

Development of Novel Radionuclides for Medical Applications

Syed M. Qaim Research Centre Jülich and University of Cologne, Germany s.m.qaim@fz-juelich.de

Lecture given at the IAEA-Technical Meeting on Nuclear Data for Medical Applications, Vienna, Austria, 10 – 13 December 2018

Outline

- Introduction
- Commonly used radionuclides
- Novel radionuclides
 - non-standard positron emitters
 - novel therapeutic radionuclides
- Novel approaches to production of radionuclides (charged particle, neutron and photon induced reactions)
- New directions in radionuclide applications
- New developments at FZJ regarding radionuclides
- Conclusions and perspectives

Introduction: Radioactivity in Medicine

Diagnostic investigations

- Perfusion rates
- Organ localisation
- Dynamic functional studies, e.g. turnover rates of
 - oxygen glucose fatty acids amino acids
- Receptor occupancy

Studies performed at a molecular level

Radiation dose should be minimum

Radiotherapy

- External radiation therapy (with γ, n, p or heavy ion)
- Internal radionuclide therapy
 - brachytherapy metabolic therapy radioimmunotherapy

Selective specific dose needs to be applied.

Recent Talks and Reviews by S.M. Qaim et al. (FZJ)

Talks

- Int. Workshop on Targetry and Target Chemistry, Prague, August 2014
- 8th Int. Conf. on Isotopes, Chicago, August 2014
- National Workshop on Nuclear Data, Berkeley, May 2015
- European Workshop on Nuclear Data, PSI, November 2015
- Int. Conf. on Nuclear Data, Brugge, September 2016
- 9th Int. Conf. on Isotopes, Doha, November 2017
- Int. Conf. on Reaction Mechanisms, Varenna, June 2018

Reviews

- Uses of alpha particles, RCA **104**, 601 (2016)
- Nuclear data for radionuclide production, NMB **44**, 31 (2017)
- Development of theranostic approach, Pharmaceuticals **10**, 56 (2017)
- Development of novel radionuclides, JLCR **61**, 126 (2018)
- Production of theranostic pairs of radionuclides, JRNC **318**, 1493 (2018)

Radionuclides Commonly used in Nuclear Medicine

JÜLICH FORSCHUNGSZENTRUM

Diagnostic Radionuclides

For SPECT

γ-emitters (100 – 250 keV) ^{99m}Tc, ¹²³I, ²⁰¹TI

(used worldwide)

For PET

 β^+ emitters

¹¹C, ¹³N, ¹⁵O, ¹⁸F,

⁶⁸Ge (⁶⁸Ga), ⁸²Sr (⁸²Rb)

(fast developing technology)

Therapeutic Radionuclides (in-vivo)

- β⁻-emitters (³²P, ⁹⁰Y, ¹³¹I, ¹⁵³Sm, ¹⁷⁷Lu)
- α-emitter (²¹¹At, ²²³Ra)
- Auger electron emitters (¹¹¹In, ¹²⁵I)
- X-ray emitter (¹⁰³Pd)

(increasing significance)

Production methods are generally well developed.

Novel Radionuclides in Medicine

- Non-standard positron emitters
 - to study slow metabolic processes
 - to quantify targeted therapy
- Novel low-range highly ionising radiation emitters for internal radiotherapy
 - for targeted therapy

Continuous development work is underway.

Emphasis is on accelerator-produced metal radionuclides.

Four Pillars of Radionuclide Development Work

- Nuclear data
 - decay properties
 - production cross sections
- High current targetry
- Chemical processing
 - isolation of radionuclide and recovery of enriched target material
- Quality control
 - radionuclidic, radiochemical, chemical, specific activity

Major Considerations in Use of Non-Standard Positron Emitters in PET A.Decay data

- Positron energy generally high; e.g. ¹²⁴I: 2.14 MeV; ⁷⁶Br: 3.94 MeV
- Positron emission intensity low; e.g. ⁶⁴Cu: 17.8 %; ¹²⁴I: 22.0 %
- Energies and intensities of emitted photons; e.g. ⁸⁶Y: 11 γ-rays
 Higher accuracies in decay data are needed

Interference in imaging

(image distortion; low resolution, faulty quantification)

New analytical algorithms need to be developed

B. Reaction data

- Databases need to be strengthened in many cases
- Formation of isomeric states demands detailed studies

Non-Standard Positron Emitters Example: Copper-64 $(T_{\frac{1}{2}} = 12.7 \text{ h}; E_{\beta_{+}} = 0.66 \text{ MeV}; I_{\beta_{+}} = 17.8 \%)$ Production Routes

Nuclear process	Optimum energy range [MeV]	Thick target yield [MBq/µA⋅h]
⁶⁴ Ni(p,n) ⁶⁴ Cu ^{a)}	12 → 8	304 (Most suitable
⁶⁴ Ni(d,2n) ⁶⁴ Cu ^{a)}	17 → 11	430
⁶⁸ Zn(p,αn) ⁶⁴ Cu ^{a)}	30 → 21	116
⁶⁶ Zn(p,2pn) ⁶⁴ Cu ^{a)}	52 → 37	316
⁶⁴ Zn(d,2p) ⁶⁴ Cu ^{a)}	20 → 10	27
⁶⁶ Zn(d,α) ⁶⁴ Cu ^{a)}	13 → 5	14
^{nat} Zn(d,x) ⁶⁴ Cu	25 → 10	57

a) Using highly enriched target material; low enrichment leads to impurities.

Studies performed at Brussels, Cape Town, Debrecen, Jülich and Segrate

For review cf. Aslam et al., RCA **97**, 669 (2009)

Example: Yttrium-86 ($T_{\frac{1}{2}} = 14.7 \text{ h}; E_{\beta_{+}} = 1.6 \text{ MeV}; I_{\beta_{+}} = 34 \%$)

LICH

Excitation Function

Solid Targetry

Sample preparation: Electrolysis, alloy formation, pelletHeat dissipation: Efficient cooling, slanting beam*Example:* Use of slanting beam

Ion-Chromatographic Separation of Copper-64

Szelecsényi et al., ARI 44, 557 (1993).

Target: 95% enriched ⁶⁴Ni electroplated on Au (thin target) **Irradiation:** 16 MeV p, 4 μA, 5 h **Separation:**

- Irradiated target dissolved in conc. HCI
- Anion-exchange chromatography (Dowex 1x8)
- ⁶⁴Ni eluted with 10 M HCl, collected in 1 ml, and reused for electroplating
- Radiocopper separated from radiocobalt by elution with HCI of lower concentration

Separation Methods of ⁸⁶Y from ⁸⁶SrCO₃ Target and Quality of Product*

Method	Energy range	Separation yield	Typical product batch yield [GBq]	Sr impurity [ng/mL]	Laboratory
	[MeV]	[%]			
Coprecipitation and ion-exchange	$16 \rightarrow 10$	90	3.5	2.6	Jülich; 1993, 2002
Electrolysis	$15 \rightarrow 6$	90	1.2	< 100	Tübingen; 2002 St. Louis; 2005
Single column cation-exchange	$16 \rightarrow 12$	90	0.5	500	Jülich; 2009
Multiple column chromatography	$14 \rightarrow 6$	80	0.7		Bethesda; 2004
Solvent extraction	$16 \rightarrow 10$	89	0.5	1×10^{3}	Jülich; 2009
Precipitation	$11 \rightarrow 6$	88	0.9	1.5×10^{4}	Wisconsin; 2008

*Radionuclidic purity: 97 %; Radiochemical purity: > 99 %

Coprecipitation followed by ion-exchange leads to purest form of ⁸⁶Y.

Non-Standard Positron Emitters for Medical Applications Produced via Low Energy Reactions

Qaim, JRNC **305**, 233 (2015)

Nuclide	Major production route	Energy range [MeV]	Application
⁵² Mn (5.6 d)	⁵² Cr(p,n)	16 → 8	Multimode imaging (PET + MRI)
⁵⁵ Co (17.6 h)	⁵⁸ Ni(p,α) ⁵⁴ Fe(d,n)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Tumour imaging; neuronal Ca marker
⁶⁴ Cu (12.7 h)	⁶⁴ Ni(p,n)	14 → 9	Radioimmunotherapy
⁶⁶ Ga (9.4 h)	⁶⁶ Zn(p,n)	13 → 8	Quantification of SPECT
⁷² As (26.0 h)	^{nat} Ge(p,xn)	18 → 8	Tumour localisation; immuno-PET
⁷⁶ Br (16.0 h)	⁷⁶ Se(p,n)	15 → 8	Radioimmunotherapy
^{82m} Rb (6.2 h)	⁸² Kr(p,n)	$14 \rightarrow 10$	Cardiology
⁸⁶ Y (14.7 h)	⁸⁶ Sr(p,n)	$14 \rightarrow 10$	Therapy planning
⁸⁹ Zr (78.4 h)	⁸⁹ Y(p,n)	$14 \rightarrow 10$	Immuno-PET
^{94m} Tc (52 min)	⁹⁴ Mo(p,n)	13 → 8	Quantification of SPECT
¹²⁰ I (1.3 h)	¹²⁰ Te(p,n)	13.5 ightarrow 12	Iodopharmaceuticals
¹²⁴ I (4.2 d) December 2018	¹²⁴ Te(p,n)	12 → 8	Tumour targeting; dosimetry

I ICH Non-Standard Positron Emitters **Produced via Multiple Particle Reactions** Example: ⁷³Se ($T_{\frac{1}{2}}$ = 7.1 h; E_{β} + = 1.3 MeV; I_{β} + = 65 %) Qaim et al, RCA 104, 601 (2016) **Excitation Functions** Yield and Impurity 72,75Se **Nuclear reaction Energy range** Yield of ⁷³Se impurity 800 [MeV] $[MBq/\mu Ah]$ [%] ⁷⁰Ge(α,n)⁷³Se Cross section (mb) 600 ⁷²Ge(³He,2n)⁷³Se $40 \rightarrow 30$ 0.1 75 As(p,3n) 1406 ⁷⁵As(p,3n)⁷³Se 400 $40 \rightarrow 33$ 0.2 75 As(d,4n) 700 ⁷⁵As(d,4n)⁷³Se $^{72}\text{Ge}(^{3}\text{He},2n)$ $35 \to 15$ 1.8 130 200 $26 \rightarrow 13$ 0.5 ⁷⁰Ge(α ,n) 300 20 60 70 80 10 Incident particle energy (MeV)

⁷⁵As(p,3n)⁷³Se reaction is the method of choice.

Novel Therapeutic Radionuclides 🕗 JÜLICH

(Useful low-range highly-ionising radiation emitters)

- ⁶⁷Cu ($T_{\frac{1}{2}} = 2.6 \text{ d}; E_{\beta} = 577 \text{ keV}$)
- ¹⁸⁶**Re** ($T_{\frac{1}{2}}$ = 3.7 d; E_{β} = 1070 keV)
- ¹⁴⁹**Tb** ($T_{\frac{1}{2}}$ = 4.1 h; E_{α} = 3970 keV)
- ²²⁵Ac $(T_{\frac{1}{2}} = 10.0 \text{ d}; E_{\alpha} = 5830 \text{ keV})$
- ^{117m}**Sn** ($T_{\frac{1}{2}}$ = 13.6 d; Conversion electrons)
- ^{193m}Pt ($T_{\frac{1}{2}}$ = 4.3 d; Auger electrons)

^{195m}Pt ($T_{\frac{1}{2}}$ = 4.0 d; Auger electrons)

Scandium-47

$(T_{\frac{1}{2}} = 3.4 \text{ d}; E_{\beta^-} = 610 \text{ keV}; I_{\beta^-} = 100 \%; E_{\gamma} = 159.4 \text{ keV}$ (68 %)

cf. Review Qaim, Scholten, Neumaier, JRNC **318**, 1493 (2018)

Production route	Irradiation	Batch yield	Laboratoy
⁴⁷ Ti(n,p) ⁴⁷ Sc	Fission spectrum	1.6 GBq	Brookhaven, 1998
⁴⁸ Ti(γ,p) ⁴⁷ Sc	40 MeV	186 MBq (3 g TiO ₂ target)	Argonne, 2018
⁴⁶ Ca(n,γ) ⁴⁷ Ca ^{β⁻} → ⁴⁷ Sc	High thermal neutron flux	600 MBq 1 mg target, ⁴⁶ Ca (31.7 % enriched)	Grenoble/PSI, 2014
⁴⁸ Ti(p,2p) ⁴⁷ Sc	48 < 150 MeV	900 MBq Purity not acceptable	Brookhaven, 1998
⁴⁸ Ca(p,2n) ⁴⁷ Sc	$24 \rightarrow 17 \text{ MeV}$	~ 10 MBq	Warsaw, 2017

All methods of ⁴⁷Sc production need further development.

Actinium-225

$(T_{\frac{1}{2}} = 10.0 \text{ d}; E_{\alpha} = 5830 \text{ keV}; I_{\alpha} = 100\%)$

Production Routes

Separation from nuclear waste	(max. 100 GBq) per year	Transuranium Laboratory, Karlsruhe, Apostolidis et al, 2001
²²⁶ Ra(p,2n) ²²⁵ Ac	Radioactive target; technology established but further development is underway	Karlsruhe, München, other places
²³² Th(p,x) ²²⁵ Ac	Cross sections measured; chemical separations achieved; check of impurities continues; technology in development	Moscow, Los Alamos, Brookhaven, Nantes, other places

All methods of ²²⁵Ac production need further development.

Production of Tin-117m

High spin isomer (I = 11/2[−]) Source of conversion electrons

Routes: ¹¹⁷Sn(n,n^γ); ¹¹⁶Cd(α,3n); ¹¹⁶Cd(³He,2n); ¹¹⁵In(α,d); ^{nat}Sb(p,x)

Qaim, Nucl. Med. Biol. 44, 31 (2017).

¹¹⁶Cd(α,3n)-reaction is most promising.

Targeted α-Radiation Therapy JULICH

Example: ²¹³Bi ($T_{\frac{1}{2}}$ = 46 min; E_{α} = 5900 keV) from ²²⁵Ac generator

Prostate-specific membrane antigen radioligand therapy (PSMA-RLT)

- ¹⁷⁷Lu-PSMA successfully applied, but some patients show radioresistance to β^{-} radiation
- New approach: ²¹³Bi-PSMA

M. Sathekge et al., EJNMMI 44, 1099 (2017)

⁶⁸Ga-PSMA (PET-CT scan) Pre-therapy

⁶⁸Ga-PSMA (PET-CT scan) Post-therapy (11 months after ²¹³Bi-PSMA) Targeted α -radiation therapy appears promising.

Novel Approaches to Production of JÜLICH Medical Radionuclides

Charged Particle Induced Reactions

- Development of solid targetry at PET cyclotrons (e.g. ⁵²Mn, ¹²⁴I)
- Irradiation of solutions at PET cyclotrons (e.g. ⁴⁴Sc, ⁶⁸Ga, ⁸⁶Y, ⁸⁹Zr, ^{94m}Tc)
- Proton induced reactions up to 120 MeV (e.g. ⁵²Fe, ⁷³Se, ⁸³Sr, ¹⁵²Tb, etc.)
- α-particle induced reactions up to 70 MeV (e.g. ⁴³Sc, ^{117m}Sn, etc.)
- Exotic routes
 - heavy-ion induced reactions (e.g. ¹⁵²Tb) NSW
 - spallation and on-line mass separation (e.g. ¹⁴⁹Tb, ¹⁵²Tb) CERN

Fast Neutron and High Energy Photon Induced Reactions

• Use of (n,p) or (γ ,p) reaction (e.g. ⁴⁷Sc, ⁶⁷Cu, etc.)

Continuous development work is underway

New Directions in Radionuclide Applications

Theranostic approach

(combination of PET / Targeted therapy) ⁴⁴Sc/⁴⁷Sc, ⁶⁴Cu/⁶⁷Cu, ⁸⁶Y/⁹⁰Y, etc.

Multimode imaging (combination of PET/CT and PET/MRI)

Radioactive nanoparticles

Possible improvement in delivery of radionuclide to tumour

Continuous radionuclide research is underway.

Theranostic Approach in Medicine

- Combination of diagnosis and therapy using two suitable radionuclides of the same element (personalized medicine).
 - quantitative diagnosis using a non-standard β^+ emitter and PET
 - targeted therapy using a β^- , α particle or Auger electron emitter
- Examples of theranostic pairs of metallic radionuclides
 ⁴⁴Sc (3.9 h) / ⁴⁷Sc (3.4 d)
 ⁶⁴Cu (12.7 h) / ⁶⁷Cu (2.6 d)
 ⁸³Sr (32.4 h) / ⁸⁹Sr (50.5 d)
 ⁸⁶Y (14.7 h) / ⁹⁰Y (2.7 d)
 ¹²⁴I (4.2 d) / ¹³¹I (8.0 d)
 ¹⁵²Tb (17.5 h) / ¹⁶¹Tb (6.9 d)

The pair ⁸⁶Y/⁹⁰Y has been most successfully applied.

Theranostic Approach

Example: ⁸⁶Y/⁹⁰Y pair

- Addition of β^+ emitting ⁸⁶Y analogue to the therapy nuclide ⁹⁰Y
- Uptake of [⁸⁶Y] citrate determined using PET

Pharmaceuticals 10, 56 (2017) (A) Anterior (B) Sagittal

-Lumbar Spine

Normal Spine Liver

-Right Hip Thoracic Spine

Knee

50.00

Multimode Imaging: MRI/PET

 Combining good resolution of MRI with dynamic and quantitative nature of PET

Possibilities

- use of radioactive contrast agents (Positron emitters needed: ⁵²Mn, ⁵²Fe, ⁵⁷Ni, etc.)
- development of *intelligent contrast agent*, e.g. by chemically binding the MRI contrast agent Gd with another metal, for example Cu, through pyridine

Fast developing modality; enhancing application in organ imaging.

Intelligent Contrast Agent

R. Herges, Nachr. Chemie **59**, 817 (2011).

- Gd³⁺ is an important contrast agent in MRI
- In presence of Cu²⁺ and pyridine, Gd³⁺ forms complex with a free co-ordination space where water is quickly bound.
- The complex increases the contrast appreciably (decreasing the toxicity of Gd)
- If Cu^{2+} is β^+ emitting ${}^{64}Cu$, multimode imaging is possible.

Combination of Radioactivity and Nanotechnology Concept

 Transport of the radionuclide via a "drug delivery system" to the malignant tissue, where the emitted radiation allows imaging or causes therapeutic effect. (Radionuclides would be the same as in normal use)

Current targeting strategies for metallic radionuclides

- monoclonal antibodies (mAb)
- peptides

Often insufficient delivery of radionuclide to tumour site

Drug delivery systems based on nanotechnology

liposomesiron oxidepolymers

Nanocarrier systems could provide platforms to improve delivery of radionuclides to tumour sites.

December 2018

New Developments at FZJ Regarding Medical Radionuclides

- JÜLICH FORSCHUNGSZENTRUM
- New laboratories (cyclotron, radiochemistry, hot cells, radiopharmacy, SPECT, PET, MRI, all in one big institute)
- New cyclotron 30XP (IBA)
- Cross section measurements near reaction thresholds using BC 1710
- Partial use of 78 MeV d at JULIC
- New irradiation facility at COSY with E_p ≤ 150 MeV (very low current)

All four pillars of development work are followed.

Pace of work very slow; overemphasis on safety aspects; but hope sustains life.

at FZ Jülich

(Multiple particle machine)

December 2018

Conclusions and Perspectives

- Medical radionuclide production technology is well established; yet novel radionuclides are needed.
 - Novel positron emitters to study slow metabolic processes, multimode imaging and theranostic approach.
 - Novel β^- and α -emitters for targeted therapy.
- Significance of accelerators is increasing.
- Development work involves interdisciplinary research, with emphasis on nuclear data studies, combined with technological innovations.
- Radiotracer research is opening up new vistas in nuclear medicine.

Interesting science and human-health related technology; future perspectives are bright.

