7 will show the calculated S 

factors are far from corresponding ED.  

7.1. Total S factor-ST 

Figure S7.1 illustrates the ED of the total S-factor ST and the corresponding fitted value. In general, the fitting is perfect. Especially, 

all the energy levels are accurately described. Figure S7.1 shows the partial contributions of all kinds of energy levels for ST. 

In this work we choose 4 groups of ST include (Schürmann2005), (Schürmann2011), (Fuji2009) and (Plag2012). The ST of 

(Schürmann2011) is obtained by adding of their component: ST= SG.S+S6.05+S6.13+S6.92+S7.12, and it is consistent with the ST of 

(Schürmann2005) very well. The data about energy level 1-
2 (E≈2.42) play the most important role in analysis. The (Schürmann2005) have 

not given definite numerical value of 3 narrow peak(2+
2,4

+
1 and 0+

2), and the author's personal communication consider that  the relative 

app:ds:illustrate
app:ds:fitted
app:ds:value
app:ds:specially
app:ds:component
app:ds:definite
app:ds:numerical
app:ds:value
app:ds:consider
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numerical value is difficult to determine, so the distribution for the data of this three peak is the estimated value which is obtained from 

figure reading. 

In the peak region of the 1-
2 energy level (E≈2.42±0.20), the evaluation of ED is as follow. We can learn the ST≈96.5 from 

(Schürmann2005); the evaluated SG.S.≈76.0 from 6 groups of SG.S; Estimating the S6.05≈1.0, S6.92≈6.89 and S7.12≈20.2 from (Matei2006) and 

(Kunz2001); making assumption for S6.13≈0.8 from (Matei2008). In view of the above, the sum of the partial S-factor is 104.8 , which is 

1.09 times of the calculated ST=96.5; that is to say, the experimental value of the total S-factor is significantly less than the sum of the 

experimental partial S-factor. Relevant literature (Schürmann2005) account for that the maximal systemic error is 6.5% , so we choose 1.03 

as the normalization coefficient (NF) of (Schürmann2005), then the data become ST=99.4, it is lower than the sum of partial S factors.. The 

systematical studying shows that the S6.92 of (Kunz2001) has the trend to increase, the S7.13 of (Kunz2001) has the trend to decrease, when 

taking the NF of S6.92 and S7.12 as 1.00 and 0.95 respectively, then the sum of partial S-factor approximately equal to 99.5. So we can get a 

satisfied ED set which have complete types and numerical self-consistency for the main resonance peak 1-
2. The ST data set constitute the 

skeleton of the whole database. 

Another skeleton of the ED set is the data on the peak region of 2+
3(4.358). In this region (Schürmann2011) has SG.S, S6.05, S6.13, S6.92 

and S7.12, the energy points distribute on both sides of the peak position. The test fitting shows that if we translate the energy for -5keV, 

then the agreement between fitted value and ED become much better, the sum of the partial S-factor for each energy is consistent with the 

ST of (Schürmann2005). All kinds of the data of (Schürmann2011) is used as standard dataapp:ds:criterion, the NF is 1.00. 

 

Fig. S7.1.1 the fitting situations for ED of 4 groups ST and 4 available previous calculated ST. The measurement of (Schürmann2005, 

Schürmann2011, Plag2012) in inverse kinematics using the recoil mass separator allowed to collect data with high precision in a wide energy 

range, which would make good restriction to the extrapolation and normalization of ground transition, cascade transitions and the total SF 

(Schürmann2005). These data play a dominate function for determining of SF. The fitting of (Schürmann2005) is good up to 5.1 MeV, the 

S0.3=161±19. The fitting of RAC2014 are very well, every peak and most of data are described perfectly up to5.2 MeV. The calculated ST 

of (Hammer, Katsuma, and NACREII) have larger deviation from the data of ST. 

The ST of (Fujita2009) has only two energies, with rather large nominal errors, and the principal values are relatively close to 

expectations. (Plag2012) is the latest ED which has 4 low energies, which are 1.002, 1.308, 1.416 and 1.511 .The principal value of 1.002 

is far above expectation, while the principal value of 1.416 and 1.511 are significantly below the expectations. Because this strange trend, it 

is difficult to normalize the ST satisfactorily.The error values given in (Fujita2009) are used as the systematic errors. 

The RAC2014 in figure S7.1 indicates the fitted value of ST. Because the fitting is very good, it could be regard as the expectation of 

ST.  
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Other color lines in figure s7.1 denote the total contribution of all kinds of energy levels, which will be elaborated in the following 

relevant section. 

 

Fig. S7.1.2. Calculated STOT and the 5 primary transition S factor 

Figure S7.1.2 shows the fitted value of the ST and the contribution of each reaction channel. The difference between Fig. S7.1.1 and 

Fig. S7.1.2. will be illustrated in following section. 

In R-Matrix theory, the contributions of all energy levels to the AD are related, so there exist numerical competitions among them. 

And the numerical values cannot be indicated according to different energy levels respectively.  

In R-Matrix theory, the contributions of all energy levels to the integral cross-section are related, so there also exist numerical 

competitions among them. But the numerical values can be indicated according to different energy levels respectively. The total SF equal 

to the sum of the S-factors of all energy levels by definition: 

 ST=SE0T+SE1T+SE2T+SE3T+SE4T,                                S7.2.1 

Where the items in the right denote the total contribution of 0+, 1-, 2+, 3-and 4+ respectively. In R-Matrix theory, the contributions of all 

reaction channels to the integral cross-section are related, so there exist numerical competition among them, but the numerical values could 

be indicated according to different reaction channels respectively. The total S-factor equal to the sum of the S-factors of each reaction 

channel by definition: 

 ST=SG.S+S6.05+S6.13+S6.92+S7.12                                     S7.2.2 

According to the definition, the first channel is the elastic scattering channel and the second to seventh channels are the γ particle channel 

which is relate to S-factor. 

    Since the integral quantities could be indicated according to energy levels and reaction channels, we could obtain the combined 

quantities of all kinds of integrations. e.g.: the total contribution of 1- energy level is the sum of the contribution of each reaction channel of 

1- energy level: 

SE1T=SE10+SE11+SE12+SE13+SE14                                S7.2.3 

The total contribution of 2+ energy level is the sum of the contribution of each reaction channel of 2+energy level: 

SE2T=SE20+SE21+SE22 SE23+SE24                                 S7.2.4 

The total contribution of ground state is the sum of the contribution of each energy level to ground state: 

SG.S =SE00+SE10+SE20+SE30+SE40                                 S7.2.5 

The total contribution of 2+
1 state is the sum of the contribution of each energy level to 2+

1 state: 
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S6.92=SE03+SE13+SE23+SE33+SE43                                 S7.2.6 

In R-Matrix theory, there exists interference between each kinds of energy level. Hence the numerical value of integration could not 

be expressed strictly according to individual energy level. But we can determine which energy level contributes dominantly by the position 

of the energy point, besides, we could derive the coherent properties from the shape of the curve of integral values. 

During the analysis, the figures of above various sum are drawn frequently in order to find out whether the fitting is right or not. 

 

7.2. The comparison of Alpha energy spectrum 

Figure S7.2 shows the ED and corresponding fitted values of Alpha energy spectrum.The fitting is good as a whole. 

 

Fig. S7.2. Fitting situation for Alpha spectrum 

Ref. (Buchmann2009) gives detailed evaluation about 6 different data of Alpha energy spectrum. In this work we choose the data of 

(Azuma1994), (Tang2010) and (Zhao1993) to use. This is because there exists better consistency between these data after being 

transformed to normalized spectrum. The other data are difficult to normalize due to have incomplete region of energy, so they not be used. 

The energy span of Alpha energy spectrum in the cm system is from 0.60 to 3.2. In this energy region the width of (ɑ, 12C) channel is 

determined by the Alpha energy spectrum and the Elastic scattering AD of 12C (ɑ, ɑ) 12C, which results in fierce competition. But the Alpha 

energy spectrum plays main role in the determination of the ɑ+12C width of 1-(E=2.42). Most of the original data of the Alpha energy 

spectrum is particle number spectrum with 20keV interval. The normalizations of the data from different group have great systematic errors. 

The normalization for probability spectrum is obtained through dividing the number in each energy interval by the total counts, then 

transforming the quotient to the counts per unit energy. In this way the systemic error could be basically eliminated. The statistical errors of 

the original data remain unchanged in the normalization. The normalized spectrum is just the Wα (E) in the relevant formula (S4.3.2). The 

error of the fitted value is the systematic error, so the total error of Alpha energy spectrum is very small, which indicates that the Alpha 

spectrum plays an important role to determine the width of the (ɑ, 12C) channel 

The line marked with J=1- in Fig. S7.2 denotes the contribution of 1- energy levels. We see that the elastic scattering channels of 1-
1 

and 1-
2 are strongly negative coherent around 1.4 MeV. For determination of the width of (ɑ, 12C) in 1-

1 and 1-
2 they play an important role. 

The line marked with J= 3- denotes the contribution of 3- energy levels, which perfectly compensates the negative coherence of 1-
1 and 1-

2. 

 

7.3. The S factor SG.S of Decay to the ground state 

Figure S7.3 shows the ED and corresponding fitted value of the S-factor SG.S. Of decay to the ground state, which fit well as a whole. 

And the figure shows the contribution of each energy level.  
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In this work we choose 9 groups of SG.S data, which were obtained through data fitting and are more reliable. Some papers provide 

SG.S directly, some papers provide SE10 and SE20, we take SG.S=SE10+SE20. 

All the values of SG.S in Ref. (Redder1987), (Ouellet1996), (Kunz2001) and (Assuncao2006) include the most important resonance 

peak of 1-
2 (2.42). These values are well consistent in the peak region and are all close to expectation value. In E=2.42±0.20 MeV there are 

5 groups absolute ED about σγ0, their weighted average value is σγ0= 47±3nb (Redder1987), these data play the key function to determine 

Sg.s . In the peak region, the average value of SG.S is about 76.5, and can be regarded as a criterion for normalizing the ED. The NF of 

those 4 different data are fixed at 1.0, the systematic errors are the square errors of the fitted values. In Ref. (Brune2012i), the DE 

convolution method is used to correct the ED of in Ref. (Assuncao2006). The result changes little after the correction, but it is still used in 

this work. 

Even though the SG.S of (Kettner1982) is systematically larger, it is dispensable since it is the only one that has the data points at above 

3MeV. It is noteworthy that if the NF is fixed as 0.93, the data of 1-
2(2.42) peak region is consistent with the above 4 different data, 

meanwhile the data at 3.3MeV is well consistent with the SG.S of Schürmann2011. This reasonably connects the data at low and high 

energy regions, and remarkably reinforces the consistence between this kinds of data, which develops a data set of SG.S covering full energy 

region with complete energies and continuous values. 

The SG.S of Makii2009 has 4 energies with smaller nominal errors, the principal value are closer to expectation. 

The latest SG.S of (Plag2012) has 4 energies with E at 1.002, 1.308, 1.416 and 1.511 MeV. The value of 1.002 point is significantly 

larger than the expectation, while the values of 1.416 and 1.511 points are much smaller than the expectations. This strange trend makes it 

very difficult to normalize the SG.S. 

The Sg.s. of (Brochard1977) has 24 energies and with NF=1.00, the excitation function of (Ophel1976) are absolute value for 40 

energies (NF=1.70, Fig. S8.2). These 2 absolute data and other AD (Larson 1964) and excitation function (Kern1961) of 12C (α, γ0)16O 

have rather strong non-consistent, the AD data have to be normalized. These 2 data sets locate in the energy region from 5.1 to 6.2 MeV, 

and cover the 5 levels 1-
3, 1

-
4, 2

+
3, 3

-
3 and 3-

4 , They play a dominate function for ascertain of Sg.S for E>5 MeV. These 2 data sets have not 

be used by previous works. For example, (Kunz2001) did not use them, its calculated Sg.s are 2 times that of ED. In this work these 2 data 

sets are used in first time, it is inevitable that the perfect fitting them must produce much better evaluated Sg.s. than that have done before. 

In this work, we choose 66 AD of 12C (α, γ0) 
16O from 9 different groups, which is crucial for the determination of SG.S. 
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Fig. S7.3 shows the fitting situation for ED of Sg.s. of 9 groups and other available calculated values of 8 groups In E=2.4±0.2 MeV 

there are 5 groups absolute ED about σγ0, their weighted average value is σγ0= 47±3nb (Redder1987), these data play the key function to 

determine Sg.s . The fitting for AD of 12C (α, γ0)
16O play very strong restrain effect too. Most of data have been described perfectly up to 

6.5 MeV, it is the first time to use all the data from 0.8 to 6.5 MeV. The fittings of Schurmann2005 and Kunz2001 look good, but the 

up-energy for data is 5.2 MeV only. The result of Kunz2002 is too higher for E≥5.2 MeV. The result of Hammer2005 is too higher 

systematically for whole energy region. The result of NACREII2013 looks good for E˂3.5 MeV, but it is too lower for E≥4.2 MeV. Other 5 

groups have results up to 3 MeV only. So the reason is enough to say the result of RAC2014 is the best one. 

In Fig. S7.3 the line marked with J=1 denotes the contribution of 1- energy level. The 1- has 5 resonant energy levels (E1λ=-0.045, 

2.423, 5.278, 5.928 and 9.710) and one distant level (E16=12.3). The bound state (E11=-0.045) and the second level (E12=2.423) are vital in 

determining SE10. About the second 1- energy level, there are a lot of reliable ED. The AD of 12C (α, γ0) 16O and the Alpha spectrum can 

determine the width of (α, 12C) accurately. The AD of 12C (α, γ0)16O can precisely determine the width of (γ0, 16O). In addition, the data of 

ST which with high precision and plenty of SG.S. Will provide strict constraints for determining the value. With the coordination of using α 

reduced width and γ width of bound state, the SE10 =94±7.63 is obtained in this work, which is a unique and reliable value based on the 

ground experiment data.  

In Fig. S7.3, the line marked with J=2 denotes the contribution of 2+ levels. 2+ has 7 resonant energy level (E2λ=-0.242, 2.683, 4.358, 

5.858, 8.310, 9.281 and 9.967) and one distant level (E28=22.1), the bound state (E21=-0.242) and the third energy level (E23=4.358) are 

vital in determining SE20. The AD of 12C (α, α) 12C is close related with the third energy level and can be used to determine the width of (α, 

12C) and the SG.S with considerable accuracy can determine the width of (γ0, 16O). 

In addition, ST width with high accuracy could provide strict constraints for determining the value. In this work, we have carefully 

studied the function of second nerow energy level (E22=2.683). The data closely related with this energy level are as follows: 5 ST data 

points got from the figure, AD of 12C (α, α) 12C, SG.S and various width data in this energy level. The 7 AD data are much close to this 

energy level, which plays an important role to determine the coherence of this energy level and the contribution of SE20. The energy level 

presents 'high on the left and low on the right' kind of coherence, which is consistent with that in (Sayre2011). However, the coherence of 

(Schürmann2012) is 'low on the left and high on the right', which necessitates further study. Overall, the impact of the second energy level 

(E22=2.683) on SE20 is not much, which is estimated to be within ±1.0 keV. 

The line marked with J=3 in figure S7.3 denotes the contribution of energy level 3-. The hump near the energy level (4.438) is 

produced by the interference, which has little contribution to ST factor 

 

7.4. The S-factor S6.05 of the decay to the first excited state 

By now, the evaluated values of S6.05 (0.3) from different groups differ greatly with each other. So it is necessary to give a detailed 

study and discussion. Refer to Fig. S7.4. In Matei2006, S6.05 (0.3) =25−15
+16 is obtained by fitting the experimental results therein. It mainly 

comes from SE1 and partially from SE2 and is with large error. In (Schürmann2012), the S6.05 is got by analysis the data in 

(Schürmann2011). S6.05 (0.3) is less than 1.0, which is mainly contributed by SE02 while little by SE01. (Katsuma2008) is a potential 

model analysis, the deviation between calculated value and ED is very larger. The evaluated value of NACREII is close to ED for 

2.6<E<4.5 MeV, but at the most important energy point (E=2.42 MeV) is much higher than ED, and it is much lower for E>5.2 MeV. 

In this work, we obtain S6.05 =0.78±0.14 keV b, and in the following we will give detailed illustration. 
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Figure S7.4 shows the fitting situation about S6.05, and 5 groups of calculated values. The fitting of RAC2014 is good overall for 

E=2.4 to 5.5 MeV, the S6.05 (0.3) =0.8±0.3 for RAC2014. The line of (schurmann2012) is close to the data set for 3 <E<4.5 MeV, there are 

larger deviation from data for E<3 MeV and E>4.5 MeV; the line of (NACREII2013) is close to the data set for 3 <E<4.5 MeV, but there 

are larger deviation from data for E<3 MeV and E>4.5 MeV; the line of (Matei2006) is got by fitting the data of himself only. The line of 

(Katsuma2008) just is an average value.  

Ref. (Matei2006) and (Schürmann2011) use the same experimental method, and both their original data show the γ contribution of the 

first excited state (0+
1, 6.05), but the result after analysis differs considerably. (Schürmann2011) concludes that the S6.05 is negligible in the 

energy region less than 3.3 MeV, so it only gives the ED of S6.05 above 3.3. 

In figure S7.4, the data of (Schürmann2011) in high energy area is regarded as standard data and the NF is 1.03. The energy regions 

of the data in (Matei2006) and (Schürmann2011) have overlap around 3.5 MeV. The result of (Matei2006) can be normalized by that of 

(Schürmann2011), and the normalization is 0.70. This forms a data set of S6.05 which covering full energy region with complete energy 

points and continuous values. From 2 to 5 MeV , the fitting of S6.05 is restrained by lots of different kinds of ED. Above 5 MeV, the ED 

only include S6.05, AD of 12C(ɑ, ɑ)12C and the data of width of 1-
3 (5.278) and 1-

4(5.928) energy level. 

Of the ED in (Matei2006), the first 4 data are at 2.223, 2.409, 2.57 and 2.682 MeV respectively, which are at the peak region of the 

main excited state (1-
2, 2.42) and play a particular role in determining S6.05. The first point energy (E=2.223) is lower than the peak, but the 

S6.05 data increases a lot in contrast, which means the 12C(ɑ, γ1)
16O channel of bound state(1-

1, -0.0245) is ‘positive interference’ with the 

distant energy level (1-
5, 12.20) which contributes the most and this increases the value of S6.05. The second energy point(2.409) is very 

close to the peak, and the S6.05 data value is the lowest one, which means that the 12C(ɑ, γ1)
16O channel of the excited state is ' negatively 

correlated' with the distant energy level which contributes the most, and infers that the contribution to S6.05 must be small. (Schürmann2011) 

also explains that the S6.05 data at 2.409 is very small. The third and the fourth energy point (2.682) located two sides of the level 2+
2(2.685) 

which constrains the fitting very well.  

The contribution of energy level 3- is produced by the distant energy level, which can improve significantly the fitting of S6.05 in 

intermediate energy region. The contribution of the energy level 2+ is primarily from 2+
3(4.358), whose interference state is ‘higher left and 

low right’, its shape is similar with that of (Sayre2011). 

Of course, the results of RAC are obtained by using the entire parameter set to fit the whole ED set. Any reaction channel which 

exists in theory and has been observed in experiment has a set of expectations. These expectations rely not only on the direct ED of this 

reaction channel, but also the whole ED set. The whole ED set is normalized, and the sum of the contributions of the ground state and each 

discrete level to S-factor equals to the total S-factor. It can still give corresponding fitted value with improved precision even if the ED of 
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certain reaction channel is few or without sufficient precision, Comparing with previous analyses, this work has used more completed 

R-Matrix parameters and ED set. And the iterative fitting method is employed in this work, which doesn’t describe certain energy level or 

reaction channel in isolation. Several fitting schemes show that there is not possibility to get S6.05 (0.3) > 2 keV b. 

Fig. S7.4 show that for S6.05 at E=0.3 MeV,  1
- levels produce main contribution, 2+ levels produce very small contribution , The S6.05 

got by this work is from the systematic analysis of the whole O16 system. Hence compared with previous analyses, our result is much more 

firmly based on the experiments and must to be more reliable.  

 

7.5. The S-factor S6.13 of the decay to the second excited state 

Figure S7.5 shows the ED and corresponding fitted value of the S6.13, which represents the first decay to the second excited state (3-
1, 

6.13). The fitting is good as a whole. As for S6.13, (Schürmann2011) is used as standard data at high energy region, and its NF is 1.03. At 

low energy region, there is no direct measurement yet. However, this kind of data is needed for precise determination of the S-factor of 

astrophysics. It is better to use estimated value than use none. By use of 19F (p, αγ) 16O reaction, the intensity ratios of 4 energy points for 

the decay of 16O to 3 bound state (1-
1, 2+

1, 3-
1) are attained (Matei2008), the average is about 70:23:7. The energy points are at about 

E=7.14±0.2, which is close to the bound state 1-
1(E=7.12). At the peak (E=9.585±0.3) of 1-

2, since the sum of partial S-factor SG.S. 

+S6.05+S6.92+S7.12 is larger than ST, we can deduce that the S6.13 is very small though not 0, and its intensity ratio is lower than 7%. 

With the assumption of 3.5% for the intensity ratio of S6.13, we roughly obtain the estimated value of S6.13 and the maximum value 0.8 

at the peak of 1-
2(E=9.585) by using S6.92 and S7.12 from (Kunz2001), which develops a data set of S6.13 which covers full energy region 

with complete energy points and continuous values. The line marked J=1 in figure S7.5 denotes the contribution of the energy level 1-, 

which dominates the SF in low energy region. 

 

Fig. S7.5 shows the fitting situation about S6.13 and 2 groups of calculated vales. The S6.13 (0.3) = 0.28±0.05 for RAC2014. The S6.13 

(0.3) ≈ 0.08 for NACREII2013.  

 

7.6. The S-factor S6.92 of the decay to the third excited state 

   Fig. S7.6 shows the fitting situation about S6.92, and 7 groups of calculated values. The fitting of RAC2013 is good overall. The S6.92 

(0.3) = 2.48±0.22. As for S6.92, we use different ED from 4 groups of data sets. For (Schürmann2011) whose normalized coefficient is 

1.030 are used as standard data in high energy region. Although (Kettner1982) and (Schürmann2011) doesn’t have same energy point, they 

strictly match each other through the resonance level 4+
1(3.19). In RAC2015 fitting, for Kettner198215 only the data points for E> 3 MeV 

are used with NF=1.00. 
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Fig. S7.6. Fitting situation about S6.92 and 7groups of calculated vales.  

 

According to the evaluation and fitting of the ED, we find that the S6.92 of (Kunz2001) is more accurate, whose NF is fixed at 1.00. 

Then a data set of S6.92 has been developed which covers full energy region with complete energy points and continuous values. The NF of 

(Redder1987) as an adjustable parameter is also determined by fitting. 

Figure S7.6 (left) shows obviously that, the lug boss for E<2.5 can not be described by conpound nuclear model alon, in the 

extrapolation energy range (E˂1.5 MeV) the S6.92 mainly come from direct capture. So a background parameters Rj0 / (E-Ej0) were used to 

make calculation for direct capture, Ej0 is a constant less than 0, Rj0 is an adjustable parameter. The background of resonant capture and 

non-resonant capture contribution in low energy range (E<1 MeV) can be got. (Fig. S4.5- C). 

Figure S7.6 (right) shows that the contribution of the level 2+ plays leading roles for the determination of the S-factor in low energy 

region. The S6.92 (0.3) = 2.48±0.22. Several fitting schemes show that there is not possibility to get S6.92 (0.3) > 4 keV b. The line of 

(schurmann2012) is very close to its data of (Schurmann2011), and is higher than that of RAC2013 a little. The lines of (Barker1991, 

Buchmann2001, Matei2008, Katsuma2008) are much higher than the ED for E<3 MeV. The line of NACREII2013 is much lower than ED 

for E˂2.3 MeV. 

 

7.7. The S-factor S7.12 of the decay to the fourth excited state 

As for S7.12, we use 4 different ED data from (Schürmann2011) whose normalized coefficient is 1.030 are used as standard data in 

high energy region. According to the evaluation and fitting of the ED, we find that the SG.S and S6.92 of (Kunz2001) are more accurate, but 

S7.12 is a little higher. If the NF is fixed at 0.90, the SG.S. +S6.92+S7.12 of (Kunz2001) is consistent with the ST of (Schürmann2005) within 

the uncertainty. The NF of (Redder1987) as an adjustable parameter is determined by fitting, and its optimum value is 0.452. Then a data 

set of S7.12 has been developed which covers full energy region with complete energy points and continuous values. 
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Fig. S7.7 shows the fitting situation for S7.12, and 5 groups of calculated values. The fitting is good overall for E=1.4 to 4.5 MeV. The 

S7.12 (0.3) =0.88±0.15. The line of Schurmann2012 is close to the data set. The lines of (Barker1991, Katsuma2008, NACREII2013) are 

much higher than the data set for E<3 MeV. 

The figure S7.7 shows that the contribution of the energy level 1+ play a leading role for the determination of S-factor in low energy 

region. In the extrapolation energy range (E˂0.5 MeV) the S7.12 partly come from direct capture. The contribution of the energy level 3- 

which is produced by the scattering state 3-
2.  This kind of transition (3-

2→1-
1) has not been reported normally. In this work the fitting is 

significantly improved after adding relevant parameters, which confirms the existence of this transition. 

 

7.8. The comparison for width of level 

7.8.1. The comparison for width of level 

In this work, we have used all the relevant information about 74 widths in 31 energy levels published in (Tilley1993), and 7 new 

results(deboer2013), which include mean lifetime τ, life time T1/2, level width Γ and branching ratio. Their relation is: T1/2=0.693147τ, Γ= 

ħ/τ  , ħ=6.582173×10-22
 ∙s. The modified formulae in (Lane1958) are used to calculate the width and energy shift of level.  

 𝛤𝜆𝑐 = 2𝑃𝑐𝛾𝜆𝑐
2 𝑑𝑐⁄                                           S7.8.1.1 

𝛥𝜆𝑐 =
𝑃𝑐(𝑅𝑐𝑐

0 𝑃𝑐)−𝑆𝑐
0(1−𝑅𝑐𝑐

0 𝑆𝑐
0)

𝑑𝑐
𝛾𝜆𝑐

2                                      S7.8.1.2 

 𝑑𝑐 = (1 − 𝑅𝑐𝑐
0 𝑆𝑐

0)2 + (𝑅𝑐𝑐
0 𝑃𝑐)2                                    S7.8.1.3 

 𝐸𝜆𝑐  And  𝛤𝜆𝑐  should be physical parameters, they should be able to describe the published evaluated experimental data in 

Tilley1993).  

The problem about the width of bound states have been described in S5.1.1 in detail. In the energy region in which existing scattering 

and/or capture cross section data, there exist competition between cross section data and width data, but the cross section data play a 

dominate function, the parameter of energy of level and the parameter of width are ascertained by fitting the cross section data mainly and 

automatically. In the higher energy region in which there exist width data only, the parameters of width are ascertained by fitting the width 

data mainly automatically, but the parameters of energy of levels are ascertained by settings in iteration procedure, the method is that let the 

energy position of a level in the input parameter file equal to the calculated center energy of a peak of some observables (e.g. (αγ) cross 

section). This means that in the higher energy region the R-Matrix parameter 𝐸𝜆  equal to the observed physical parameter𝐸𝜆
𝑟, the real 

energy shift Δ𝜆
𝑟  equal to 0, the calculated width is close to the observed physical width which is taken as a kind of ED in database.  
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7.8.2 Fitting situation about Width Γλ of Sub-reaction channel 

 

Table S7.8.2. Fitting situation about Width Γλ of Sub-reaction channel 

Width-JλC  is Name of Width of Sub-reaction channel,      J total spin of level, λ serial number, c Sub-reaction channel; 

Ex/MeV   is level position of level in 16 O system;          WI-exp  is experimental value of width in Ref. or   

WI-cal    is ftting value of width in this wrok RAC2015;    Err.sys  is systematical error evaluated in this wrok RAC2015; 

Err.Sta    is statiscal error of experimental data;           σ       is the mean square error of evaluated value. 

 

Width 

-JλC 

Ex/ 

MeV 

WI-exp/ 

MeV 

WI-cal/ 

MeV 

Err.Sys 

% 

Err.Sta 

% 

σ/ 

1.00 

Width 

-JλC 

Ex/ 

MeV 

WI-exp/ 

MeV 

WI-cal/ 

MeV 

Err.Sys 

% 

Err.Sta 

% 

σ/ 

1.00 

'WI011' 6.049 1.8700E-02 1.8713E-02 0.03 27.92 0.01 'WI234' 11.491 3.0000E-08 2.6702E-08 1.00 16.67 0.49 

'WI012' 6.049 6.8564E-12 6.8562E-12 0.03 7.29 0.01 'WI235' 11.491 2.0000E-08 2.0730E-08 1.00 50.00 0.05 

'WI021' 12.059 1.5000E-03 1.5394E-03 1.00 33.33 0.06 'WI236' 11.491 2.9000E-08 2.9089E-08 1.00 24.14 0.01 

'WI031' 14.032 2.0000E-01 2.2586E-01 1.00 7.50 1.02 'WI237' 11.491 5.0000E-09 1.8549E-09 1.00 50.00 1.06 

'WI041' 15.062 1.6600E-01 7.0028E-01 0.03 18.07 2.89 'WI241' 13.002 2.5100E-01 2.1955E-01 1.00 13.88 0.69 

'WI111' 7.117 6.1950E-03 6.7573E-03 0.00 8.01 0.71 'WI242' 13.002 7.0000E-07 6.4421E-07 1.00 28.57 0.20 

'WI112' 7.117 5.3500E-08 5.2892E-08 0.00 5.83 0.14 'WI248' 13.002 5.0000E-04 6.0123E-04 1.00 50.00 0.24 

'WI114' 7.117 3.0000E-13 2.9403E-13 1.00 33.00 0.05 'WI249' 13.002 1.5000E-03 2.4959E-03 1.00 13.33 0.94 

'WI115' 7.117 4.6000E-11 2.5845E-11 0.03 21.74 1.56 'WI251' 15.900 6.0000E-01 9.2729E-01 1.00 12.00 1.95 

'WI116' 7.117 5.5000E-13 1.8240E-13 1.00 33.00 1.37 'WI252' 15.900 4.0000E-07 5.4092E-07 1.00 12.00 1.49 

'WI121' 9.447 3.8800E-01 2.9700E-01 1.00 16.00 1.28 'WI311' 6.130 5.7444E-03 5.7302E-03 0.03 34.04 0.01 

'WI122' 9.447 1.5600E-08 3.3040E-07 1.00 50.00 1.28 'WI312' 6.130 2.4740E-11 2.4753E-11 0.03 22.63 0.01 

'WI126' 9.447 1.4000E-09 1.4652E-09 1.00 50.00 0.07 'WI321' 11.356 8.0000E-01 6.6407E-01 1.00 12.50 1.14 

'WI127' 9.447 5.4000E-09 5.0480E-09 1.00 50.00 0.10 'WI325' 11.356 1.0000E-08 9.1993E-09 1.00 50.00 0.11 

'WI131' 12.442 1.0148E-01 1.6066E-01 5.83 0.99 3.00 'WI326' 11.356 1.0000E-08 9.9945E-09 1.00 50.00 0.01 

'WI132' 12.442 1.1000E-05 4.0174E-05 1.00 37.90 1.28 'WI327' 11.356 1.0000E-08 9.1095E-09 1.00 50.00 0.14 

'WI134' 12.442 1.2000E-07 7.2571E-08 1.00 33.33 1.31 'WI331' 13.256 9.4870E-02 1.3609E-01 1.00 14.58 1.35 

'WI135' 12.442 7.0000E-08 5.8541E-08 1.00 43.33 0.38 'WI335' 13.256 8.0000E-06 9.3170E-06 1.00 50.00 0.25 

'WI137' 12.442 1.3000E-07 1.4205E-07 1.00 38.33 0.17 'WI338' 13.256 2.1450E-02 7.2092E-02 3.88 3.88 3.01 

'WI138' 12.442 3.0000E-05 3.5172E-05 1.00 6.67 1.47 'WI339' 13.256 1.5000E-03 1.4893E-03 1.00 5.58 0.09 

'WI139' 12.442 1.4500E-03 6.8941E-05 1.82 2.10 3.32 'WI341' 13.356 2.4870E-02 2.4311E-02 1.00 34.58 0.05 

'WI141' 13.122 1.3908E-01 7.7924E-02 9.80 1.51 2.99 'WI345' 13.356 8.0000E-06 8.0945E-06 1.00 16.30 0.05 

'WI142' 13.122 3.2000E-05 2.7777E-04 1.23 15.62 3.01 'WI348' 13.356 2.5000E-03 1.8018E-03 1.00 30.48 0.87 

'WI144' 13.122 2.6000E-07 7.2274E-08 1.00 34.62 1.97 'WI349' 13.356 9.8000E-04 1.1963E-02 3.59 5.58 2.03 

'WI145' 13.122 4.0000E-07 3.1887E-07 1.00 50.00 0.22 'WI351' 14.656 7.5000E-01 8.2926E-01 1.00 26.67 0.25 

'WI147' 13.122 1.4000E-06 1.4007E-06 1.00 28.57 0.01 'WI411' 11.357 2.7000E-02 2.6944E-02 1.00 11.11 0.01 

'WI148' 13.122 9.8000E-04 8.6510E-04 1.00 12.26 0.74 'WI412' 11.357 5.6000E-14 5.4349E-14 1.00 35.71 0.06 

'WI149' 13.122 1.0500E-01 1.7407E-02 1.24 2.26 2.69 'WI415' 11.357 4.7000E-10 4.7796E-10 1.00 22.00 0.06 

'WI151' 17.542 1.8200E-01 2.4705E-01 1.00 34.51 0.50 'WI416' 11.357 6.2000E-08 6.1890E-08 1.00 9.68 0.01 

'WI211' 6.917 2.6714E-02 2.6679E-02 0.00 8.01 0.01 'WI421' 12.092 2.8000E-04 2.8125E-04 1.00 17.86 0.01 
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'WI212' 6.917 9.8500E-08 1.0068E-07 0.00 3.09 0.47 'WI425' 12.092 3.1000E-09 3.8869E-09 1.00 41.94 0.41 

'WI214' 6.917 2.7000E-11 2.6971E-11 0.03 11.11 0.04 'WI426' 12.092 2.5000E-09 2.3470E-09 1.00 24.00 0.18 

'WI215' 6.917 9.0000E-12 9.2595E-12 0.03 33.00 0.39 'WI431' 13.856 7.5000E-02 7.8738E-02 1.00 9.33 0.35 

'WI221' 9.850 6.8500E-04 1.1918E-03 0.03 16.10 1.79 'WI441' 17.040 5.6700E-01 5.2885E-01 1.00 10.58 0.45 

'WI222' 9.850 5.7000E-09 5.6770E-09 0.03 10.50 0.04 'WI511' 14.660 6.7100E-01 6.7407E-01 1.00 1.64 0.17 

'WI224' 9.850 1.9000E-09 1.8215E-09 1.00 21.05 0.14 'WI521' 16.910 7.0000E-01 6.9962E-01 1.00 2.24 0.01 

'WI226' 9.850 2.2000E-09 3.1096E-09 1.00 18.18 1.42 'WI611' 14.860 7.0000E-02 6.9604E-02 1.00 11.00 0.04 

'WI231' 11.491 7.2000E-02 6.8333E-02 1.00 15.50 0.23 'WI621' 16.295 4.2200E-01 4.2155E-01 1.00 3.30 0.01 

'WI232' 11.491 6.1000E-07 6.0960E-07 1.00 3.28 0.01        

 

7.9. The comparison for RAC2013 and (Schürmann2012) 

In the previous analysis works the (Schürmann2012) can be regards as the best one. The Ref. (Schürmann2012) think that the E1 

and E2 multipoles in ETRT have different energy dependencies, one must have an independent and precise information on each multipole 

for an extrapolation to E≈0.3MeV, so only the secondary data of E10 and E20 multipoles were used for the R-matrix analysis, which were 

got from Legendre polynomials fitting for experimental AD of 12C (α, γ0) 
16O. The analysis of RAC2013 (RAC2013 is identical to 

RAC2014) explain that it is feasible to use the standard R-matrix formulae to describe all the ED about the 16O system formed by ɑ+12C 

simultaneously. It can be seen in the 7th, 8th and 9th chapters that near all types of ED and almost of data have been described perfectly. The 

comparison between calculated value and ED about ST, SG.S and S6.05 in paragraph 7.1, 7.3 and 7.4 show that the agreement situation of 

Katsuma2012, NACREII2013, Kunz2002 have defects evidently as a whole. Brune1999, Hammer2005 and Ouelbsir2012 fitted the data of 

SG.S in lower energy region only, did not fit any data of ST. But the ED of ST and Sg.S. are the most relative and the most important 

observables for determining of astrophysical SF. So the follow sections involve the comparison and illustration about the fitting situation of 

RAC2013 and (Schürmann2012) in detail, not mention about other groups except Kastuma2008. 

 

It should be indicated the fitted data of SE10 involve Dyer1974, Gialanella2001 and Roter1999 only, it looks very well for the agreement 

between ED and calculated value as a whole. The information in detail is that, The E<2.7 MeV energy region is the most important region 

for determining the energy-dependency of SF in extrapolation energy region. In which there are 105 data points. For comparing with 

calculated SE10 of RAC2013, there are 62 higher points , 53 lower points, the ratio of number is 62:53=1.17; Schuermann2012 has 69 

higher points, 46 lower points, the ratio of number is 69:46≈1.5. So the fitting situation of RAC2013 looks better than the fitting situation 

of Schürmann2012. The calculated values about SE20 of Schürmann2012 are lower than these of RAC2013 systematically in extrapolation 

energy region. The calculated SE10 of Kastuma2008 is much lower than all ED of SE10. 
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Fig. S7.9-A shows the ED and calculated values of SE10 for E< 3.0 MeV.  

 

Fig. 7.9-B the ED and calculated values of SE20 for E<3.0 MeV. 

 It should be indicated that even though RAC13 did use the ED of SE20, but the agreement between fitting values and ED-set looks 

very well. The information in detail is that there are 70 data points for E<2.7 MeV, comparing with calculated SE20 of RAC2013, there are 

35 higher points , 35 lower points, the ratio of number is 35:35=1; for (Schuermann2012) there 48 higher points, 22 lower points, the ratio 

of number is 48:22≈2.2. The main reason caused this very larger difference is that RAC2013 by fitting more types of ED, especially 

including the 66 groups AD of 12C(ɑ, γ0)
16O, to determine the interference property of 2+

2(higher left side and lower right side) , describe 
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the resonance characteristic of 2+
2 accurately. The property is identical with those given out by Brune1999, Kunz2002, Hammer2005, 

Dufour2008, NACREII2013 and Ouelbsir2012. But the interference property of 2+
2 given out by Schuermann2012 is reverse (lower left 

side and higher right side), on then left side of the resonance, its calculated values are lower than ED of SE20 evidently, it did not describe 

the resonance characteristic of 2+
2 properly . The calculated values about SE20 of (Schuermann2012) are higher these of RAC2013 

systematically. The calculated SE20 of Kastuma2008 has much higher diviation from all ED of SE20, it looks too higher for E<1.5 MeV. 

 

Fig. 7.9-C the ED and calculated values of S SG.S. For E<3.0 MeV. It can be seen that on the left side of resonance the calculated SG.S. 

of RAC2013 and Schurmann2012(block line and green line) are identical with each other, but on the right side the calculated SE10 of 

RAC2013 is higher than that of Schurmann2012, and it is more close to ED and SE10. The calculated SG.S of Kastuma2008 is much Lower 

than all ED of SG.S. 

  

Fig. 7.9-D shows the ED and calculated values of ST for E<3.0 MeV. It can be seen that both fitting situations look very good for 

RAC2013 and Schurmann2012, no evident difference can be seen. On the left side of resonance the calculated ST of RAC2013 and 

Schurmann2012 has a little difference. 
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In summary, for the fitting situation about SE10, SE20, SG.S and S6.05, RAC2013 is much better than that of Schurmann2012; for the 

fitting situation about S6.13, S6.92 and S7.12, RAC2013 is close to that of Schurmann2012. The conclusion should be that the fitting values and 

extrapolation values down to lower energy region of RAC2013 have more reliable experimental basis, it should be more close to the 

expected values. The calculated STOT of Kastuma2008 is much higher than all ED of STOT. 

 

8. The final result 

8.1. The calculation of SF and Covariance matrix of 12C (ɑ, γ) 16O at given 660 energies 

The procedure for calculation of SF and Covariance matrix of 12C (ɑ, γ) 16O as follow. 

A. Using the best R-matrix parameter set P to calculate SF at given 660 energies (row Y)  

B. Using the best R-matrix parameter set P and formula S4.3.10 for error propagation to calculate the Covariance Matrix of P   

 𝑉P = (𝐷+𝑉−𝐷 )-1                                        S 4.4.10 

Where, D refer to Sensitive matrix for database B relative to P, V is Covariance Matrix of B, superscript -1 refer to reverse Matrix. 𝑉P 

Is positive definite through the test. 

C. Using 𝑉P
 and formula S4.3.12 to calculate Covariance Matrix of calculated SF Vy, its diagonal element just is the standard 

deviation, the root of standard deviation is the standard error. 

 𝑉Y = 𝐷 𝑉P𝐷+                                           S4.4.12 

Where, D refer to the Sensitive matrix for the calculated SF relative to P, the V y


is positive definite through test. 

 

Fig. S8. 1. Calculated STOT and its Standard Deviation for 12C (α, γ) 16O at 660 energis. 

 

8.2. Error analysis for STOT 

8.2.1. The experience expression for error propagation 

These can be observed intuitively in Fig. S8.1 that the standard error of STOT is very small for 1.5<E<6.5 MeV, the standard error of 

STOT is much larger for E≥7 MeV. In the extrapolate energy region 0.2≤E≤0.6 MeV the standard error of STOT is about 4.5 %( APE. 

Table 3).The error propagation law for covariance fitting in in Global model has been studied in detail by Ref. (Chen2003). An experience 

expression to describe standard error propagation was deduced as follow: 

 𝑈𝑗
𝑐 = 𝑈𝑗

𝑑 ∗ 𝐾𝑗 ∗ 𝑇 ∗ √𝑀/√𝑁                                              (S8.2.1) 
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Here, j refer to the type of dataset or whole database, M the number of parameters, N the total number of the data, T the mean of absolute 

value of all sensitive matrix elements, it close to the mean of 𝜒2 and Kj is a positive real number which is called ‘error propagation factor’, 

𝑈𝑗
𝑐  is the error of calculated value, 𝑈𝑗

𝑑 is the mean value for standard error of database. 

According to the error propagation law the error of final calculated STOT are depending on some elements as follow. 

A. The more the number of points of database N, the less the error of calculated value, the error is inverse proportion to the root of N 

approximately.  

B. The more the data points of a unit energy (Data density DD), the less the error of calculated value. The larger the DD of a local energy 

region, the less the error for that region. 

C. The less the error of data, the less of calculated value. The relative error is direct proportion to the mean relative error of database. 

D. The less the 𝜒2 of optimized object function, the less the error of calculated value. 

E. The less the number of adjusted parameters (m), the less the error of calculated value. The error is direct proportion to the root of m 

approximately. 

F. The less the error of adjusted parameter, the less the error of calculated value. 

G. The less the sensitivity of parameter related to data, the larger the error of calculated value. 

    A problem existed before 10 years ago is that the the error of calculated value in a globle fitting for a light neuclear system with 

R-Matrix is to lower to belive. Ref. (Chen2003) cast 3 years to explain and resolve this problem. In order to let the given error of calculated 

value is large enough to be much reliable, when to calculate the covariance matrix of calculated values, some non-adjusted parameters be 

taken as adjusted parameters, subsequently the relative error is increased about 1.0%. The errors of STOT listed in Appendix V. Table 5 are 

up-limit of errors. The main elements which have large influence to the error of calculated value include the number of adjusted parameters 

M, the number of points of database N, the mean primary error of data, the averaged value of𝜒2. The practical situation of this work are as 

follow, the number of parameters used in calculation M is about 160, the number of points of database N is about 4400, the mean primary 

error of data is about 8%, the averaged value of 𝜒2 . is about 1.5. With these numbers to calculate the final error, that is ER 

≈ √160/√4400*8% ≈12.7/64.8*8%*1.5≈2.4%. So the estimated values are these as follow. In the energy region in which the data density 

(DD) near the mean value (DM) for whole database the ER≈2.4%; in which the DD larger than the DM the ER<2.4% (2<E<3 MeV); in 

which the DD larger than the DM the ER>2.4% (E<1.5 MeV or E≥6. MeV). 

The RAC has been used to produce the neutron standard cross sections 6Li (n, α) and 10B (n, α), that process has accumulated much 

successful experience, methods, the obtained accurate (ERROR˂1%) results which have been used to produce the Neutron Standard Cross 

Section of IAEA (22, 23). In this work the successful Code, experiences and methods are used to study the STOT of 12C (ɑ, γ) 16O, the 

obtained results are reliable certainly. 

 

8.2.2. The fitting quality examine and testing positive definite for covariance matrix 

    For an ideal pure statistic sample, if a variable Y is the function of variance of Xi, the distribution of Y is 𝜒2  distribution. The 

objective function for Ordinary least squares 𝜒𝑖
2 just is a this kind of Y. the mean value 𝜒2 =1 is the most probable value. The 𝜒𝑖

2 series 

obey 𝜒2  distribution. For a non-ideal statistic sample, e.g., the systematic error component is rather larger, if a variable Y is the function 

of the linear combination of (Xi+a) 2, the distribution of Y is uncertain until now. The objective function for general least squares 𝜒𝑖
2  just is 

a this kind of Y, but it is a function of covariance. By now, the value of 𝜒2  is used to judge the quality of fitting, the smaller the𝜒2 , the 

better the fitting. 

    There is a theory criterion to judge the quality of fitting, that is the covariance of ED and its evaluated value must be positive definite, 

otherwise they have not physical mean. The code RAC13 test the positive definite for each sub-Dataset at first. The final output show that 

the covariance of the best parameter set and all SF set is positive definite. This explain the final results are reliable.  
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    For the multi-channels and multi-levels R-Matrix analysis, the majority of data points which have rather larger 𝜒2  are the data points 

which located in the negative interference energy region. These data points usually have very small principal values, and have very small 

contribution to the practical physical quantity, it is very hard to get accurate measured value, but the nominal error is not larger. Even 

though by making PPP and Letts modification for them, 𝜒2 of them are larger than the meaning of 𝜒2  far away. So only use the value of 

𝜒2  to judge the quality of fitting is not good enough. The most institutive and reliable method is to make comparison by drawing pictures, 

to make macro-judgment and micro-judgment simultiouslly. For the values distribute in 1 to 2 order of magnitude, using linear coordinate 

is good to show the difference between data and evaluated value, for the values distribute in more 3 order of magnitude, using logarithmic 

coordinate is good to show the difference between data and evaluated value. 

 

8.3. Calculating the Reaction Rate (RR) of 12C (ɑ, γ) 16O 

    Using the calculated value of STOT and its covariance matrix (APE. Table 3)and the formula used in(Kunz2002)as (10.1, 10.2)  to 

calculate the RR of 12C (ɑ, γ) 16O: 

〈𝑣𝜎〉 = (
8

𝜋𝜇
)1 2⁄ (

1

𝑘𝑇
)3 2⁄ ∫ 𝑆(𝐸)

∞

0
𝑒𝑥𝑝 (−

𝐸

𝑘𝑇
−

𝑏

𝐸1 2⁄ )𝑑𝐸                              (8.3.1) 

𝑏 =
(2μ)1 2⁄ 𝑍1𝑍2𝑒2

ℏ
= 0.989μ1 2⁄ 𝑍1𝑍2  (MeV)1 2⁄                                    (8.3.2) 

When to make integrating, the energy region E=0.01 to 11.25 MeV is divided with 660 nodes and different step length, the error 

propagation formulae(S4.4.10) are used to calculate the RR and its standard error. The formulae expressed with row and matrix are listed as 

follow.  

Rj = (R1, R2, R3,⋯ Rn),   j=1, 2, ⋯ ⋯ n                                          8.3.2 

Si = (S1, S2, S3,  ⋯Sm),    i=1, 2, ⋯ ⋯ m                                          8.3.4 

𝐷𝑆𝑖

𝑅𝑗
=∑ 𝐶𝑖=𝑚

𝐼=1
j
iSi , ⋯ j=1, 2, ⋯ ⋯ n, i=1, 2, ⋯ ⋯ m                                 8.3.5 

𝐷𝑆𝑖

𝑅𝑗
 𝑉𝑅=𝐷𝑆

𝑅
 𝑉𝑆 𝐷𝑆

𝑅-                                                            8.3.6 

𝐷𝑆
𝑅

  Is the n × m sensitive matrix for RR relative to STOT. 

       𝐷𝑆𝑖

𝑅𝑗
= ∂Rj/∂Si = Cj

i                                                                                        8. 3.7 

Cj
i= (

8

𝜋𝜇
)1 2⁄ (

1

𝑘𝑇𝑗
)3 2⁄ ∗ 𝑒𝑥 𝑝 (−

𝐸𝑖

𝑘𝑇𝑗
−

𝑏

𝐸𝑖1 2⁄ ) ∗ ∆i                                      8. 3.8 

𝑉𝑅,𝑘𝑙=∑ ∗𝑜=𝑚
𝑜=1 ∑ ∗

𝑝=𝑚
𝑝=1 𝐷𝑆,𝑘𝑜𝑉𝑆,𝑜𝑝𝐷𝑆,𝑝𝑙

𝑅 -                                             8. 3.9 

    The essence of RR calculated with STOT is experimental value, so named RRexp. 

If the off-diagonal elements of covariance matrix are considered or ignored, the calculated principal RR are identical with each other, 

but the STD of calculated RR will have obvious difference. Fig. S8.3-A shows the relative errors in two situations mentioned above. Two 

relative errors are very close for T9≤1, at T9=0.2, it is about 5.5% for both situations, but for T9≥3.5 have rather larger difference. Fig. 

S8.3-B shows that at T9=0.2, the contribution of E10 is about 60% of total, the contribution of E20 is about 35%, the contribution of other 

transitions is about 2.5%. 



50 
 

  

   Fig. S8.3-A. The calculated RR with Covariance (red line）            Fig. S8.3-B. the Contributions from E10, E20 and other  

            or with Variance (blue line)  respectively                                         kinds of transitions.    

  

               Fig. S8.3-C. RR/MeV at T9=0.195, 0.200, 0.205              Fig. S8.3-D. RR/MeV at T9=4, 6, 8, 10  

Fig. S8.3-C show the reaction rate over unit energy MeV (RR/MeV) at T9=0.195, 0.200, 0.205. Its integrated RR is R=5.09666E-015, 

7.80818E-015 and 1.17926E-014 [mol.cm-3.s-1] respectively. For the Gamow window of T9=0.2(GW0.2), the center energy E≈0.3 MeV, 

WH≈0.14MeV, The bottom energy region(0.15 to 0.55 MeV)is far away from the lowest energy(E=0.8 MeV) in which have direct ED. The 

RR in GW0.2 are produced mainly by the interfering effect of the bound states 1-
1and 2+

1 with the scattering states. In addition, it can be 

seen that in GW0.2 the RR has dramatic changes with the T changed, When the T changed only 2.5% the RR changed 50%. This explain 

that to describe the dependence of STOT on energy accurately is very important, In order to get the accurate description the key element is 

to use the width data of the bound states, that is 𝛾𝛼1
2 , 𝛾𝛼2

2 , Γ𝛾
1 and Γ𝛾

2.  

Fig. S8.3-C show the RR/MeV at T9= T9=4, 6, 8, 10. It can be seen that with the increasing of T the contribution of 1-
3 and1-

4 

increasing, for T9≥6 they become the ones of main ingredients of RR. This explain that only if the Ed in these two levels have been fitted 

perfectly, the accurate RR will be obtained. 

The popular analytic formulae in (Kunz2002) (8.3.10) is used to fit the calculated RR with STOT (named RRexp), and then obtain the 

coefficients a0 to a11 for the analytic expression. The calculated RR with the analytic expression is named RRana. It was found that if the 

denominate T9
3/2 in the third item is replaced by T9

2 as (8.3.11), will get more accurate results (Fig. S8.3-F), which make the total χ2 

decreased 50% at least. 
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Fig. S8.3-E. Reaction Rate of RRana and RRexp with absolute values  
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Fig. S8.3-E. The absolute value RRexp (Exp-fitted value) and the absolute value RRana (Analytic expression). The pictures show clearly 

the RR for T9˂1 is very small, but it is the most interesting data for astrophysical study. The RRana is very close to the RRexp, it is very hard 

to see the difference between them  

  

  Fig. S8.3-F. Ratio for RRana/ RRexp (Adopted rate)                       Fig. S8.3-G. Ratio for the RRana / RRexp  

 

   Fig. S8.3-F. show that for T9≤1.5 region, the blue line (T9
2 used) is more close to 1.0 then the red line (T9

3/2 used) is, especially at the 

Gamow of T9=0.2, which is the most interesting region for astrophysical study; for T9≥2 region, the red line (T9
3/2 used) is more close to 

1.0 then the blue line (T9
2 used) is, but which is not the most interesting region for astrophysical study. So using T9

2 (8.3.11) has practical 

benefit.  

   Fig. 8.3-G show the ratio for RRana to the original calculated value RRexp with STOT., the process for fitting RRexp is a kind of pure 

mathematical alternation, not is to fitting real statistic physical observable quantity, the variance of fitted value is very small, the most of 
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them is less 0.5%, it cannot be used as the STD of the final recommend value RRana. The STD**2 of RRana equal to the variance of the 

RRexp plus the variance of fitted value. In Fig. 8.3-G, RR-High=RRexp*(1+Error), RR-Low=RRexp*(1-Error). 

  The Table 8.3.1 list the parameters a0 to a11 for analytic expression formula (8.11). By using formula (8.11) and the parameters a0 to 

a11 in Table 8.3.1 the corresponding RR in Fig.8.3.-G can be reproduced for T9=0.01 to 10. The RRana in Appendix. V. 2. Will be got. 

Table 8. 3.1 Parameters a0-a11 for analytic expression (8.3.10) 

 

a0=0.48918133D+9 a1=0.39883022D+0 a2=0.31680499D+2 a3=0.40000000D+3 a4=0.32415511D+16 a5=0.31752720D+2 

a6=0.42114768D+2 a7=0.13730056D+4 a8=0.27350673D+2 a9=0.23870846D+12 a10=-0.99911666D+0 a11=0.37586740D+2 

 

Fig. S8.3-I. The ratio for previous published RR to the calculated RRexp of RAC2015  

Fig. S8.3-I Ratio for Reaction Rate (RR) of Previous Works over the RR of RAC2015. T9=0.2 corresponding to E=0.3 MeV is the 

most interesting temperature for nuclear astrophysics (Gamow window). The black lines represent the RR of RAC2015 with up-limit and 

down-limit, at 𝑇9=0.2 RR is 7.77±0.32 mol.s-1.cm-3 with error 4.4%. Schurmann2012 is a good analysis work, but did not publish its RR. 

Extended Data Table. 1.2 shows the minimum error of previous RR is 18% in Katsuma2008, but Katsuma2008 is a kind of pure theoretical 

calculation, the agreement between its theory values and ED is not good，refer to SI-Chapter 7. The RR of Kunz2002 is very close to 

RAC2015 for T9<4, but it looks too higher for T9>5, this is due to the data about SG.S of Brochard1975 did not be used in fitting, its error is 

32.7%. NACREII2013 looks too lower for 𝑇9< 2, but looks too higher for 𝑇9> 4.5, the error is 25%. NACRE1999 looks too higher for 

𝑇9< 0.3. Bachmann1996 looks good for 𝑇9<0.5, but looks too higher for 𝑇9> 0.8, and its error is very larger (71%). The CF88 is a kind of 

groundbreaking work with very larger error (>80%). In summary, the RR of RAC2015 has the most reliable experimental basis and the best 

accuracy comparing to all previous works. 

 

8.4. Conclusion 

Three effective approaches for using global fitting and a powerful Code RAC2015 have been developed to get a set of unique, reliable, 

accurate and self-consistent S factors and Reaction Rate of 12C (α, γ) 16O. In present at E=0.3 MeV the best total S factor is 159.7 keV b 

with error < 5.9%, the reaction rate is 7.82±0.44 mol.s-1.cm-3 with error < 5.7%. The principal value and error of STOT depend on the 

data-base used principally, on the width information of bound states (11
−1 𝑎𝑛𝑑 21

+1) especially, on the cross sections of 12C (α, γ) 16O for 

E<1.5 MeV very sensitively. Keep going to make new measurements about these data will have possibility to improve the accuracy of 
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STOT. As long as the data-base and the global fitting are good enough, the obtained S factors will be very well. Anyway we believe that if 

you want to resolve the problem about 12C (α, γ) 16O you have to do with the ways created in this paper. 

 

Appendix 

Appendix I. The fitting and comparison for 
12

C (ɑ, γ0)
16

O and 
12

C (ɑ, ɑ) 
16

O 

In [Dyer1974] the values of σE1 and σE2 were extracted by a least-squares fit to the measured AD by taking into account the 

interference between E1 and E2 transitions according to the relation given by  

𝑊(𝜃𝛾, 𝐸) = 1 − 𝑄2𝑃2(𝑐𝑜𝑠𝜃𝛾) + [
𝜎𝐸2(𝐸)

𝜎𝐸1(𝐸)
] × [1 +

5

7𝑄2𝑃2(𝑐𝑜𝑠𝜃𝛾)
−

12

7𝑄4𝑃4(𝑐𝑜𝑠𝜃𝛾)
] + 

   6/5[𝜎𝐸2(𝐸)/𝜎𝐸1(𝐸)]1 2⁄ 𝑐𝑜𝑠𝛷(𝐸) × [𝑄1𝑃1(𝑐𝑜𝑠𝜃𝛾) − 𝑄3𝑃3(𝑐𝑜𝑠𝜃𝛾)]                       S-AP.I.1 

where Pk(cos θγ ) are the Legendre polynomials, Qk are the experimental attenuation coefficients of the γ detectors and Φ(E) is the phase 

difference between the d and p wave and a Coulomb phase given as 

 𝛷(𝐸) = δ2 (𝐸) − 𝛿1 (𝐸) + arctan (𝜂/2)                                       S-AP.I.2 

Here, η being the Somerfield parameter and δi being the nuclear phase shifts. Therefore a fit to a radiative AD in 12C(α, γ )16O is largely 

sensitive to the ratio of the E1 and E2 cross sections as phase shifts are known from elsewhere (elastic scattering). This 1- and 2+ levels 

formula has been got popular application. 

In previous works, when the two channel and multiple levels R-Matrix formula were used to fit the E10 or E20, multiple coherent 

combination designed in advance were used, the taking which kind of coherence between energy levels was selected by the size of 𝜒2. e.g., 

16 types of combinations were used in the literature [Hammer2005]. 

Where, α refer to particles pair, fα is the Coulomb phase shift. As you seen about AD, each level, each reaction channel are all correlated, 

ignoring anyone item will get approximate results. In our work the strictly theoretical calculation was applied to fitting all the data available, 

the coherence between energy level is automatically determined by the procedures for fitting ED, the procedure did not suffer from any a 

priori and subjective elements. For determining the coherence property between energy levels, the AD of 12C (ɑ, ɑ) 12C and 12C (ɑ, γ0) 
16O 

are the most sensitive elements. 

 

Appendix.I.1. the AD of 12C (ɑ, γ0)16O according to each group 

Fig. APP. I.1. 2 to Fig. APP. I.1. 8 display all the AD of 12C (ɑ, γ0)
16O calculated in RAC2015 and corresponding experimental data 

according to each group.  
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Fig. APP. I.1. 2. Fitting situations about the AD of 12C (α, γ0) 
16O for Ouellet1996 and Makii2009 in RAC2015, which are absolute value 

with NF=1.00 and 1.03 respectively. These two data sets play a key function to make unique evaluated values for the AD of 12C (α, γ0) 
16O.  
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Fig. APP. I.1. 3. Fitting situations about the AD of 12C (α, γ0) 
16O for Plag2012, Redder1987, Kunz2001, Assuncao2006 and Dyer1974 in 

RAC2015, which are relative value with different scaling factors NF. At E Lab ≈ 3.2±0.2 MeV the contribution of 1- play dominant 

function, the figure is a single peak with a bulge near 700 ; At E Lab ≈3.570 to 3.579 MeV the contribution of 22,   3.574
+  play dominant 

function, the figure is a double peaks with a dent near 900, the calculated values near 900 are less than 10-7 keV b. The data set of Plag2012 

at lower energy region is very sensitive to the STOT at E=0.3 MeV.  

  

Fig. APP. I.1. 4. Fitting situations about the AD of 12C (α, γ0) 
16O for Larson1964 and, Kernel1971 in RAC2015, which are relative value 

with different NF. These two data sets play a key function to make unique evaluated values for the AD of 12C (α, γ0) 
16O at higher energy 

region. More figures are put in SI.  
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   Fig. AP.I. 5. The AD of AGDA of Fey2004                    Fig. AP.I. 6. The AD of AGDA of Fey2004

 

  Fig. AP.I. 7. The AD of AGDA of Fey2004                          Fig. AP.I. 8. The AD of AGDA of Ophell976 

Fig. AP.I. 5 to Fig. AP.I. 7 display the AD of 12C (ɑ, γ0)16O in（Fey2004） according to each group.In each group the energy increasing 

order. The Scaling factors for every energy are listed in the Expended Data Table 2.  

 

Appendix.I.2. Comparison for the AD of 12C (ɑ, γ0)
16O follow the increasing order of energy. 

Fig. APP. I.2.-0 to APP. I.2.-5 show the fitting situation (RAC-Lane-2013) for the AD of 12C (ɑ, γ0)
16O at 65 energies in E=1.002 to 

6.075, follow the increasing order of energy. In the Fig. the fitted value and data at one energy are represented by the same color curve and 

symbol. The data value in vertical coordinate is the normalized absolute value, the scaling factor or normalizing factor have precision less 

than 1%. 
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A    26.87/10.71=2.1          B   25.65/5.37=4.8           C   85.72/3.126=27.4 

      D   8.625/12674=0.0007        E  4.737/1.635=2.9           F   1492/0.1624=9187 

                 Fig. APP. I.2.-0 Characteristic angular distribution of 12C (ɑ, γ0)
16O at 6 energies   

Fig. APP. I.2.-0 show the characteristic AD of 12C (ɑ, γ0)
16O at six energies. The numbers in picture are the ratio for E10/E20, which is 

the value of calculated cross section of E10 transition over E20 transition. At the resonance peak of 1-
3（Fig. F） in which the E10 play 

dominant function, the characteristic AD looks like ‘a single peak with a symmetry axis of θ=90o ’. Due to the ratio is extremely large 

(E10/E20=9187), Fig. F is regard as the characteristic picture for pure E10 transition. At the resonance peak of 2+
2 （Fig. D）in which the 

E20 play dominant function, it looks like ‘a double peaks with symmetry axis of θ=90o’. Due to the ratio is extremely small 

(E10/E20=0.0007), Fig. F is regard as the characteristic picture for pure E20 transition. For the energies at which both E10 and E20 have 

significant contributions（Fig. A，B）, the shape of AD is the combination of E10 and E20, it looks like ‘a double bulges with topes at 60o 

and 130o separately’;  the higher the amplitude of left bulge, the more contribution from E10. If the E10 is the main composition, it looks 

like ‘a single peak with a non-symmetry axis ’ （Fig. C）. The higher the amplitude of right bulge, the more contribution from E20 (Fig. 

C).The AD of 12C (ɑ, γ0)
16O imply the ratio information about E20/E10，The AD of 12C (ɑ, γ0)

16O at 65 energy points show the variation 

trend that the ratio E10/E20 changed with the change of energy. This work fitted these original AD, relative integrated data and other data 

accurately, the calculated E10 and E20 must be reasonable. It’s these data play dominate function to determine the SF. 
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   Fig. APP. I.2.-1   Angular distribution of 12C (ɑ, γ0) 
16O in 1.002 to 1.591 MeV  

Fig. APP. I.2.-1-（A，B）show that in the energy region E=1.002 to 1.416 MeV both E10 and E20 have significant contribution, The AD of 

1.002 and 1.308 MeV have smallest error, they play a key function. Fig. APP. I.2.-1-（C，D） show that both E10 and E20 have significant 

contribution, Along with the energy increasing and close to the peak position of 1-
2, the contribution of E10 increase. Fig. APP. I.2.-2 show 

that in the energy region E=1.965 to 2.480 MeV the contribution of E10 play dominate function, the contribution of E20 is very small, 

because these energies locate on the peak region of 1-
2. 
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          Fig. APP. I.2.-2   Angular distribution of 12C (ɑ, γ0) 
16O in 1.965 to 2.480 MeV  

 

Fig. APP. I.2.-3 Angular distribution of 12C (ɑ, γ0)
16O in 2.560 to 2.6804 MeV 



60 
 

Fig. APP. I.2.-3（A，B）show that along with the increasing of energy and gradually closing to the peak position of 2+
2, the left bulge which 

characterize the contribution of E20 appear out. Fig. APP. I.2.-3（C）show that in the energy region which near peak position of 2+
2, the 

contribution of E20 become significant. Fig. APP. I.2.-3（D）show that on the peak region of 2+
2, the contribution of E20 play dominate 

function. The maximum cross section is at 2.6804 MeV, it means that it is the energy of the level 2+
2. 

  

Fig. APP. I.2.-4. Angular distribution of 12C (ɑ, γ0)
16O in 2.681 to 6.075 MeV 

In Fig. S8. 1-4（A）the shape of AD explain the contribution of E20 play dominate function，the energies should locate in the peak region 

of 2+
2. But their original nominal energies are larger than the up-limit of the peak energy, the fitting results are very bad always. If change 

the interference property of 2+
2 artificially, the fitting situation for the AD of the 3 energies become better a little, but the fitting situation for 

the AD of the energies in Fig. S8. 1-become very bad. If shift the energies with -0.1 MeV, then the AD in all energies will get perfect fitting. 

The careful study demonstrate that the AD of the energies from 2.560 to 2.6875 MeV play dominate function for determining the 

interference property (positive for left side, negative for right side)。 If change the sign of the γ reduced width amplitude of 2+
2 

artificially, let the interference property change conversely as ‘negative for left side, positive for right side’, then the fitting situation 

become very bad for all AD mentioned above.  But, by the process of adjusting parameter and fitting data automatically the related 

parameters and interference property restrain to original situation. The systematical study show that the total influence to S0.3 produced by 

the interference property of 2+
2 not larger than ±1.5 KeV b. Fig. S8. 1-4（B）shows that along with the energy increase and far away from 

the peak position of 2+
2, the contribution of E10 increases and the contribution of E20 decreases. 

The 3 energies in Fig.APP. I.2.-4（C）locate in the peak region of 1-
3 level, the contribution of E10 play dominate function. The AD at 

5.295MeV looks like ‘a single peak with a symmetry axis of θ=90o ’, which is called the characteristic picture of pure E10. The 3 energies 

in Fig.APP. I.2.-4（D）locate in the peak region of 1-
4 level. These 6 AD of 12C(ɑ,γ0)

16O and the integrated cross section in the same energy 

region[Brochard1975] play key function to determine the SF in high energy region.  

In summary, this work make accurate analysis for the 65 AD of 12C (ɑ, γ0)
16O, the shape and absolute values are reasonable in physics, 

subsequently the deduced SE10 and SE20 must be reasonable. 
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Appendix.I.3. Comparison for excitation function of 12C (ɑ, γ0)
16O. 

 

Fig. AP.I.3. 1. Shows the exciting function of 12C (ɑ, γ0)
16O. The data of Ophell976 for θ CM=90o are absolute value, it’s NF=1.722. All 

Other data are relative values. 

 

Appendix.I.4.Comparison for AD of 12C (ɑ, ɑ) 12C 

Fig. S-AP.I.4.1 to Fig. S-AP.I.4.15 show the AD of 12C(ɑ, ɑ)12C at 83 energies, which include 51 energies of (Plag1987), 22 energies 

of (MOrri2009),  6 energies of (Brunn2009), they are absolute values, the NF fixed as 1.0; Also include 4 energies of (Tischhauser2009), 

which is relative values, the NF is 2.6748. In the Figs, lines refer to fitted values, samples refer to ED. The energy is from 1.00 to 7.5 MeV, 

which cover the all resonance peaks.  

About the shape of AD of 12C (ɑ, ɑ) 12C, the characteristic of Coulomb scattering is ‘very higher amplitude at small angle’, this is very 

obvious for low energies region (E <1.87 MeV). The contribution of S wave (𝜄𝛼=0) is uniform distribution, it is a key element for 

describing the AD of 12C (ɑ, ɑ) 12C. But, in the scattering energy region less than 7.5 MeV only exist one very narrow 1+, so the 

contribution of 1+ mainly come from the distant levels, this exhibit the importance of considering complete level set. General speaking, the 

most of AD of 12C (ɑ, ɑ) 12C are fitted very well, especially in energy region in which no competition from the Alpha spectrum exist. This 

explain the deduced width of (α, α) are reliable.  
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    Fig S-AP.I.4.1 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Plaga87)          Fig S-AP.I.4.2 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Plaga87)  

In Fig S-AP.I.4.1 the 6 energies located the region in which the competition from Alpha spectrum is very weak, the agreement of 

data and fitted value is very well.  In Fig S-AP.I.4.2 the 6 energies located in the peak region of 1-
2, the agreement of data and fitted value 

is not good, this is because in the region there are a lot of ED take part in the stronger competition, the completing ability from Alpha 

spectrum is the one of most strong. The information of peak position implied in some ED have much larger difference, and no method to do 

modification for them. 

 

     Fig S-AP.I.4.3 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Plaga87)       Fig S-AP.I.4.4 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Plaga87) 

In Fig S-AP.I.4.3 the 6 energies located in the peak region of 1-
2, the agreement of data and fitted value is not good, this is because in 

the region there are a lot of ED take part in the stronger competition, the completing ability from Alpha spectrum is the one of stronger. 

The information of peak position implied in some ED have much larger difference, and no method to do modification for them. In Fig. 

S-AP.I.4.4 the 6 energies located the region in which the competition from Alpha spectrum is very weak, the agreement of data and fitted 

value is very well. 
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      Fig S-AP.I.4.5 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Plaga87)        Fig S-AP.I.4.6 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Plaga87) 

In Fig. S-AP.I.4.5 and S-AP.I.4.6 (Plag87) for all energies the agreement of data and fitted value is perfect. 

 

    Fig S-AP.I.4.7 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Plaga87)        Fig S-AP.I.4.8 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Plaga87) 

In Fig. S-AP.I.4.7 and S-AP.I.4.8 (Plag87) for all energies, the agreement of data and fitted value is very well. 

 

    Fig S-AP.I.4.9 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Plaga87)        Fig S-AP.I.4.10 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Tisc09) 
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In Fig. S-AP.I.4.9, for all energies, the agreement of data and fitted value is very well. In Fig. S-AP.I.4.10, the AD of 12C (ɑ, ɑ) 12C are 

relative value, the agreement of data and fitted value is very well 

 

  Fig S-AP.I.4.11 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Morris1968)   Fig S-AP.I.4.12 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Morris1968) 

 

  Fig S-AP.I.4.13 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Morris1968)   Fig S-AP.I.4.14 Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Morris1968) 
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                      Fig S-AP.I.4.15. Fits to the AD of 𝐶(𝛼, 𝛼) 𝐶1212  in (Bruno1975). 

 

APPENDIX.II. The fitting and comparison for 
12

C (ɑ,𝛂𝟏) 
16

O
* 
and 

12
C (ɑ, p)

 15N
 

It has been explained that in the higher energy region (E>5.5 MeV), using ED of 12C (ɑ, ɑ1)16O* and 12C (ɑ, p) 15N minimize the 

contribution of reduced channel, and reduced the uncertainty of background from distant levels, subsequently to improve the fitting 

precision, in this effect the ED of 12C (α, α1)
12C* play a dominate role. The ED of 12C (ɑ, ɑ1)

16O* and 12C (ɑ, p) 15N in the normal published 

articles have REF. (Mitchell1965) and (deBoer2012) only, and both are relative values, in the deBoer2012 all data are excitation function. 

These data play a dominate function in fitting for higher energy region.  

APPENDIX.II.1. the fitting situation for 12C (ɑ, ɑ1)
16O*  

                            

 Fig S-AP.II.1.1 Fitting situation to the ED of integrated 𝐶(𝛼, 𝛼1) 𝐶1212  data in (Mitchel1964, deBoer2013). The data of 

(Mitchel1964) is relative value, the data of (deBoer2013) is absolute value, and the later play a dominate function in fitting for higher 

energy region.  

 

Fig S-AP.II.1.2 Fits to the AD of 𝐶(𝛼, 𝛼1) 𝐶1212  in Mitchel1964.   Fig S-AP.II.1.3 Fits to the AD of 𝐶(𝛼, 𝛼1) 𝐶1212  in deBoer2013 



66 
 

  

 Fig S-AP.II.1.4 Fits to the AD of 𝐶(𝛼, 𝛼1) 𝐶1212  in (deBoer2013)   Fig S-AP.II.1.5 Fits to the AD of 𝐶(𝛼, 𝛼1) 𝐶1212  in (deBoer2013) 

 

APPENDIX.II.2. the fitting situation for 12C (ɑ, p) 15N 

 

Fig S-AP.I.II.2.1 Fitting situation about the AD of 𝐂(𝛂, 𝐩) 𝐍𝟏𝟓𝟏𝟐  excitation function in Mitchel196457 at 4 angles (41o, 54o, 114o and 

140o) in RAC2015. In the higher energy region (E>5.5 MeV), by using the ED of 12C (ɑ, ɑ1)
12O* and 12C (ɑ, p) 15N to minimize the 

contribution of reduced channel, and reduced the uncertainty of background from distant levels. Refer to ‘Schemes for fit and calculation in 

basic study stage’ in SI, Appendix. III. 

 

Appendix. III. Schemes for fit and calculation 

Appendix III display the results of basic research before 2014, the data samples are old ones, the results are old too, but the 

conclusions are correct, they are applied in the future research works. After 2013 a lot of improvements have been done on the base 

finished before.  

 

Appendix. III.1. Six theoretical schemes 

The reason for analysis of multi-channel and multi-types of level combination is to study the influence from the setting of reaction 

channels, selection of levels, selections of types of ED. The features of ‘Combination’ are identified by string IcJeKd-a, where Ic 
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represents the I-th reaction channel, Je represents having J levels, Kd represents the number of ED to be fitted, -a indicates the presence of 

AD of (α, γ0) ED set, -i indicates the absence of AD of (α, γ0) data. All kinds of combinations are performed by using the 

‘Standard-R-matrix Formula’ and ‘Covariance Fitting’. Table S-AP.III.1-A lists unmarked feature points in these programs, Table 

S-AP.III.1-B lists calculated SF of these programs, and their mean square errors marked with 𝜒𝛼𝛾
2 -M. And Figure S0.1 illustrates the ratio 

of the RR in these programs. 

 

Table S-AP.III.1-A. The characteristics of 6 combinations  

Combination Reduced channel ED energy/MeV 

9c37e4558d-a (α, x) Eα=1→10 

8c37e4223d-a (α, p), (α, x) Eα=1→10 

7c37e4104d-a (α, α1), (α, p), (α, x) Eα=1→10 

7c37e3461d-i (α, α1), (α, p), (α, x) Eα=1→10 

7c22e3104d-a (α, α1), (α, p), (α, x) Eα=1→6.5 

7c22e2659d-i (α, α1), (α, p), (α, x) Eα=1→6.5 

 

Table S-AP.III.1-B. SF (E=0.3MeV)/keV b for 6 combinations 

Combination STOT±ERR SE10 SE20 Scas S6.05 S6.13 S6.92 S7.12 𝝌𝜶𝜸
𝟐 -M 

9c37e4558d-a 162.1±07.8 93.34 61.80 6.94 3.269 0.222 2.974 0.474 1.704 

7e374223d-a 162.6±8.0 91.92 63.45 7.26 3.272 0.223 3.288 0.477 1.776 

7c37e4104d-a 161.9±8.4 94.94 59.85 7.11 3.596 0.231 2.638 0.647 1.717 

c37e3461d-i 163.±15.7 96.45 60.13 6.88 3.679 0.232 2.332 0.642 1.719 

7c22e3104d-a 156.±12.0 94.64 54.39 7.16 3.401 0.332 2.759 0.664 1.804 

7c22e2659d-i 158.±12.9 84.67 67.07 6.78 3.430 0.201 2.590 0.562 1.744 

Among the above six kinds of combinations, 9c37e4558d-a used all the available ED in fitting (4558), and get the smallest average 

𝜒𝑚𝑒
2  (1.704), STOT error being the minimal (162.10 ± 7.8). Literature (Chen2003) made some systematic researches on error propagation, 

and provided empirical formula like that: ERfit≈ 𝜒𝑚𝑒
2 *ERed*√𝑀/√𝑁, in which 𝜒𝑚𝑒

2  is the average error of fitted values, ERed the error 

of ED, M the square root of the number of adjusted parameters, N the square root of the number of ED. Thus, it is reasonable for 

9c37e4558d-a case to get smallest error (4.8%), due to using all the available ED in iterative fitting. 

The 8c37e4223d-a and 7c37e4104d-a have very close results to 9c37e4558d-a, it is mainly because the same level structure (37E) is 

used in these three combinations. Moreover, the fitting data set contains the same AD of 12C (α, γ0)16O, which includes the AD for 65 

energy points, excitation function with 40 points in five angles. All of them play a decisive role in determining the contribution ratio of E10 

to E20. Error of STOT in 7c37e3461d-i is quite large (163.49 ± 15.7), mainly due to absence of AD for 12C (α, γ0) 16O in the fitting data 

set. 

The value of STOT given in 7c22e3104d-a is on the low side, but having a large error (156.22 ± 12.0), mainly due to that it does not 

use 37E level structure, which ignores 15 levels in the high energy region which having their width information. Then, the loss of binding 

impact from these levels on background of distant level will result in the fact that contribution from distant level is higher than the actual 

one and bring about a great uncertainty of their value. 

The value of STOT given in 7c22e2659d-i is also on low side, but with a large error (158.68 ± 12.9). Additionally, there is a big 

difference of the contribution ratio of E10 to E20 compared with other five groups vary significantly, the smallest E10 and maximal E20. 

The cause is that the combination does not use complete level structure (37E), not fitting for AD of 12C (α, γ0)
16O. 
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Parameters construction and the fitting data used in 7c22e2659d-i is closest to (Schumman2011), and the result (SE10 = 84.67, SE20 

= 67.07) and results of (Schumman2011) (SE10 = 83.4, SE20 = 73.4) are also the closest. 

 Fig. 

S-AP.III.1-A. Error for 9c37e4558d and 7c22e2659d 

Figure S-AP.III.1-A illustrates intuitively STOT calculated values and their errors. From Ex = 0.01 to 10 MeV, equivalent to 

from Eα = 0.01 to 15 MeV, the energy range just right meets the computing demands for RR of 12C (α, γ) 16O from T9 = 0.01 to 10. In the 

following description, the range from EX = 0.01 to 0.5 MeV is called ‘Extrapolated Area’, because there is no direct ED in this energy 

region, but it is also interesting to study the evolution of stellar; the range from 0.5 to 7.2 MeV is called ‘Middle- Energy Area’, just 

because there is a lot of ED in this energy region; the range from 7.2 to 10 MeV is called ‘High-Energy Area’, and in this energy region 

there exist AD data of 12C (α, α) 16O with six point and width data in scattering states with 15 points. 

 

Fig. S-AP.III.1-B. the Calculated STOT for 6 combinations 

Figure S-AP.III.1-B simultaneously displays and compares STOT calculated values in six combinations, which proves the effect 

from the number of levels. Left shows, in the extrapolation energy region, STOT calculated values are significantly different among them, 

and the right shows a significant difference of the calculated value STOT in high-energy area. The background of distant level in two 

combinations with use of 22E levels is significantly higher than that in combinations with use of full 37E levels. This is because 15 levels 

having width information in the higher-level region have a significant constraint impact on background from distant levels. It is obvious 

that it is more reasonable and more accurate for background from distant levels with 37E levels. 
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Fig. S-AP.III.1-C. Comparison of calculated STOT for 7c22e (left) to 7c37e (right) 

Fig. S-AP.III.1-C shows the effect of using AD of 12C (α, γ0)16O. The case 7C22E3104D and 7C37E4031D take AD data of 12C (α, 

γ0)
16O, but the case 7C22E2659D and 7C37E3416D do not. As displayed in right figure above, STOT calculated value has significant 

differences in extrapolation area and high energy region. Since AD of 12C(α, γ0)
16O is the original data, with high reliability and a smaller 

error, Fitting AD of 12C(α, γ0)
16O can accurately determine the coherence between energy levels, and accurately distinguish the contribution 

of E10 and E20, so as to improve the accuracy and precision of the calculated value of STOT. 

 

 Fig. S-AP.III.1-D  Comparison of calculated STOT for 8C37E/ 9C37E (left) and 7C37E/ 9C37E (right) 

Figure S-AP.III.1-D depicts the influence of total width of reduced channel Γ and how to set the influence from reduce channel. 

The data set of 8C37E4223D includes data of (α, α1), not data of (α, p). The contribution of (α, α1) is represented with specific 

R-matrix parameters. And the total width of reduced channel Γ represents the contribution of (α, p) and (α, x). The data set of 9c37e4558d 

contains (α, α1) and (α, p) data (from Eα= 6 to 8 MeV), the contribution of (α, α1) and (α, p) is represented with the specific R-matrix 

parameters, and the total width of the reduced channel Γ describes the contribution of (α, x) only. The left shows no difference between 

them in extrapolation area, but has a very slight difference in high-energy area. In case of 8C37E4223D, STOT is 162.66 ± 8.0, and 162.10 

± 7.8 in the case 9c37e4558d, which is indicated that the use of (α, p) data play small role in the improvement. 

The data set in the case 7C37E4031D does not contains any data of (α, α1) or (α, p), total width of reduce channel Γ representing the 

total contribution of (α, α1), (α, p), and (α, x), which is the same as 9c37e4558d. The left shows a very little difference between them in 

extrapolation area, but visual difference in the high-energy area. STOT in 7C37E4031D is 161.93 ± 8.4, and 162.10 ± 7.8 in 9c37e4558d. 

Compared to the case 8C37E4223D, it play a bigger role in the improvement, which is mainly caused by the effect of (α, α1) data. 
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According to ‘Reduced R-matrix Theory’, the smaller is the contribution of the reduced channels, the smaller is the degree of 

approximation, and the more accurate is the formula, which leads to smaller uncertainty. For anyavailable ED, it is better to describe them 

with the specific R matrix parameters than by using corresponding Γ. The scheme 9c37e4558d has the smallest contribution from reduced 

channels, the average chi-squared is the smallest, the same with the error of STOT, which is consistent with the theoretical predictions. 

In the following we use figures of ratio of STOT to show quantitative difference in six combinations to further prove that 9c37e4558d 

is the best one. 

 

Fig. S-AP.III.1-E-L. STOT in six combinations      Fig. S-AP.III.1-E-R. Ratio for six combinations over 9c37e4558d 

Figure S-AP.III.1-E-L shows the ratio of STOT in six combinations. Figure S-AP.III.1-E-R shows the ratio of STOT in six 

combinations to the case 9c37e4558d. We can see that 9C37E-UP and 9C37E-DOWN represented upper and lower limits of standard 

error. Which is 4.7% in GAMOW window (E = 0.3 MeV). This standard error is sufficiently estimated value, because in the error 

propagation formula calculation, some fixed parameters are also used as adjustable ones to increase the value by about 1.5 percentage point. 

In extrapolation energy region, compared to 9c37e4558d, the difference in 8C37E4223D is less than 1.3%, and the difference in 

7C37E4301D is less than 3.7%, 7C22E3104D less than 4%. Without the use of AD of 12C (α, γ0)
16O, both the case 7C22E2659D and 

7C37E3416D have more than 7% of the difference. Thus it will lead to great uncertainty without use of the original AD data of 12C (α, 

γ0)
16O. 

 

Fig. S-AP.III.1-F. Absolute calculated value of total RR for 6 combinations 

Figure S-AP.III.1-F show absolute calculated values of total RR in six combinations. The rigth depicts a significant difference of total 

RR. 
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                       Fig. S-AP.III.1-G. The ratio of total RR in six combination to the case 9c37e4558d 

Figure S-AP.III.1-G shows the ratio of total RR in six combination to the case 9c37e4558d. As shown in the figure, 

9C37E4556-UP and 9C37E4556-DOWN expressed its standard error limit, 4.8% in GAMOW window (T9 = 0.2). With comparison of 

9c37e4558d, the difference of 8C37E4223D is less than 1% in T9 <8 energy region and difference of 7C37E4301D is less than 2.5%, 

7C22E3104D less than 4%. Because of without use of AD of 12C(α, γ0)16O, the differences in 7C22E2659D and 7C37E3416D are both as 

high as of 8% in the extrapolation region, which have a large RR in the region of T9> 0.6,  caused by background from distant level of 

high energy levels. 

 

Appendix. III.2. Eight applicable schemes 

In order to analyze actual used programs, in this section we perform comparison study for influence generated by certain approximation 

of the ‘standard R-matrix formula’, by certain simplification of the ‘complete set of parameters’ , by certain abandonment of the 

‘complete ED set’, and other widely used methods. Additionally to some extent, it is try to explain why so large differences exist in 

precious analysis works. 

The ‘Covariance Fitting’ in the ‘Generalized least squared method’, is to optimize parameters by using ‘Covariance’ to seek the 

minimal chi-squared, where we strictly considered the role of non-diagonal elements of ‘Covariance’ , that is to say, the impact of 

systematic errors are also taken into account. In essence, is to consider the objective existence relevance of data. According to ‘maximum 

likelihood principle’, the obtained best results can be regarded as the ‘Expected Value’ with the greatest probability of the existence. 

Advantage of such type of programs is theoretical rigorous, precise formula. But the drawback is its enormous amount of computation cost. 

In allthe previous conventional analysis works they did not adopt ‘Covariance Fitting’. 

All conventional analysis are based on a ‘Common least squared fitting method’, that is to say, the ‘Statistical Variance Fitting’ 

method, where the systematic error is eliminated by ‘normalization’ method. In fact, they ignore the objective existence ‘coherence’ of data. 

Similarly according to ‘maximum likelihood principle’, the obtained results are not the ‘Expected Values’ with the greatest probability of 

the existence. The advantage of such programs is quite low amount of calculation, but the disadvantage is to introduce the hardly estimated 

uncertainty. 

In the ‘Physical R- matrix Formula’ used in previous section analysis, all the ‘energy shift’ factors are fixed to zero. 

  
, ,sl sl

sl

S B      


                                                  S-AP.III.2.1 

In this case, level position Eλ of a narrow level is very close to the real position of the resonance level Eλr, that is Eλ≈ Eλr, which has 

obvious physical meaning. When using such programs, let Eλ values be strict constrained by ED, equivalent to lose some freedom, so that 
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the finally obtained chi-squared will be greater than that with using of ‘Standard R- matrix Formula’. By judgment of ‘maximum 

likelihood principle’, the results obtained are not ‘expected values’ with the greatest probability of existence. However, the ‘Physical R- 

matrix formula’ can be used with the accordance of ‘covariance’ fitting or ‘statistical variance’ fitting. 

This work was based on the same energy level structure and parameters set, based on the same set of ED, using the above four 

categories of formulas to fit the results respectively, and obtained the consistent results within a certain error range. Careful comparison of 

the results finds it best to apply ‘Covariance fitting’ in the end. 

Some of the previous analytical work are like as follows: first they adopt the 'Legendre function approximation expression' (Appendix 

S1.4.1) to fit AD of 12C(α, γ0)
16O, and get SE10 and SE20 in full energy area, then R-matrix formula comprehensive analysis of SE10, 

SE20, STOT and other types of integral ED was performed to get the finally recommended values. Some other analysis considers only the 

ED in low energy region (from 1 to 6.6 MeV). For these two situations, we have made a similar analysis and find that the calculated values 

of STOT and RR are very far from expected ones, so do their errors. 

There Exists many units of ED for12C (α, α1)
16O and 12C (α, p) 15N, although they are in the higher energy region, and a very big 

difference among them, it can also get better results with the use of 'reduced channel' depicting their contributions. As is described above, 

8C37E4223D and 7C37E3416D also have practical value for using. 

The analysis results in above eight kinds of applicable programs, have some significant differences in some areas, but are consistent 

within a very small error range. We can choose the best solution by comparison. The 'Program name' in Table S –AP.III.2 has the same 

meaning with that in Table S5. Where the sign ‘PHY’ represents the use of ‘Physical R-matrix formula', DIA refer to ‘Statistical variance 

fitting’. Table S –AP.III.2 lists the characteristic points, which are not clearly identified in these programs. Table Table S –AP.III.2 displays 

calculated values SF, and Figure S0.1.2 illustrates ratio of RR among these programs. 

 

𝐓𝐚𝐛𝐥𝐞 𝐒 − 𝐀𝐏. 𝐈𝐈𝐈. 𝟐 − 𝐀 𝐂𝐡𝐚𝐫𝐞𝐜𝐭𝐫𝐢𝐬𝐭𝐢𝐜 𝐟𝐨𝐫 𝐞𝐢𝐠𝐡𝐭 𝐤𝐢𝐧𝐝𝐬 𝐨𝐟 𝐚𝐩𝐩𝐥𝐢𝐜𝐚𝐛𝐥𝐞 𝐩𝐫𝐨𝐠𝐫𝐚𝐦𝐬  

𝐏𝐫𝐨𝐠𝐫𝐚𝐦 𝐧𝐚𝐦𝐞 𝐬𝐡𝐢𝐟𝐭 𝐃𝐚𝐭𝐚 𝐞𝐧𝐞𝐫𝐠𝐲/𝐌𝐞𝐕 𝐀𝐝𝐯𝐚𝐧𝐭𝐚𝐠𝐞/𝐃𝐞𝐟𝐞𝐜𝐭 𝐈𝐟 𝐡𝐚𝐯𝐞 𝐛𝐞𝐞𝐧 𝐮𝐬𝐞𝐝 

𝟗𝐂𝐒𝐓𝐃 − 𝐂𝐎𝐕 ∆e ≠ 0 1 → 10 Most accurate / Need very long CPU time Used by RAC2013 

𝟗𝐂𝐒𝐓𝐃 − 𝐃𝐈𝐀 ∆e ≠ 0 1 → 10 rather accurate / less CPU time Popular  

𝟗𝐂𝐏𝐇𝐘 − 𝐂𝐎𝐕 ∆e = 0 1 → 10 rather accurate / less CPU time Had similar works 

𝟗𝐂𝐏𝐇𝐘 − 𝐃𝐈𝐀 ∆e = 0 1 → 10 rather accurate / less CPU time Had similar works 

𝟗𝐂𝐒𝐓𝐃 − 𝐂𝐎𝐕 ∆e ≠ 0 1 → 6.5 lower accurate / short CPU time No 

𝟗𝐂𝐈𝐍𝐓 − 𝐂𝐎𝐕 ∆e ≠ 0 1 → 10 general accurate / less CPU time Had similar works 

𝟖𝐂𝟑𝟕𝐄 − 𝐒𝐓𝐃 ∆e ≠ 0 1 → 10 rather accurate / less CPU time Used by RAC2013 

𝟕𝐂𝟑𝟕𝐄 − 𝐒𝐓𝐃 ∆e ≠ 0 1 → 7.5 rather accurate / short CPU time Used by RAC2013 
 

 

                            Table S-AP.III.2-B.  Calculated SF for eight kinds of applicable programs 

Program  name STOT±ERROR SE10 SE20 SCAS S6.05 S6.13 S6.92 S7.12 𝝌𝑻
𝟐-M 

9CFSTCOV 161.40±6.7 93.17 61.16 7.05 3.382 0.224 2.965 0.480 1.701 

9CSTDDIA 161.44±6.3 94.71 60.16 6.55 2.922 0.221 2.928 0.480 1.695 

9CPHYCOV 161.07±7.0 83.95 69.89 7.16 3.459 0.233 2.950 0.521 1.851 

9CPHYDIA 156.60±6.4 83.20 66.86 6.48 2.840 0.228 2.878 0.532 1.903 

9CSTDINT 154.49±39.7 93.95 53.33 7.18 3.650 0.224 2.816 0.492 0.807 

9CSTDLOW 162.00±6.5 95.39 59.27 7.32 3.651 0.223 2.942 0.504 1.496 

8C37ESTD 162.55±7.1 91.81 63.46 7.25 3.266 0.223 3.288 0.476 1.775 
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7C37ESTD 161.93±8.0 94.94 59.85 7.11 3.596 0.231 2.638 0.647 1.714 

  

 

                            Fig. S-AP.III.2-A. Eight kinds of applicable programs 

Figure S-AP.III.2-A depicts ratio of the RR eight kinds of applicable programs to the best solution (9CFSTCOV, referred 9C). 

As shown in the figure(right) , STD-UP and STD-DOWN represents the upper and lower limits of standard error in 9CFSTCOV 

respectively, its maximum being 4.8% in the GAMOW energy region (T9 = 0.2). The error contains the error originally calculated values of 

RR, and the additional error calculated by using analytic formula (S10.11) in the original data fitting. Figure S0.1.2 clearly shows that, the 

case 9CSTDINT (green line) results in the biggest deviation without considering AD of 12C (α, γ0) 16O, which is followed by the case of 

9CFSTCOV (blue line) and 9CSTDDIA (pink line), with the use of ‘Physical R- matrix formula’ having a large deviation. All these three 

types of programs should not be used. Without ED high-energy zone, the RR in 9CSTDLOW (dark blue line) is very close to the best 

selection in extrapolation energy region (T9 <3). Unfortunately, the deviation increases rapidly in T9> 3 area, this is because there is 

constraints of ED in high-energy region. RR in 8C37ESTD (brown line) is very close to the value in the optimal solution in whole energy 

area, the error less than 1.5%. RR in 7C37ESTD (dark brown lines) is also very close to the value in optimal solution in most area (T9 <8), 

the error less than 3%. It is further illustrated that is feasible for using ‘reduced channel’ to represent the contribution of 12C (α, α1)
16O and 

12C (α, p) 15N.  

 

Appendix. IV. The information about R-matrix parameters and experimental database  

Appendix.IV.1. Table. The digital information about R-matrix parameters 

                          Table. App. IV.1.1 The digital information about Channel 

Channel Radii Lmax. Threshold Mt Mi Chat Chai Spin Spin Parity Parity 

'α, 
12

C' 0.6500D+01 6 0.000000 12.0000648499 4.0015063286 6.0 2.0 0.0 0.0 1.0 1.0 

'γ0, 
16

O0' 0.6500D+01 4 7.162000 15.9970233044 0.0000000000 8.0 0.0 0.0 1.0 1.0   

'γ1, 
16

O1' 0.6500D+01 3 1.212600 16.0035163226 0.0000000000 8.0 0.0 0.0 1.0 1.0   

'γ2, 
16

O2' 0.6500D+01 2 1.132100 16.0036076157 0.0000000000 8.0 0.0 3.0 1.0 -1.0   

'γ3, 
16

O3' 0.6500D+01 2 0.344900 16.0044561723 0.0000000000 8.0 0.0 2.0 1.0 1.0   

'γ4, 
16

O4' 0.6500D+01 2 0.145200 16.0046677857 0.0000000000 8.0 0.0 1.0 1.0 -1.0   

'α1, 
16

O*1' 0.6500D+01 3 -4.438000 12.0047583003 4.0015063286 6.0 2.0 2.0 0.0 1.0 1.0 

'P, 
15

N0' 0.6500D+01 3 -4.968000 15.0004677857 1.0076000000 7.0 1.0 0.5 0.5 -1.0 1.0 
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Appendix.IV.2. Table. The digital information about Data-sets 

 

Ref. Name NF/SC WF ChiS ChiC Num. Ref.  Name NF/SC WF ChiS ChiC Num. 

22 STOTschu 0.103000E+01 0.700 3.802 2.133 91 S52  AGDAfeyb 0.317869E-07 1.000 1.660 1.660 9 

23 STOTsch3 0.100000E+01 1.000 4.946 2.939 7 S52  AGDAfeyc 0.360477E-07 1.000 7.435 7.440 9 

25 STOTfuji 0.100000E+01 1.000 1.212 1.071 2 S52  AGDAfeyd 0.122886E-05 1.000 4.812 4.813 9 

24 STOTplag 0.103000E+01 1.000 2.174 4.192 4 S52  AGDAfeye 0.112367E-07 1.000 2.361 2.361 9 

20 ALPHtang 0.100000E+01 1.568 2.427 1.270 93 S52  AGDAfeyf 0.119041E-07 1.000 2.619 2.620 9 

54 ALPHazum 0.100000E+01 1.000 3.384 1.436 91 24  AGDAplan 0.194177E-09 1.000 3.657 3.657 12 

55 ALPHzhao 0.100000E+01 1.543 2.434 1.298 75 24  AGDApla1 0.285479E-09 1.000 3.377 3.379 12 

50 AADApla1 0.100000E+01 1.000 1.419 1.803 823 24  AGDApla2 0.190457E-08 1.000 0.749 0.749 12 

50 AADApla2 0.100000E+01 1.000 1.661 1.310 794 24  AGDApla3 0.410176E-09 1.000 0.838 0.838 12 

51 AADAtisc 0.100000E+01 1.000 1.476 1.546 32 24  AGDApla4 0.313052E-07 1.000 4.631 4.789 12 

51 AADAtis1 0.100000E+01 1.000 1.729 1.528 32 33  AGDAredd 0.705300E-07 1.000 2.724 2.739 6 

51 AADAtis2 0.100000E+01 1.000 1.381 1.123 32 33  AGDAred1 0.148474E-05 1.000 3.742 3.742 6 

51 AADAtis3 0.100000E+01 1.000 1.705 1.705 32 33  AGDAred2 0.214960E-04 1.000 3.296 3.298 6 

54 AADAmorr 0.100000E+01 1.000 1.126 1.046 613 33  AGDAred3 0.283255E-06 1.000 3.838 3.839 6 

53 AADAbrun 0.100000E+01 1.000 1.250 1.248 244 48  AGDAlars 0.259682E-05 3.000 1.412 1.406 7 

33 SCG0redd 0.100000E+01 1.000 3.240 3.240 24 48  AGDAlar1 0.237207E-05 1.600 1.495 1.496 7 

22 SCG0sch3 0.100000E+01 1.000 3.595 3.607 7 48  AGDAlar2 0.227241E-05 2.300 1.597 1.600 7 

34 SCG0ouel 0.100000E+01 1.000 1.385 1.385 9 48  AGDAlar3 0.287853E-05 1.300 2.205 2.204 7 

36 SCG0assu 0.100000E+01 1.000 1.802 1.803 20 49  AGDAkern 0.161765E-05 2.500 0.943 0.945 7 

35 SCG0kunz 0.100000E+01 1.000 1.437 1.438 20 49  AGDAker1 0.174701E-05 1.000 0.651 0.626 7 

24 SCG0plag 0.103000E+01 1.000 0.656 0.656 4 49  AGDAker2 0.260696E-05 1.100 1.674 1.675 7 

31 SCG0maki 0.102999E+01 1.000 2.674 2.677 4 38  AGDAophe 0.172187E+01 2.000 0.845 0.844 40 

15 SCG0kett 0.930571E+00 1.300 1.851 1.839 48 43  AGDAla45 0.226047E-05 2.000 1.530 1.530 4 

32 SCG0broc 0.100000E+01 1.000 0.773 0.773 24 43  AGDAl135 0.241809E-05 2.100 1.570 1.572 20 

38 SCG0ophe 0.100000E+01 1.000 0.497 0.497 1 49  AGDAke61 0.193794E-05 2.000 2.103 1.895 13 

23 AGDAouel 0.100000E+01 1.000 2.267 2.289 96 49  AGDAke90 0.204952E-05 1.400 1.709 1.701 13 

24 AGDAmaki 0.103007E+01 1.000 3.465 3.467 14 49  AGDAk135 0.241208E-05 1.000 1.489 1.599 13 

36 AGDAassu 0.604415E-09 1.000 0.602 0.602 9 57  AGDAmi90 0.879282E-04 1.000 0.936 0.938 29 

36 AGDAass1 0.413116E-09 1.000 0.783 0.784 9 57  AGDAm135 0.116424E-02 1.000 2.050 2.050 14 

36 AGDAass2 0.455656E-08 1.000 1.299 1.299 9 39  SCG1mate 0.733601E+00 1.000 2.414 2.416 32 

36 AGDAass3 0.114122E-07 1.000 4.269 4.273 9 23  SCG1sch3 0.100000E+01 1.000 0.431 0.431 7 

36 AGDAass4 0.203269E-07 1.000 3.930 3.943 9 23  SCG2sch3 0.100000E+01 1.000 2.309 2.279 7 

36 AGDAass5 0.311370E-06 1.000 6.042 6.046 9 35  SCG3kunz 0.100000E+01 1.000 0.657 0.649 16 

35 AGDAkunz 0.230761E-05 1.000 2.025 2.026 9 33  SCG3redd 0.365951E+00 1.000 0.829 0.839 25 

35 AGDAkun1 0.190541E-05 1.000 3.288 3.278 9 15  SCG3kett 0.451095E+00 1.000 0.694 0.696 5 

35 AGDAkun2 0.155059E-05 1.000 1.635 1.635 9 23  SCG3sch3 0.100000E+01 1.000 0.890 0.899 7 

35 AGDAkun3 0.543256E-05 1.000 4.484 4.485 9 35  SCG4kunz 0.100000E+01 1.000 2.560 2.697 16 
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47 AGDAdyer 0.872916E-07 1.000 5.109 5.111 10 33  SCG4redd 0.498559E+00 1.000 1.884 1.876 25 

47 AGDAdye1 0.948589E-07 1.000 3.712 3.716 10 23  SCG4sch3 0.100000E+01 1.000 4.069 3.976 7 

47 AGDAdye2 0.888921E-07 1.000 3.333 3.334 10 57  AA1Cmitc 0.176841E-01 1.400 1.790 1.808 11 

47 AGDAdye3 0.697386E-07 1.000 4.922 4.874 10 56  AA1Cdebo 0.100000E+01 1.000 0.435 0.459 11 

S52 AGDAfeyn 0.503108E-09 1.000 2.984 2.985 9 57  AA1Dmitc 0.357001E+01 1.000 0.040 0.040 17 

S52 AGDAfey1 0.639139E-09 1.000 1.741 1.750 8 57  AA1Dmit1 0.372768E+01 1.000 0.062 0.062 12 

S52 AGDAfey2 0.199498E-08 1.000 1.873 1.871 9 57  AA1Dmit2 0.167051E+00 1.000 1.080 1.072 16 

S52 AGDAfey3 0.328845E-08 1.000 2.246 2.250 8 38  AA1Dophe 0.570640E+01 1.000 0.737 0.735 21 

S52 AGDAfey4 0.250935E-08 1.000 2.264 2.265 9 38  AA1Doph1 0.540065E+01 1.000 0.812 0.812 25 

S52 AGDAfey5 0.376141E-08 1.000 3.409 3.410 9 38  AA1Doph2 0.642512E+00 1.000 0.982 0.981 21 

S52 AGDAfey6 0.470469E-08 1.000 3.175 3.177 8 56  AA1Ddebo 0.100000E+01 1.000 0.852 0.859 153 

S52 AGDAfey7 0.583267E-08 1.000 2.370 2.375 9 57  APDAmitc 0.273387E+01 1.400 1.263 1.240 21 

S52 AGDAfey8 0.186323E-07 1.000 1.144 1.144 9 57  APDAmit1 0.166021E+01 1.400 1.727 1.658 20 

S52 AGDAfey9 0.440505E-08 1.000 2.553 2.553 9 57  APDAmit2 0.132442E+01 1.400 1.365 1.374 24 

S52 AGDAfeya 0.127206E-07 1.000 1.619 1.619 9 57  APDAmit3 0.557257E+00 1.000 1.687 1.689 21 

 

  Note: For a data set in an article the energy is in increased order. 

  Ref.    Order number of Reference in this paper.            Name   Name of data set in Parameter file of RAC2015. 

  NF/SF  Normalization Factor for absolute or relative data.     WF     Weight Factor. 

  ChiD    Mean Chi square for Statistic fitting.               ChiC    Mean square for Covariance fitting. 

  Num.      Number of points in a Data set 

 

Appendix. V. Table for the final calculated results of RAC2015 

Appendix. V.1. Calculated RRexp of RAC2015 and previous published RR (40T9) (in mol.s-1.cm-3) 

 

T9 Unit RAC2015 NACREII katsuma Kunz NACRE Buchmann Caughlan 

109 mol.s-1.cm-3
 2015 2013 2008 2002 1999 1996 1988 

0.4000E-01 0.1000E-30 0.9059E+01 0.0000E+00 0.6840E+01 0.8360E+01 0.0000E+00 0.7980E+01 0.6930E+01 

0.5000E-01 0.1000E-27 0.5706E+01 0.0000E+00 0.4500E+01 0.5200E+01 0.0000E+00 0.4890E+01 0.4170E+01 

0.6000E-01 0.1000E-24 0.7461E+00 0.6000E+00 0.6250E+00 0.6900E+00 0.1020E+01 0.6500E+00 0.5400E+00 

0.7000E-01 0.1000E-23 0.3571E+01 0.2980E+01 0.3180E+01 0.3420E+01 0.4980E+01 0.3150E+01 0.2590E+01 

0.8000E-01 0.1000E-21 0.8666E+00 0.7400E+00 0.8070E+00 0.8400E+00 0.1220E+01 0.7800E+00 0.6300E+00 

0.9000E-01 0.1000E-20 0.1290E+01 0.1120E+01 0.1230E+01 0.1260E+01 0.1800E+01 0.1160E+01 0.9200E+00 

0.1000E+00 0.1000E-19 0.1324E+01 0.1150E+01 0.1290E+01 0.1290E+01 0.1810E+01 0.1180E+01 0.9200E+00 

0.1100E+00 0.1000E-18 0.1013E+01 0.8800E+00 0.9900E+00 0.9800E+00 0.1350E+01 0.9000E+00 0.6900E+00 

0.1200E+00 0.1000E-18 0.6122E+01 0.5270E+01 0.6020E+01 0.5920E+01 0.7980E+01 0.5390E+01 0.4080E+01 

0.1300E+00 0.1000E-17 0.3046E+01 0.2610E+01 0.3020E+01 0.2930E+01 0.3890E+01 0.2670E+01 0.1990E+01 

0.1400E+00 0.1000E-16 0.1290E+01 0.1110E+01 0.1290E+01 0.1240E+01 0.1610E+01 0.1130E+01 0.8300E+00 

0.1500E+00 0.1000E-16 0.4770E+01 0.4090E+01 0.4800E+01 0.4580E+01 0.5860E+01 0.4190E+01 0.3030E+01 

0.1600E+00 0.1000E-15 0.1573E+01 0.1350E+01 0.1600E+01 0.1510E+01 0.1910E+01 0.1380E+01 0.9900E+00 

0.1800E+00 0.1000E-14 0.1288E+01 0.1110E+01 0.1320E+01 0.1240E+01 0.1530E+01 0.1140E+01 0.7900E+00 

0.2000E+00 0.1000E-14 0.7817E+01 0.6780E+01 0.8200E+01 0.7580E+01 0.9110E+01 0.7040E+01 0.4730E+01 

0.2500E+00 0.1000E-12 0.2837E+01 0.2500E+01 0.3090E+01 0.2790E+01 0.3210E+01 0.2650E+01 0.1670E+01 

0.3000E+00 0.1000E-11 0.4326E+01 0.3850E+01 0.4840E+01 0.4280E+01 0.4750E+01 0.4190E+01 0.2480E+01 

0.3500E+00 0.1000E-10 0.3779E+01 0.3380E+01 0.4310E+01 0.3750E+01 0.4030E+01 0.3780E+01 0.2100E+01 

0.4000E+00 0.1000E-09 0.2246E+01 0.2010E+01 0.2600E+01 0.2220E+01 0.2310E+01 0.2310E+01 0.1210E+01 

0.4500E+00 0.1000E-08 0.1008E+01 0.9000E+00 0.1180E+01 0.9900E+00 0.1000E+01 0.1070E+01 0.5300E+00 

0.5000E+00 0.1000E-08 0.3663E+01 0.3270E+01 0.4320E+01 0.3590E+01 0.3520E+01 0.3980E+01 0.1860E+01 

0.6000E+00 0.1000E-07 0.3048E+01 0.2720E+01 0.3660E+01 0.2950E+01 0.2750E+01 0.3480E+01 0.1460E+01 
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0.7000E+00 0.1000E-06 0.1646E+01 0.1460E+01 0.2010E+01 0.1570E+01 0.1400E+01 0.1970E+01 0.7400E+00 

0.8000E+00 0.1000E-06 0.6600E+01 0.5850E+01 0.8140E+01 0.6190E+01 0.5360E+01 0.8200E+01 0.2810E+01 

0.9000E+00 0.1000E-05 0.2133E+01 0.1890E+01 0.2660E+01 0.1970E+01 0.1660E+01 0.2740E+01 0.8600E+00 

0.1000E+01 0.1000E-05 0.5866E+01 0.5180E+01 0.7420E+01 0.5320E+01 0.4410E+01 0.7710E+01 0.2220E+01 

0.1250E+01 0.1000E-04 0.4527E+01 0.4000E+01 0.5960E+01 0.3950E+01 0.3190E+01 0.6150E+01 0.1490E+01 

0.1500E+01 0.1000E-03 0.2240E+01 0.2000E+01 0.3130E+01 0.1910E+01 0.1530E+01 0.3040E+01 0.6900E+00 

0.1750E+01 0.1000E-03 0.8439E+01 0.7740E+01 0.1260E+02 0.7200E+01 0.5760E+01 0.1110E+02 0.2880E+01 

0.2000E+01 0.1000E-02 0.2622E+01 0.2490E+01 0.4190E+01 0.2290E+01 0.1840E+01 0.3280E+01 0.1090E+01 

0.2500E+01 0.1000E-01 0.1646E+01 0.1690E+01 0.2850E+01 0.1540E+01 0.1270E+01 0.0000E+00 0.9700E+00 

0.3000E+01 0.1000E-01 0.6791E+01 0.7340E+01 0.1190E+02 0.6810E+01 0.5810E+01 0.0000E+00 0.4910E+01 

0.3500E+01 0.1000E+00 0.2107E+01 0.2320E+01 0.0000E+00 0.2210E+01 0.1940E+01 0.0000E+00 0.1720E+01 

0.4000E+01 0.1000E+00 0.5404E+01 0.5970E+01 0.0000E+00 0.5860E+01 0.5220E+01 0.0000E+00 0.4800E+01 

0.5000E+01 0.1000E+01 0.2512E+01 0.2790E+01 0.0000E+00 0.2910E+01 0.2510E+01 0.0000E+00 0.2500E+01 

0.6000E+01 0.1000E+01 0.8600E+01 0.9810E+01 0.0000E+00 0.1070E+02 0.8530E+01 0.0000E+00 0.9300E+01 

0.7000E+01 0.1000E+02 0.2314E+01 0.2680E+01 0.0000E+00 0.3080E+01 0.2240E+01 0.0000E+00 0.2760E+01 

0.8000E+01 0.1000E+02 0.5104E+01 0.5910E+01 0.0000E+00 0.7080E+01 0.4830E+01 0.0000E+00 0.6920E+01 

0.9000E+01 0.1000E+02 0.9620E+01 0.1100E+02 0.0000E+00 0.1370E+02 0.8870E+01 0.0000E+00 0.1530E+02 

0.1000E+02 0.1000E+03 0.1606E+01 0.1800E+01 0.0000E+00 0.2320E+01 0.1450E+01 0.0000E+00 0.3050E+01 

 

Appendix. V. 2. Calculated RRexp and RRana of RAC2015 at 180T9 (in mol.s-1.cm-3) 

 

T9 RRana Err/% RRexp Err/% T9 RRana Err/% RRexp Err/% 

109 mol.s-1.cm-3  mol.s-1.cm-3  109 mol.s-1.cm-3  mol.s-1.cm-3  

0.0050 0.3157D-69 41.33 0.2323D-69 41.33 0.2650 0.6923D-12 5.47 0.6911D-12 5.47 

0.0075 0.3432D-59 30.12 0.3094D-59 30.12 0.2675 0.7978D-12 5.46 0.7963D-12 5.46 

0.0100 0.7304D-53 28.09 0.6935D-53 28.09 0.2700 0.9178D-12 5.45 0.9159D-12 5.45 

0.0150 0.6193D-45 13.83 0.6328D-45 13.99 0.2725 0.1054D-11 5.44 0.1052D-11 5.45 

0.0200 0.6109D-40 8.66 0.6331D-40 9.34 0.2750 0.1208D-11 5.43 0.1205D-11 5.44 

0.0250 0.2154D-36 9.96 0.2164D-36 9.97 0.2775 0.1383D-11 5.42 0.1379D-11 5.43 

0.0300 0.1085D-33 15.23 0.1054D-33 15.51 0.2800 0.1580D-11 5.41 0.1576D-11 5.42 

0.0350 0.1550D-31 17.13 0.1496D-31 17.50 0.2825 0.1802D-11 5.40 0.1797D-11 5.41 

0.0400 0.9245D-30 14.66 0.9059D-30 14.81 0.2850 0.2052D-11 5.40 0.2047D-11 5.40 

0.0450 0.2916D-28 11.62 0.2907D-28 11.62 0.2875 0.2333D-11 5.39 0.2327D-11 5.39 

0.0500 0.5677D-27 9.93 0.5706D-27 9.94 0.2900 0.2649D-11 5.38 0.2642D-11 5.38 

0.0550 0.7586D-26 9.78 0.7610D-26 9.78 0.2925 0.3003D-11 5.37 0.2995D-11 5.38 

0.0600 0.7505D-25 10.95 0.7461D-25 10.96 0.2950 0.3400D-11 5.36 0.3390D-11 5.37 

0.0650 0.5813D-24 13.06 0.5710D-24 13.19 0.2975 0.3843D-11 5.35 0.3832D-11 5.36 

0.0700 0.3675D-23 15.55 0.3570D-23 15.82 0.3000 0.4338D-11 5.34 0.4326D-11 5.35 

0.0750 0.1960D-22 17.77 0.1888D-22 18.17 0.3050 0.5505D-11 5.33 0.5490D-11 5.33 

0.0800 0.9041D-22 19.29 0.8666D-22 19.77 0.3100 0.6949D-11 5.31 0.6930D-11 5.32 

0.0850 0.3682D-21 19.91 0.3524D-21 20.41 0.3200 0.1091D-10 5.28 0.1088D-10 5.28 

0.0900 0.1347D-20 19.67 0.1290D-20 20.15 0.3300 0.1680D-10 5.25 0.1676D-10 5.25 

0.0950 0.4481D-20 18.76 0.4306D-20 19.19 0.3400 0.2543D-10 5.22 0.2537D-10 5.22 

0.1000 0.1372D-19 17.40 0.1324D-19 17.78 0.3500 0.3786D-10 5.19 0.3779D-10 5.19 

0.1025 0.2334D-19 16.63 0.2258D-19 16.97 0.3600 0.5552D-10 5.16 0.5544D-10 5.16 

0.1050 0.3904D-19 15.83 0.3785D-19 16.13 0.3700 0.8026D-10 5.14 0.8019D-10 5.14 
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0.1075 0.6421D-19 15.01 0.6242D-19 15.28 0.3800 0.1145D-09 5.11 0.1144D-09 5.11 

0.1100 0.1040D-18 14.20 0.1013D-18 14.44 0.3900 0.1613D-09 5.09 0.1613D-09 5.09 

0.1125 0.1660D-18 13.41 0.1621D-18 13.62 0.4000 0.2245D-09 5.06 0.2246D-09 5.06 

0.1150 0.2613D-18 12.65 0.2558D-18 12.82 0.4100 0.3091D-09 5.04 0.3094D-09 5.04 

0.1175 0.4058D-18 11.92 0.3983D-18 12.07 0.4200 0.4212D-09 5.02 0.4217D-09 5.02 

0.1200 0.6224D-18 11.24 0.6122D-18 11.37 0.4300 0.5682D-09 5.00 0.5691D-09 5.00 

0.1225 0.9433D-18 10.61 0.9298D-18 10.71 0.4400 0.7595D-09 4.98 0.7609D-09 4.98 

0.1250 0.1413D-17 10.03 0.1396D-17 10.11 0.4500 0.1006D-08 4.96 0.1008D-08 4.97 

0.1275 0.2095D-17 9.50 0.2073D-17 9.56 0.4600 0.1322D-08 4.94 0.1325D-08 4.95 

0.1300 0.3073D-17 9.02 0.3046D-17 9.07 0.4700 0.1723D-08 4.93 0.1728D-08 4.93 

0.1325 0.4463D-17 8.59 0.4431D-17 8.62 0.4800 0.2229D-08 4.91 0.2235D-08 4.92 

0.1350 0.6421D-17 8.21 0.6384D-17 8.23 0.4900 0.2862D-08 4.89 0.2871D-08 4.90 

0.1375 0.9155D-17 7.87 0.9114D-17 7.88 0.5000 0.3651D-08 4.88 0.3663D-08 4.89 

0.1400 0.1294D-16 7.57 0.1290D-16 7.58 0.5250 0.6524D-08 4.84 0.6547D-08 4.85 

0.1425 0.1814D-16 7.31 0.1810D-16 7.32 0.5500 0.1124D-07 4.81 0.1128D-07 4.82 

0.1450 0.2522D-16 7.09 0.2519D-16 7.09 0.5750 0.1875D-07 4.77 0.1882D-07 4.79 

0.1475 0.3480D-16 6.89 0.3480D-16 6.89 0.6000 0.3038D-07 4.74 0.3048D-07 4.76 

0.1500 0.4766D-16 6.72 0.4770D-16 6.73 0.6250 0.4794D-07 4.72 0.4808D-07 4.73 

0.1525 0.6482D-16 6.58 0.6493D-16 6.58 0.6500 0.7386D-07 4.69 0.7403D-07 4.70 

0.1550 0.8756D-16 6.46 0.8777D-16 6.46 0.6750 0.1113D-06 4.67 0.1115D-06 4.67 

0.1575 0.1175D-15 6.35 0.1179D-15 6.36 0.7000 0.1645D-06 4.64 0.1646D-06 4.64 

0.1600 0.1567D-15 6.26 0.1573D-15 6.27 0.7500 0.3404D-06 4.60 0.3401D-06 4.60 

0.1625 0.2077D-15 6.19 0.2085D-15 6.20 0.8000 0.6618D-06 4.55 0.6600D-06 4.56 

0.1650 0.2737D-15 6.12 0.2749D-15 6.14 0.8500 0.1220D-05 4.51 0.1214D-05 4.53 

0.1675 0.3587D-15 6.07 0.3603D-15 6.09 0.9000 0.2147D-05 4.47 0.2133D-05 4.51 

0.1700 0.4674D-15 6.02 0.4697D-15 6.04 0.9500 0.3628D-05 4.42 0.3600D-05 4.49 

0.1725 0.6059D-15 5.98 0.6090D-15 6.00 1.0000 0.5919D-05 4.37 0.5866D-05 4.46 

0.1750 0.7815D-15 5.94 0.7856D-15 5.97 1.1250 0.1768D-04 4.23 0.1751D-04 4.34 

0.1775 0.1003D-14 5.91 0.1008D-14 5.94 1.2500 0.4560D-04 4.06 0.4527D-04 4.13 

0.1800 0.1281D-14 5.89 0.1288D-14 5.91 1.3750 0.1054D-03 3.85 0.1050D-03 3.87 

0.1825 0.1629D-14 5.86 0.1638D-14 5.89 1.5000 0.2238D-03 3.61 0.2240D-03 3.61 

0.1850 0.2062D-14 5.84 0.2073D-14 5.87 1.6250 0.4453D-03 3.35 0.4470D-03 3.37 

0.1875 0.2599D-14 5.82 0.2613D-14 5.85 1.7500 0.8397D-03 3.07 0.8439D-03 3.11 

0.1900 0.3261D-14 5.80 0.3279D-14 5.83 1.8000 0.1068D-02 2.96 0.1073D-02 3.00 

0.1925 0.4077D-14 5.79 0.4098D-14 5.81 1.9000 0.1693D-02 2.75 0.1700D-02 2.78 

0.1950 0.5076D-14 5.77 0.5102D-14 5.79 2.0000 0.2615D-02 2.54 0.2622D-02 2.55 

0.1970 0.6033D-14 5.76 0.6062D-14 5.78 2.1000 0.3943D-02 2.36 0.3947D-02 2.36 

0.1980 0.6571D-14 5.76 0.6602D-14 5.78 2.2500 0.7003D-02 2.12 0.6995D-02 2.12 

0.1990 0.7152D-14 5.75 0.7186D-14 5.77 2.5000 0.1650D-01 1.85 0.1646D-01 1.87 

0.2000 0.7781D-14 5.75 0.7817D-14 5.76 2.7500 0.3496D-01 1.73 0.3490D-01 1.73 
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0.2010 0.8460D-14 5.74 0.8499D-14 5.76 3.0000 0.6791D-01 1.70 0.6791D-01 1.70 

0.2020 0.9193D-14 5.74 0.9234D-14 5.75 3.2500 0.1230D+00 1.78 0.1231D+00 1.78 

0.2030 0.9984D-14 5.73 0.1003D-13 5.75 3.5000 0.2105D+00 2.19 0.2107D+00 2.19 

0.2050 0.1176D-13 5.72 0.1181D-13 5.74 3.7500 0.3441D+00 3.37 0.3439D+00 3.37 

0.2075 0.1438D-13 5.71 0.1443D-13 5.72 3.8000 0.3777D+00 3.74 0.3775D+00 3.74 

0.2100 0.1752D-13 5.70 0.1759D-13 5.71 3.8500 0.4141D+00 4.15 0.4138D+00 4.15 

0.2125 0.2129D-13 5.69 0.2137D-13 5.70 3.9000 0.4534D+00 4.62 0.4529D+00 4.62 

0.2150 0.2579D-13 5.67 0.2587D-13 5.68 3.9500 0.4956D+00 5.13 0.4951D+00 5.13 

0.2175 0.3115D-13 5.66 0.3123D-13 5.67 4.0000 0.5411D+00 5.70 0.5404D+00 5.70 

0.2200 0.3750D-13 5.65 0.3760D-13 5.66 4.0500 0.5900D+00 6.32 0.5892D+00 6.32 

0.2225 0.4502D-13 5.64 0.4512D-13 5.65 4.1000 0.6424D+00 6.99 0.6416D+00 6.99 

0.2250 0.5390D-13 5.63 0.5401D-13 5.63 4.2500 0.8236D+00 9.34 0.8228D+00 9.34 

0.2275 0.6436D-13 5.62 0.6447D-13 5.62 4.5000 0.1218D+01 14.38 0.1220D+01 14.38 

0.2300 0.7664D-13 5.61 0.7674D-13 5.61 4.7500 0.1758D+01 20.75 0.1768D+01 20.76 

0.2325 0.9103D-13 5.60 0.9113D-13 5.60 5.0000 0.2480D+01 28.33 0.2512D+01 28.36 

0.2350 0.1079D-12 5.59 0.1079D-12 5.59 5.5000 0.4647D+01 46.13 0.4803D+01 46.24 

0.2375 0.1275D-12 5.58 0.1275D-12 5.58 6.0000 0.8127D+01 65.65 0.8600D+01 65.88 

0.2400 0.1503D-12 5.57 0.1503D-12 5.57 6.5000 0.1339D+02 85.12 0.1450D+02 85.46 

0.2425 0.1768D-12 5.56 0.1768D-12 5.56 7.0000 0.2096D+02 103.43 0.2314D+02 103.86 

0.2450 0.2075D-12 5.55 0.2074D-12 5.55 7.5000 0.3135D+02 120.07 0.3514D+02 120.55 

0.2475 0.2430D-12 5.54 0.2429D-12 5.54 8.0000 0.4507D+02 134.89 0.5104D+02 135.40 

0.2500 0.2839D-12 5.53 0.2837D-12 5.53 8.5000 0.6254D+02 147.96 0.7129D+02 148.47 

0.2525 0.3310D-12 5.52 0.3307D-12 5.52 9.0000 0.8409D+02 159.43 0.9620D+02 159.93 

0.2550 0.3852D-12 5.51 0.3848D-12 5.51 9.5000 0.1099D+03 169.47 0.1260D+03 169.95 

0.2575 0.4473D-12 5.50 0.4467D-12 5.50 10.0000 0.1399D+03 178.26 0.1606D+03 178.72 

0.2600 0.5184D-12 5.49 0.5177D-12 5.49 10.5000 0.1739D+03 185.94 0.2001D+03 186.41 

0.2625 0.5996D-12 5.48 0.5987D-12 5.48 11.0000 0.2113D+03 192.67 0.2442D+03 193.15 

 
 

Appendix. V. 3. The calculated STOT factor and its error of RAC2015 at 660Ecm 

 

Ecm/ 
MeV 

Stot/ 
keV b 

STD/ 
keV b 

Ecm/ 
MeV 

Stot/ 
keV b 

STD/ 
keV b 

Ecm/ 
MeV 

Stot/ 
keV b 

STD/ 
keV b 

Ecm/ 
MeV 

Stot/ 
keV b 

STD/ 
keV b 

0.0037 7138.90 667.06 0.8700 42.86 4.66 2.7150 37.06 8.26 5.9100 1093.00 91.74 

0.0075 4214.80 569.83 0.8775 42.48 4.65 2.7300 29.11 5.78 5.9325 1333.60 152.95 

0.0112 3305.50 463.25 0.8850 42.11 4.65 2.7450 25.50 4.57 5.9550 1614.60 260.77 

0.0150 2919.50 416.15 0.8925 41.76 4.64 2.7600 23.51 3.69 5.9775 1767.70 368.74 

0.0188 2552.50 313.38 0.9000 41.41 4.64 2.7750 22.04 3.09 6.0000 1460.80 431.24 

0.0225 1587.30 336.79 0.9075 41.07 4.63 2.7900 20.80 2.63 6.0300 1011.60 505.89 

0.0263 2035.90 347.86 0.9150 40.73 4.63 2.8050 19.83 39.90 6.0600 880.35 441.61 

0.0300 1871.20 377.25 0.9225 40.41 4.62 2.8200 19.48 3.16 6.0900 1355.80 477.33 
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0.0338 1730.80 17.12 0.9300 40.09 4.62 2.8350 18.98 2.43 6.1230 2282.40 412.96 

0.0375 1564.00 16.60 0.9375 39.78 4.61 2.8500 18.57 1.74 6.1500 267.77 429.40 

0.0412 1444.40 38.04 0.9450 39.48 4.61 2.8650 18.24 1.60 6.1800 98.52 448.11 

0.0450 1289.20 45.78 0.9525 39.18 4.60 2.8800 18.06 1.58 6.2100 65.79 170.22 

0.0487 1160.20 45.36 0.9600 38.89 4.60 2.8950 17.90 1.58 6.2400 52.83 59.13 

0.0525 1166.30 20.40 0.9675 38.61 4.59 2.9100 17.90 1.64 6.2700 45.39 34.50 

0.0563 1095.30 8.95 0.9750 38.33 4.59 2.9250 18.15 2.34 6.3000 40.30 41.35 

0.0600 1041.30 10.10 0.9825 38.06 4.58 2.9400 18.37 1.71 6.3300 36.53 46.77 

0.0637 926.46 6.90 0.9900 37.80 4.57 2.9550 18.69 1.84 6.3600 33.60 48.80 

0.0675 884.95 19.76 0.9975 37.54 4.57 2.9700 19.08 1.96 6.3900 31.26 48.82 

0.0712 866.58 11.62 1.0050 37.29 4.56 2.9850 19.75 2.87 6.4200 29.38 47.82 

0.0750 838.44 9.11 1.0125 37.04 4.55 3.0000 20.95 1.64 6.4500 27.82 46.31 

0.0787 676.43 9.30 1.0200 36.80 4.55 3.0150 22.16 1.73 6.4800 26.53 44.59 

0.0825 676.16 6.61 1.0275 36.56 4.54 3.0300 23.82 1.45 6.5100 25.45 42.83 

0.0862 649.54 13.51 1.0350 36.33 4.53 3.0450 26.00 1.40 6.5400 24.52 41.12 

0.0900 614.82 20.55 1.0425 36.11 4.52 3.0600 28.95 1.36 6.5700 23.72 39.51 

0.0938 564.41 29.42 1.0500 35.89 4.52 3.0750 32.42 1.42 6.6000 23.00 38.10 

0.0975 496.35 28.42 1.0575 35.68 4.51 3.0900 39.37 1.28 6.6300 22.31 37.00 

0.1013 443.75 77.95 1.0650 35.47 4.50 3.1050 48.29 1.23 6.6600 21.57 36.38 

0.1050 539.22 4.57 1.0725 35.26 4.49 3.1200 61.74 1.17 6.6900 20.63 36.75 

0.1088 523.99 6.09 1.0800 35.06 4.48 3.1350 86.41 1.13 6.7200 19.43 38.78 

0.1125 512.34 7.58 1.0875 34.87 4.47 3.1500 135.71 1.07 6.7500 20.61 36.95 

0.1163 491.63 9.04 1.0950 34.68 4.47 3.1650 258.90 1.01 6.7800 22.13 36.05 

0.1200 450.05 8.35 1.1025 34.49 4.46 3.1800 620.49 0.97 6.8100 22.85 38.58 

0.1238 457.59 5.06 1.1100 34.31 4.45 3.1950 1471.40 0.77 6.8400 22.80 45.34 

0.1275 450.43 6.27 1.1175 34.13 4.44 3.2100 713.25 0.84 6.8700 22.80 56.20 

0.1312 442.33 7.26 1.1250 33.96 4.43 3.2250 258.92 0.93 6.9000 22.92 72.75 

0.1350 430.27 7.38 1.1363 33.71 4.41 3.2400 122.98 0.96 6.9300 23.02 97.70 

0.1388 415.57 7.34 1.1475 33.47 4.40 3.2550 72.57 1.00 6.9600 23.69 129.58 

0.1425 402.01 7.19 1.1587 33.23 4.38 3.2700 48.34 1.06 6.9900 23.90 167.11 

0.1462 387.70 7.17 1.1700 33.01 4.36 3.2850 36.61 1.09 7.0200 23.91 182.96 

0.1500 370.07 8.38 1.1813 32.79 4.35 3.3000 28.20 1.17 7.0500 23.19 153.58 

0.1538 294.74 27.95 1.1925 32.58 4.33 3.3150 23.31 1.26 7.0800 22.26 99.81 

0.1575 303.21 23.22 1.2038 32.39 4.31 3.3300 20.03 1.49 7.1100 21.60 57.12 

0.1612 299.22 23.23 1.2150 32.19 4.29 3.3450 17.75 1.58 7.1400 21.29 35.08 

0.1650 294.75 24.23 1.2262 32.01 4.27 3.3600 16.10 1.90 7.1700 21.12 28.83 

0.1687 291.39 21.06 1.2375 31.83 4.25 3.3750 14.92 1.81 7.2000 21.06 29.90 

0.1725 289.12 16.08 1.2487 31.67 4.23 3.3900 14.06 1.33 7.2300 21.03 31.90 

0.1762 287.91 11.57 1.2600 31.51 4.21 3.4050 13.40 1.33 7.2600 21.12 33.34 

0.1800 281.68 10.39 1.2713 31.35 4.19 3.4200 12.90 1.32 7.2900 20.73 35.01 
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0.1838 278.81 31.79 1.2825 31.21 4.17 3.4350 12.51 1.31 7.3200 20.82 35.55 

0.1875 274.77 5.83 1.2938 31.07 4.14 3.4500 12.23 1.30 7.3500 21.00 35.72 

0.1912 217.52 95.90 1.3050 30.94 4.12 3.4650 12.03 1.29 7.3800 21.28 35.58 

0.1950 236.10 45.80 1.3162 30.81 4.10 3.4800 11.83 1.40 7.4100 21.32 35.73 

0.1987 244.78 22.65 1.3275 30.70 4.07 3.4950 11.72 1.37 7.4400 21.37 36.02 

0.2025 249.04 9.58 1.3388 30.59 4.05 3.5100 11.66 1.26 7.4700 21.62 35.06 

0.2063 247.79 4.75 1.3500 30.48 4.03 3.5250 11.67 1.23 7.5000 21.73 34.86 

0.2100 246.27 3.94 1.3613 30.39 4.00 3.5400 11.71 1.20 7.5300 21.84 34.63 

0.2138 242.31 4.49 1.3725 30.30 3.97 3.5550 11.73 1.30 7.5600 21.98 34.39 

0.2175 238.87 5.19 1.3837 30.22 3.95 3.5700 11.77 1.45 7.5900 22.29 33.88 

0.2212 236.05 6.54 1.3950 30.14 3.92 3.5850 11.80 1.77 7.6200 22.41 33.64 

0.2250 231.08 6.50 1.4062 30.07 3.90 3.6000 12.06 1.28 7.6500 22.53 33.39 

0.2288 226.28 6.47 1.4175 30.01 3.87 3.6150 12.18 1.24 7.6800 22.11 33.85 

0.2325 221.65 6.42 1.4288 29.96 3.84 3.6300 12.34 1.79 7.7100 22.24 33.61 

0.2362 217.19 6.39 1.4400 29.91 3.81 3.6450 12.50 1.19 7.7400 22.36 33.37 

0.2400 212.87 6.35 1.4512 29.87 3.78 3.6600 12.85 1.17 7.7700 22.49 33.15 

0.2437 208.70 6.32 1.4625 29.84 3.75 3.6750 13.09 1.18 7.8000 22.62 32.93 

0.2475 204.66 6.30 1.4737 29.81 3.72 3.6900 13.34 1.20 7.8300 22.75 32.72 

0.2512 200.76 6.26 1.4850 29.79 3.70 3.7050 13.58 1.23 7.8600 22.96 32.42 

0.2550 196.98 6.23 1.4963 29.78 3.66 3.7200 13.87 1.27 7.8900 23.11 32.19 

0.2587 193.33 6.19 1.5075 29.78 3.63 3.7350 14.17 1.32 7.9200 23.25 32.00 

0.2625 189.79 6.16 1.5188 29.78 3.60 3.7500 14.52 2.02 7.9500 23.39 31.82 

0.2662 186.35 6.14 1.5300 29.79 3.57 3.7725 15.08 2.60 7.9800 23.53 31.64 

0.2700 183.03 6.11 1.5412 29.81 3.54 3.7950 15.75 2.01 8.0100 23.40 31.78 

0.2738 179.80 6.08 1.5525 29.84 3.51 3.8175 16.15 1.24 8.0400 23.55 31.78 

0.2775 176.67 6.05 1.5638 29.88 3.48 3.8400 16.94 1.90 8.0700 23.69 31.62 

0.2812 173.63 6.03 1.5750 29.92 3.44 3.8625 17.77 1.25 8.1000 23.83 31.46 

0.2850 170.68 6.01 1.5863 29.98 3.41 3.8850 18.83 1.28 8.1300 23.97 31.31 

0.2887 167.82 5.98 1.5975 30.04 3.38 3.9075 20.11 1.50 8.1600 24.11 31.17 

0.2925 165.04 5.95 1.6087 30.11 3.34 3.9345 332.39 9.97 8.1900 24.26 31.03 

0.2963 162.34 5.93 1.6200 30.19 3.31 3.9525 22.13 1.72 8.2200 24.41 30.89 

0.3000 159.71 5.90 1.6312 30.28 3.27 3.9750 23.65 1.48 8.2500 24.56 30.76 

0.3038 157.16 5.88 1.6425 30.38 3.24 3.9975 25.42 1.50 8.2800 24.70 30.81 

0.3075 154.67 5.86 1.6537 30.49 3.21 4.0200 27.26 1.44 8.3100 24.94 30.57 

0.3113 152.25 5.84 1.6650 30.61 3.17 4.0425 29.68 1.52 8.3400 25.20 30.35 

0.3150 149.90 5.81 1.6762 30.75 3.14 4.0650 32.44 1.15 8.3700 25.35 30.22 

0.3188 147.61 5.79 1.6875 30.89 3.10 4.0875 34.78 1.25 8.4000 25.53 30.16 

0.3225 145.38 5.77 1.6988 31.05 3.06 4.1100 38.74 1.11 8.4300 25.67 29.96 

0.3263 143.21 5.75 1.7100 31.22 3.03 4.1325 43.23 1.14 8.4600 25.86 30.04 

0.3300 206.23 5.63 1.7213 31.40 2.99 4.1550 49.31 1.12 8.4900 26.01 29.95 
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0.3338 139.03 5.71 1.7325 31.59 2.95 4.1775 55.77 1.11 8.5200 26.16 30.02 

0.3375 137.02 5.69 1.7438 31.80 2.91 4.2000 65.67 1.11 8.5500 26.32 29.76 

0.3413 135.07 5.67 1.7550 32.03 2.87 4.2225 88.30 0.99 8.5800 26.45 29.56 

0.3450 133.15 5.65 1.7663 32.27 2.84 4.2450 115.56 0.98 8.6100 26.67 29.48 

0.3487 131.29 5.63 1.7775 32.53 2.80 4.2675 160.78 0.96 8.6400 27.37 28.93 

0.3525 129.47 5.61 1.7887 32.80 2.76 4.2900 238.77 0.94 8.6700 27.62 28.94 

0.3562 127.70 5.60 1.8000 33.09 2.72 4.3125 392.54 1.15 8.7000 27.86 28.76 

0.3600 125.97 5.58 1.8112 33.40 2.68 4.3350 680.07 0.98 8.7300 28.08 28.75 

0.3638 124.28 5.56 1.8225 33.73 2.64 4.3575 746.04 1.21 8.7600 28.34 28.71 

0.3675 122.62 5.54 1.8338 34.08 2.60 4.3800 546.89 1.25 8.7900 28.60 28.68 

0.3713 121.01 5.52 1.8450 34.46 2.56 4.4025 301.93 2.41 8.8200 28.81 28.78 

0.3750 119.44 5.51 1.8562 34.85 2.51 4.4250 199.76 1.63 8.8500 29.04 28.68 

0.3825 116.39 5.47 1.8675 35.27 2.47 4.4475 129.00 1.94 8.8800 28.82 28.89 

0.3900 113.49 5.44 1.8788 35.72 2.43 4.4700 95.89 2.04 8.9100 28.99 28.86 

0.3975 110.71 5.41 1.8900 36.19 2.39 4.4925 73.68 2.25 8.9400 29.11 28.74 

0.4050 108.05 5.38 1.9013 36.70 2.34 4.5150 57.28 2.56 8.9700 29.25 28.37 

0.4125 105.50 5.35 1.9125 37.23 2.30 4.5375 42.44 8.55 9.0000 29.32 27.67 

0.4200 103.06 5.32 1.9238 37.80 2.26 4.5600 38.31 4.15 9.0375 29.35 28.71 

0.4275 100.72 5.30 1.9350 38.40 2.21 4.5825 35.18 3.71 9.0750 29.34 29.94 

0.4350 98.47 5.27 1.9462 39.05 2.17 4.6050 32.46 3.51 9.1125 29.28 30.49 

0.4425 96.32 5.25 1.9575 39.73 2.12 4.6275 29.25 5.00 9.1500 29.19 30.83 

0.4500 94.25 5.22 1.9688 40.45 2.07 4.6500 27.50 4.04 9.1875 29.05 31.67 

0.4575 92.26 5.21 1.9800 41.22 2.03 4.6725 26.18 4.12 9.2250 28.88 32.31 

0.4650 90.35 5.18 1.9913 42.04 1.98 4.6950 24.95 4.35 9.2625 28.64 32.88 

0.4725 88.50 5.16 2.0025 42.90 1.93 4.7175 24.06 4.59 9.3000 28.35 33.39 

0.4800 86.73 5.14 2.0138 43.83 1.89 4.7400 23.41 4.84 9.3375 27.99 33.72 

0.4875 85.03 5.11 2.0250 44.81 1.84 4.7625 23.01 5.12 9.3750 27.57 34.37 

0.4950 83.38 5.09 2.0362 45.85 1.79 4.7850 22.84 5.43 9.4125 27.05 34.97 

0.5025 81.80 5.08 2.0475 46.95 1.74 4.8075 22.90 5.80 9.4500 26.45 36.34 

0.5100 80.27 5.05 2.0587 48.13 1.69 4.8300 23.18 6.23 9.4875 25.75 37.42 

0.5175 78.80 5.05 2.0700 49.38 1.64 4.8667 88.99 22.77 9.5250 24.96 38.59 

0.5250 77.37 5.03 2.0813 50.71 1.59 4.8750 23.62 10.42 9.5625 24.13 40.06 

0.5325 76.00 5.00 2.0925 52.13 1.54 4.8975 25.28 8.08 9.6000 23.30 41.49 

0.5400 74.67 4.99 2.1037 53.64 1.49 4.9200 26.92 8.89 9.6375 22.62 43.31 

0.5475 73.39 4.97 2.1150 55.24 1.44 4.9425 28.90 10.13 9.6750 22.20 41.75 

0.5550 72.14 4.96 2.1263 56.94 1.39 4.9650 31.80 11.76 9.7125 22.26 44.01 

0.5625 70.94 4.94 2.1375 58.75 1.34 4.9875 33.26 8.88 9.7500 22.88 46.28 

0.5700 69.78 4.93 2.1488 60.66 1.29 5.0100 37.03 9.59 9.7875 24.03 44.96 

0.5775 68.66 4.92 2.1600 62.69 1.24 5.0325 42.09 9.85 9.8250 26.01 42.50 

0.5850 67.57 4.91 2.1712 64.82 1.18 5.0550 48.78 10.18 9.8625 27.71 40.25 
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0.5925 66.52 4.90 2.1825 67.06 1.13 5.0775 57.74 10.51 9.9000 29.34 38.18 

0.6000 65.50 4.89 2.1937 69.42 1.08 5.1000 69.95 10.90 9.9375 30.86 36.68 

0.6075 64.51 4.87 2.2050 71.87 1.03 5.1225 87.14 11.25 9.9750 32.19 35.20 

0.6150 63.55 4.86 2.2162 74.42 0.99 5.1450 112.06 11.60 10.0125 33.35 34.09 

0.6225 62.62 4.85 2.2275 77.04 1.00 5.1675 149.57 11.94 10.0500 34.37 33.30 

0.6300 61.71 4.84 2.2387 79.71 1.06 5.1900 208.49 12.26 10.0875 35.25 32.73 

0.6375 60.84 4.83 2.2500 82.41 1.35 5.2125 305.79 12.55 10.1250 36.02 32.32 

0.6450 59.99 4.82 2.2650 86.00 2.63 5.2350 474.42 12.80 10.1625 36.71 31.97 

0.6525 59.16 4.82 2.2800 89.52 0.81 5.2575 770.73 12.96 10.2000 37.32 31.77 

0.6600 58.36 4.81 2.2950 92.76 0.67 5.2800 1229.30 12.94 10.2375 37.87 31.63 

0.6675 57.58 4.80 2.3100 95.58 0.58 5.3025 1611.50 12.65 10.2750 38.17 31.68 

0.6750 56.82 4.79 2.3250 97.82 0.52 5.3250 1477.60 12.31 10.3125 38.40 31.78 

0.6825 56.09 4.78 2.3400 99.26 0.50 5.3475 1067.70 12.25 10.3500 38.83 31.74 

0.6900 55.37 4.78 2.3550 99.78 0.56 5.3700 738.94 12.37 10.3875 39.23 31.71 

0.6975 54.68 4.77 2.3700 99.25 4.07 5.3925 531.61 12.52 10.4250 39.62 31.70 

0.7050 54.00 4.76 2.3850 97.63 0.47 5.4150 403.74 12.68 10.4625 39.99 31.70 

0.7125 53.34 4.76 2.4000 94.95 0.47 5.4375 322.45 12.84 10.5000 40.32 31.71 

0.7200 52.70 4.75 2.4150 91.31 0.49 5.4600 268.72 13.00 10.5375 40.67 31.62 

0.7275 52.08 4.75 2.4300 86.91 0.52 5.4825 232.37 13.17 10.5750 41.00 31.64 

0.7350 51.47 4.74 2.4450 81.95 0.55 5.5050 207.22 13.36 10.6125 41.32 31.66 

0.7425 50.88 4.74 2.4600 76.65 0.59 5.5275 189.84 13.58 10.6500 41.65 31.68 

0.7500 50.31 4.73 2.4750 71.23 0.65 5.5500 178.12 13.85 10.6875 41.96 31.71 

0.7575 49.75 4.73 2.4900 65.86 0.71 5.5725 170.79 14.18 10.7250 42.27 31.73 

0.7650 49.20 4.72 2.5050 60.68 0.78 5.5950 167.10 14.60 10.7625 42.58 31.76 

0.7725 48.67 4.72 2.5200 55.79 0.87 5.6175 166.70 15.14 10.8000 42.88 31.79 

0.7800 48.15 4.71 2.5350 51.24 0.98 5.6400 169.45 15.82 10.8375 43.19 31.82 

0.7875 47.65 4.71 2.5500 47.07 1.10 5.6625 175.56 16.68 10.8750 43.49 31.86 

0.7950 47.16 4.70 2.5650 43.28 1.26 5.6850 185.43 17.76 10.9125 43.79 31.89 

0.8025 46.68 4.70 2.5800 39.88 1.47 5.7075 199.85 19.15 10.9500 44.08 31.93 

0.8100 46.21 4.69 2.5950 36.87 1.76 5.7300 220.03 20.89 10.9875 45.44 31.38 

0.8175 45.75 4.69 2.6100 34.25 2.16 5.7525 247.90 23.07 11.0250 45.48 31.58 

0.8250 45.31 4.68 2.6250 32.11 2.77 5.7750 286.54 25.77 11.0625 45.78 31.61 

0.8325 44.87 4.68 2.6400 30.75 3.83 5.7975 340.17 29.21 11.1000 46.10 31.66 

0.8400 44.45 4.67 2.6550 31.55 6.04 5.8200 416.13 33.47 11.1375 46.40 31.70 

0.8475 44.04 4.67 2.6700 46.07 11.99 5.8425 522.83 39.34 11.1750 46.70 31.75 

0.8550 43.63 4.66 2.6835 597.17 18.69 5.8650 671.01 48.03 11.2125 47.00 31.79 

0.8625 43.24 4.66 2.7000 75.33 14.41 5.8875 865.47 62.76 11.2500 47.43 31.75 

 

Appendix. VI. Basic formulae used in RAC2015 (Lane1958) 
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The practical formulas of RAC are introduced from the literature (Lane1958), (Smith1991), (Barker1991) and (Chen2003), and so on. 

On the R-matrix and the reaction cross sections, the codes were strictly compiled in accordance with the formula of classic literatures 

(Lane1958), without any approximation. Here only introduce the part of development. 

    For the positive energy channel, the incoming (I) and outgoing wave (O) function as follow 

                                             𝐼𝑐
+ = (𝐺𝑐 − 𝑖𝐹𝑐) exp(𝑖𝜔𝑐) ; 𝑂𝑐

+ = (𝐺𝑐 + 𝑖𝐹𝑐) exp(−𝑖𝜔𝑐)  ,                    S-AP.VI.1 

For the negative energy channel, the only outgoing wave (O) function  

                                           𝑂𝑐
− = 𝑊 (−𝜂𝛼 , 𝑙 +

1

2
; 2𝜌𝛼)  ,                                            S-AP.VI.2 

            𝜔𝑐 ≡ 𝜔𝛼𝑙 = 𝜎𝛼𝑙 − 𝜎𝛼0 = ∑ 𝑡𝑎𝑛−1(𝜂𝛼/𝑛)𝑙
𝑛=1 .                               S-AP.VI.3 

The logarithmic derivative of O-type wave function is designated as    

                     𝐿𝑐 ≡ (
𝜌𝑐𝑂𝑐

′

𝑂𝑐
)

𝑟𝑐=𝑎𝑐

= 𝑆𝑐 + 𝑖𝑃𝑐 .                                          S-AP.VI.4 

The real and imaginary parts of which are, according to (4.1.1b), (4.1.2), respectively,  

                           𝑆𝑐
+ = [

𝜌𝑐(𝐹𝑐𝐹𝑐
′−𝐺𝑐𝐺𝑐

′)

𝐹𝑐
2+𝐺𝑐

2 ]
𝑟𝑐=𝑎𝑐

                                                            S-AP.VI.5 

            𝑆𝑐
− = (

𝜌𝑐𝑊𝑐
′

𝑊𝑐
)

𝑟𝑐=𝑎𝑐

 ,                                                    S-AP.VI.6 

       𝑃𝑐
+ = [

𝜌𝑐

𝐹𝑐
2+𝐺𝑐

2]
𝑟𝑐=𝑎𝑐

,                                                      S-AP.VI.7 

             𝑃𝑐
− = 𝑧𝑒𝑟𝑜,                                                        S-AP.VI.8 

  In the case of the positive energy channels, the ratio 

        Ω𝑐
+ = (𝐼𝑐/𝑂𝑐)𝑟𝑐=𝑎𝑐

1 2⁄
 .                                                S-AP.VI.9 

It is a unit-modulus complex number which is expressible as 

                                    Ω𝑐
+ ≡ Ω𝛼𝑙

+ = 𝑒𝑥𝑝 𝑖(𝜔𝑐 − 𝜙𝑐
+) ,   

  𝜙𝑐
+ ≡ 𝜙𝛼𝑙

+ = 𝑡𝑎𝑛−1(𝐹𝑐/𝐺𝑐),                                           S-AP.VI.10  

We also introduce                𝔏𝑐 = (𝜌𝑐𝐼𝑐
′/𝐼𝑐)𝑟𝑐=𝑎𝑐

;  𝔅𝑐 = (𝜌𝑐/𝐼𝑐𝑂𝑐)𝑟𝑐=𝑎𝑐
 .                               S-AP.VI.11 

The Wronskian                     ω = (𝑂𝑐
′𝐼𝑐 − 𝐼𝑐

′𝑂𝑐)𝑟𝑐=𝑎𝑐
                                             S-AP.VI.12 

    The relation between the R-matrix and the collision matrix U is 

                UJ =  ΩW𝐽Ω;                                                       S-AP.VI.13 

            W𝐽 = 1 + 𝔅
1

2(1 − RJL0)−1RJ𝐿𝔅
1

2𝑤                                      S-AP.VI.14 

Where,                        L0 = L − B,                                                          S-AP.VI.15 

                         𝐵𝑐 ≡
𝛿𝜆𝑐

𝛾𝜆𝑐
=

𝐷𝜆𝑐

𝑉𝜆𝑐
                                                      S-AP.VI.16 

The formula of R-matrix, level matrix and energy shift 

         (R(𝐸)
𝐽

)𝛼′𝑠′𝑙′,𝛼𝑠𝑙 = ∑ 𝛾
𝛼′𝑠′𝑙′
𝐽

𝛾𝛼𝑠𝑙
𝐽

𝐴𝜆𝜇𝛿𝐽𝐽0

𝑁
𝜆𝜇                                        S-AP.VI.17  

          [𝐴−1]𝜆𝜇 = [𝐸𝜆
𝑟 − 𝐸 − Δ𝜆𝜇

𝑟 (𝐸𝜆
𝑟)]𝛿𝜆𝜇 + Δ𝜆𝜇

𝑒 (𝐸𝜆
𝑟) −

𝑖

2
Γ𝜆𝜇

𝑒 ,                                 S-AP.VI.18 

          Δ𝜆𝜇 = − ∑ (S𝜆𝜇 − B𝛼)𝛾𝛼′𝑠′𝑙′𝛾𝛼𝑠𝑙
𝑁
𝛼𝑠𝑙                                             S-AP.VI.19 

With the relation between T-matrix and U-matrix of formula the cross section formulae are:   

           𝑇
𝛼′𝑠′𝑙′,𝑎𝑠𝑙
𝐽

= 𝑒2𝑖𝜔𝛼𝑙𝛿𝛼′𝑠′𝑙′,𝛼𝑠𝑙 − 𝑈
𝛼′𝑠′𝑙′,𝛼𝑠𝑙
𝐽

                                        S-AP.VI.20 
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       𝜎𝛼′,𝑎 ==
𝜋

𝑘𝛼
2

∑ 𝑔𝐽𝑠𝑙′𝑠′𝑙𝐽 |𝑇
𝛼′𝑠′𝑙′,𝑎𝑠𝑙
𝐽

|
2
                                               S-AP.VI.21 

            𝜎𝑡𝑜𝑡 =
𝜋

𝑘𝛼
2

∑ 2𝑔𝐽𝑠𝑙𝐽 (1 − Re𝑈𝑎𝑠𝑙,𝑎𝑠𝑙
𝐽

)                                                S-AP.VI.22 

          𝑔𝐽 =
(2𝐽+1)

(2𝐼1+1)(2𝐼2+1)
                                                       S-AP.VI.23 

     
𝑑𝜎𝛼𝛼′

𝑑Ω𝛼′
=

1

(2𝐼1+1)(2𝐼2+1)
∑ |𝐴𝛼′𝑠′𝜈′,𝑎𝑠𝜈(Ω𝛼′)|

2
𝑠𝑠′𝜈𝜈′                                          S-AP.VI.24 

   𝐴𝛼′𝑠′𝜈′,𝛼𝑠𝜈 =
√𝜋

𝑘𝛼
(−𝐶𝛼′(𝜃𝛼′)𝛿𝛼′𝑠′𝜈′,𝛼𝑠𝜈 + 𝑖 ∑ √2𝑙 + 1(𝑠𝑙𝜈0|𝐽𝑀)(𝑠′𝑙′𝜈′𝑚′|𝐽𝑀)𝑇

𝛼′𝑠′𝑙′,𝛼𝑠𝑙
𝐽

𝑌
𝑚′
(𝑙′)

(Ω𝛼′))𝐽𝑀𝑙𝑙′𝑚′            S-AP.VI.25 

 

Appendix. VII. Review for theory models, experiment data, previous analysis works  

Appendix. VII. 1.  The develop process of R-matrix Models for γ capture 

A. Formulae and its parameterization in (Holt1978) 

During the research of photodisintegration 17O (γ, n) 16O reaction with R matrix, the detailed derivation of the collision matrix element 

have been demonstrated in the paper (Holt1978). However, in the concrete analysis of ED, the specific formula of channel capture was 

turned down. The channel contributions component can be identified as the adjustable parameter of(𝛿Γ𝜇𝑓,𝑐)1 2⁄ , reduced radiative width for 

the channel capture. The following is the derivation of this method. 

The collision matrix will be expressed in terms of that part of the Hamiltonian H, which electromagnetically couples the photon to the 

nucleons. In order to calculate that matrix element it is necessary to introduce the wave function 𝜓𝐸(𝐽) which describes the neutrons, 

-nucleus state and a final wave function 𝜓𝑓(𝐽𝑓) which describes the nucleus with all nucleons in its ground state. The collision matrix is 

𝑈𝛾ℒ𝑓,𝑐
(𝐽)

= [
8𝜋(ℒ + 1)

ℒℏ
]

1 2⁄ 𝑘𝛾
ℒ+1 2⁄

(2ℒ + 1)‼

〈𝜓𝑓(𝐽𝑓)‖𝐻(ℒ)‖𝜓𝐸(𝐽)〉

(2𝐽 + 1)1 2⁄
 

Where, 𝑘𝛾 = 𝐸𝛾/ℏc is the photon wave number and the subscript c refers to the final particle channel with the quantum number(𝑠𝑙𝐽). 

Here, s is the channel spin, l is the orbital angular momentum, 𝑱 = 𝒔 + 𝒍 is the total angular momentum, and is the multi-polarity. The 

radial integration implied by Eq. (2) must be performed in two parts: from the origin to the channel radius and from the channel radius to 

infinity. Inside the channel radius R the wave function 𝜓𝐸(𝐽)can be expanded in terms of a complete set of states 𝑋𝜆 

𝜓𝐸(𝐽) = 𝑖ℏ𝑒−𝑖𝜙𝑐 ∑ 𝐴𝜆𝜇Γ𝜇𝑐
1 2⁄

𝑋𝜆(𝐽)

𝜆𝜇

, r < 𝑎𝑐 

Where, 𝜙𝑐is the hard-sphere phase shift, Γ𝜇𝑐is the width of the level 𝜇 in channel c. Equation (3) corresponds to unit incoming flux in 

channel c. 𝐴𝜆𝜇is the matrix transformation which relates the internal wave function and the observed resonances. 

(𝐴−1)𝜆𝜇 = (𝐸𝜆 − 𝐸) − ∑[(𝑆𝑐 − 𝐵𝑐) + 𝑖𝑃𝑐]

𝑐

𝛾𝜆𝑐𝛾𝜇𝑐  

Where, 𝐸𝜆 is a level energy, the shift factor𝑆𝑐, the boundary condition constant𝐵𝑐 , 𝑃𝑐 is the penetration factor and 𝛾𝜆𝑐 are the reduced 

width amplitudes. In the exterior region the wave function 𝜓𝐸(𝐽𝑀) can be written in the customary manner in terms of the incoming𝐼𝑐, and 

outgoing 𝑂𝑐spherical waves 

𝜓𝐸(𝐽𝑀) = 𝑣𝑐
1 2⁄

[𝐼𝑐(𝑘𝑐𝑟) − 𝑈𝑐𝑐
(𝐽)

𝑂𝑐(𝑘𝑐𝑟)] 𝜑𝑐(𝐽𝑀), r ≥ 𝑎𝑐  

Where, we have assumed that c is the only open particle channel and have neglected contributions from closed channels. Here, 𝑣𝑐 is the 

particle speed, 𝜑𝑐(𝐽𝑀) = 𝑟−1(𝑖𝑙𝑌𝑙𝑀)𝜓𝑐 is the surface function. 𝑈𝑐𝑐Is the collision function for elastic scattering in channel c. For the 

moment we write the collision function in the form 

𝑈𝑐𝑐
(𝐽)

= 𝑒−2𝑖𝜙𝑐(1 + ∑ 𝐴𝜆𝜇Γ𝜇𝑐
1 2⁄

Γ𝜆𝑐
1 2⁄

𝜆𝜇

) 

The last expression implies that we include all possible resonances in the analysis. Substitute Eq. (5) into Eq. (4) and then Eq. (3) and (4) 

into Eq. (2); the integration naturally splits into an internal segment (r < 𝑎𝑐) and an external region (r ≥ 𝑎𝑐), the collision matrix becomes 
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𝑈𝛾ℒ𝑓,𝑐
(𝐽)

= 𝑖𝑒−𝑖𝜙𝑐 ∑ 𝐴𝜆𝜇Γ𝜆𝑐
1 2⁄

Γ𝜇𝛾𝑓
1 2⁄

𝜆𝜇

 

            + [
8𝜋(ℒ + 1)

ℒℏ𝑣𝑐
]

1 2⁄ 𝑘𝛾
ℒ+1 2⁄

(2ℒ + 1)‼
(2𝐽 + 1)−1 2⁄ 〈𝜓𝑓(𝐽𝑓)‖𝐻(ℒ)‖(𝐼𝑐 − 𝑒−2𝑖𝜙𝑐𝑂𝑐)𝜑𝑐(𝐽)〉 

− [
8𝜋(ℒ + 1)

ℒℏ𝑣𝑐
]

1 2⁄ 𝑘𝛾
ℒ+1 2⁄

(2ℒ + 1)‼
(2𝐽 + 1)−1 2⁄ 𝑖𝑒−2𝑖𝜙𝑐 ∑ 𝐴𝜆𝜇Γ𝜇𝑐

1 2⁄
Γ𝜆𝑐

1 2⁄

𝜆𝜇

〈𝜓𝑓(𝐽𝑓)‖𝐻(ℒ)‖𝑂𝑐𝜑𝑐(𝐽)〉 

Where we have made the identification that 

Γ𝜇𝛾𝑓
1 2⁄

= [
8𝜋(ℒ + 1)

ℒ
]

1 2⁄ 𝑘𝛾
ℒ+1 2⁄

(2ℒ + 1)‼

〈𝜓𝑓(𝐽𝑓)‖𝐻(ℒ)‖𝑋𝜆(𝐽)〉

(2𝐽 + 1)1 2⁄
 

This 𝛾-ray width is that portion of the radiative capture strength that is due to the matrix element in the interior region. We note that this 

width has a real value. This width is sometimes referred to as the compound nuclear part of the radiative capture. It is expected that these 

radiative widths, in general, will not be correlated with the particle widths as in the case of direct capture resonances. Nevertheless, the first 

term in Eq. (6) is a resonant component. The second term contains no pole terms, and therefore, gives rise to a non-resonant component. 

This term is referred to as hard-sphere capture, since it depends only on the hard-sphere phase shift. The final term is due to resonant 

capture which occurs in the external region, i.e., outside the channel radius. This process is referred to as channel capture. The contribution 

from the last two terms in Eq (6) is due to the long-range nature. Of the electromagnetic interaction. The reduced radiative width for the 

channel capture component can be identified as 

(𝛿Γ𝜇𝑓,𝑐)1 2⁄ = [
8𝜋(ℒ + 1)

ℒℏ𝑣𝑐
]

1 2⁄ 𝑘𝛾
ℒ+1 2⁄

(2ℒ + 1)‼
𝑒−𝑖𝜙𝑐(2𝐽 + 1)−1 2⁄ Γ𝜇𝑐

1 2⁄ 〈𝜓𝑓(𝐽𝑓)‖𝐻(ℒ)‖𝑂𝑐𝜑𝑐(𝐽)〉 

Then the form for the collision matrix becomes 

𝑈𝛾ℒ𝑓,𝑐
(𝐽)

= 𝑖𝑒−𝑖𝜙𝑐 ∑ 𝐴𝜆𝜇Γ𝜆𝑐
1 2⁄

[Γ𝜇𝛾𝑓
1 2⁄

− (𝛿Γ𝜇𝑓,𝑐)1 2⁄ ]

𝜆𝜇

+ 𝑈𝛾ℒ𝑓,𝑐
𝐽

(𝐻. 𝑆. ) 

Where 𝑈𝛾ℒ𝑓,𝑐
𝐽 (𝐻. 𝑆. ) is the hard-sphere component? Here (𝛿Γ𝜇𝑓,𝑐)1 2⁄ is in general a complex quantity, since the outgoing wave function O 

is complex. It will be shown that the complex nature of (𝛿Γ𝜇𝑓,𝑐)1 2⁄  gives rise to unique features of radiative 

Γγ0 = |Γμγf
1 2⁄

− (δΓμf,c)1 2⁄ |
2
 

Comment： This paper made a big contribution for the old model to calculateγtransition. But it did not give out any special results.  

 

B.The direct capture model of (Kettner1982)  

The possible radiative capture amplitudes into the16O ground state (𝐽𝜋 = 0+) can be classified according to the orbital angular momentum l 

of the initial 4He+ 12C state (or equivalently the multipolarity L of the γ0-ray transition). Capture amplitudes with l =0 are expected to be 

small compared with other multipolarities, since they cannot proceed by single photon emission. Since multipolarities with L≥3 are 

extremely weak, the capture amplitudes are restricted to orbital angular momenta (multipolarities) of l= 1 (El) and l =2 (E2). The capture 

data were fitted with the expression: 

S(E) = 𝑆𝑅1(𝑙 = 1, 𝐸) + 𝑆𝑅2(𝑙 = 1, 𝐸) + 2√𝑆𝑅1(𝐸)𝑆𝑅2(𝐸)𝑐𝑜𝑠𝛼 + 𝑆𝑅3(𝑙 = 2, 𝐸) + 𝑆𝐷𝐶(𝑙 = 2, 𝐸) + 2√𝑆𝑅3(𝐸)𝑆𝐷𝐶(𝐸)𝑐𝑜𝑠𝛽 

Where, the quantities𝑆𝑅1, 𝑆𝑅2 and 𝑆𝑅3 refer to the S-factors of the resonances 

at𝐸𝛾 = −0.045(𝑙 = 1), 2.418(𝑙 = 1) and 𝐸𝛾 = −0.245(𝑙 = 2), respectively. These S-factors are given by  

𝑆𝑅(𝑙, 𝐸) = 𝐸𝑒𝑥𝑝(2𝜋𝜂)𝜋𝜆2(2𝑙 + 1)
Γ𝛼(𝑙, 𝐸)Γ𝛾(𝑙, 𝐸)

(𝐸𝑙 + Δ𝑙 − 𝐸)2 + (Γ(𝐸)/2)2 

With the partial widthΓ𝛼(𝑙, 𝐸), Γ𝛾(𝑙, 𝐸) and the total width Γ(𝐸) 

Γ𝛼(𝑙, 𝐸) = 2𝛾𝑚𝑎𝑥
2 𝜃𝛼

2(𝑙)𝑃𝑙(𝐸) 

Γ𝛾(𝑙, 𝐸) = ((𝑄 + 𝐸)/𝐸𝑥)2𝐿+1Γ𝛾(𝑙, 𝐸𝛾) 

Γ(𝐸) = Γ𝛼(𝑙, 𝐸) + Γ𝛾(𝑙, 𝐸) 

The S-factor of the direct capture process is described by the nearly energy independent term (Rolfs1973) 
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𝑺𝑫𝑪(𝒍 = 𝟐, 𝑬) = (𝟑𝟔. 𝟏𝟖 + 𝟏. 𝟒𝟔 × 𝑬 − 𝟏. 𝟑𝟔 × 𝑬𝟐) × 𝟏𝟎−𝟑𝜽𝜶
𝟐(𝒈. 𝒔. )  𝐌𝐞𝐕. 𝐛 

The phase difference 𝛼 of the two interfering l= 1 resonance amplitudes is given by the difference of their resonance phase shifts,  

𝛼 = 𝜀𝑅1
(𝑙 = 1) − 𝜀𝑅2

(𝑙 = 1) 

And the phase difference 𝛽 of the interfering l= 2 resonant and direct capture amplitudes by 

𝛽 = 𝜀𝑅3
(𝑙 = 2) 

Of course, the sign +of both interference terms in the above expression must be determined from the ED.). 

Comment： This paper made a big contribution for direct capture process. The results show that the contribution from direct capture is a 

small part of total γtransition.   

 

C.The detail calculation in (Barker1991)  

On the basis of (Holt1978), the derivation and analytical process of three contributions to the collision matrix element are given in the 

paper (Barker1991), because isospin is expected to be a good quantum number in the channel region, one can neglect the channel 

contributions to El capture of 12C(α, γ)16O reaction, and three contributions of E2 capture consideration. 

Since the coupling of the nucleons to the electromagnetic field is weak, first-order perturbation theory is used, and the photon channel is 

treated in a different way from a normal particle channel. Here it give the formula only for the case of electric multipole radiation, the 

initial state𝐽𝑖 and final state 𝐽𝑓are described by R-matrix formulae. 

For EL radiation to the final state𝐽𝑓, the total cross section may be written 

𝜎𝐽𝑓
= ∑ 𝜎𝐽𝑖𝐽𝑓

𝐽𝑖

 

𝜎𝐽𝑖𝐽𝑓
=

𝜋

𝑘𝑎
2

2𝐽𝑖 + 1

(2𝐼𝑎 + 1)(2𝐼𝐴 + 1)
∑ |𝑈𝑠𝑒𝑙𝑖,𝑙𝑓

𝐽𝑖 |
2

𝑆𝑒𝑙𝑖

 

Where,  

𝑈𝑆𝑒𝑙𝑖,𝑙𝑓

𝐽𝑖 = −i𝑒𝑖(𝜔𝑖−𝜙𝑖)2𝑃𝑙𝑖

1 2⁄
𝑘𝛾

𝐿+1 2⁄
[∑ 𝛾𝜆𝑠𝑒𝑙𝑖

𝐽𝑖 𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 𝐴𝜆𝜇
𝐽𝑖 +

2𝜇𝑒
1 2⁄

𝑒𝐿

ℏ𝑘𝑎
{

(𝐿 + 1)(2𝐿 + 1)

𝐿
}

1 2⁄
1

(2𝐿 + 1)‼
𝑁𝑓

1 2⁄
𝑎𝑒

𝐿

𝜆𝜇

𝐹𝑙𝑖
(𝑎𝑒)𝐺𝑙𝑖

(𝑎𝑒)

× ∑ 𝑖𝑙𝑖+𝐿−𝑙𝑓𝜃𝑓𝛼𝑒𝑠𝑒𝑙𝑓

𝑙𝑓 (𝑙𝑖𝐿00|𝑙𝑓0)𝑈(𝐿𝑙𝑓𝐽𝑖𝑠𝑒; 𝑙𝑖𝑙𝑓)𝐽𝐿
′ (𝑙𝑖 , 𝑙𝑓)

𝑙𝑓

] 

Here the level matrix 𝐴𝐽𝑖  is defined by its inverse 

[(𝐴𝐽𝑖)−1]𝜆𝜇 = (𝐸𝜆
𝐽𝑖 − 𝐸)𝛿𝜆𝜇 − ∑(𝑆𝑙 − 𝐵𝑙 + 𝑖𝑃𝑙)𝛾𝜆𝑐

𝐽𝑖 𝛾𝜇𝑐
𝐽𝑖

𝑐

     (𝑐 = 𝛼𝑠𝑙) 

The photon reduced-width amplitude has internal and channel contributions 

𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 = 𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 (𝑖𝑛𝑡) + 𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 (𝑐ℎ) 

Where,  

𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 (𝑖𝑛𝑡) = {
4𝜋(𝐿 + 1)

𝐿
}

1 2⁄
1

2𝐿 + 1‼
∑(𝐽𝑓L𝑀𝑓𝑀𝑖 − 𝑀𝑓|𝐽𝑖𝑀𝑓) × (𝑋𝜇𝐽𝑖𝑀𝑖

|ℋ𝐸𝑀𝑖−𝑀𝑓

(𝐿)
| Φ𝑓𝐽𝑓𝑀𝑓

)
int

𝑀𝑓

 

ℋ𝐸𝑀
(𝐿)

= ∑ 𝑒𝑖𝑟𝑖
𝐿𝑖𝐿𝑌𝐿𝑀(𝜃𝑖𝜙𝑖)

𝐴

𝑖=1
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𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 (𝑐ℎ) =
2𝑒𝐿

ℏ
{

(𝐿 + 1)(2𝐿 + 1)

𝐿
}

1 2⁄
1

(2𝐿 + 1)‼
𝑁𝑓

1 2⁄
× ∑ 𝜇𝑐

1 2⁄
𝑎𝑐

𝐿+1𝛾𝜇𝑐
𝐽𝑖 𝑖𝑙+𝐿−𝑙𝑓

′

𝑐𝑙𝑓
′

𝜃
𝑓𝛼𝑠𝑙𝑓

′

𝐽𝑓 (𝑙𝐿00|𝑙𝑓
′ 0)𝑈(𝐿𝑙𝑓

′ J𝑖𝑠; 𝑙𝑙𝑓)𝐽𝐿𝐶(𝑙, 𝑙𝑓
′ ) 

The normalization factor Nf for the final state is defined by 

𝑁𝑓
−1 = 1 + ∑

2(𝜃
𝑓𝛼𝑠𝑙𝑓

′

𝐽𝑓 )2

𝑎𝛼
∫ 𝑑r [

𝑊𝛼𝑠𝑙𝑓
′ (r)

𝑊𝛼𝑠𝑙𝑓
′ (𝑎𝛼)

]

2
∞

𝑎𝛼𝛼𝑠𝑙𝑓
′

 

For energies E at which channel c is open, one has 

𝐽𝐿𝑐(𝑙, 𝑙𝑓
′ ) = 𝐽𝐿

′′(𝑙, 𝑙𝑓
′ ) + 𝑖

𝐹𝑙(𝑎𝑐)𝐺𝑙(𝑎𝑐)

𝐹𝑙
2(𝑎𝑐) + 𝐺𝑙

2(𝑎𝑐)
𝐽𝐿

′ (𝑙, 𝑙𝑓
′ ) 

Where,  

𝐽𝐿
′ (𝑙, 𝑙𝑓

′ ) =
1

𝑎𝑐
𝐿+1 ∫ 𝑑r𝑟𝐿

𝑊𝛼𝑠𝑙𝑓
′ (r)

𝑊𝛼𝑠𝑙𝑓
′ (𝑎𝑐)

∞

𝑎𝑐

[
𝐹𝑙(𝑟)

𝐹𝑙(𝑎𝑐)
−

𝐺𝑙(𝑟)

𝐺𝑙(𝑎𝑐)
] 

𝐽𝐿
′′(𝑙, 𝑙𝑓

′ ) =
1

𝑎𝑐
𝐿+1 ∫ 𝑑r𝑟𝐿

𝑊𝛼𝑠𝑙𝑓
′ (r)

𝑊𝛼𝑠𝑙𝑓
′ (𝑎𝑐)

∞

𝑎𝑐

𝐹𝑙(𝑎𝑐)𝐹𝑙(𝑟) + 𝐺𝑙(𝑎𝑐)𝐺𝑙(𝑟)

𝐹𝑙
2(𝑎𝑐) + 𝐺𝑙

2(𝑎𝑐)
 

And for energies E at which channel c is closed,  

𝐽𝐿𝑐(𝑙, 𝑙𝑓
′ ) ≡ 𝐽𝐿

−(𝑙, 𝑙𝑓
′ ) =

1

𝑎𝑐
𝐿+1 ∫ 𝑑r𝑟𝐿

𝑊𝛼𝑠𝑙𝑓
′ (r)𝑊𝛼𝑠𝑙(r)

𝑊𝛼𝑠𝑙𝑓
′ (𝑎𝑐)𝑊𝛼𝑠𝑙(𝑎𝑐)

∞

𝑎𝑐

 

Additional formulae for the dimensionless reduced width amplitude, reduced mass and effective charge are 

𝜃𝜆𝑐
𝐽

= 𝛾𝜆𝑐
𝐽

(ℏ2/𝜇𝑐𝑎𝑐
2)−1 2⁄  

𝜇𝑒 =
𝑀𝑎𝑀𝐴

𝑀𝑎 + 𝑀𝐴
 

𝑒𝐿 = 𝜇𝑒
𝐿 [

𝑍𝑎

𝑀𝑎
𝐿 + (−)𝐿

𝑍𝐴

𝑀𝐴
𝐿] 𝑒 

There are three contributions to the collision matrix element (4). The part of the photon reduced-width amplitude arising from integration 

over the internal region,𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 (𝑖𝑛𝑡) given by equation (7), leads to a resonant contribution of the standard R-matrix form (since 𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 (𝑖𝑛𝑡) 

is real and constant). Another resonant contribution comes from integrations over the various channels, leading to 𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 (𝑐ℎ) given by 

equation (9), but in general 𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 (𝑐ℎ)is neither real nor constant. There is also a no resonant contribution coming from the entrance 

channel only, which is often referred to as the hard-sphere capture amplitude. 

 

Specialization to 12C (α,𝛄) 16O 

Because isospin is expected to be a good quantum number in the channel region, one can neglect the channel contributions to El capture 

(note that 𝑒𝐿 = 0 if the 4He mass excess is neglected). Thus standard R-matrix formulae can be applied to the El component. 

For low-energy a-particles (E < 4·44 MeV), the only open particle channel is 12C (g.s.) +α, and we neglect contributions from all other 

channels. Then, omitting indices that have fixed values or are otherwise superfluous, we can write the formulae as 

𝜎𝐽𝑖𝐽𝑓
=

𝜋

𝑘𝑎
2 (2𝐽𝑖 + 1) ∑ |𝑈𝑙𝑓

𝐽𝑖|
2

𝑆𝑒𝑙𝑖

 

Where,  

𝑈𝑙𝑓

𝐽𝑖 = −i𝑒𝑖(𝜔𝑖−𝜙𝑖)2𝑃𝐽𝑖

1 2⁄
𝑘𝛾

5 2⁄
∑ 𝛾𝜆

𝐽𝑖𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 𝐴𝜆𝜇
𝐽𝑖 +

3

√10

𝑀𝑛
1 2⁄

𝑒

ℏ𝑘
𝑁𝑓

1 2⁄
𝑎2

𝜆𝜇

𝐹𝐽𝑖
(𝑎)𝐺𝐽𝑖

(𝑎)𝜃𝑓

𝐽𝑓(𝐽𝑖200|𝐽𝑓0)𝐽𝐿2
′ (𝐽𝑖 , 𝑙𝑓) 

With 
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[(𝐴𝐽𝑖)−1]𝜆𝜇 = (𝐸𝜆
𝐽𝑖 − 𝐸)𝛿𝜆𝜇 − ∑(𝑆𝐽𝑖

− 𝐵𝐽𝑖
+ 𝑖𝑃𝐽𝑖

)𝛾𝜆
𝐽𝑖𝛾𝜇

𝐽𝑖

𝑐

      

𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 (𝑐ℎ) =
3

√10

𝑀𝑛
1 2⁄

𝑒

ℏ𝑘
𝑁𝑓

1 2⁄
𝑎3𝑖𝐽+2−𝐽𝑓𝛾𝜇

𝐽𝑖𝜃𝑓

𝐽𝑓(𝐽𝑖200|𝐽𝑓0) × [𝐽𝐿2
′′ (𝐽𝑖 , 𝑙𝑓) + 𝑖

𝐹𝐽𝑖
(𝑎)𝐺𝐽𝑖

(𝑎)

𝐹𝐽𝑖

2(𝑎) + 𝐺𝐽𝑖

2(𝑎)
𝐽𝐿2

′ (𝐽𝑖 , 𝑙𝑓)] 

𝑁𝑓
−1 = 1 +

2(𝜃
𝑓

𝐽𝑓)2

𝑎
∫ 𝑑r [

𝑊𝐽𝑓
(r)

𝐽𝑓(𝑎)
]

2∞

𝑎

 

Because of the one-channel approximation, the resonant term in equation (***) can be written as 

∑ 𝛾𝜆
𝐽𝑖𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 𝐴𝜆𝜇
𝐽𝑖 =

∑ 𝛾𝜆
𝐽𝑖𝛾𝜇𝛾𝐽𝑓

𝐽𝑖 /(𝐸𝜆
𝐽𝑖 − 𝐸)𝜆

1 − (𝑆𝐽𝑖
− 𝐵𝐽𝑖

+ 𝑖𝑃𝐽𝑖
) ∑ (𝛾

𝜆
𝐽𝑖)2/(𝐸

𝜆
𝐽𝑖 − 𝐸)𝜆𝜆𝜇

 

Comment： This paper made a big contribution for the old model to calculate γ carpture reaction. But, the results of calculation in this 

paper are far from the experimental data. Table S1.1 shows that the results are too higher to belive, the uncetainty are very larger. 

      

RAC2015 159±7.3 ≈94 ≈61 

Schurman2012 161±21 83.4 73.4 

Barker1991 280−140
±230 150−50

±170 120−70
±60 

 

D.The simply application in (Angulo2000)  

   The capture cross section of order L from an initial state with spin 𝐽𝑖𝜋𝑖 to a final state with spin 𝐽𝑓𝜋𝑓  reads, in the R-matrix formalism 

  σ𝐿(𝐸, 𝐽𝑖𝜋𝑖 →  𝐽𝑓𝜋𝑓) =
8𝜋(𝐿 + 1)

ℏ𝐿(2𝐿 + 1)‼

2𝐽𝑓 + 1

2𝐽𝑖 + 1
𝑘𝛾

2𝐿+1 × |〈𝜓𝐽𝑓𝜋𝑓‖ℳ𝐿
𝐸‖𝜓𝑖𝑛𝑡

𝐽𝑖𝜋𝑖(𝐸)〉𝑖𝑛𝑡 + 〈𝜓𝐽𝑓𝜋𝑓‖ℳ𝐿
𝐸‖𝜓𝑒𝑥𝑡

𝐽𝑖𝜋𝑖(𝐸)〉𝑒𝑥𝑡|
2
 

Where, 𝜓𝐽𝑓𝜋𝑓(𝜓𝐽𝑖𝜋𝑖)is the final (initial) wave function, 𝑘𝛾  is the photon wave number, and ℳ𝐿
𝐸 is the electric multipole operator of 

order L. In definition (**), the first term of the right-hand side represents the internal contribution, while the second term represents the 

external part (subscript int (ext) refers to integration performed over the internal (external) region only). Notice that this latter contribution 

indirectly depends on the nuclear interaction through the collision matrix which appears in𝜓𝑒𝑥𝑡
𝐽𝑖𝜋𝑖 . The relative importance of both 

components depends on the reaction and on the energy. For weakly bound systems, such as 7Be+p, the external contribution is strongly 

dominant, and Eq. (***) reduces to the extra nuclear capture approximation (Christy1961). In the present case, the binding energy of 16O 

with respect to the α+12C threshold in fairly large (7.16 MeV) and, up to a very good approximation, the external part can be neglected. In 

this approximation, the cross section reads  

σ𝐿(𝐸, 𝐽𝑖𝜋𝑖 →  𝐽𝑓𝜋𝑓) =
𝜋

𝑘2
(2𝐽𝑖 + 1)

|∑ 𝜀𝜆 [Γ̌𝜆
𝛼(𝐸)Γ̌𝜆

𝛾
(𝐸)]

1 2⁄
/(𝐸𝜆 − 𝐸)𝜆 |

2

|1 − 𝐿𝑅𝐽𝑖𝜋𝑖|2
 

Where, the formal 𝛼 and 𝛾 widths are defined by 

Γ̌𝜆
𝛼(𝐸) = 2γ̌𝜆

𝛼𝑃𝐽(𝐸) 

Γ̌𝜆
𝛾(𝐸) =

8𝜋(𝐿 + 1)

ℏ𝐿(2𝐿 + 1)‼

2𝐽𝑓 + 1

2𝐽𝑖 + 1
𝑘𝛾

2𝐿+1 × |〈𝜓𝐽𝑓𝜋𝑓‖ℳ𝐿
𝐸‖𝜒𝜆

𝐽𝑖𝜋𝑖(𝐸)〉𝑖𝑛𝑡|
2
 

And 𝜀𝜆is a phase coefficient, equal to +1 or -1. The phase coefficients are written explicitly to account for the sign of the electromagnetic 

matrix elements. With this definition, the square root in Eq. (***) is always positive. The energy dependence of reads 

Γ̌𝜆
𝛾(𝐸) = Γ̌𝜆

𝛾
(𝐸𝛾) (

𝐸 − 𝐸𝑓

𝐸𝛾 − 𝐸𝑓
)

2𝐿+1

 

Where, 𝐸𝑓 is the energy of the final state and 𝐸𝛾 the resonance energy, in the following will be denoted asΓ̌𝜆
𝛾
, again Γ̌𝜆

𝛾
 must be 

considered either as a parameter, or as the result of a vibrational calculation involving basis states 𝜒𝜆
𝐽𝑖𝜋𝑖  . 
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Comment： This paper made a big contribution for explain of that the external contribution of 12C (α, γ) 16O is very small, and it can be 

ignored.  

 

E. AZUMA: An R-matrix code for nuclear astrophysics  

(PHYSICAL REVIEW C 81, 045805 (2010)) 

On the models mentioned above (Lane1958, Lana1960, Hold1978, Barker1991), R. E. Azuma, et.al. Published the R-matrix code 

AZURE which allows simultaneous analysis the integrated and differential data.  The part about elastic scattering is a copy of (Lane1958), 

here just list the part about Photon channels. 

The R-matrix theory described above is appropriate only for particle-particle reactions. In the internal region (enclosed by the boundary 

surface), photon channels can be included symmetrically with particle channels (21); however, it has often been found necessary to include 

an additional capture component attributed to the external region (beyond the boundary radius).  

In A-matrix formalism, the internal transition matrix element connecting a particle channel c to a photon channel 𝑝 = 𝜖𝐿𝜆𝑓takes the form 

𝑇𝑐𝑝
𝐽,𝑖𝑛𝑡

= −𝑖 ∑ Ω𝑐Ω𝑝𝐴𝜆𝜆′Γ𝜆𝑐
1 2⁄

Γ
𝜆′𝑝
1 2⁄

𝜆𝜆′                                                               (1.5) 

Where 

Ω𝑝 = 1, Γ𝜆′𝑝 = 2𝑘𝛾
2𝐿+1𝛾𝜆′𝑝

𝑖𝑛𝑡2
                                                               (1.6)  

In the above expression, the term 𝜆𝑓 indicates the final state with some defined energy and total spin 𝐽𝑓and L is the multipolarity of the γ 

-ray. The symbol 𝜖 has been introduced to indicate the mode of the emitted radiation, where 𝜖= 0 for magnetic transitions and 𝜖 = 1 for 

electric transitions. It should be noted that the internal transition matrix can also be written in R-matrix formalism if photon channels are 

included in the definition of the R matrix, and the photon penetrability is defined to be𝑃𝛾 = 𝑘𝛾
2𝐿+1. Additionally, it is also often assumed 

that the resonant state is not significantly dampened by the γ decay, therefore the elements of the diagonal matrix L0 are ignored for photon 

channels. In A-matrix formalism, this is tantamount to neglecting the photon channel from the channel sum in the definition of the A matrix. 

Such an assumption is not justified if the photon widths are appreciable compared to the particle widths, and in these cases proper photon 

channel Damping must be included. 

  In the external region, the scattering state contains contributions from both resonant and hard-sphere phase shifts (Lane1960, Holt1978). 

Throughout the remainder of this paper, the term EC will be associated with this no resonant portion, while the external resonance 

contribution will be designated by ERC. No resonant capture has been treated historically in two distinct but analogous ways. The term 

direct capture (DC) often refers specifically to the formulation in (Rolfs1973), while the term EC, defined above, is associated with the 

hard-sphere formulation. With the assumption of the hard-sphere phase shift and a square-well bound-state potential in DC, the two 

formalisms become identical. 

  A full multilevel multichannel external capture theory was introduced in Ref. (Barker1991), and the formalism used in AZURE is based 

on that work. This approach allows resonant and direct or external capture contributions to be combined in a self-consistent manner. 

Additionally, we follow Ref. (Angulo2001) and express the external capture in terms of the asymptotic normalization coefficient (ANC). 

  The following external capture equations apply for electric-multipole (EL) external capture transitions only, which are typically the most 

important cases in practice. The external portion of the transition matrix element is defined as 

𝑇𝑐𝑝
𝐽,𝑒𝑥𝑡

= −𝑖Ω𝑐√
8(2𝐿 + 1)(𝐿 + 1)

𝐿ℏ

𝑘𝛾
𝐿+1 2⁄

(2𝐿 + 1)‼
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× [∑
𝑖𝑙+𝐿−𝑙𝑓𝑒̅𝛼

𝐿

𝑣𝛼
1 2⁄

𝑙𝑓

(𝑙0𝐿0|𝑙𝑓0)𝑈(𝐿𝑙𝑓𝐽𝑠; 𝑙𝐽𝑓)𝑅𝑐𝑙𝑓𝐿
𝐸𝐶 + ∑

𝑖𝑙′+𝐿−𝑙𝑓
′

𝑒̅𝛼′
𝐿

𝑣𝛼
1 2⁄

𝑐′𝑙𝑓
′

(𝑙′0𝐿0|𝑙𝑓
′ 0)(𝐿𝑙𝑓

′ 𝐽𝑠′; 𝑙′𝐽𝑓)𝑅𝑐𝑐′𝑙𝑓
′ 𝐿

𝐸𝑅𝐶 ]     (1.7) 

Where 

𝑒̅𝛼
𝐿 = 𝑒 [𝑍𝛼1(

𝑀𝛼2

𝐴𝑎
)𝐿 + 𝑍𝛼2(

−𝑀𝛼1

𝐴𝑎
)𝐿]                                                       (1.8) 

Is the effective charge term, with e the fundamental charge, Mαi and Zαi are the constituent masses and charges of particle pair α, Aα = Mα1 

+ Mα2, and 

𝑈(𝐿𝑙𝑓𝐽𝑠; 𝑙𝐽𝑓) = (2𝑙 + 1)1 2⁄ (2𝐽𝑓 + 1)1 2⁄ 𝑊(𝐿𝑙𝑓𝐽𝑠; 𝑙𝐽𝑓)                                                           (1.9) 

Is the normalized Racah coefficient. All quantities appearing with a subscript f refer to the final state configuration. It should be noted that 

our Eqs. (1.5) and (1.6) follow the sign convention of Refs. (lane1958, Holt1978) and consequently differ from those in (barker1991) by an 

overall minus sign (which has no effect upon observables). We have also allowed 𝑒̅𝛼
𝐿 to depend upon the particle pairα, as it must if more 

than one pair type is present in the problem. 

  The integrals 𝑅𝑐𝑙𝑓𝐿
𝐸𝐶  and 𝑅

𝑐𝑐′𝑙𝑓
′ 𝐿

𝐸𝑅𝐶  contain the hard-sphere and resonant portions of the initial scattering wave function, respectively. The 

hard-sphere integral is given by 

𝑅𝑐𝑙𝑓𝐿
𝐸𝐶 = 𝐶𝛼𝑠𝑙𝑓

∫ 𝑑𝑟𝑟𝐿[𝐹𝛼𝑙(𝑘𝛼𝑟)𝑐𝑜𝑠𝛿𝑐
ℎ𝑠 + 𝐺𝛼𝑙(𝑘𝛼𝑟)𝑠𝑖𝑛𝛿𝑐

ℎ𝑠]
∞

𝑎𝑐

× 𝑊−𝜂𝛼,𝑙𝑓+1 2⁄ (𝑘𝛼𝑓𝑟)                                 (1.10) 

  In the above equation, the asymptotic normalization (ANC) is represented by Cαslf , the functions Fαl (kαr) and Gαl (kαr)are normal 

Coulomb functions, W−ηα , lf +1/2(2kαf r) is a Whittaker function, and δhs is the hard-sphere phase shift given by 

𝛿𝑐
ℎ𝑠 = −𝑡𝑎𝑛−1 [

𝐹𝛼𝑙(𝑘𝛼𝑎𝑐)

𝐹𝛼𝑙(𝑘𝛼𝑎𝑐)
]                                                                      (1.11) 

  The resonant external integral 𝑅
𝑐𝑐′𝑙𝑓

′ 𝐿
𝐸𝑅𝐶 includes contributions from all channels. For open channels, we define 

𝐾𝐿𝑐𝑙𝑓
= exp (𝑖𝛿𝑐

ℎ𝑠)𝑃𝑐
1 2⁄

∫ 𝑑𝑟𝑟𝐿
∞

𝑎𝑐

[𝐺𝛼𝑙(𝑘𝛼𝑟) + 𝑖𝐹𝛼𝑙(𝑘𝛼𝑟)] × 𝑊−𝜂𝛼,𝑙𝑓+1 2⁄ (2𝑘𝛼𝑓𝑟)                           (1.11) 

And for closed channels 

𝐾𝐿𝑐𝑙𝑓
= (𝑘𝛼𝑎𝑐)1 2⁄ ∫ 𝑑𝑟𝑟𝐿

∞

𝑎𝑐

𝑊−𝜂𝛼,𝑙+1 2⁄ (2𝑘𝛼𝑟)

𝑊−𝜂𝛼,𝑙+1 2⁄ (2𝑘𝛼𝑟)
× 𝑊−𝜂𝛼,𝑙𝑓+1 2⁄ (2𝑘𝛼𝑓𝑟)                                    (1.12) 

In R-matrix formalism, the resonant external integral is given by 

𝑅𝑐𝑐′𝑙𝑓
′ 𝐿

𝐸𝑅𝐶 = 𝑃𝑐
1 2⁄ [(1 − 𝑅𝐿)−1𝑅]𝑐𝑐′𝐶𝛼′𝑠′𝑙𝑓

′ 𝐾𝐿𝑐′𝑙𝑓
′                                                                 (1.13) 

While for the A-matrix formalism the term takes the form 

𝑅𝑐𝑐′𝑙𝑓
′ 𝐿

𝐸𝑅𝐶 = 𝑃𝑐
1 2⁄

∑ 𝛾𝜆𝑐𝛾𝜇𝑐′𝐴𝜆𝜇

𝜆𝜇

𝐶𝛼′𝑠′𝑙𝑓
′ 𝐾𝐿𝑐′𝑙𝑓

′                                                     (1.14) 

The above integrals can also be parameterized in terms of the dimensionless reduced width amplitude (DRWA), θαslf, by substituting for 

the ANC the expression 

𝐶𝛼𝑠𝑙𝑓
= √

2

𝑎𝛼𝑠𝑙𝑓

𝜃𝛼𝑠𝑙𝑓

𝑁𝑓
1 2⁄

𝑊−𝜂𝛼,𝑙𝑓+1 2⁄ (2𝑘𝛼𝑓𝑎𝑐)
                                                    (1.15) 
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The normalization factor Nf results from the fact that R-matrix Eigen functions are normalized to unity inside the channel radii. It is given 

by 

𝑁𝑓
−1 = 1 + ∑

2𝜃𝛼𝑠𝑙𝑓

2

𝑎𝛼𝑠𝑙𝑓𝛼𝑠𝑙𝑓

∫ [
𝑊−𝜂𝛼,𝑙+1 2⁄ (2𝑘𝛼𝑟)

𝑊−𝜂𝛼,𝑙+1 2⁄ (2𝑘𝛼𝑓𝑎𝛼𝑠𝑙𝑓
)
]

2∞

𝑎𝑐

𝑑𝑟                                    (1.16) 

If the level shift of the final state vanishes, the dimensionless reduced width can be related to the R-matrix reduced width 𝛾𝛼𝑠𝑙𝑓
 for that 

state via Eq. IV.3.10in (lane1985): 

𝜃𝛼𝑠𝑙𝑓
=

𝑎𝛼𝑠𝑙𝑓√𝜇𝛼

ℏ
𝛾𝛼𝑠𝑙𝑓

                                                                        (1.17) 

And using Eq. A.29in (lane1985) the normalization factor can be written 

𝑁𝑓
−1 = 1 + ∑ 𝛾𝛼𝑠𝑙𝑓

2

𝛼𝑠𝑙𝑓

(
𝑑𝑆𝛼𝑠𝑙𝑓

𝑑𝐸
)

𝑎𝛼𝑠𝑙𝑓

                                                            (1.18) 

Alternative definitions of the dimensionless reduced width amplitude also exist. 

Defining the total transition matrix element for capture as 

𝑇𝑐𝑝
𝐽

= 𝑇𝑐𝑝
𝐽,𝑖𝑛𝑡

+ 𝑇𝑐𝑝
𝐽,𝑒𝑥𝑡

 

It can be shown that the AD is given as 

𝑑𝜎𝑎→𝜆𝑓

𝑑Ω
=

1

(2𝐼𝛼1 + 1)(2𝐼𝛼2 + 1)

1

𝑘𝛼
2 ∑ 𝐵𝑘

𝑘

𝑃𝑘(𝜃)                                               (1.19) 

With the definitions 

𝐵𝑘 = ∑ ( )
(−1)1+𝑠−𝐽𝑓

4
𝑍1

𝑠,𝐿,𝐿′,𝑙,𝑙′,𝐽,𝐽′,𝜖,𝜖′

(𝑙, 𝐽, 𝑙′, 𝐽′; 𝑠𝑘) × 𝑍2(𝐿, 𝐽, 𝐿′, 𝐽′; 𝐽𝑓𝑘)𝑇
𝑎𝑠𝑙′,𝜖′,𝐿′𝜆𝑓

∗𝐽′

𝑇
𝑎𝑠𝑙′,𝜖,𝐿𝜆𝑓

𝐽
            (1.20) 

And 

𝑍1(𝑙, 𝐽, 𝑙′, 𝐽′; 𝑠𝑘) = 𝑙𝑙′𝐽𝐽′(𝑙0𝑙′|𝑘0)𝑊(𝑙𝐽𝑙′𝐽′; 𝑠𝑘)                                                 (1.21) 

𝑍2(𝐿, 𝐽, 𝐿′, 𝐽′; 𝐽𝑓𝑘) = 𝐿̂𝐿̂′𝐽𝐽′(𝐿1𝐿′|𝑘0)𝑊(𝐿𝐽𝐿′𝐽′; 𝐽𝑓𝑘)                                               (1.22) 

Where the symbol ( ) indicates a parity restriction defined by 

[ ] =
1

2
[1 + (−1)𝐿′+𝐿+𝑘+𝜖+𝜖′

]                                                                    (1.23) 

These equations are identical to those given in Ref. (Seyler1979). Integrating over the solid angle gives the usual expression for the total 

cross section: 

𝜎𝑎→𝜆𝑓
=

𝜋

𝑘𝛼
2 ∑ 𝑔𝐽

𝐽𝑙𝑠𝐿𝜖

|𝑇𝑐𝑝
𝐽

|
2

                                                                     (1.24) 

Comment： This paper made a big contribution for making a code AZURE which can make gloable fitting for 12C (α, γ) 16O at first. But 

the code AZURE has not been used to produce the SF of 12C (α, γ) 16O down to 0.3 MeV.  

 

Appendix.VII. 2.  Evaluation for ED 

   Table Appendix.VII. 2. 1 shows the Conditions for experimnts about 12C (α, γ) 16O. 

             Table Appendix.VII. 2. 1 Conditions for experimnts about 12C (α, γ) 16O 

Expt 
Beam Curr. 

(μA) 

Det.type,  

Effic. (%) 
Target 

Meas. 

time(h) 

Ang.Data 

points 

Energy range Ecm 

(MeV) 

S(E) 

Data points 

Dyer 1974 0.3 NaI(Tl), 3 12C 1000 9 1.41-2.94 24, 4(E1, E2) 

Redde1987 700 Ge, 14-35 12C, Au 900 3(6) 0.94-2.84 24, 24(E1, E2) 
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25, 25(SCG3, 4) 

Ouellet1996 20-35 Ge, 18-30 12C, Au 1950 5(6) 1.37-2.98 9, 9(E1, E2) 

Kunz2001,  

2002 
450 4πGe, 100 12C, Au 700 8-9 0.95-2.80 

20, 20(E1, E2) 

16, 16(SCG3, 4) 

Assuncao2006 340 4πGe, 100 12C, Au 720 9-10 1.3-2.78 25, 25(E1, E2) 

Makii2009 8, 4MHz NaI(Tl),  12C, Au 400 3-4 1.225-1.591 4, 4(E1, E2) 

Plag2012 6, 1MHz 
4πBaF2, 

100 

12C, Au 270 12 1.002-1.51 
4, 4, 4(STOT, 

E1, E2) 

 

The article (Ouellet1996) reports that; 

  The excitation function of the 𝐶12 (α, γ) 𝑂16  reaction and the AD of its γ rays were measured at nine center-of-mass energies ranging 

from E=1.37 MeV to 2.98 MeV. These measurements allowed the separation of the E1 and E2 contributions and their extrapolation to the 

region of astrophysical interest. The analysis of all the available E1 cross sections with the K-matrix method and with a three-level 

R-matrix method yields a consistent prediction of 79.6±16 keV b for the E1 SF at 0.3 MeV. The E2 contribution at the same energy is 

36.6±6 keV b from a cluster model analysis of the present data. The best estimate of the total SF at 0.3 MeV is 120 keV b, and it is unlikely 

that it will fall outside the range of 80–160 keV b.  

      

The article (Kunz2001) and (Kunz2002) report that: 

The ADs of gamma rays from the 12C (Alpha, gamma) 16O reaction have been measured at 20 energy points in the energy range E-cm = 

0.95 to 2.8 MeV. The sensitivity of the present experiment compared to previous direct investigations was raised by 1-2 orders of 

magnitude, by using an array of highly efficient (100%) Ge detectors shielded actively with BGOs, as well as high beam currents of up to 

500 muA that were provided by the Stuttgart DYNAMITRON accelerator. The SE1 and SE2 factors deduced from the gamma ADs have 

been extrapolated to the range of helium burning temperatures applying the R-matrix method, which yielded S-E1(300) = (76 ± 20) keV b 

and S-E2(0.3 MeV) = (85 ± 30) keV b. A new astrophysical reaction rate of 12C (α, γ) 16O has been calculated based on our recent 

determination of the E1- and E2-capture cross sections. The R-matrix method has been applied to describe the SE1 and functions as well as 

the data of elastic a scattering and the β-delayed a decay of 16N - SE2-factor 

From other experiments. The resulting reaction rate for stellar temperatures is presented in both tabular form and an analytic expression. A 

new temperature dependence of the reaction rate was obtained when compared with reported evaluations. The associated uncertainties were 

reduced considerably in comparison to previous determinations. 

 

The article (Assuncao06) reports that: 

  A new experiment to determine the thermonuclear cross section of the 12C(α, γ )16O reaction has been performed in regular kinematics 

using an intense α-particle beam of up to 340 μA from the Stuttgart DYNAMITRON. For the first time, a 4π-germanium-detector setup has 

been used to measure the AD of the γ rays at all angles simultaneously. It consisted of an array of nine EUROGAM high-purity Ge 

detectors in close geometry, actively shielded individually with bismuth germinate crystals. The 12C targets were isotopic ally enriched by 

magnetic separation during implantation. The depth profiles of the implanted carbon in the 12C targets were determined by Rutherford 

backscattering for purposes of cross-section normalization and absolute determination of the E1 and E2 SFs. ADs of the γ decay to the 16O 

ground state were measured in the energy range Ec.m. = 1.30–2.78 MeV and in the angular range (Lab.) 30◦–130◦. From these distributions, 

astrophysical E1 and E2 S-factor functions vs energy were calculated, both of which are indispensable to the modeling of this reaction and 

the extrapolation toward lower energies. The separation of the E1 and E2 capture channels was done both by taking the phase value φ12 as 

a free parameter and by fixing it using the results of elastic α-particle scattering on 12C in the same energy range. 
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The article (Makii2009) reports that: 

We measured the γ -ray AD from 12C (α, γ0)16O to the ground state of 16O using a pulsed αbeam at Eeff = 1.6 and 1.4 MeV. True 

events of 12C (α, γ0)16O were discriminated from background events with a time-of-flight method because of neutrons from 13C (α, n) 16O. 

The obtained γ -ray spectrum with anti-Compton NaI (Tl) spectrometers showed a characteristic line shape from 12C (α, γ0) 
16O: the 

Doppler broadening and energyloss of α particles in 12C targets. A Rutherford backscattering spectrum of α particles from enriched 12C 

targets was measured during beam irradiation to obtain the target thickness and incident α-beam intensities. Theastrophysical SFs for E1 

and E2, SE1(γ0 : Eeff) and SE2(γ0 : Eeff ), derived from the present cross sectionsare in excellent agreement with the values derived by 

R-matrix calculation of the β-delayed α spectrum of 16N, and by using the asymptotic normalization constant in the R-matrix fit. 

 

The article (Plag2012) reports that: 

The 12C(α, γ )16O reactionED, are still subject to large uncertainties due to the almost vanishing cross section at stellar energies. So far, 

most measurements have been performed with germanium detectors. To compensate for their low efficiency, the highest beam currents had 

to be used, resulting in target degraADtion and beam-induced backgrounds. Instead, the present measurement was performed with 

high-efficiency detectors and low beam currents, using the Karlsruhe 4π BaF2 detector and the pulsed 3.7-MV Van de Graaff accelerator at 

Karlsruhe Institute of Technology. The 12C(α, γ )16O cross sections have been measured at center-of-mass energies E between 1002 and 

1510 keV, and the E1 and E2 components were derived with an accuracy comparable to the previous best data obtained with HPGe 

detectors. 

 

APPENDIX.VII. 2.2 Experiments with Recoil Mass Separator (RMS) 

The experiments with this kinds of method to measure 𝐶12 (α, γ) 𝑂16  cross sections includes (Schumann2005), (Schumann2011), 

(Fuji2010), and so on. Table Appendix.VII. 2. 2 shows Conditions for experimnts about 12C (α, γ) 16O with Recoil Mass Separator (RMS) 

             Table Appendix.VII. 2. 2 Conditions for experimnts about 12C (𝛂, 𝛄) 16O with Recoil Mass Separator (RMS) 

Expt 
Beam 

Curr.(μA) 

Det.type,  

Effic. (%) 
Target 

Meas. 

Time(h) 

Ang.Data 

points 

Ecm range 

(MeV) 

S (E). 

Data points 

Ketter1982 50 NaI(Tl), 20 4He, gas 1000 4 1.44-3.38 
48-SCG0, 

SCG3 

Roters1999 20 BGO, 270 4He, gas 5000 2 0.94-3.39 13, 13(E1,E2) 

Matei2006 30-50 
γ:BGO, 16O: 

Si(DSSSD) 

4He, gas   2.22-5.42 32-SCG1 

Schumman2005 10 16O:ΔE-E telescope 4He, gas   1.903-4.917 75-STOT 

Fuji2010 12 16O: Si-SSD 4He, gas 40  1.5-2.4 2-STOT 

 

The article (Schumann2005) is the respective one.  

It reports that Most of the existing data on these reactions have been gained by means of gamma-ray spectroscopy, where the 

measurements are very difficult in view of the low cross sections and the relatively high background in the detectors. Since some decades a 

new technique has been exploited, based on the direct detection of the nuclei produced during the reaction using a Recoil Mass Separator 

(RMS) able to collect the recoil ions keeping the reaction kinematic information, while suppressing the projectile beam emerging from a 

thin target. A pioneering work was done at Caltech (2), where 𝐶12 (α, γ) 𝑂16  was measured using a recoil mass separator and a NaI (Tl) 

detection setup. Here the insufficient beam suppression required a coincidence condition between gamma-rays and recoils, thus reducing 

the advantages of the use of a recoil mass separator. Later started the NABONA (NAples BOchum Nuclear Astrophysics) collaboration 

between the Institut für Experimentalphysik III of the Ruhr-Universität Bochum, the INFN-Sezione di Napoli and Dipartimento di Scienze 
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Fisiche of the University of Naples Federico II, and for some experiments, the group of the ATOMKI, Debrecen . The aim of this 

collaboration was to measure the cross section of 7Be (p, g) 8B. This experiment was performed using a 7Be beam and a windowless 

hydrogen gas target in combination with a recoil separator with sufficient beam suppression and acceptance to detect the recoil without the 

need of the coincidence condition with gamma-rays. As a follow-up of the NABONA collaboration, a new collaboration between the same 

groups started, called ERNA, whose aim was to study 𝐶12 (α, γ) 𝑂16  and 3He(4He, γ)7Be using a new recoil separator installed at the 4MV 

Dynamitron Tandem Laboratorium of the Ruhr-Universität Bochum. At the same time a recoil mass separator named DRAGON  was 

designed and installed at TRIUMF, where several reactions have been studied involving both radioactive (10) and stable beams (11), (12), 

(13). Other similar systems have been developed or are in course of development at different laboratories in Japan and USA (14). A general 

review of the field is beyond the scope of the present work. We rather focus on some peculiar aspects of this experimental approach and the 

description of the ERNA RMS. We consider then the case of 𝐶12 (α, γ) 𝑂16  that, besides its enormous interest in nuclear astrophysics, 

presents the typical difficulties encountered in this kind of experiments. 

 

The article (Schumann2011) reports that: 

The radiative capture reaction 12C (α, γ) 16O has been investigated in the energy range E = 3.3 to 4.5 MeV. This experiment focused in 

particular on the cascade transition to the 0+ state at Ex = 6.05 MeV in 16O and was performed by detecting the capture γ -rays with a NaI 

detector array at the windowless 4He gas target of the recoil mass separator ERNA in coincidence with the 16O ejectiles. The 6.05 MeV 

transition has been considered recently as a component accounting for up to 15% of the 12C (α, γ) 16O total cross section at astrophysical 

energies. The arrangement of the detector array yielded additional information on the γ -ray multipolarity, i.e. the ratio σE2/σE1, and it was 

found that the 6.05 MeV transition is entirely E2 in the studied energy range. The results for this transition are analyzed in an R-matrix 

formalism and extrapolated to the relevant Gamow energy of stellar helium burning, E0 _ 300 keAPPENDIX.VII. In contrast to a previous 

analysis, the present extrapolation suggests a negligible contribution from this amplitude,  S6.05(300) < 1 keV b. Additional data for cascade 

transitions to excited states at Ex = 6.13, 6.92, and 7.12 MeV, respectively, as well as to the ground state were obtained and the 

corresponding SFs in the studied energy range are given. 

 

The article (Matei2006) reports that: 

Radiative particle capture into the first excited, 0+ state of 16O at 6.049 MeV excitation energy has rarely been discussed as contributing 

to the 𝐶12 (α, γ) 𝑂16  reaction cross section due to experimental difficulties in observing this transition. We report here measurements of 

this radiative capture in 𝐶12 (α, γ) 𝑂16  for center-of-mass energies of E=2:22 MeV to 5.42 MeV at the DRAGON recoil separator. To 

determine cross sections, the acceptance of the recoil separator has been simulated in GEANT as well as measured directly. The transition 

strength between resonances has been identified in R-matrix fits as resulting both from E2 contributions as well as E1 radiative capture. 

Details of the extrapolation of the total cross section to low energies are then discussed S6:05(0.3 MeV) = 25−15
+16 keV b) showing that this 

transition is likely the most important cascade contribution for 𝐶12 (α, γ) 𝑂16  

 

The article (Fuji2010) reports that: 

A cross section measurement with a direct O-16 detection method for the reaction energy from E cm = 2.4 down to 0.7 MeV is planned at 

Kyushu University Tandem Laboratory (KUTL). To perform the experiment successfully and to get the quantitative information of the 

cross section within the 10% error, we have newly developed several instruments in 2009, such as a blow-in type windowless gas target 

and movable slit system placed in the recoil mass separator. By using the windowless blow-in gas target, a pressure of 24 Torr was 

achieved. The effective thickness along the beam axis was measured by p+4He scattering. Thanks to the movable slits installed in a recoil 

mass separator and the trajectory analysis, we found effective reduction of background conditions from the C-12 beam. 
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APPENDIX.VII. 2.3. Transfer reaction 

 

TABLE APP.VII. 2.3.1 Comparison of the α-spectroscopic factors  

Experi- 

ment 

Sα 

6.92 , 2+ 

Sα 

7.12 , 1−   

Sα 

6.05 , 0+ 

Sα 

6.13 , 3− 

Sα 

9.58 , 1− 

Sα 

10.35 , 4+ 

Reaction  

Energy  (MeV) 

Oulebsir2012 0.15±0.05 0.07±0.03 0.13+0.07
−0.06 0.06±0.04 0.10−0.06

+0.08 0.19−0.08
+0.17 

12C+7Li, 28, 34 

Belhout 2007 0.37±0.11 0.11±0.03 0.12±0.04 0.29±0.15 0.34±0.10 0.11±0.06 12C+7Li, 48 

Becchetti2005 0.37+0.06
−0.04 0.17−0.04

+0.06 0.08−0.06
+0.04 0.11−0.02

+0.05 0.09−0.06
+0.03   0.17−0.03

+0.06 
12C+7Li, 34 

 

TABLE APP.VII. 2.3.2 The α-reduced widths and SF  

Experiment 
γ 2 α (0+) 

/(keV) 

γ 2 α (3-) 

/(keV) 

γ 2 α (2+) 

/(keV) 

γ 2 α (1−) 

/(keV) 

SE10/ 

keV b 

SE20/ 

keV b 

Oulebsir2012 19.7±5.5 2.35±0.8 26.7±10.3 7.8±2.7 100±28 50±19 

Belhout2007 / / 26.6−17.2
+19.2 4.59 ± 2.91 80.6−16

+17  

 

The article (Oulebsir2012) reports that: 

The extrapolation of the measured cross sections to stellar energies (E ∼ 0.3 MeV) is made particularly difficult by the presence of the 2+ 

(Ex = 6.92 MeV) and 1− (Ex = 7.12 MeV) subthreshold states of 16O. To further investigate the contribution of these two subthreshold 

resonances to the 12C (α, γ) 16O cross section, their α-reduced widths can be determined via a measurement of the transfer reaction 12C (7Li, 

t) 16O. The uncertainties on the determined α-spectroscopic factors and the α-reduced widths maybe reduced by a detailed distorted-wave 

Born approximation analysis of the transfer ADs. The R-matrix calculations of 12C (α, γ) 16O cross section can be used the obtained 

α-reduced widths for the 2+ and 1−subthreshold resonances. 

 

The article (Belhout2007) reports that: 

The ADs for low lying states of 16O produced in the 12C (6Li, d) 16O α-transfer reaction have been measured using a high energy 

resolution position sensitive detection system. The measured cross section data have been analyzed by the FRDWBA theory with a 

particular emphasis put on the states of astrophysical interest mainly the 1− (7.12 MeV) state. Extracted values of nuclear level parameters 

(excitation energy, Ex, line width, Γc.m., α-spectroscopic factor, Sα, and reduced α-width, suggesting that the channel radius a = 6.5 fm is 

likely suitable for the calculations of reduced α-widths near the nuclear surface. However, given that previous DWBA results are available 

for comparison only near the channel radius a =5.5 fm, calculations have been carried out here for both three preceding a values. Formal 

values 0.0036≤  θα2(7.12)≤ 0.152, which is consistent with the preceding DWBA interval, and to a result for the E1 component of the 

reaction astrophysical factor, G-SE10=80.6−16
+17 , very consistent with most constrained values previously reported in the literature. 

 

The article (Brune1999) reports that: 

The 12C (a, g) 16O reaction is crucial for the understanding of He burning in massive stars, but the low-energy cross section is highly 

uncertain. To address this problem we have measured at sub-Coulomb energies total cross sections for the 12C (6Li, d) 16O and 12C (7Li, t) 

16O reactions to the bound 

2+ and 1- states of 16O. The data are analyzed to obtain the reduced a widths of these states. Together with capture and phase-shift data, 

these results provide for a more accurate determination of the low energy 12C (a, g) 16O SF: SE1 (0.3 MeV) = 101−17
+17 keV b and SE2 (0.3 

MeV) = 42−23
+16 keV b for the E1 and E2 multipole components of the reaction. 
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In this way the SF results obtained maybe have large difference and lager uncertainty due to that it is very hard to get the 

closedα-spectroscopic factors, see Table as follow. The α-reduced widths of (Oulebsir2012) have been taken as experimential data for 

fitting.  

APPENDIX.VII. 2.4 Mesherments for 𝑪𝟏𝟐 (𝛂, 𝛂) 𝑪𝟏𝟐  

Table Appendix.VII. 2. 4 Conditions for experimnts about 𝑪𝟏𝟐 (𝛂, 𝛂) 𝑪𝟏𝟐  

Expt 
Beam 

Cur.(mA) 
Det.type, effic. (%) Target Ang. Num. Eα range(MeV)  Data points 

Plag1987 α, 0.1-1 Surface , barrier 12C, Au 35 1.0-6.6 51×35 

Tischhaus2002 α, 0.2 Si 12C, Au 32 2.6-8.2 12864 

Brune1975 α, 0.15 solid-state detector 12C  3.0-10.0  

Morris1968 α gas cell CO2, Gas 28 6.6-8.5 639 

The article (Plag1987) reports that: 

The elastic scattering of Alpha particles from 12C has been investigated for 35 angles in the range elab = 22o to 163o and for 51 

energies at E = 1.0 to 6.6 MeV. The extracted phase shifts for I=0 to 6 partial waves have been parametrized in terms of the multilevel 

R-matrix formalism. Information on the deduced parameters of states in 16O is reported. The data reveal reduced a-particle widths for the 

6.92 and 7.12 MeV subthreshold states consistent with recent work. The implications for the stellar reaction rate of 12C (α, γ) 16O are 

discussed. 

The article (Tischhaus2002) reports that: 

 ADs of 12C (a, a) 12C have been measured for Eα (2.6 to 8.2 MeV), at angles from 24O to 166O, yielding 12 864 data points. R-matrix 

analysis of the ratios of elastic scattering yields a reduced width amplitude of γ12 = 0.47± 0.06 MeV0.5 for the Ex = 6.917 MeV (2+) state in 

16O (a=5.5 fm). The dependence of the х2 surface on the interaction radius a has been investigated and a deep minimum is found at a= 

5.42−0.27
+0.16  fm. Using this value ofγ12, radiative a capture and 16N β-delayed α-decay data, the SF is calculated at Ecm (0.3 MeV) to be SE2 

(0.3 MeV) 53−18
+13 keVb for destructive interference between the subthreshold resonance tail and the ground state E2 direct capture.  

 

APPENDIX.VII. 2.5  𝛃 − 𝛂 delay for 𝑵𝟏𝟔  

 

Table Appendix.VII. 2. 5 Conditions for experimnts about 𝛃 − 𝛂 delay for 𝑵𝟏𝟔  

Ref Hatt1970 Azuma1994 Zhao1993  France2007 Tang2010 

Group Mainz TRIUMF Yale1 Seattle Yale 2 Argonne 

16N production 15N(d, p) 
Isotope 

separator 

15N(d, p) 15N(d, p) 15N(d, p) 15N(d, p) 

16N implantation 

speed 
Low Low High High High High 

Mass/composition 

Of 16N catcher 

30μg/cm2C6H

7N.5O10+ 6–8 

Torr 15N2  

10 μg/cm2 C 180 μg/cm2 Al 
10/20 μg/cm2 

C 
180 μg/cm2 Al 17 μg/cm2 C 

Detectors <35 μm Si 10.4–15.8 μm Si 50 μm Si 15–20 μm Si 50 μm Si Ion chamber 

Background 

(measured) 
β tail 18N, 17N None Unknown None Maybe 
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Degraded event 

suppression 
None α-12C β-α α-12C β-α α-12C 

Efficiency 

corrections 
None None β Unknown β None 

Energy calibration 10B(n, α) 18N, 20Na 10B(n, α) Unknown 10B(n, α) 10B(n, α) 

Deconvolution 

applied 
None None 

Division (see 

text) 
Unknown 

Division (see 

text) 
None 

Cut off Energy 

(MeV) 
1.08 0.59 0.835 0.626 0.73 0.45 

Total counts 2×106 1×106 6×104 1×105 2.8×105 2.7×105 

 

The article (Aruma1994) reports that: 

The shape of the low-energy part of the β-delayed α-particle spectrum of 16N is very sensitive to the α+12C reduced width of the 7.117 

MeV subthreshold state of 16O. This state, in turn, dominates the low-energy p-wave capture amplitude of the astrophysically important 12C 

(α, γ) 16O reaction. The α spectrum following the decay of 16N has been measured by producing a low-energy 16N14N+ beam with the 

TRIUMF isotope separator TISOL, stopping the molecular ions in a foil, and counting the α particles and 12C recoil nuclei in coincidence, 

in thin surface-barrier detectors. In addition to obtaining α spectrum, this procedure determines the complete detector response including 

the low-energy tail. The spectrum, which contains more than 106 events, has been fitted by R- and K-matrix parametrizations which include 

the measured 12C (α, γ) 16O cross section and the measured α+12C elastic scattering phase shifts. The model space appropriate for these 

parametrizations has been investigated. For SE1 (300), the E1 part of the astrophysical SF for the 12C (α, γ) 16O reaction at Ec.m. = 0.3 MeV, 

values of 79±21 and 82±26 keV b have been derived from the R- and K-matrix fits, respectively. 

The article (Tang2010) reports that: 

A measurement of the β-delayed α decay of 16N using a set of twin ionization chambers is described. Sources were made by implantation, 

using a 16N beam produced via the In-Flight Technique. The energies and emission angles of the 12C and α particles were measured in 

coincidence and very clean α spectra, down to energies of 450 keV, were obtained. The structure of the spectra from this experiment is in 

good agreement with results from previous measurements. An analysis of our data with the same input parameters as used in earlier studies 

gives SE1 (300) = 86 ± 22 keVb for the E1 component of the S-factor. This value is in excellent agreement with results obtained from 

various direct and indirect measurements. In addition, the influence of new measurements including the phase shift data from Tischhauser 

et al. on the value of SE1 (300) is discussed. 

The article (Buchmann2009)  

Published a review about that the β-delayed α decay of 16N has been used to restrict the E1 fraction of the ground state γ transition in 

theastrophysically important 12C (α, γ) 16O reaction in several experiments. A review of the published measurements is given, and 

GEANT4 simulations and R-matrix calculations are presented to further clarify the observedα spectra. A clear response function, in the 

form of a low-energy tail from the scattering of α particles in the catcher foil, is observed in these simulations for any foil thickness. 

Contrary to claims in the literature, the simulations show that the TRIUMF measurement and those performed at Yale and Mainz originate 

from the same underlying spectrum. The simulations suggest that the discrepancies between the Yale and TRIUMF final results can be 

attributed to incorrect deconvolution methods applied in the former case. The simulations show in general that the form (width) of the 

spectrum is very sensitive to the catcher foil thickness. It is concluded that the TRIUMF measurement most likely represents the currently 

closest approximation to the true β-delayed α-decay spectrum of 16N.  

 

Appendix.VII. 3.  Evaluation for previous analysis works 
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0. deBoer2013  PHYSICAL REVIEW C 87, 015802 (2013) R-matrix analysis of 16O compound nucleus reactions 

Background: Over the past 60 years, a large amount of experimental nuclear data have been obtained for reactions which probe the 16O 

compound nucleus near the α and proton separation energies, the energy regimes most important for nuclear astrophysics. Difficulties 

and inconsistencies in R-matrix fits of the individual reactions prompt a more complete analysis. 

Purpose: Determine the level of consistency between the wide varieties of experimental data using a multiple entrance/exit channel 

R-matrix framework. Using a consistent set of data from multiple reaction channels, attain an improved fitting for the 15N(p, γ0)16O 

reaction data.  Methods: Reaction data for all available reaction channels were fit simultaneously using a multichannel R-matrix code. 

Results: Over the wide range of experimental data considered, a high level of consistency was found, resulting in a single consistent 

R-matrix fit which described the broad level structure of 16O below Ex = 13.5 MeV. The resulting fit was used to extract an improved 

determination of the low-energy S factor for the reactions 15N (p, γ) 16O and 15N (p, α) 12C. 

Conclusion: The feasibility and advantages of a complete multiple entrance/exit channel R-matrix description for the broad level 

structure of 16O has been achieved. A future publication will investigate the possible effects of the multiple-channel analysis on the 

reaction 12C(α,γ )16O. 

Problem: The low-energy S factor for 12C(α,γ )16O have not been published until now. 

 

A. Dyer 1974 

While there were a few experiments earlier, the 1974 measurement (Dyer1974) of Dyer and Barnes of the 12C(α, γ)16O ground state E1 

reaction cross section may be the first which led to serious work in understanding the reaction mechanism. The cross section for the 

reaction 12C(α, γ)16O has been measured for a range of c.m. energies extending from 1.41 MeV to 2.94 MeV, by using12C targets of high 



99 
 

isotopic purity, large NaI(TI) crystals, and the time-of-flight technique for the suppression of prompt neutron background and 

time-independent background. Gamma-ray AD have also been measured at c.m. energies of 2.18, 2.42, 2.56 and 2.83 MeV. Two methods 

are discussed for extrapolating to low energies the electric dipole contribution to the cross sections. 

Problem: 

By means of theoretical fits, which include the coherent effects of the 1- states of 160 at 7.12 MeV, 9.60 MeV, and those at higher 

energies, the electric-dipole portion of the cross section at astrophysically relevant energies has been determined. A three-level R-matrix 

parametrization of the data yields an S-factor at Ec.m. =300keV, S (300keV) =140−120
+140 keVb. A “hybrid” R-matrix optical-model 

parameterization yields S (300KeV) =80−40
+50 keVb. It is seen that the two methods of parametrizing the data give consistent results, but 

that the error obtained from the three-level R-matrix analysis is much larger than that obtained from the hybrid R-matrix optical-model 

parametrization. The principal reason for this appears to be that the γ-width of the fictitious background level in the three-level R-matrix 

parametrization is free to vary in the fit to the 12C(α, γ)16O data. The effect of varying Γ𝛾3is somewhat similar to the effect of varying the 

reduced α width of the 7.12 MeV state, i.e. to increase or decrease the constructive interference on one side of the resonance corresponding 

to the 9.60 MeV state, and the destructive interference on the other side. Thus, both of these parameters must be assigned rather large errors, 

and the S-factor at 0.3 MeV, which is more strongly dependent on the reduced α-width of the 7.12 MeV state, becomes uncertain by a 

correspondingly large amount. In the case of the hybrid R-matrix optical-model parametrization, the background contribution is constrained 

by the choices of d and V(r), the optical model potential, which is determined by the fit to the 12C(a, a)12C p-wave phase shifts. This is 

certainly a physically plausible method of specifying the background strength, but it cannot be verified experimentally unless the 

background El radiation can be separated with high precision from the wealth of radiation arising from other multipoles at energies above 

the range of the present experiment (a task which appears to be even more difficult than the present low-energy cross-section 

measurements).  

B. Kettner1982 

A measurement in inverted kinematics (with a 12C beam on a helium gas target) of 12C (α, γ) 16O reaction has been reinvestigated by 

Kettner et al. (Kettner1982) over the energy range Ec.m. = l.34-3.38 MeV in 1982. In order to avoid the neutron-induced γ-ray background 

due to the 13C (α, n) 16O contaminant reaction, the role of projectiles and target nuclei has been interchanged: 4He target nuclei contained in 

a windowless and recirculating gas target system were bombarded with the intense 12C beam from the Bochum Dynamitron tandem. A 

large area plastic detector was used for the suppression of time-independent background. With the use of γγ-coincidences between NaI (Tl) 

crystals, Kettner et al. found cascade γ-ray transitions via the (6.92±7.12) MeV excited states of 16O. Due to the lack of good energy 

resolution, the individual contributions via these two states could not be resolved. In the analyses of these data it was asumed that the 

observed yields arise predominantly from the cascade via the 6.92 MeV state. The extrapolation used a simplified model, but pointed to the 

importance of the E2 ground state transition.  

Problem: 

The extrapolation used a simplified model, and the extrapolated S-factors at E. = 0.3 MeV for the 12C (α, γ) 16O and 12C (α, γ3)16O 

reactions are found to be S (300KeV) =420−120
+160 keVb and 12 ± 2 keVb, respectively, leading to a total value of STOT (300KeV) 

=430−120
+160 keV*b. As a result, the astrophysical S-factor, SE10 (300KeV) = 250keVb, determined by this paper is some fourfold higher 

than that obtained from the data of (Dyer1974). Since the absolute cross sections, near the maximum of the ER = 2.39 Mev (Jπ = 1-) 

resonance, between the two data sets differ only by about 25%, it has been suggested that the above discrepancy might lie to a large extent 

in the difference between the partial (El) and the total (El + E2) capture yields. It was pointed out previously by Dyer and Barnes 

(Dyer1974) that E2 resonant capture through the tail of the Jπ=2 +, 6.92 MeV state may be significant in the astrophysical energy region. 

This work confirms this expectation and leads to an E2 portion of the cross section of SE20 (300KeV) = 180keV.b. 

C. Redder1987 
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A measurement employing an implanted 12C target of high isotopic purity in gold, an intense α current approaching 1 mA, and three high 

resolution germanium detectors, was published by (Redder1987) in 1987. The data provide information on the El and E2 capture 

amplitudes involved in the transition to the ground state as well as to excited states. The summed yields for both transitions, 6.92→0 and 

7.12 → 0 MeV, are in good agreement with previous coincidence work using NaI (T1) crystals (Kettner1982). 

Problem: 

To analyze quantitatively the El capture data, the many-level R-matrix formalism of (Weisser1974) is used in the work. The final 

parameters obtained from a fit to the combined data sets were used to extrapolate the S(E)-factor curve to stellar energies: SE10(E0 = 0.3 

MeV) = 200 (+280, - 180) keV. b. It is seen that the three-level R-matrix Fits to the AD of 12C (α, γ) 16O E l capture data alone give SE10 

(E0 = 0.3 MeV) values with rather large uncertainties. As pointed out above, the reason for these uncertainties is due to the fact that the 

γ-ray width of the fictitious background level is free to vary in the three-level R-matrix parametrization. To reduce the error in SE10, the 

hybrid R-matrix Model of (Koonin1974) was applied in the analysis. The best fit to the combined El capture data using the Woods-Saxon 

potential (χ2 = 1.5) was obtained for d = 9.5 and 𝛾1𝛼 = -0.37 MeV1/2, leading to SE10 (E0) = 90 (+100, -60) keV b. The gaussian potential 

resulted inχ2 = 2.0, d = 4.2, 𝛾1𝛼 = -0.56 MeV1/2 and SE10 (E0) =140 (+120, - 80) keV b. These results are consistent with previous 

hybrid R-matrix parametrizations of the original data of (Dyer1974): Woods-Saxon potential with SE10 (E0) =80 (+50, -40) KeV.b 

(Koonin1974). The fit to the S-factor data for the 6.92 →0 and 7.12 → 0 MeV secondary transitions lead to S6.92 (E0) = (7 ±2) keV.b and 

S7.12 (E0) =1.3 (+0.5, -1.0), KeV.b (statistical errors only), respectively. 

D. Zhao1993 

The measurement of the β-delayed α-spectrum of 16N done at Yale University is described in (Zhao1993), with 16N nuclei produced 

using 80 MeV /nucleon 18O beams on 9Be targets. The 16N secondary nuclei were mass analyzed and separated from the reaction products 

using the Michigan State University Al200 isotope separator. A detector array, including four thin surface barrier detectors, a p-i-n diode, a 

Ge gamma-ray detector, and a two dimensional position sensitive parallel plate avalanche counter, was used for implantation and study of 

the separated nuclei. The unfolded spectrum of beta-delayed Alpha-particle emission of 16N was fit simultaneously with elastic scattering 

data and the 12C (α, γ) 16O data, using the R-matrix formalism developed in Ref. (Ji19901. (Zhao1993) used these data to extract the SF for 

the 12C (α, γ) 16O capture reaction to yield SE10 (0.3) = 95± 6(stat) ±28 (syst) keV.b. 

E. Azuma1994 

The α spectrum following the decay of 16N has been measured in Ref. (Azuma1994) by producing a low-energy 16N14N+ beam with the 

TRIUMF isotope separator TISOL, stopping the molecular ions in a foil, and counting the α particles and 12C recoil nuclei in coincidence, 

in thin surface-barrier detectors. In addition to obtaining α spectrum, this procedure determines the complete detector response including 

the low-energy tail. The 16N spectrum, which contains more than 106 events, has been employed in R- and K-matrix fits, together with the  

12C(α, γ )16O data and the elastic-scattering data for α particles on 12C, to derive SE1(300) , the E1 SF of the 12C(α, γ )16O reaction at E = 0.3 

MeV.The R-matrix and K-matrix Fits to the AD of data result in SE10(0.3) = 79 ±21 keV.b and SE10(0.3) = 82 ±26 keV.b, respectively. 

Comment: Fitting procedure shows that this work has the best α spectrum.  

 

F. Ouellet1996 

The paper (Ouellet1996) report a measurement of the12C (α, γ) 16O cross section in which full AD were measured at nine energies 

between 1.36 and 2.98 MeV. Six highefficiency germanium detectors were used in fixed geometry at all energies and the targets were 12C 

implanted in gold. These measurements allowed the separation of the E1 and E2 contributions and their extrapolation to the region of 

astrophysical interest. The analysis of the E1 cross sections with a three-level R-matrix method yields a prediction of 79±16 keV b for the 

SF at Ec.m. =0.3 MeV, along with the phase shifts from elastic scattering and the β-delayed α spectrum from the decay of 16N. The 

procedure used for the extrapolation of E2 transitions is based on the formalism developed by Langanke and Koonin (). As opposed to the 

E1 situation, a more microscopic approach is useful here because of the relatively smooth behavior of the E2 cross section at low energy. 
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There is only one resonance, at subthreshold, contributing to the SF in a significant way. The contribution of E2 transitions at the same 

energy is 36±6 keV b from the cluster-model analysis of the present data. 

Comment: The SF of this work is absolute walue. Fitting procedure shows that taking NF=1 can get good fitting. 

 

G. Roter1999 

In 1999, Roters et al. (Roter1999) published a measurement of the 12C (α, γ) 16O reaction. Excitation functions of the γ0 capture transition 

in 12C (α, γ) 16O at θ𝛾= 90 degree were obtained using a 4 × 4’’ BGO crystal in close geometry (E = 0.94 to 3.39 MeV) and a 2 × 2’’BGO 

crystal in far geometry (E = 1.69 to 3.29 MeV), where the study of the reaction was initiated in inverse kinematics involving a windowless 

gas target. The small crystal detected essentially the E10 multipole component in the γ0 capture transition, while the large crystal observed 

approximately the angle-integrated sum of the E10 and E20 multipole components. A careful analysis of the data then produces the ratio 

σE20/σE10. The SE10 data agree with previous data; however, the σE20/σE10 data shown in Fig. 13 of (Roter1999) show some problems 

relative to the fit applied in the high energy region above E >2.8 MeV. 

H. Gialanella2001 

An excitation function of the ground-state γ0-ray capture transition in  12C(α, γ )16O at θγ =90° was obtained in far geometry using six 

Ge detectors(Gialanella2001), where the study of the reaction was initiated in inverse kinematics involving a windowless gas target. The 

detectors observed predominantly the E1 capture amplitude. The data at E = 1.32 to 2.99 MeV lead to an extrapolated astrophysical SF SE1 

(E0) = 90 ± 15 keV b at E0 = 0.3 MeV (for the case of constructive interference between the two lowest E1 sources), in good agreement 

with previous works. However, a novel Monte Carlo approach in the data extrapolation reveals systematic differences between the various 

data sets such that a combined analysis of all available data sets could produce a biased estimate of the SE1 (E0) value. As a consequence, 

the case of destructive interference between the two lowest E1 sources with SE1 (E0) = 8±3 keV b cannot be ruled out rigorously. 

 

I. Kunz2001 

Direct 12C (α, γ) 16O radiative capture measurements have been carried out at the Institut für Strahlenphysik of the University of Stuttgart. 

The AD of γ rays from the reaction have been measured at 20 energy points in the energy range E =0.95 to 2.8 MeV. The sensitivity of the 

present experiment compared to previous direct investigations was raised by 1–2 orders of magnitude, by using an array of highly efficient 

(100%) Ge detectors shielded actively with BGOs, as well as high beam currents of up to 500 mA that were provided by the Stuttgart 

DYNAMITRON accelerator. The R-matrix method has been applied to describe the SE1- and SE2-factor deduced from the γ AD as well as 

the data of elastic α scattering and the β-delayed α decay of 16N from other experiments. The S-factor curves are extrapolated into the range 

of burning temperature. The following values for the E1, the E2 part of the SF, the contribution due to γ cascades, and the total SF at E0 

=0.3 MeV have been extracted: SE10(E0) = 76 ± 20 keV b, SE20(E0) = 81 ± 22 keVb, Scasc =4±4 keVb and STOT=165±50 keVb. 

Comment: This work Kunz2001 and Kunz2002 are very important experimental and analysis works, which produced total SF from 0.3 

MeV to 8 MeV.  

J. Schurmann2005 

A new experimental approach (Schurmann2005) has been developed at the 4 MV Dynamitron tandem accelerator ERNA in Bochum. 

This measurement in inverse kinematics using the recoil mass separator in combination with a windowless He gas target allowed to collect 

data with high precision in the energy range E = 1.9 to 4.9 MeV. The total cross-section of 12C (α, γ) 16O was measured for the first time by 

a direct and ungated detection of the 16O recoils. The data represent new information for the determination of the astrophysical S (E) factor. 

Comment: This work is the most important experimental measurement for toal SF in 12C (α, γ) 16O, and it play the most important effect in 

gloable ftting. 

 

K. Assuncao2006 
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A new experiment(Assuncao2006) to determine the thermonuclear cross section of the 12C(α, γ)16O reaction has been performed in 

regular kinematics using an intense α-particle beam of up to 340μA from the Stuttgart DYNAMITRON. The outstanding characteristic of 

this experiment was the simultaneous use of nine HPGe detectors in a 4π geometry to measure, for the first time in a single run, the 

complete AD of the emittedγ rays. The HPGe detectors were individually shielded by BGO detectors which reduced the background by a 

large factor. AD of the γ decay to the 16O ground state were measured in the energy range Ec.m. = 1.30-2.78 MeV and in the angular range 

(Lab.) 30°–130°. From these distributions, astrophysical E1 and E2 S-factor functions vs energy were calculated, both of which are 

indispensable to the modeling of this reaction and the extrapolation toward lower energies. The separation of the E1 and E2 capture 

channels was done both by taking the phase value φ12 as a free parameter and by fixing it using the results of elastic α-particle scattering 

on 12C in the same energy range. 

Comment: This work is the most important experimental measurement for DA in 12C (α, γ0) 
16O, The DA and integrated Sg.s at 3.570 MeV 

play a stdndard function for ftting of 12C (α, γ0) 
16O. 

 

L. Matei2006 

Among the cascade transitions of 12C (α, γ) 16O reaction, some attention has been paid to the cascade transition via the 6.92 MeV and 

7.12 MeV excited states in 16O, however, no consideration has been given to a possible cascade via the first excited state of 16O at 6.049 

MeV as contributing to the 12C (α, γ) 16O reaction cross section due to experimental difficulties in observing this transition. This excited 0+ 

state decays exclusively by e+e− transition (E0) to the 0+ ground state and only the primary γ-ray line can be observed. Ref. (Matei2006) 

report measurements of this radiative capture in 12C (α, γ) 16O for center-of-mass energies of E=2.22 MeV to 5.42 MeV at the DRAGON 

recoil separator. To determine cross sections, the acceptance of the recoil separator has been simulated in GEANT as well as measured 

directly. The transition strength between resonances has been identified in R-matrix fits as resulting both from E2 contributions as well as 

E1 radiative capture, following the procedure described by Barker and Kajino (Barker1991). Details of the extrapolation of the total cross 

section to low energies are then discussed (S6.05 (300) = 25−15
+16 keV b) showing that this transition is likely the most important cascade 

contribution for 12C (α, γ) 16O. This is one of the most important problems have to be resolved in this work. 

M. Matei2008 

In the experiment performed at Ohio University gamma-ray branching ratios of the 7.12-MeV state in 16O have been measured using the 

γ-γ coincidence technique. An upper limit on the 7.12 → 6.92 MeV transition was set at 2 × 10−5. These data reduce the uncertainty in both 

the extrapolation of the cascade cross section through the 6.92-MeV state and the extracted value. In the same experiment, relative cross 

sections and AD of the 7.12-, 6.92-, and 6.13-MeV to ground-state transitions have been studied for the 19F(p, αγ) reaction at several 

energies near Ep = 2 MeV. The available ED for the cascade through the 6.92-MeV state have been fitted with the R-matrix formalism, 

leading to S6.92 (0.3) = 7.1 ± 1.6 keV b. 

N. Tang2010 

A measurement of the β-delayed α decay of 16N using a set of twin ionization chambers is described in Ref. (Tang2010). Sources were 

made by implantation, using a 16N beam produced via the In-Flight Technique. The energies and emission angles of the 12C and α particles 

were measured in coincidence and very clean α spectra, down to energies of 450 keV, were obtained. The structure of the spectra from this 

experiment is in good agreement with results from previous measurements. Extracting the relevant SFof SE1 from the data is done using 

the R-matrix formalism through a least-squares by a simultaneous fit to data from the β-delayed α decay of 16N, in combination with 

experimental results from the capture reaction 12C (α, γ) 16O performed at higher energies, as well as with phase shift parameters obtained 

from elastic scattering of 12C (α, α) 12C. The SE1 (0.3) value of 86 ± 22 keVb obtained in this experiment agrees within the uncertainties 

with data obtained during the last 15 years. 

O. Schurmann2011 
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The radiative capture reaction 12C (α, γ) 16O has been investigated in the energy range E = 3.3 to 4.5 MeV in Ref. (Schurmann2011). 

This experiment focused in particular on the cascade transition to the 0+ state at Ex = 6.05 MeV in 16O and was performed by detecting the 

capture γ -rays with a NaI detector array at the windowless 4He gas target of the recoil mass separator ERNA in coincidence with the 16O 

ejectiles. The 6.05 MeV transition has been considered recently as a component accounting for up to 15% of the 12C (α, γ) 16O total cross 

section at astrophysical energies. The arrangement of the detector array yielded additional information on the γ -ray multipolarity, i.e. the 

ratio σE2/σE1, and it was found that the 6.05 MeV transition is entirely E2 in the studied energy range. The results for this transition are 

analyzed in an R-matrix formalism and extrapolated to the relevant Gamow energy of stellar helium burning, E0 = 0.3 MeV. In contrast to 

a previous analysis (Matei2006), the present extrapolation suggests a negligible contribution from this amplitude, S6.05(0.300) < 1 keV b. 

Additional data for cascade transitions to excited states at Ex = 6.13, 6.92, and 7.12 MeV, respectively, as well as to the ground state were 

obtained and the corresponding SFs in the studied energy range are given. 

P. Buchmann2006 

For transitions to the ground state, only E1 and E2 (and higher electric multipole) radiative capture is allowed as only natural parity 

states can be populated by α-capture on 12C. Only the radiative capture from the p- (l=1, E1) and d- (l=2, E2) waves are therefore important 

here for radiative capture into the J π = 0+ 16O ground state. These two transitions mix in the AD11 following Eq. (1), while they add 

incoherently in the total cross section. The ways to distinguish E1 and E2 transitions experimentally are either to measure γ AD and 

evaluate the data by Eq. (1) or, for the E1 transition, to measure at 90◦only as the E1 distribution peaks at 90◦, while the E2 distribution 

peaks at 45◦and 135◦, with no photons being emitted at 90◦. With admixtures of E1and E2 components the distributions are asymmetric with 

respect to 90◦. Note that while the E1 and E2 components for the ground state transition are thus separable, the errors (typically on S(300)) 

derived in fits to these individual components stay correlated in a complicated way which has never been taken into account. 

P. Transfer reaction    

The article (Oulebsir2012) reports that: 

The extrapolation of the measured cross sections to stellar energies (E ∼ 0.3 MeV) is made particularly difficult by the presence of the 

2+ (Ex = 6.92 MeV) and 1− (Ex = 7.12 MeV) subthreshold states of 16O. To further investigate the contribution of these two subthreshold 

resonances to the 12C (α, γ) 16O cross section, their α-reduced widths can be determined via a measurement of the transfer reaction 12C (7Li, 

t) 16O. The uncertainties on the determined α-spectroscopic factors and the α-reduced widths maybe reduced by a detailed distorted-wave 

Born approximation analysis of the transfer AD. The R-matrix calculations of 12C (α, γ) 16O cross section can be used the obtained 

α-reduced widths for the 2+ and 1−subthreshold resonances. 

The article (Belhout2007) reports that: 

The AD for low lying states of 16O produced in the 12C (6Li, d) 16O α-transfer reaction have been measured using a high energy 

resolution position sensitive detection system. The measured cross section data have been analyzed by the FRDWBA theory with a 

particular emphasis put on the states of astrophysical interest mainly the 1− (7.12 MeV) state. Extracted values of nuclear level parameters 

(excitation energy, Ex, line width, Γc.m., α-spectroscopic factor, Sα, and reduced α-width, suggesting that the channel radius a = 6.5 fm is 

likely suitable for the calculations of reduced α-widths near the nuclear surface. However, given that previous DWBA results are available 

for comparison only near the channel radius a =5.5 fm, calculations have been carried out here for both three preceding a values. Formal 

values 0.0036≤ θα2(7.12)≤ 0.152, which is consistent with the preceding DWBA interval, and to a result for the E1 component of the 

reaction astrophysical factor, GTE10=80.6−16
+17 , very consistent with most constrained values previously reported in the literature. 

The article (Brune1999) reports that: 

The 12C (α, γ) 16O reaction is crucial for the understanding of He burning in massive stars, but the low-energy cross section is highly 

uncertain. To address this problem we have measured at sub-Coulomb energies total cross sections for the 12C (6Li, d) 16O and 12C (7Li, t) 

16O reactions to the bound 2+ and 1- states of 16O. The data are analyzed to obtain the reduced a widths of these states. Together with 
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capture and phase-shift data, these results provide for a more accurate determination of the low energy 12C (α, γ) 16O SF: SE1 (0.3 MeV) = 

101−17
+17 keV b and SE2 (0.3 MeV) = 42−23

+16 keV b for the E1 and E2 multipole components of the reaction. 

In this way the SF results obtained maybe have large difference and lager uncertainty due to that it is very hard to get the 

closedα-spectroscopic factors, see Table as follow. The α-reduced widths of (Oulebsir2012) have been taken as experimential data for 

fitting.  
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