URR measurements, evaluation, and testing for tantalum

Y. DANON, J. BROWN*

Gaerttner LINAC Center Department of Mechanical, Aerospace and Nuclear Engineering Rensselaer Polytechnic Institute, Troy, NY, 12180

*Now at Oak Ridge National Laboratory

IAEA TM INDEN on resonance parameters of actinides, October 21-24, 2019

Motivation

- Tantalum was chosen:
 - On NCSP list of nuclear data needs
 - Single isotope and thus easier analysis
 - Has some cross section fluctuations in the URR
 - Similar to some actinides
- Develop methodology to test the URR self shielding accuracy
- The validation method can be used for actinides such as U-238 and U-235.

Motivation: LSDS capture rate measurements

- Discrepant evaluated libraries
- Lead Slowing Down Spectrometer (LSDS) study: Discrepancies between libraries in simulated capture rate

URR options

- LSSF=0 (what we used for Ta)
 - File 2 URR parameters
 - Used to generate probability tables (or self-shielding factors)
 - File 3 background cross section (zero here)
 - Cross section = (File 2 generated cross section) + (File 3)
- LSSF=1
 - File 2 URR parameters
 - Used to calculated self-shielding factor SF= <F2 shielded>/<F2 not shielded>
 - File 3 Gross structure infinite dilution cross section
 - Cross section = SF x (File 3) (fixes the energy grid)
- Probability tables and self-shielding factors are generated in application codes
 - Used NJOY 21 (LSSF=0) + MCNP 6.1

The big picture

Detectors and Measurements

MELINDA (100m)

⁶Li glass (35m)

$C_6 D_6$ Detector (45m)

Highest energy

Low neutron

sensitivity

at RPI

resolution for capture

Designed with digital

acquisition system

- High energy resolution
- Fast timing
- Large active detector area
- Data-processing well understood

Rensselaer

- Relatively good energy resolution
- Fast timing
- Shorter flight-path enables greater count rate
- Better count rate allowsfreedom of neutrontargets

Data to Evaluate

- ¹⁸¹Ta Evaluation Datasets:
- Capture Yield: 1 and 2 mm
- Transmission: 1, 3, and 6 mm

SAMMY Evaluation

Gaerttner LINAC Center

Data to Evaluate: RRR (one example) End of ENDF/B-VIII.0 RRR:

- 304 eV resonance updated
- Transmission and capture yield are well resolved

Validation transmission data

- ¹⁸¹Ta Validation Dataset:
 - Transmission: 12 mm
 - ²³⁸U verification dataset

Transmission for validation

⁶Li doped scintillating glass detector

• 2 PMT's viewing a light tight aluminum case

URR Transmission Enhancement Math

Neutron transmission through a sample: $T(E) = e^{-n\sigma_t(E)}$ The "true" average transmission from energy E_1 to E_2

$$\langle T \rangle = \frac{1}{E_2 - E_1} \int_{E_1}^{E_2} e^{-n\sigma_t(E)} dE = \frac{1}{E_2 - E_1} \int_{E_1}^{E_2} e^{-n[\sigma_t(E) + \langle \sigma_t \rangle - \langle \sigma_t \rangle]} dE$$

Enhancement due to
$$\sigma_t(E)$$
 fluctuations
 $\langle T \rangle = e^{-n\langle \sigma_t \rangle} \frac{1}{E_2 - E_1} \int_{E_1}^{E_2} e^{-n[\sigma_t(E) - \langle \sigma_t \rangle]} dE$ Note: positive and negative contributions
 $\operatorname{sft}(E) = \frac{1}{E_2 - E_1} \int_{E_1}^{E_2} e^{-n[\sigma_t(E) - \langle \sigma_t \rangle]} dE$ $\overline{T} = e^{-n\langle \sigma_t \rangle}$ Self-shielded
 $\langle T \rangle = \overline{T} * sft(E)$ where $\operatorname{sft}(E) > 1, \rightarrow \langle T \rangle > \overline{T} \rightarrow \langle \sigma_t \rangle < \overline{\sigma_t}$

NAVAL NUCLEA

12

Evaluation procedure must preserve the fluctuations of $\sigma_t(E)$

ensselaer

URR Transmission Enhancement Example

- Example calculating neutron transmission through a 6 mm Ta sample
- If the cross section was known in high energy resolution, the "true" transmission:

$$\langle T \rangle = \frac{1}{E_2 - E_1} \int_{E_1}^{E_2} e^{-N \cdot \sigma_t(E)} dE = 0.59$$

• If we use only the cross section average
$$\overline{T} = \frac{1}{E_2 - E_1} \int_{E_1}^{E_2} e^{-N \cdot \langle \sigma_t \rangle} dE = e^{-N \cdot \langle \sigma_t \rangle} = 0.51$$

• If we use only the cross section average
$$\overline{T} = \frac{1}{E_2 - E_1} \int_{E_1}^{E_2} e^{-N \cdot \langle \sigma_t \rangle} dE = e^{-N \cdot \langle \sigma_t \rangle} = 0.51$$

- Fluctuations enhance transmission and thus reduce the effective cross section (relative to the average) hence the term self shielding
- When measuring the total cross section with a thick sample a correction for the self shielding is needed.
 - Can use two sample thicknesses \rightarrow
 - Can use a model based approach \rightarrow SESH

Froehner, et al, "Cross-section fluctuations and self-shielding effects in the unresolved resonance region ", International Evaluation Co-operation volume 15 (NEA-WPEC--15), Nuclear Energy Agency of the OECD, NEA, (1995).

Resonance Self-Shielding effect in Ta

- The effect of self shielding is shown by turning off the URR treatment in MCNP
- Near 400 eV self-shielding reduces the transmission by a factor of about 4

Validation Transmission Measurement

Validation Transmission and evaluations

- Transmission for 12 mm sample
 - Grouped to have about 50 resonances per bin
- Observe the limitations of the URR treatment using JEFF-3.3, JENDL-4.0, and ENDF/B-VIII.0

Multi-Region URR

RPI Evaluation: Updated JEFF-3.3

- Updated RRR and URR parameters
- Very sensitive to a_c , D and other $\langle Pars \rangle$
- Using the RPI evaluation we can improve agreement with measured data

Multi-Region URR

- Performs reasonably well compared to thick-sample transmission
- *(Pars)* for each region are less constrained
- Separated parameters do not significantly improve overall shape

Extended RRR fit

RRR parameter fit to 4 keV

- Mughabghab publishes parameters up to 4 keV
- Fit E_{λ} , Γ_{γ} , Γ_n
- No significant improvement

Summary of all evaluations

- Look very similar
 - extended resonance evaluation seems to under predict shelf shielding

Example for U-238

- MCNP simulation
 - Used 17 mm thick sample (can use thicker)
 - The self shielding effect is visible in the URR (E>20 keV)

Conclusions

¹⁸¹Ta

- RRR representation is more accurate for calculating transmission (up to 2.4 keV)
- ENDF/B-VIII.0 needs to be updated
 - RRR treatment for ENDF/B evaluation should be extended (JEFF and JENDL \rightarrow 2.4 keV)
 - URR treatment for ENDF/B evaluation should be extended beyond 5 keV (JEFF and JENDL \rightarrow 100 keV)
- New RPI data provide best resolution to date and can be used to create a better ¹⁸¹Ta evaluation

Transmission Validation

- Thick sample transmission measurement capable of validating the URR and RRR/URR boundary
 - Better targeted for validating the URR than previous high energy benchmark experiments
- Validation transmission is very sensitive to resonance self-shielding, *a_c*, *R'* and other URR parameters
- A novel method that can help improve cross section evaluations that affect criticality

