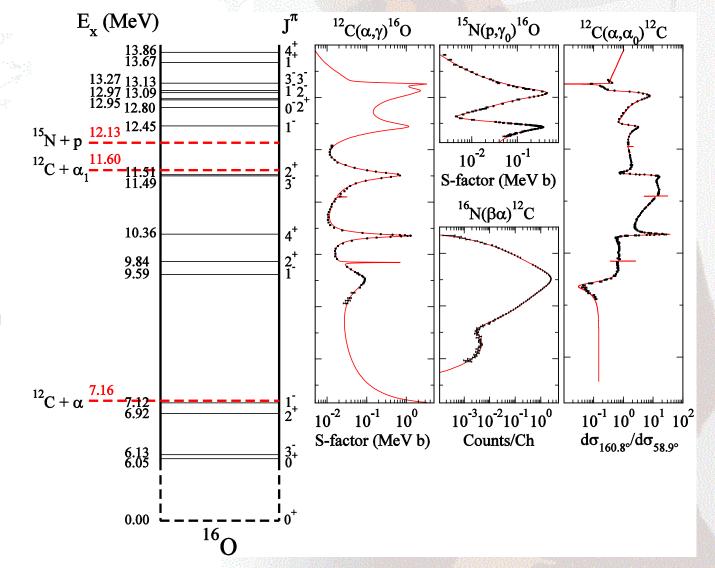

R-matrix needs in Nuclear Astrophysics

James deBoer


Vienna, December 2016

Stellar modelers desire this cross section to an accuracy of about 10% at 300 keV, we are currently at about 15%

Want a theory that can combine nuclear structure with nuclear reaction data

- Would like ab initio or other model with more nuclear information built in, but all these are no accurate enough
- Phenomenological R-matrix
 - Can combine all kinds of compound nucleus reaction data
 - Can use transfer reactions to probe properties of states inaccessible to CN reactions

PHYSICAL REVIEW C 81, 045805 (2010)

AZURE: An *R*-matrix code for nuclear astrophysics

 R. E. Azuma,^{1,2} E. Uberseder,^{2,*} E. C. Simpson,^{2,3} C. R. Brune,⁴ H. Costantini,^{2,5} R. J. de Boer,² J. Görres,² M. Heil,⁶ P. J. LeBlanc,² C. Ugalde,^{2,†} and M. Wiescher²
 ¹Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
 ²University of Notre Dame, Department of Physics, Notre Dame, Indiana 46556, USA
 ³Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
 ⁴Department of Physics and Astronomy, Ohio University, Ohio 45701, USA
 ⁵Istituto Nazionale Fisica Nucleare (INFN), Genova, Italy
 ⁶GSI Darmstadt, Planckstr. 1, 64291 Darmstadt, Germany (Received 11 January 2010; published 26 April 2010)

- A reliable benchmark for *R*-matrix analyses for low-mass charged particle (capture) reactions
- Open source (azure.nd.edu)

What AZURE2 can calculate

- Charged particle and neutron partitions
- Capture reaction (x, gamma)
- Multi-level multi-channel
 - To a large number (???)
- Angle integrated cross sections
- Differential cross sections
 - Phase shifts

$$\frac{d\sigma_{\alpha,\alpha'}}{d\Omega_{\alpha'}} = \frac{1}{(2J_{\alpha_1}+1)(2J_{\alpha_2}+1)} \sum_{ss'} (2s+1) \frac{d\sigma_{\alpha s,\alpha' s'}}{d\Omega_{\alpha'}}$$
(23)

where

$$(2s+1)\frac{k_{\alpha}^{2}}{\pi}\frac{d\sigma_{\alpha s,\alpha' s'}}{d\Omega_{\alpha'}} =$$

$$(2s+1)|C_{\alpha'}(\theta_{\alpha'})|^{2}\delta_{\alpha s,\alpha' s'} + \frac{1}{\pi}\sum_{L}B_{L}(\alpha s,\alpha' s')$$

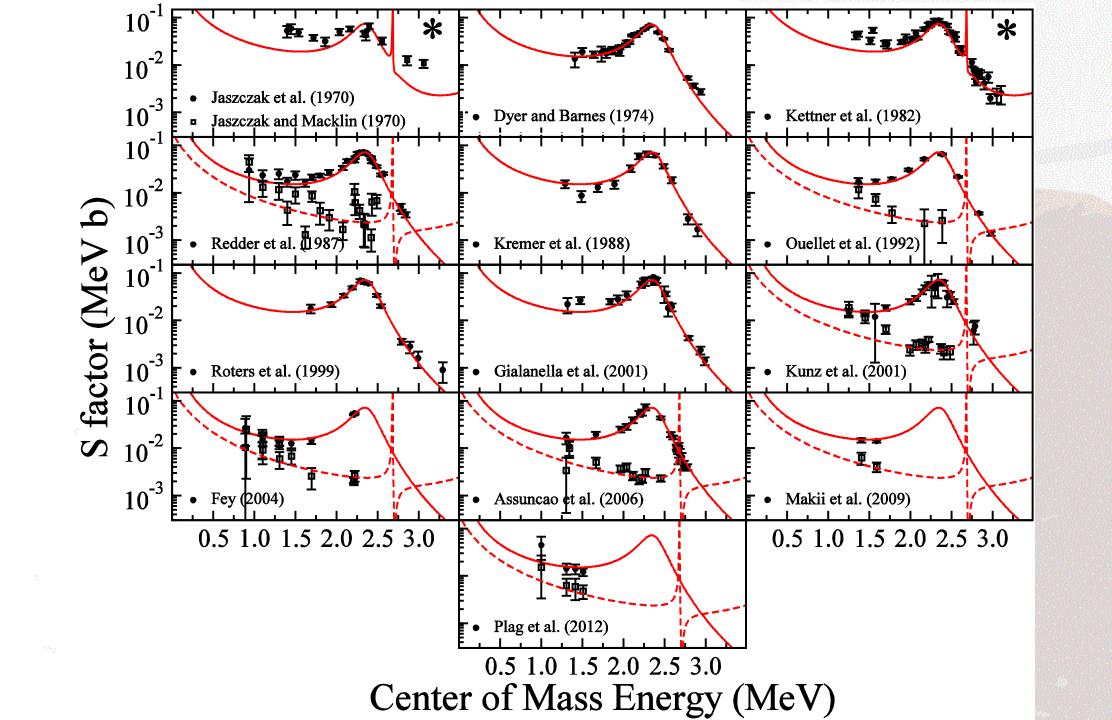
$$\times P_{L}(\cos\theta_{\alpha'}) + \delta_{\alpha s,\alpha' s'}(4\pi)^{-1/2}\sum_{Jl}(2J+1)$$

$$\times 2\operatorname{Re}\left[i(T_{c'c}^{J})^{*}C_{\alpha'}(\theta')P_{l}(\cos\theta_{\alpha'})\right],$$

$$(24)$$

and then

$$B_L(\alpha s, \alpha' s') = \frac{(-1)^{s-s'}}{4} \sum_{J_1 J_2 L_1 l_2 l'_1 l'_2} \bar{Z}(l_1 J_1 l_2 J_2, sL)$$
(25)

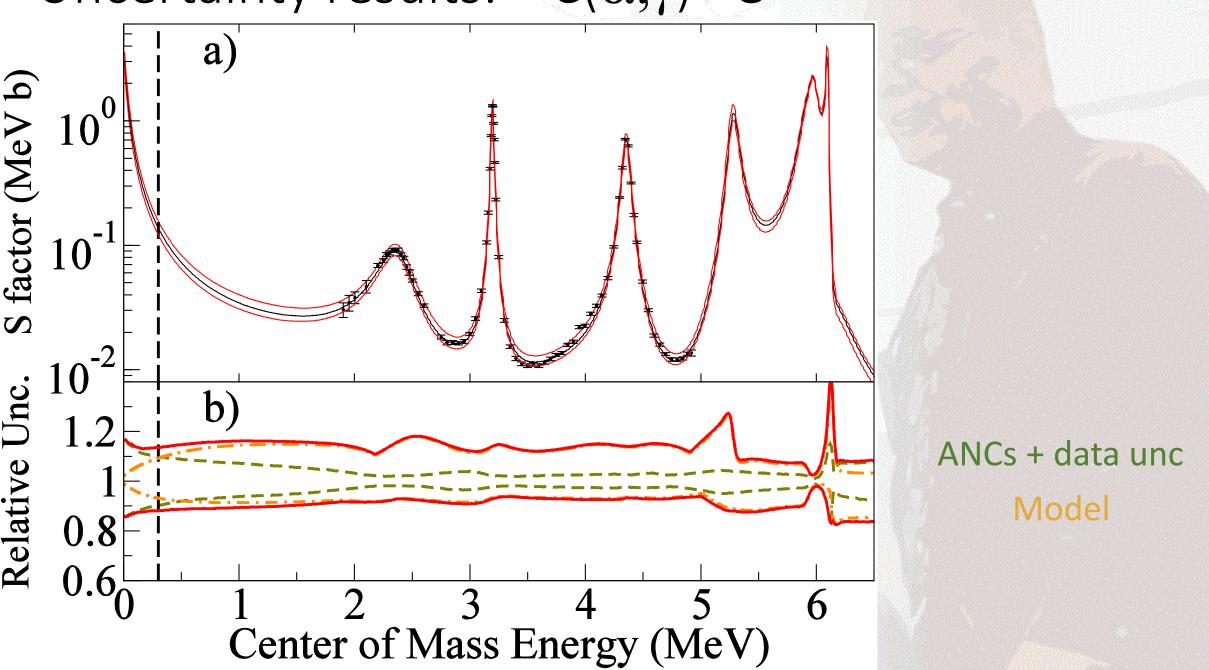

$$\times \bar{Z}(l_1'J_1l_2'J_2, s'L)(T^{J_1}_{\alpha's'l_1',\alpha sl'})(T^{J_2}_{\alpha's'l_2',\alpha sl_2})^*$$

 and

 $\bar{Z}(l_1 J_1 l_2 J_2, sL) =$ $((2l_1 + 1)(2l_2 + 1)(2J_1 + 1)(2J_2 + 1))^{1/2}$ $\times (l_1 0 l_2 0 | L 0) W(l_1 J_1 l_2 J_2; sL).$ (26)

What are the main uncertainties?

- Nuclear data
 - Poorly defined uncertainties
 - Conflicting data
 - Not enough documentation
- Model uncertainties
 - Channel radius
 - Background poles
 - Interference pattern
- Uncertainty is usually NOT dominated by statistics, can't really give confidence intervals since PDF of other uncertainties are unknown



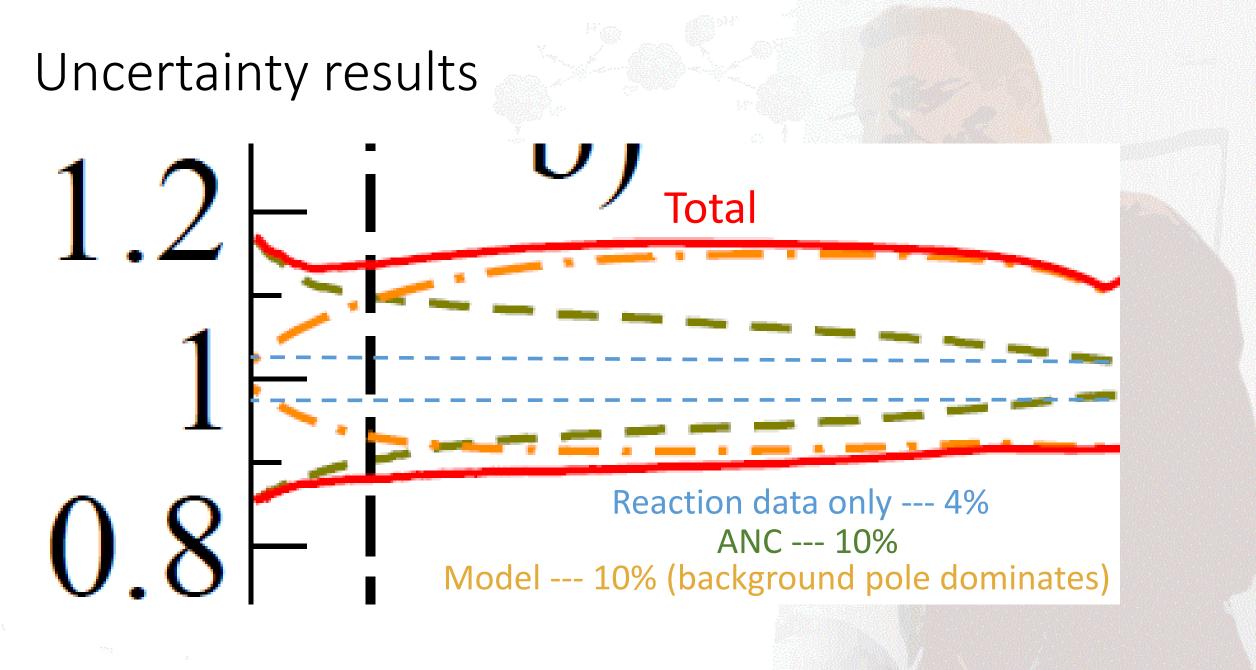
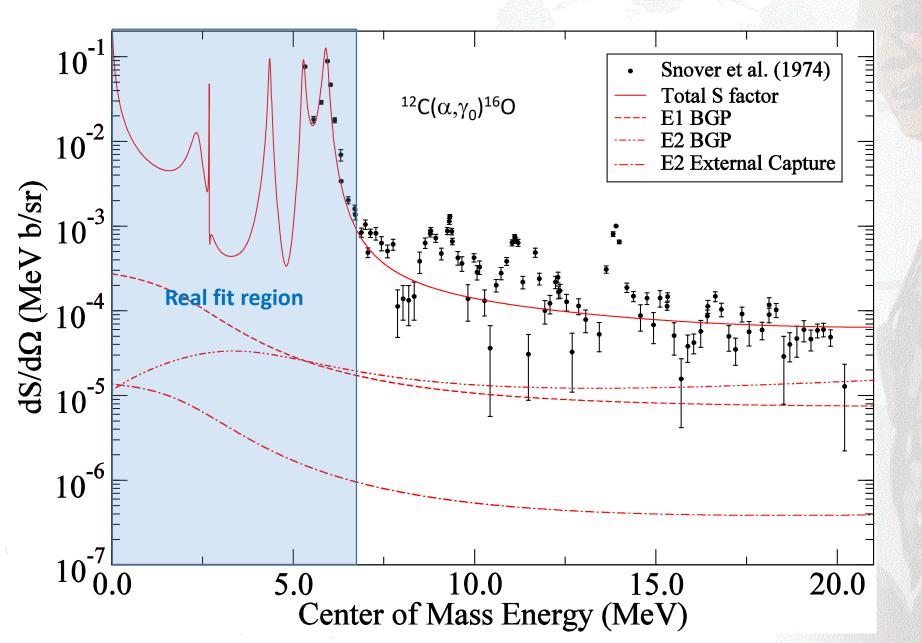
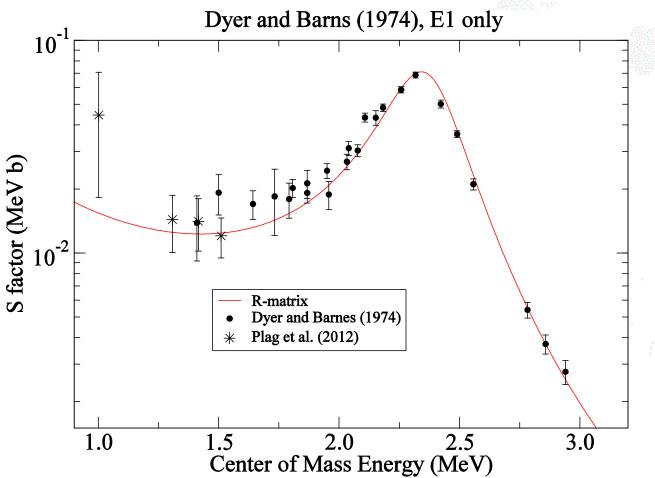

Diverse sets of experiments

TABLE I Summary of target details for different $^{12}\mathrm{C}(\alpha,\gamma)^{16}\mathrm{O}$ experiments.


Ref.	Target	Backing	Thickness	¹³ C depletion or gas purity
Larson and Spear (1964)	cracking acetylene	Ta (0.025 cm)	96 μ g/cm ² and thinner	factor of 10^{-13} C depletion
Jaszczak et al. (1970)	cracking of acetylene	Ta (0.025 cm)	$98-178 \ \mu g/cm^2$	99.94% ¹² C
Dyer and Barnes (1974)	cracking of methyl alcohol	Ta (0.008 cm)	$150-200 \ \mu g/cm^2$	99.945% ¹² C
Kettner et al. (1982)	He gas target		10 Torr	<1 ppm
Redder <i>et al.</i> (1987)	ion implantation	Au	80 keV at $2.68 MeV$	$^{13}C/^{12}C\approx 10^{-4}$
Kremer <i>et al.</i> (1988)	He gas target		$3.6(2) \ \mu g/cm^2$	recoil separator
Ouellet et al. (1996, 1992)	ion implantation	Au	$3-5\times10^{18}$ atoms/cm ²	factor of 10^{3} ¹³ C depletion
Roters <i>et al.</i> (1999)	He gas target		9.1 Torr	0.0001%
Gialanella et al. (2001)	He gas target		20 Torr	0.0001%
Kunz et al. (2001)	ion implantation	Au	$2-3 \times 10^{18} \text{ atoms/cm}^2$	factor of 10^3 ¹³ C depletion
Fey (2004)	ion deposition	Au	$\approx 2 \times 10^{18} \text{ atoms/cm}^2$	
Schürmann et al. (2005)	He gas target		$4.21(14) \times 10^{17} \text{ atoms/cm}^2$	recoil separator
Assunção et al. (2006)	ion implantation	Au	$0.5 - 11 \times 10^{18} \text{ atoms/cm}^2$	factor of 10^{3} 13 C depletion
Matei <i>et al.</i> (2006)	He gas target		4-8 Torr	recoil separator
Makii et al. (2009)	cracking of methane gas	Au	$250-400 \ \mu g/cm^2$	99.95% ¹² C
Schürmann et al. (2011)	He gas target		$4 \times 10^{17} \text{ atoms/cm}^2$	recoil separator
Plag et al. (2012)	ion deposition	Au	$30\text{-}120 \ \mu\text{g/cm}^2$	$^{13}\mathrm{C}/^{12}\mathrm{C}{<}10^{-4}$

Uncertainty results: ${}^{12}C(\alpha,\gamma){}^{16}O$



Fitting to higher energy

The way forward?

- Direct measurements are becoming more and more difficult
 - Underground
 - Heavy shielding
 - Large target and geometry corrections
- Indirect measurements are at a limit with their own model uncertainties
 - (⁶Li,d) sub-Coulomb transfer

common goals

- Improve quality of data
 - High precision and accurate scattering cross sections
 - Useful for multi-channel R-matrix fit
 - Arguably even more useful as a way to normalize capture data
 - Library of R-matrix calculations
 - Large data bases necessary to help build up these calculations
 - Contributions from several people over many years
 - Not many Gerry Hales out there
- Fitting to higher energy
 - Reduce background pole contribution uncertainty
 - Largest single uncertainty in ${}^{12}C(\alpha,\gamma){}^{16}O$ extrapolation
 - Hard to do as level density increases
 - Three body reaction channels open

2016 R-matrix workshop on methods and applications

- Organizers
 - Co-chairs --- Mark Paris (LANL) and myself (UND)
 - Goran Arbanas (ORNL), Carl Brune (OU), Ian Thompson (LLNL), Gerry Hale (LANL), and Morgan White (LANL)
- Goal: Bring together people from across the field of nuclear physics who utilize *R*-matrix in order to share ideas
 - Nuclear astrophysics
 - Nuclear structure
 - Nuclear application

Stats

- Monday 9 AM to Friday noon, June 27 to July 1, 2016
- The Inn and Spa at Loretto, Santa Fe, NM
- About 50 participants in the end
 - Some additional LANL folks "crashed" in the second half of the workshop
- Overview Talks
 - Gerry Hale, R-matrix history
 - Ian Thompson, Basic R-matrix theory intro
 - Goran Arbanas, SAMMY
 - Mark Paris, EDA
 - Myself, AZURE2 demo
- 33 talks total, 30 minutes each

Thank you Satoshi!

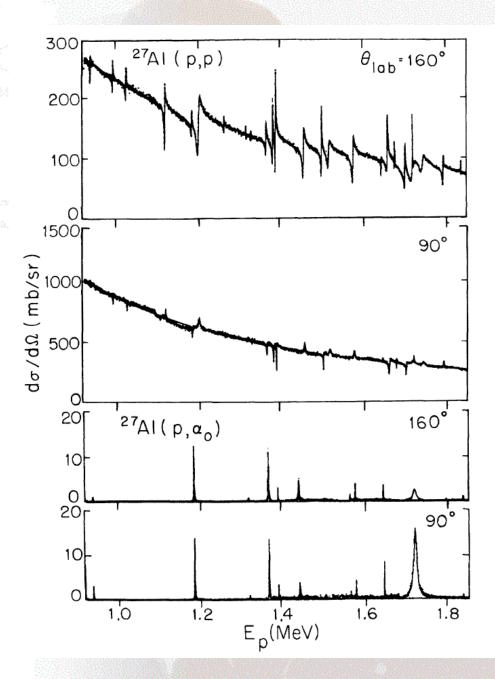
Some points made

- Hybrid R-matrix must be done with care to retain unitarity
 - Imaginary potential terms and other improper treatments I don't remember
 - Just adding in flat background!
- Desire for standardized data analysis (Morgan White)
 - Systematic uncertainties dominate
 - Better records of experimental data, even down to the original spectra
 - More standardized codes?
 - I think this is a big issue at the University level, broad distribution of experience level
 - Varies greatly within the nuclear astrophysics community

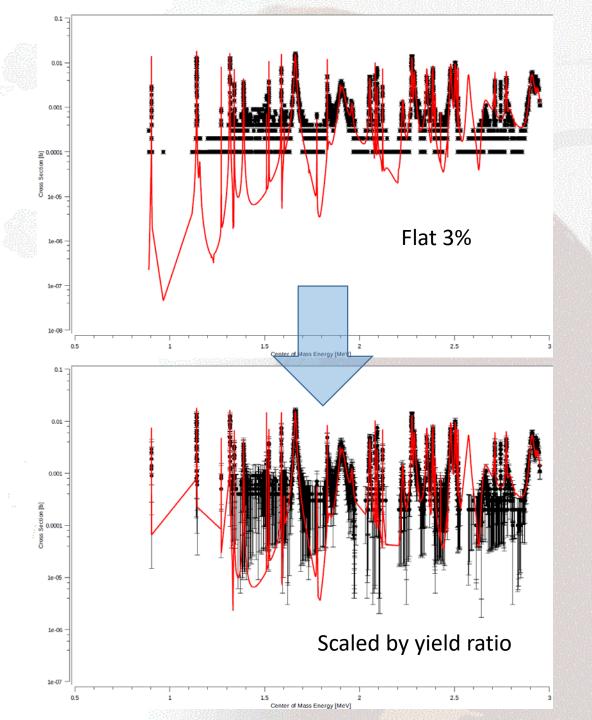
Interesting topics I came away with

- 3 body exit channel reactions
- Fission exit channel
- Advanced uncertainty analysis
- Hybrid theories that transition from the resolved to unresolved resonance regions
- Charged particle R-matrix analysis seeing more attention

Issue with file format?


- Why only one entrance channel for ENDF format?
- Could this lead to inconsistent R-matrix parameter files?
- Ex. --- 170 compound nucleus
 - 160+n file
 - 13C+a file
 - Sometimes people use only subsets of the data
 - Already an issue because many 160+n analyses lack 13C(α, α) data in their fits
- One file per compound nucleus

- Problem with further analysis of data: Resonance energies in Nelson et al. don't match resonance in excitation curves
- Fix: linear or quadratic energy recalibration based on well known resonances
 - 992 and 1800 keV (plus others)
- Also, uncertainties are not given, how should these be handled?


Uncertainty treatment

- Nelson says uncertainties on points are about 3%
 - This probably only applies to the scattering data
 - 3% → 1000 counts in scattering peak, probably more like 1 to 2% usually (1% → 10,000)
 - But this does not apply to other reaction channel data
- (p,p) data have cross sections of about 100's to a few 10's of mb/sr, (p,a0) cross sections range from always less than 20 mb/sr, usually much less

One suggestion

- If stats dominate uncertainty, scale uncertainty on other channels assuming 3% uncertainty for scattering points
 - $Y = \sigma N_t N_b \epsilon$,
 - %unc ~ 1/sqrt(Y)
 - Measurements made simultaneously
 - $%unc_{reac}/%unc_{scat} \approx sqrt(Y_{scat}/Y_{reac})$

