# A MODERN THEORETICAL APPROACH TO THE R-MATRIX AND THE COMING EDA6 LOS ALAMOS IMPLEMENTATION



M. Paris & G. Hale (T-2, Los Alamos National Lab)

### Outline

- Overview
  - History at LANL
  - Updated analyses
- Modern Green-function R-matrix formalism
  - Bloch formalism: single-channel; multichannel
  - Multichannel unitarity
  - Relativistic parametrization
- D EDA6

EST. 1943

- Code features & desiderata
- Resonance parameters
  - Brune alternative parametrization
  - vs. S-/T-matrix poles

<u>An immodest proposal:</u> Consider the model independent S-/T-matrix poles for verification of analyses

### Overview of multichannel reaction analysis

- History of Energy Dependent Analysis
  - Developers: D. Dodder, K. Witte, G. Hale, A. Sierk, MP
  - originally motivated by hadronic analyses e.g.  $\pi N \rightarrow \pi N$ 
    - Origin of relativistic parametrization
  - EDA5 F77; EDA6 F90/95 (targeted for '17)
- Overview
  - EDA5/6 implement Wigner/Eisenbud/Bloch phenomenological R matrix
  - Handles large number of two-body partitions & channels, including EM
  - Data: elastic, inelastic, reaction; diff'l, integrated, total, polarization
- Existing analyses to date...



### EDA Existing Analyses

| Α | System          | Channels           | Energy Range (M      | leV)    |  |
|---|-----------------|--------------------|----------------------|---------|--|
| • | N-N             | p+p; n+p,          | 0-30                 |         |  |
| 2 |                 | γ+d                | 0-40                 |         |  |
| 3 | N-d             | p+d; n+d           | 0-4                  |         |  |
| 4 | <sup>4</sup> H  | n+t                | 0.00                 |         |  |
|   | <sup>4</sup> Li | p+ <sup>3</sup> He | 0-20                 |         |  |
|   | <sup>4</sup> He | p+t                | 0-11                 |         |  |
|   |                 | n+ <sup>3</sup> He | 0-10                 |         |  |
|   |                 | d+d                | 0-10                 |         |  |
|   | <sup>5</sup> He | n+α                | 0-28                 |         |  |
| 5 |                 | d+t                | 0-10                 |         |  |
|   |                 | <sup>5</sup> He+γ  |                      |         |  |
|   | <sup>5</sup> Li | $ p+\alpha $       | 0-24                 |         |  |
|   |                 | d+ <sup>3</sup> He | Paris & Grate (HANL) | IAEA 5- |  |

• Los Alamos NATIONAL LABORATORY EST. 1943

# EDA Existing Analyses, Cont.

— EST. 1943 —

|    | Α                                                                                                                                                                                                                 | System (Channels)                                                                                                                                                                                    |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    | 6                                                                                                                                                                                                                 | <sup>6</sup> He ( <sup>5</sup> He+n, t+t); <sup>6</sup> Li (d+ <sup>4</sup> He, t+ <sup>3</sup> He); <sup>6</sup> Be ( <sup>5</sup> Li+p, <sup>3</sup> He+ <sup>3</sup> He)                          |  |  |  |  |  |
|    | <b>7</b> <sup>7</sup> Li (t+ <sup>4</sup> He, n+ <sup>6</sup> Li); <sup>7</sup> Be ( $\gamma$ + <sup>7</sup> Be, <sup>3</sup> He+ <sup>4</sup> He, p+ <sup>6</sup> Li)                                            |                                                                                                                                                                                                      |  |  |  |  |  |
|    | 8                                                                                                                                                                                                                 | <sup>8</sup> <sup>8</sup> Be ( <sup>4</sup> He+ <sup>4</sup> He, p+ <sup>7</sup> Li, n+ <sup>7</sup> Be, p+ <sup>7</sup> Li <sup>*</sup> , n+ <sup>7</sup> Be <sup>*</sup> , d+ <sup>6</sup> Li)     |  |  |  |  |  |
|    | 9                                                                                                                                                                                                                 | 9 <sup>9</sup> Be ( <sup>8</sup> Be+n, d+ <sup>7</sup> Li, t+ <sup>6</sup> Li); <sup>9</sup> B ( $\gamma$ + <sup>9</sup> B, <sup>8</sup> Be+p, d+ <sup>7</sup> Be, <sup>3</sup> He+ <sup>6</sup> Li) |  |  |  |  |  |
|    | 10 <sup>10</sup> Be (n+ <sup>9</sup> Be, <sup>6</sup> He+ $\alpha$ , <sup>8</sup> Be+nn, t+ <sup>7</sup> Li); <sup>10</sup> B ( $\alpha$ + <sup>6</sup> Li, p+ <sup>9</sup> Be, <sup>3</sup> He+ <sup>7</sup> Li) |                                                                                                                                                                                                      |  |  |  |  |  |
|    | 11                                                                                                                                                                                                                | $1  1^{11}B \ (\alpha + {^7}Li, \ \alpha + {^7}Li^*, \ {^8}Be + t, \ n + {^{10}}B); \ {^{11}C} \ (\alpha + {^7}Be, \ p + {^{10}B})$                                                                  |  |  |  |  |  |
|    | 12                                                                                                                                                                                                                | <sup>12</sup> C ( <sup>8</sup> Be+α, p+ <sup>11</sup> B)                                                                                                                                             |  |  |  |  |  |
|    | 13                                                                                                                                                                                                                | <sup>13</sup> C (n+ <sup>12</sup> C, n+ <sup>12</sup> C <sup>*</sup> )                                                                                                                               |  |  |  |  |  |
|    | 14                                                                                                                                                                                                                | <sup>14</sup> C (n+ <sup>13</sup> C)                                                                                                                                                                 |  |  |  |  |  |
| ,  | 15                                                                                                                                                                                                                | <sup>15</sup> N (p+ <sup>14</sup> C, n+ <sup>14</sup> N, $\alpha$ + <sup>11</sup> B)                                                                                                                 |  |  |  |  |  |
|    | 16                                                                                                                                                                                                                | <sup>16</sup> Ο (γ+ <sup>16</sup> Ο, α+ <sup>12</sup> C)                                                                                                                                             |  |  |  |  |  |
| ,  | 17                                                                                                                                                                                                                | <sup>17</sup> O (n+ <sup>16</sup> O, α+ <sup>13</sup> C)                                                                                                                                             |  |  |  |  |  |
|    | 18                                                                                                                                                                                                                | <sup>18</sup> Ne (p+ <sup>17</sup> F, p+ <sup>17</sup> F <sup>*</sup> , α+ <sup>14</sup> O)                                                                                                          |  |  |  |  |  |
| JS |                                                                                                                                                                                                                   | Paris & Hale (LANL) IAEA 5-7 December 20                                                                                                                                                             |  |  |  |  |  |

<sup>1</sup>H: (n,n), (n, $\gamma$ ) < 200 MeV <sup>6</sup>Li: (n,n), (t,t), (t,n) E<sub>t</sub><14 MeV; (n,n),(n,t),(n,d) E<sub>n</sub><4 MeV <sup>7</sup>Be: elastic, (n, $\gamma$ ), (n,tot), (n, $\alpha$ ) <20 MeV <sup>9</sup>Be: angular distributions <sup>10</sup>B: < 5 MeV <sup>12</sup>C: elastic, (n,tot), (n,n') < 6.5 MeV <sup>13</sup>C: (n,tot), (n, $\gamma$ ) < 20 MeV <sup>16</sup>O: elastic, (n, $\alpha$ ), (n,tot), (n, $\gamma$ ) < 9 MeV



### The canonical EDA "modern" R-matrix slide



Paris & Hale (LANL)

IAEA 5-7 December 2016

### Toy model example: single channel, s-wave, neut.





### Toy model example: single channel, s-wave, neut.



### Bloch "fixed" this issue.



### Claude Bloch's 1957 paper modernized R-matrix

#### UNE FORMULATION UNIFIÉE DE LA THÉORIE DES RÉACTIONS NUCLÉAIRES

CLAUDE BLOCH

Centre d'Études Nucléaires de Saclay, Gij-sur-Yvette (S. & O.)

Reçu le 13 avril 1957

A unified formulation of the theory of nuclear reactions

Claude Bloch<sup>1</sup> Centre d'Études Nucléaires de Saclay, Gif-sur-Yvette (S. & O.)

$$\int_0^R r^2 dr [\psi_1^* (H\psi_2) - (H\psi_1)^* \psi_2] = -\frac{\hbar^2}{2M} \left[ r\psi_1^* \frac{d(r\psi_2)}{dr} - \frac{d(r\psi_1^*)}{dr} r\psi_2 \right]_R$$

**NB:** The quantity B must be a real constant, indep. of energy in order to obtain an orthonormal basis

EST. 1943

./

$$\mathscr{H} = H + \frac{\hbar^2}{2MR} \delta(r - R) \left[ \frac{d}{dr} r - \frac{B}{r} \right]$$

$$\int_0^R r^2 dr \left[ \psi_1^* (\mathscr{H} \psi_2) - (\mathscr{H} \psi_1)^* \psi_2 \right] = 0.$$

$$\mathscr{I}$$

### Bloch method "builds-in" the finite radius BC

Standard method: solve diff. eqn. in the presence of a BC

$$\left[ \mathscr{H} - E \right] \psi(r) = f(r), \qquad r < R$$
$$\frac{\hbar^2}{2MR} \left[ \frac{d}{dr} \left( r \psi(r) \right) \right]_R = A, \qquad r = R$$

#### Equivalent to:

$$[\mathscr{H} - E] \psi(r) = F(r), \qquad F(r) = f(r) + A\delta(r - R)$$
$$\mathscr{H} = H + \mathscr{L}_0, \qquad \mathscr{L}_0 = \frac{\hbar^2}{2M} \frac{\delta(r - R)}{R} \frac{d}{dr}r$$



### Representation independence of Bloch operator

The singular Dirac delta function is only present in the position representation ('R' is the channel radius)

$$\mathscr{L}_B = \frac{\hbar^2}{2M} \frac{\delta(r-R)}{R} \left(\frac{d}{dr}r - B\right)$$

Equivalent to

$$\hat{\mathscr{L}}_B = \frac{iR^2}{2M} |R\rangle \langle R| \left( \hat{p}_r + iB \right)$$
$$\langle r| \hat{p}_r = \frac{-i}{r} \frac{\partial}{\partial r} r \langle r|$$

Bloch operator as a projection operator



$$R = a$$

#### □ Solve Schrodinger:

$$0 = [H - E] |\Psi\rangle \qquad \hat{\mathscr{L}}_L |\Psi\rangle = \left[H - E + \hat{\mathscr{L}}_L\right] |\Psi\rangle$$
$$G_L \hat{\mathscr{L}}_L |\Psi\rangle = |\Psi\rangle \qquad G_L = \left[H - E + \hat{\mathscr{L}}_L\right]^{-1}$$

Scattering BC (single channel, s-wave, neutral):

$$\begin{aligned} |\mathscr{O}\rangle &= |+k\rangle & |\mathscr{I}\rangle &= |-k\rangle \\ \hat{\mathscr{L}}_{L}|+k\rangle &= 0 & \hat{\mathscr{L}}_{L}|-k\rangle &= -\frac{ia^{2}k}{m}|a\rangle\langle a|-k\rangle & \langle r|\pm k\rangle &= \frac{e^{i(\pm k)r}}{r} \end{aligned}$$

Solve for the scattering matrix

$$G_{L}\hat{\mathscr{L}}|\Psi\rangle = |\Psi\rangle$$
$$-i\frac{a^{2}k}{m}G_{L}|a\rangle\langle a|-k\rangle = |-k\rangle - S|+k\rangle$$
$$S = \frac{\langle a|-k\rangle}{\langle a|+k\rangle} \left\{1 + i\frac{a^{2}k}{m}\langle a|G_{L}|a\rangle\right\}$$



### Computing $\langle a|G_L|a\rangle$ in an orthonormal basis



### Bloch/GF formalism: multichannel, charged case

Solve Schrodinger knowing External solution ('a' chan. rad.)

$$[H - E]\Psi = 0, \qquad [H - E + \mathscr{L}]\Psi = \mathscr{L}\Psi, \qquad \Psi = r^{-1} \Big[I - OS\Big]_{r \ge a}$$

$$\Psi = G\mathscr{L}\Psi, \qquad \qquad G = [H - E + \mathscr{L}]^{-1}, \qquad \mathscr{L} = a^{-1} \Big(\rho \frac{\partial}{\partial \rho} - B\Big)$$

$$I - OS = R \left(\rho \frac{\partial}{\partial \rho} - B\right) [I - OS], \qquad R \equiv G\Big|_{\mathscr{S}}, \qquad \rho \frac{\partial}{\partial \rho} O = LO$$

$$S = O^{-1}I + 2i\rho O^{-1}R_L O^{-1}, \qquad R_L = [1 + R(B - L)]^{-1}R, \quad \rho \frac{\partial}{\partial \rho} I = LI - 2i\rho O^{-1}$$

External Coulomb wave function relations

$$O = I^* = G + iF, \qquad 1 = GF' - G'F,$$
  

$$L = \rho O^{-1} \frac{\partial}{\partial \rho} O \equiv S + iP, \qquad S = \rho \frac{GG' + FF'}{G^2 + F^2}, \qquad P = \rho \frac{1}{G^2 + F^2}$$

• Los Alamos NATIONAL LABORATORY EST. 1943

### Bloch/GF formalism: multichannel unitarity

$$S = O^{-1}I + 2i\rho O^{-1}R_L O^{-1}$$

$$S^{\dagger} = OI^{-1} - 2i\rho I^{-1}R_L^{\dagger}I^{-1}$$

$$(M^{\dagger})^{-1} = (M^{-1})$$

$$S^{\dagger}S = 1 + 2i\rho I^{-1}R_L^{\dagger} \left[ (R_L^{-1})^{\dagger} - R_L^{-1} + 2i\rho I^{-1}O^{-1} \right] R_L O^{-1}$$

$$R_L^{-1} = R^{-1} + B - L$$

$$B = B^* \implies L - L^* = 2i\rho I^{-1}O^{-1} \text{ or } P = \rho \frac{1}{G^2 + F^2}$$

$$R_{c'c} = (c' | \left[ H + \mathscr{L} - E \right]^{-1} | c) = \sum_{\lambda} \frac{\gamma_{c'\lambda}\gamma_{c\lambda}}{E_{\lambda} - E}$$

• Unitarity requires B real

EST. 1943

- Energy independent level  $E_\lambda$  and reduced width  $\gamma_{c\lambda}$  require B constant
- Unitarity is lost if  $B = \mathcal{S}(E)$  with constant  $E_{\lambda}$ ,  $\gamma_{c\lambda}$

### Unitarity constraint on T matrix

$$\begin{cases} \delta_{fi} &= \sum_{n} S_{fn}^{\dagger} S_{ni} \\ S_{fi} &= \delta_{fi} + 2i\rho_{f} T_{fi} \\ \rho_{n} &= \delta(H_{0} - E_{n}) \end{cases} \end{cases} T_{fi} - T_{fi}^{\dagger} = 2i \sum_{n} T_{fn}^{\dagger} \rho_{n} T_{ni} \end{cases}$$

NB: unitarity implies optical theorem  $\sigma_{tot} = \frac{4\pi}{k} \text{Im } f(0)$ ; but not just the O.T.

#### Implications of unitarity constraint on transition matrix

- Doesn't uniquely determine T<sub>ii</sub>; highly restrictive, however 1. Elastic: Im  $T_{11}^{-1} = -\rho_1$ ,  $E < E_2$  (assuming T & P invariance) Multichannel: Im  $\mathbf{T}^{-1} = -\boldsymbol{\rho}$
- 2. Unitarity violating transformations

  - cannot scale **any** set:  $T_{ij} \rightarrow \alpha_{ij}T_{ij}$   $\alpha_{ij} \in \mathbb{R}$  cannot rotate **any** set:  $T_{ij} \rightarrow e^{i\theta_{ij}}T_{ij}$   $\theta_{ij} \in \mathbb{R}$
  - $\star$  consequence of linear 'LHS'  $\propto$  quadratic 'RHS'
- Unitary parametrizations of data provide constraints that experiment may violate 3.





### Channel radius as **regulator** of the theory

Simple example: single channel, s-wave, neutral

$$S = O^{-1}I + 2i\rho O^{-1}R_L O^{-1}, \qquad B = 0, \rho = ka$$
$$= e^{-2i\rho} \frac{1 + i\rho R}{1 - i\rho R}$$
$$\frac{\partial S}{\partial a} = 0 \implies 0 = \rho R'(\rho) + R(\rho) - \rho^2 R^2(\rho) - 1$$
$$R(\rho) = \rho^{-1} \tan\left(\rho + f(k)\right)$$

 $\Box$  f(k) is a familiar function – the phase shift

$$f(k) = \delta(k)$$



### Complete transition (T) matrix

Wolfenstein formalism

EST. 1943

$$\left\langle O_{f} \right\rangle = \frac{1}{\operatorname{Tr}(\rho_{f})} \operatorname{Tr}(\rho_{f}O_{f}) = \frac{1}{\operatorname{Tr}(\rho_{f})} \operatorname{Tr}(M\rho_{i}M^{\dagger}O_{f}),$$
  
 $\rho = aa^{\dagger}, \text{ and } a_{f} = Ma_{i}.$ 

Using the expansion 
$$\rho_i = \frac{1}{\operatorname{Tr}(\mathbb{1}_i)} \sum_i \langle O_i \rangle O_i,$$

and defining  $\text{Tr}(\rho_f) = \sigma_0(\theta)$  gives finally



Lincoln Wolfenstein 1923-2015

$$\sigma_0(\theta) \left\langle O_f \right\rangle = \frac{1}{\mathrm{Tr}(\mathbb{I}_i)} \sum_i \left\langle O_i \right\rangle \mathrm{Tr}(MO_i M^{\dagger}O_f), \quad \begin{cases} O_i = O_1 \otimes O_2 \\ O_f = O_3 \otimes O_4 \end{cases}$$

$$M_{fi} = \frac{4\pi}{k_i} \left\langle \phi_{s'}^{\mu'} \left| \hat{T} \right| \phi_s^{\mu} \right\rangle = \frac{4\pi}{k_i} \sum_{JMI'l} \left\langle \phi_{s'}^{\mu'} \left| \mathcal{Y}_{Js'l'}^M \right\rangle T_{s'l',sl}^J \left\langle \mathcal{Y}_{Jsl}^M \right| \phi_s^{\mu} \right\rangle.$$

### Relativistic forms of EDA

$$R = \sum_{\lambda} \frac{\gamma_{\lambda} \gamma_{\lambda}^{T}}{E_{\lambda}(s) - E(s)},$$
  

$$s = (p_{1} + p_{2})^{2} = (p_{3} + p_{4})^{2} = (\mathcal{E}_{rel} + M)^{2}.$$
  
Forms for  $E_{(\lambda)}(s)$ :  
a)  $\sqrt{s} - M = \mathcal{E}_{rel}$   
b)  $\frac{s - M^{2}}{2M} = \left(1 + \frac{\mathcal{E}_{rel}}{2M}\right) \mathcal{E}_{rel}$   
c)  $\frac{(s - M^{2})(s - \Delta^{2})}{8s\mu}$  (Layson)  
d)  $\mathcal{E}_{nr}$  (norel=1)  

$$\begin{cases}M = m_{1} + m_{2} \\\Delta = m_{1} - m_{2} \\\mu = \frac{m_{1}m_{2}}{m_{1} + m_{2}}\end{cases}$$



### Relativistic form: not a luxury

Here is an example from the <sup>17</sup>O system: There is a narrow  $3/2^+$  resonance at  $E_n = 3.0071$  MeV having a c.m width of 0.33 keV. Relativistically, this resonance would show up at a laboratory  $\alpha$ -energy of  $E_{\alpha} = 0.802717$  MeV. Non-relativistically, it would be at 0.803041 MeV. So, the difference is 0.324 keV, or 0.248 keV in the c.m., which is a significant fraction of the width of this resonance.





### **EM Transitions and Photon Channels**

Assume that in the one-photon sector of Fock space, a "wave function" is associated with the vector potential

$$\mathbf{A}_{\mathbf{k}}(\mathbf{r}) = \sqrt{\frac{2}{\pi\hbar c}} \sum_{jm} i^{j} \left[ \alpha_{jm}^{(e)} \mathbf{A}_{jm}^{(e)}(\mathbf{r}) + \alpha_{jm}^{(m)} \mathbf{A}_{jm}^{(m)}(\mathbf{r}) \right],$$
  
$$\mathbf{A}_{jm}^{(e)}(\mathbf{r}) = \frac{1}{r} \left[ u_{ee}^{j}(\rho) \mathbf{Y}_{jm}^{(e)}(\hat{\mathbf{r}}) + u_{0e}^{j}(\rho) \mathbf{Y}_{jm}^{(0)}(\hat{\mathbf{r}}) \right], \text{ parity}=(-1)^{j},$$
  
$$\mathbf{A}_{jm}^{(m)}(\mathbf{r}) = \frac{1}{r} u_{mm}^{j}(\rho) \mathbf{Y}_{jm}^{(m)}(\hat{\mathbf{r}}), \text{ parity}=(-1)^{j+1}.$$

The physical radial functions have the asymptotic forms

$$u_{ii}^{j}(\rho) = F_{j}^{(i)} + O_{j}^{(i)}t_{ii}^{j} \quad (i = e, m),$$
  
with  $O_{j}^{(m)} = h_{j}^{+}(\rho), \ O_{j}^{(e)} = -\partial_{\rho}h_{j}^{+}(\rho), \text{ and } F_{j}^{(i)} = \text{Im}O_{j}^{(i)}.$ 

In the usual approach,  $O_j^{(e)} = O_j^{(m)} = h_j^+(\rho)$ .



### Scheme and Properties of the EDA Code

### Energy Dependent Analysis Code



- Accommodates general (spins, masses, charges) two-body channels
- Uses relativistic kinematics and R-matrix formulation
- Calculates general scattering observables for 2→2 processes
- Has rather general data-handling capabilities (but not as general as, e.g., SAMMY)
- Uses modified variable-metric algorithm that gives parameter covariances at a solution



### Uncertainties from Chi-Squared Minimization

$$\chi^{2}_{\text{EDA}} = \sum_{i} \left[ \frac{nX_{i}(\mathbf{p}) - R_{i}}{\Delta R_{i}} \right]^{2} + \left[ \frac{nS - 1}{\Delta S / S} \right]^{2}$$

 $\begin{cases} R_i, \Delta R_i = \text{relative measurement, uncertainty} \\ S, \Delta S = \text{experimental scale, uncertainty} \\ X_i(\mathbf{p}) = \text{observable calc. from res. pars. } \mathbf{p} \\ n = \text{normalization parameter} \end{cases}$ 

Near a minimum of the chi-squared function at  $\mathbf{p} = \mathbf{p}_0$ ,

The parameter covariance matrix is  $C_0 = 2G_0^{-1}$ , and so first-order error propagation gives for the cross-section covariances

$$\operatorname{cov}[\sigma_{i}(E)\sigma_{j}(E')] = \left[\nabla_{p}\sigma_{i}(E)\right]^{T} \mathbf{C}_{0}\left[\nabla_{p}\sigma_{j}(E')\right]_{p=p_{0}}$$
$$= \Delta\sigma_{i}(E)\Delta\sigma_{j}(E')\rho_{ij}(E,E').$$

### Parameter confidence intervals

It was proposed by Y. Avni [*Ap. J.* **210**, 642 (1976)] to define confidence intervals for the parameters of a fit by the condition

$$\Delta \chi^2 = \frac{1}{2} \Delta \mathbf{p}^{\mathrm{T}} \mathbf{G}_0 \Delta \mathbf{p} \le \Delta \chi^2_{\mathrm{max}}$$

where  $\Delta \chi^2_{\text{max}}$  is chosen to give a particular confidence level (CL)

$$P(\Delta \chi^2 | k) = \left[ 2^{\frac{k}{2}} \Gamma(\frac{k}{2}) \right]^{-1} \int_{0}^{\Delta \chi^2_{\text{max}}} t^{\frac{k}{2} - 1} e^{-\frac{t}{2}} dt = \text{CL} \text{ (e.g. } \sim 0.68 \text{ for } 1 - \sigma), \ 0.95 \text{ for } 2 - \sigma, \text{ etc.}$$

for a chi-squared distribution with *k* degrees of freedom. Many statistical analysis (not necessarily physical science) applications use this method to determine parameter uncertainties (usually with CL = 95%, or 2- $\sigma$ ). For CL = 68% (1- $\sigma$ ),  $\Delta \chi^2_{\rm max} \approx k = \langle \Delta \chi^2 \rangle$ . This results in 1- $\sigma$  parameter confidence intervals, \*

$$\Delta p_i \leq \sqrt{2\Delta \chi^2_{\max} H_{ii}} = \sqrt{\Delta \chi^2_{\max} C^0_{ii}} \approx \sqrt{kC^0_{ii}},$$

that are  $\sim \sqrt{k}$  larger than the standard deviations ( $\sigma_{p}$ ).

when the remaining parameters are adjusted to obtain a new chi-square minimum

### <sup>7</sup>Li system analysis

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                        | $\Big ^{2} + \Big[\frac{nS-1}{n}\Big]^{2}$    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| $\frac{t + {}^{4}\text{He}}{n + {}^{6}\text{Li}} = \frac{4.02}{5.0} = \frac{5}{3} \qquad \chi^{2}_{\text{EDA}} = \sum_{i} \left[ \frac{nX_{i}(\mathbf{p}) - R_{i}}{\Delta R_{i}} \right]^{2}$ | $\Big ^{2} + \Big[\frac{nS-1}{nS-1}\Big]^{2}$ |
| $\frac{n+^{6}\text{Li}}{\Delta R} = \sum_{i=1}^{1} \frac{1}{\Delta R}$                                                                                                                        |                                               |
|                                                                                                                                                                                               |                                               |
| $n+^{\circ}L_1$ 5.5 1 i i j                                                                                                                                                                   |                                               |
| $d+{}^{5}\text{He}$ 6.0 0                                                                                                                                                                     |                                               |
| ReactionEnergy Range# Pts.Observables                                                                                                                                                         |                                               |
| <sup>4</sup> He( <i>t</i> , <i>t</i> ) <sup>4</sup> He $E_t = 0 - 14$ 1661 $\sigma(\theta), A_v(t)$                                                                                           |                                               |
| <sup>4</sup> He $(t,n)^{6}$ Li $E_t = 8.75 - 14.4$ 37 $\sigma_{int}, \sigma(\theta)$                                                                                                          |                                               |
| ${}^{4}\text{He}(t,n){}^{6}\text{Li}^{*}$ $E_{t} = 12.9$ 4 $\sigma(\theta)$                                                                                                                   |                                               |
| <sup>6</sup> Li( <i>n</i> , <i>t</i> ) <sup>4</sup> He $E_n = 0 - 4$ 1406 $\sigma_{int}, \sigma(\theta)$                                                                                      |                                               |
| <sup>6</sup> Li( <i>n</i> , <i>n</i> ) <sup>6</sup> Li $E_n = 0 - 4$ 800 $\sigma_{T}, \sigma_{int}, \sigma(\theta), P_y(n)$                                                                   |                                               |
| $^{6}\text{Li}(n,n')^{6}\text{Li}^{*}$ $E_{n} = 3.35 - 4$ 8 $\sigma_{\text{int}}$                                                                                                             |                                               |
| <sup>6</sup> Li( <i>n</i> , <i>d</i> ) <sup>5</sup> He $E_n = 3.35 - 4$ 2 $\sigma_{int}$                                                                                                      |                                               |
| Total 3918 13                                                                                                                                                                                 |                                               |

The EDA **R**-matrix analysis included data for all reactions open in the <sup>7</sup>Li system at energies up to  $E_n = 4$  MeV ( $E_x=10.7$  MeV). The data set, which included more than 3900 experimental points, is summarized in Table I. The  $\chi^2$  per degree of freedom for the analysis is 1.36. The original experimental uncertainties were not changed, but outlier points having  $\chi^2 > 10$  were discarded from the fit.



### Angular distributions: <sup>4</sup>He(t,t) DCS



### Angular distributions: <sup>4</sup>He(t,t) DCS



## Angular distributions: <sup>4</sup>He(t,t) DCS & A<sub>y</sub>



## Angular distributions: <sup>4</sup>He(t,t) DCS & A<sub>y</sub>



### Angular distributions: <sup>4</sup>He(t,n) & <sup>6</sup>Li(n,t) DCS



### Angular distributions: <sup>6</sup>Li(n,n) DCS



### Angular distributions: <sup>6</sup>Li(n,n) A<sub>y</sub>



<sup>7</sup>Be System Analysis

|                                                                   | Channel                          | I <sub>max</sub> | a <sub>c</sub> (fm) |                  |
|-------------------------------------------------------------------|----------------------------------|------------------|---------------------|------------------|
|                                                                   | <sup>3</sup> He+ <sup>4</sup> He | 4                | 4.4                 |                  |
|                                                                   | p+ <sup>6</sup> Li               | 1                | 3.1                 |                  |
|                                                                   | γ+ <sup>7</sup> Be               | 1                | 50                  |                  |
| Reaction                                                          | Energy<br>(Mo                    | / range<br>eV)   | # obs.<br>types     | # data<br>points |
| <sup>4</sup> He( <sup>3</sup> He, <sup>3</sup> He) <sup>4</sup> H | le E <sub>3He</sub> = 1          | .7-10.8          | 2                   | 1487             |
| <sup>4</sup> He( <sup>3</sup> He,p) <sup>6</sup> Li               | E <sub>3He</sub> = 8             | .2-10.8          | 1                   | 130              |
| <sup>4</sup> He( <sup>3</sup> He,γ) <sup>7</sup> Be               | $E_{3He} = 0$                    | -2.2             | 1                   | 40               |
| <sup>6</sup> Li(p, <sup>3</sup> He) <sup>4</sup> He               | E <sub>p</sub> = 0-2             | .7               | 2                   | 488              |
| <sup>6</sup> Li(p,p) <sup>6</sup> Li                              | E <sub>p</sub> = 1.2             | -2.5             | 1                   | 187              |
| <sup>6</sup> Li(p,γ) <sup>7</sup> Be                              | E <sub>p</sub> = 0-1             | .2               | 1                   | 28               |
| Totals                                                            |                                  |                  | 8                   | 2360             |



### Example: <sup>3</sup>He+<sup>4</sup>He Scattering



### **Resonances in the Cross Sections**

NATIONAL

EST. 1943



<sup>17</sup>O System Analysis

|                                      | Channel                | a <sub>c</sub> (fm) | I <sub>max</sub> |                                                 |
|--------------------------------------|------------------------|---------------------|------------------|-------------------------------------------------|
|                                      | n+ <sup>16</sup> O     | 4.3                 | 4                |                                                 |
|                                      | α+ <sup>13</sup> C     | 5.4                 | 5                |                                                 |
| Reaction                             | Energies<br>(MeV)      | # dat<br>point      | a<br>ts          | Data types                                      |
| <sup>16</sup> O(n,n) <sup>16</sup> O | $E_n = 0 - 7$          | 271                 | 8 c              | $σ_{T}$ , $\sigma(\theta)$ , $P_{n}(\theta)$    |
| <sup>16</sup> O(n,α) <sup>13</sup> C | $E_n = 2.35 - 100$     | 5 85                | 0 σ              | $i_{\text{int}}, \sigma(\theta), A_{n}(\theta)$ |
| <sup>13</sup> C(α,n) <sup>16</sup> O | $E_{\alpha} = 0 - 5.4$ | 87                  | 4                | $\sigma_{\text{int}}$                           |
| $^{13}C(\alpha, \alpha)^{13}C$       | $E_{\alpha} = 2 - 5.7$ | 129                 | 6                | σ(θ)                                            |
| total                                |                        | 573                 | 8                | 8                                               |



# <sup>17</sup>O System: comparison with data







### Recent development in EDA5 capability



• R-matrix fit to 20 MeV: 6 partitions; 93 channels; largest analysis •  $n_{13}^{13}C, n_{1}^{13}C^*, n_{2}^{13}C^*, \alpha^{10}Be, n_{3}^{13}C^*, nn^{12}C$ 

**N**S

EST. 1943

### **EDA6: modern Fortran implementation**

#### Improved physics capabilities

- Enlarge channel space to extend energy range to >20 MeV
- Hyperspherical approach to multiparticle break-up (total x-sec.)

#### Data handling

- Automated/integrated with CSISRS/EXFOR c4/c5 format
- Data covariance standardization
- Fitting
  - Data covariance
  - Bayesian event-based maximum likelihood approach
- Exchange
  - ENDF-6 format/ACE/NDI/...
  - Resonance parameters: Brune alternative; T-matrix poles



### Brune parameters vs. T-matrix poles

The Brune parameters are useful for exchange purposes

$$\boldsymbol{\mathcal{E}} = \boldsymbol{e} - \sum_{c} \boldsymbol{\gamma}_{c} \boldsymbol{\gamma}_{c}^{T} (\boldsymbol{S}_{c} - \boldsymbol{B}_{c}), \qquad \boldsymbol{\mathcal{E}} \boldsymbol{a}_{i} = \boldsymbol{\widetilde{E}}_{i} \boldsymbol{a}_{i}$$

But they depend on the channel radii; EDA & AMUR allow these to float
 As a check of the observable equivalence of various analyses, finding the poles of the T-matrix isn't much more difficult

det 
$$A(E)\Big|_{E=\{E_R\}} = 0$$
  $A_{\lambda'\lambda}^{-1} = E_{\lambda}\delta_{\lambda'\lambda} + \Delta_{\lambda'\lambda} - i\Gamma_{\lambda'\lambda} - E\delta_{\lambda'\lambda}$ 

#### ENDF-6 format

- Brune parameters (LRP=1, LRF=7): can be used to compute observables
- □ T-matrix poles (LRP=2, LRF=7): are used for analysis comparisons