Information Sheet!

12 januari 1987

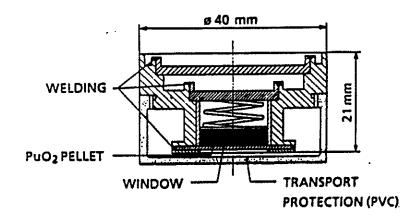
## PuO2 Pilot Reference Samples for Isotopic Composition Measurements by Gamma Spectrometry

#### CBNM - NRM 271

#### Specifications for set 0/9

## 1. PuO2 Pellet Specifications

| Pellet                                | Sample Identification |        |        |        |  |  |
|---------------------------------------|-----------------------|--------|--------|--------|--|--|
| Specifications                        | 93 0/2                | 84 0/2 | 70 0/2 | 61 0/2 |  |  |
| Areal density [g.cm <sup>-2</sup> ]   | 3.80                  | 3.86   | 3.99   | 3,82   |  |  |
| Diameter [mm]                         | 14.90                 | 14.84  | 14.58  | 14.84  |  |  |
| Flatness [mm] _                       | < ± 0.02              |        |        |        |  |  |
| Density [g.cm <sup>-3</sup> ]         | 9.88                  | 10.14  | 10.93  | 10.55  |  |  |
| Thickness [mm]                        | 3.85                  | 3.81   | 3.66   | 3.63   |  |  |
| Mass [g]                              | 6.630                 | 6.685  | 6.680  | 6.624  |  |  |
| Stoichiometry (PuO <sub>2-X</sub> ),X |                       | - ·    | 05     |        |  |  |


### 2. Canning

Container certified by BAM, F.R. Germany (approval D/0039/S), as type A, special form radioactive material following IAEA specifications.

Material: Stainless steel.

Window thickness:  $0.7796 \pm 0.0005 \text{ mm}$ 

#### 3. Layout of PuO2 Pilot Reference Samples





# 4. Isotopic Composition of Sample Material

 $\frac{Pu(iso)}{Pu(tot) + Am}$  [at %], preliminary values\* valid for 20 June 1986

| Material                      |                                     |                                      |                                     |                                      |                                     |                                      |
|-------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|
| type<br>(% <sup>239</sup> Pu) | 238 <sub>Pu</sub>                   | 239 <sub>Pu</sub>                    | 240 <sub>Pu</sub>                   | 241 <sub>Pu</sub>                    | 242 <sub>Pu</sub>                   | 241 <sub>Am</sub>                    |
| 93<br>84<br>70<br>61          | 0.012<br>0.0706<br>0.8420<br>1.1889 | 93.338<br>84.214<br>72.581<br>61.771 | 6.286<br>14.130<br>18.039<br>24.992 | 0.2212<br>1.0184<br>5.3576<br>6.5437 | 0.039<br>0.3526<br>2.0307<br>4.0880 | 0.1038<br>0.2152<br>1.1492<br>1.4161 |

- (\*) values are referring to synthetic mixtures.
- 5. <u>Uncertainties</u> of isotope abundances, preliminary figures(in percent of the isotope abundance values) for a confidence level of about 95 %.

| Isotope                                            | Material type (% <sup>239</sup> Pu)           |      |                                |    |  |  |
|----------------------------------------------------|-----------------------------------------------|------|--------------------------------|----|--|--|
|                                                    | 93                                            | 84   | 70                             | 61 |  |  |
| 238Pu<br>239Pu<br>240Pu<br>241Pu<br>242Pu<br>241Am | ± 10<br>± 0.1<br>± 0.2<br>± 0.4<br>± 5<br>± 2 | ±1.2 | ± 0.15± 0.05± 0.10± 0.15± 0.15 |    |  |  |

6. Chemical Purity, maximum values of total impurities without 241 Am

| Impurities [ug/g]                                                              | 93       | Material ty<br>84           | /pe (% <sup>239</sup> Pu<br>70 | 61                           |
|--------------------------------------------------------------------------------|----------|-----------------------------|--------------------------------|------------------------------|
| for all elements, Z ≤ 30                                                       | 170      | 500                         | 500                            | 400                          |
| for low Z elements (B, Be, Li, F, Mg, Na) <sup>1</sup> for all elements Z > 30 | 10<br>30 | 20<br>800 (20) <sup>2</sup> | 10<br>600 (250) <sup>2</sup>   | 30<br>1200(380) <sup>2</sup> |

- elements with high α/n cross section.
- (2) included contributions of ingrown  $^{234}\text{U}$  from the decay of  $^{238}\text{pu}$  (June 1986).

# **Certified Nuclear Reference Material**

# **Certificate of Analysis**

CBNM NUCLEAR REFERENCE MATERIAL 271
Pu isotope Abundances and <sup>241</sup>Am Concentration
Certified Reference Material (PuO<sub>2</sub>) for Gamma-Ray Spectrometry

Pu(iso)

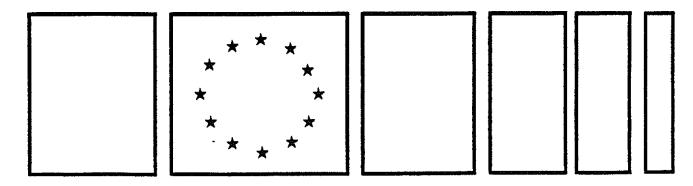
241<sub>Am</sub>

abundances and uncertainties (95 % confidence level)

valid at 20 June 1986

- atom per cent (at%)

| Matenal | Isotope | 238 <b>P</b> u     | 239Pu                 | 240թ <sub>Ա</sub>    | 241p <sub>U</sub>    | 242p <sub>u</sub> | 241Am*        |
|---------|---------|--------------------|-----------------------|----------------------|----------------------|-------------------|---------------|
| CBNM    | Pu93    | 0.0117             | 93.4392<br>40         | 6.28 <b>86</b><br>39 | 0.2215<br>4          | 0.0390<br>3       | 0.1039<br>21  |
| CBNM    | Pu84    | 0.070 <del>6</del> | 84.398 <b>5</b><br>84 | 14.1578<br>85        | 1.0197               | 0.3534<br>10      | 0.2157<br>22  |
| CBNM    | Pu70    | 0.8506<br>18       | 73.4248<br>98         | 18.2445<br>87        | 5.4257<br>34         | 2.0544<br>23      | 1.1624<br>116 |
| CBNM    | Pu61    | 1.2045<br>25       | 62.6562<br>. 283      | 25.3526<br>241       | 6.637 <b>6</b><br>87 | 4.1491<br>64      | 1.4362        |


#### - mass per cent (m%)

| Material | Isotope | 238Pu                        | 239Pu                           | 240Pu                  | 241P <sub>U</sub>    | 242Pu                | 241Am*        |
|----------|---------|------------------------------|---------------------------------|------------------------|----------------------|----------------------|---------------|
| CBNM     | Pu93    | 0.0117                       | 93.4123<br>40                   | 6.3131<br>39           | 0.2235               | 0.039 <b>5</b><br>3  | 0.1047<br>21  |
| CBNM     | Pu84    | 0.0703<br>6                  | 84.3377<br>84                   | 14.2069<br>85          | 1.0275<br>18         | 0.3 <b>576</b><br>10 | 0.2173<br>22  |
| CBNM     | Pu70    | 0.8458<br>18                 | 73.3191<br>98                   | 18.2945<br>87          | 5.4634<br>34         | 2.0772<br>23         | 1.1705<br>117 |
| CBNM     | Pu61    | 1.19 <b>69</b><br>2 <b>5</b> | 6 <b>2.</b> 525 <b>5</b><br>283 | 25.405 <b>8</b><br>241 | 6.67 <b>93</b><br>87 | 4.1925<br>64         | 1.4452<br>144 |

This certificate applies to the reference samples: CBNM Pu 93 O/8

CBNM Pu 93 O/8 CBNM Pu 84 O/8 CBNM Pu 70 O/8 CBNM Pu 61 O/8

# Commission of the European Communities Joint Research Centre Central Bureau for Nuclear Measurements



#### **PURPOSE**

This certified Nuclear Reference Material (NRM) is intended to be used for the non-destructive determination of the abundance of <sup>238</sup>Pu, <sup>239</sup>Pu, <sup>240</sup>Pu, <sup>241</sup>Pu and <sup>241</sup>Am by gamma-ray spectrometry using characteristic radiation of each isotope. For this purpose four parameters are specified: mass and geometry of the PuO<sub>2</sub> layer, can window thickness and the chemical purity of the PuO<sub>2</sub> in addition to the Pu isotope abundances and the <sup>241</sup>Am concentration.

#### DESCRIPTION

CBNM NRM 271 (Central Bureau of Nuclear Measurements certified Nuclear Reference Material 271) consists of a set of four sealed cans, each of which is defined as a reference sample.

Each reference sample contains a sintered pellet of about 6.6 g  $PuO_2$  with one of the four isotopic compositions.

The can is made of a stainless steel and has a maximum outer diameter of 40 mm and a height of 21 mm.

The bottom of the can has a specified thickness and serves as window for measuring the emitted gamma-ray radiation.

A plastic cover protects the measurement window.

#### **IDENTIFICATION**

Each reference sample has the following marks engraved on the outer can surface:

- CBNM: body issuing the certificate
- Pu, a two-digit number, followed by an O: the symbol of the element plutonium, the nominal 239Pu/Pu abundance and the indication that the chemical form of the reference material is oxide.
- A slash followed by a one or two-digit number specific for each NRM, i.e. for each set of reference samples.

This certificate relates to the set of reference samples with the numbers indicated on the first page.

#### CHARACTERIZATION

In order to ensure the isotopic homogeneity of the sample material the total amount of the starting material was brought into solution and purified.

The plutonium isotope abundances were determined by thermal ionisation mass-spectrometry at CBNM. All measurements were calibrated by synthetic plutonium isotope mixtures prepared from purified isotopes.

The <sup>238</sup>Pu abundance of the reference material Pu93 was also determined by α spectrometry.

The <sup>241</sup>Am concentration was determined by :

- calculation of the <sup>241</sup>Pu decay since the date of chemical separation
- alpha spectrometry and low-energy gamma-ray spectrometry on liquid samples using <sup>241</sup>Am reference material

High resolution gamma-ray spectrometry measurements of the reference samples confirmed that the plutonium isotope abundance homogeneity of the four sample materials must be equal or better than the overall accuracies obtained from mass spectrometry measurements.

#### STATEMENT OF UNCERTAINTIES

The overall uncertainties of the abundances were estimated by combining the different uncertainty components from the mass spectrometric characterisation and homogeneity control measurements.

The error propagation of all uncertainties was calculated according to the principles applicable to independent error contributions.

The overall uncertainties of the <sup>241</sup>Am concentrations were estimated from the uncertainties resulting from the different determination methods. The resulting figures were enlarged to 1 % (2 % for the 93 % <sup>239</sup>Pu sample).

#### NOTICE TO THE USER

The Bundesanstalt fuer Material pruefung (BAM), Berlin has declared on 13 June 1983 under permission number D/0039/S that the canning as used for the reference material is conform to the requirements "Special Form Radioactive Material" as described in the IAEA "Regulations for Safe Transport of Radioactive Material", 1973, Revised Edition.

#### SUPPLEMENTARY SPECIFICATIONS

#### Can window

The uncertainties are given as maximum deviations.

- Thickness (all NRM's)

- Thickness set 8:

 $0.780 \pm 0.002 \, \text{mm}$  $0.7800 \pm 0.0010 \, \text{mm}$ 

- Deviation from flatness:

± 0.1 mm

#### Chemical purity of the PuO<sub>2</sub>

The plutonium oxide is considered to be stoichiometric PuO, containing impurities. Maximum total impurities are : >

| Impurities (mg/kg-1)                | material: | Pu 93 O | Pu 84 O  | Pu 70 O   | Pu 61 O    |
|-------------------------------------|-----------|---------|----------|-----------|------------|
| for all elements, Z ≤ 30            |           | 170     | 500      | 500       | 400        |
| for low Z elements                  |           |         |          |           |            |
| (B, Be, Li, F, Mg, Na) <sup>1</sup> |           | 10      | 20       | 10        | 30         |
| for all elements, Z>30              |           | 30 -    | 800(20)2 | 600(250)2 | 1200(380)2 |

- (1) elements with high a/n cross section
- (2) included contributions of ingrown <sup>234</sup>U from decay of <sup>238</sup>Pu (June 1986)

#### PuO<sub>2</sub> filling (pellet)

The uncertainties for these NRM's are given as maximum deviations:

- For all NRM's
- 6.65 ± 0.06 g - Mass: 3.75 ± 0.14 mm - Height: 14.77 ± 0.21 mm - Diameter: 3.87 ± 0.13 g·cm<sup>-2</sup> - Surface density:
- For set 8 70 O/8 61 0/8 84 O/8 93 O/8 Sample: 6.642 6.630 g 6.623 6.682 - Mass : 3.64 mm 3.63 3.83 3.80 - Height: 14.85 mm 14.59 14.83 14.92 - Diameter 3.83 q-cm-2 3.97 3.87 3.79 - Surface density:

#### TIME OF CHEMICAL PURIFICATION OF THE PLUTONIUM BASE MATERIAL

- for material CBNM PU 84; 70 AND 61

1982

- for material CBNM PU 93

1978

#### **CONTRIBUTIONS**

The following laboratories have contributed to the fabrication of this reference material:

- CEN Grenoble, where the PuO<sub>2</sub> base material was purified;
- JRC Institute TUI Karlsruhe, where the PuO2 pellets were produced and canned:
- JRC institute CBNM Geel, where the canning was designed and fabricated.

Furthermore the following laboratories have contributed to the analysis of this reference material.

- CEN Grenoble and ;
- CEN/SCK Mol:
- JRC Institute CBNM Geel, Analytical Science Group, Mass Spectrometry group, Radio Nuclide group.

#### LEGAL DISCLAIMER

This document was prepared under the sponsorship of the Commission of the European Communities. Neither the Commission of the European Communities nor any person acting on its behalf makes any warranty or representation, express or implied, that the use of any information, material, apparatus, method or process disclosed in this document does not infringe privately owned rights; or assumes any liability with respect to the use of, or for damages resulting from the use of, any information, material, apparatus, methods or process disclosed in this document.

Geel, 14 January 1989

Central Bureau for Nuclear Measurements CBNM Steenweg op Retie 2440 Geel, Belgium Tel. (014) 571.211