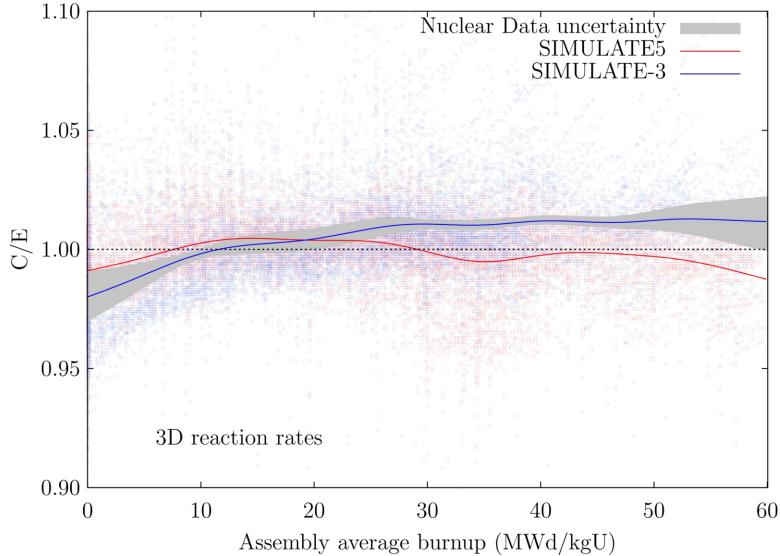
PAUL SCHERRER INSTITUT

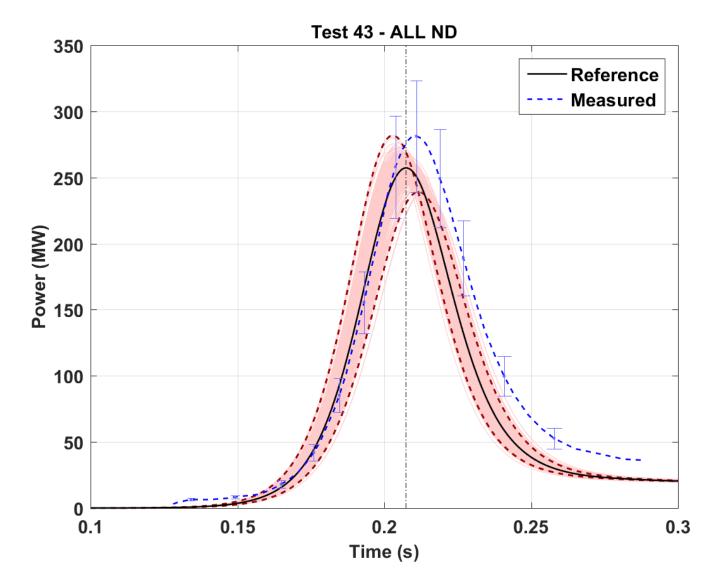
D. Rochman

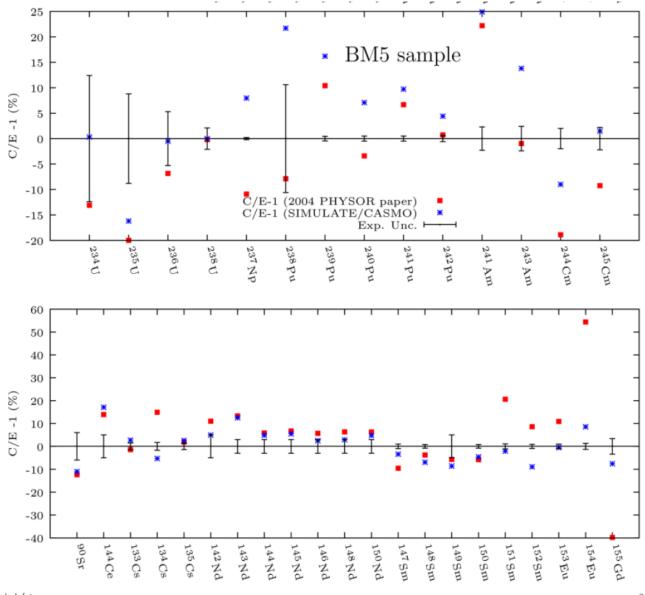
ICSBEP benchmarking...reaction rates

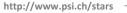
Consultancy Meeting on International Radiation Characterization Benchmark Experiment Project (IRCBEP), Vienna, IAEA, 6-8 August 2018



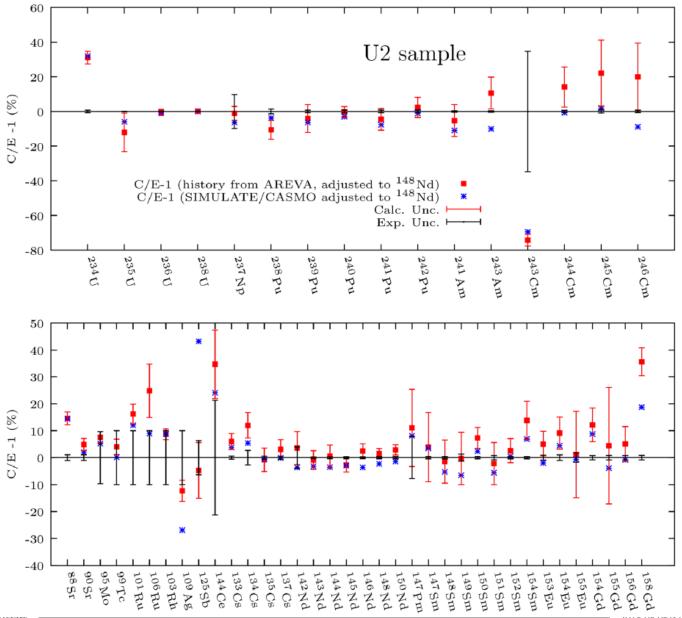
- Some observations and needs from reactor and spent fuel simulations
- ICSBEP & reaction rates
- Conclusion


• What are the needs from the LWR normal operation for nuclear data ?


http://


- What are the needs from the LWR transient for nuclear data ?
- Example of RIA experiment:

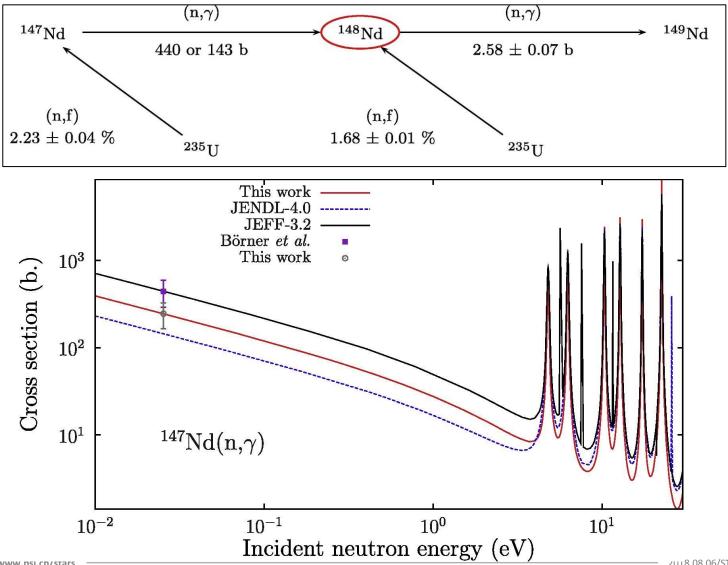
• What are the needs from the LWR spent fuel for nuclear data ?



(ICNet)

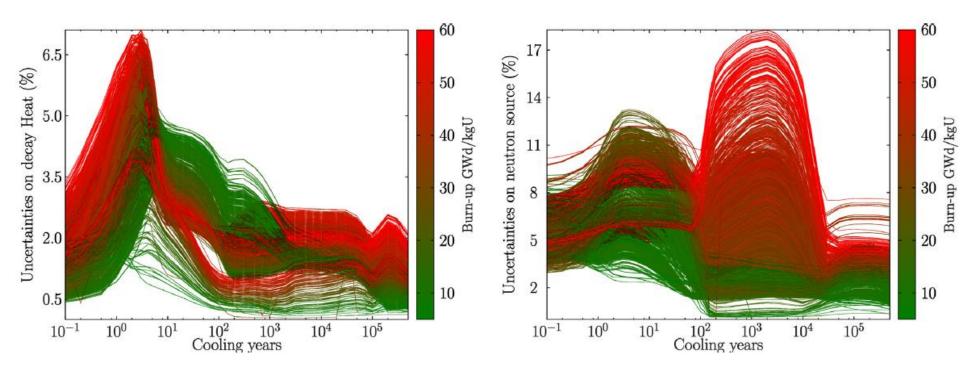
(S)(2)=

Uncertainty and biases for PIE C/E

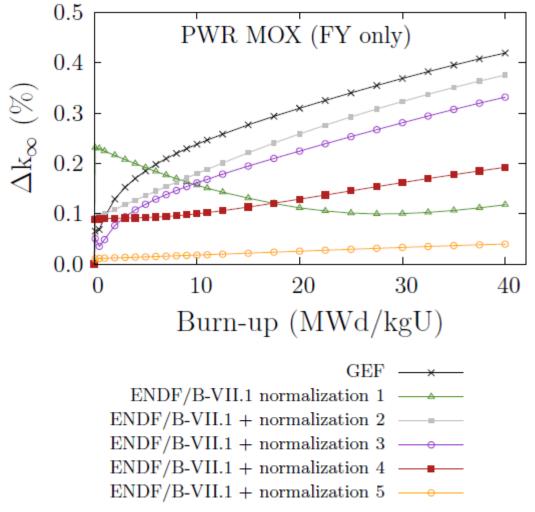


Net

32


- What are the needs from the LWR spent fuel for nuclear data ?
- Example for Nd147(n,g)

- IQNet -



- What are the needs from the LWR spent fuel for nuclear data ?
- Example for uncertainties for spent nuclear fuel for realistic irradiation history

- What are the needs from the LWR spent fuel for nuclear data ?
- Example for the impact of the methods

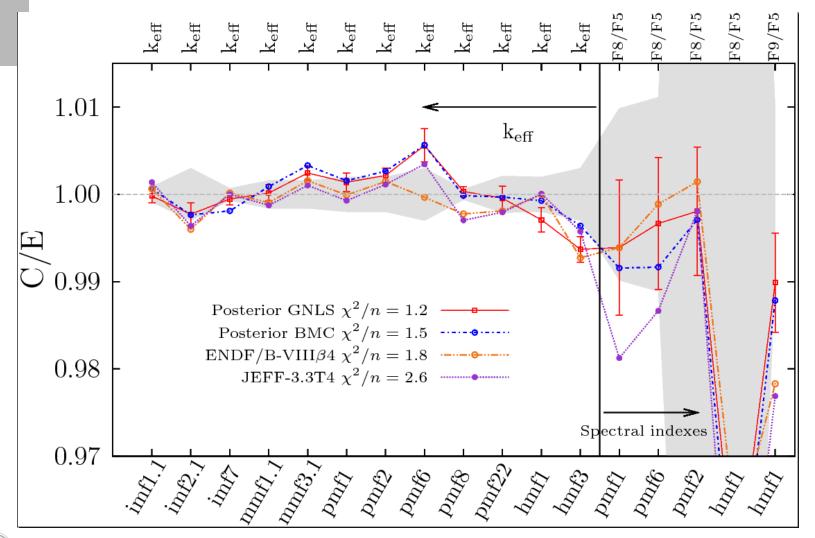
- What are the needs from the LWR spent fuel for nuclear data ?
- Example for the impact of the methods/sources of covariances

Table 3. Comparisons with the uncertainties presented in reference [26] for a PWR case, 4.1 wt.% enrichment, UO fuel, exposure of 40 MWd/tHM without cooling (case 1), and with reference [11] for a PWR case, 3.4% enrichment, UO fuel, exposure of 54 MWd/kgU, with 10 years cooling (case 2).

Isotope	Uncertainty (%)				Isotope	Uncertainty (%)			
	Case 1		Case 2			Case 1		Case 2	
	[26]	This work	[11]	This work		[26]	This work	[11]	This work
^{234}U ^{235}U ^{236}U ^{239}Pu ^{240}Pu ^{241}Pu ^{242}Cm ^{244}Cm	- 1.0 1.5 2.0 1.9 2.7 2.2 8.5	$ 1.8 \\ 1.4 \\ 1.6 \\ 2.3 \\ 2.3 \\ 1.7 \\ 2.7 \\ 9.7 $	2.4 3.3 1.5 2.9 2.5 2.7 - 9.6	$2.1 \\ 2.7 \\ 1.6 \\ 2.6 \\ 2.2 \\ 2.1 \\ 3.6 \\ 9.1$	90 Sr 99 Tc 129 I 137 Cs 148 Nd	5.0 9.5 13 1.7 14	$\begin{array}{c} 0.7 \\ 1.3 \\ 2.5 \\ 7 \\ 0.4 \end{array}$	1 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Intermediate conclusions:

- Reaction rates are of prime importance for reactor applications
- Nuclear data are important for transient and spent nuclear fuel assessments (SNF)
- Different methods lead to differences as large or larger than the nuclear data impact for SNF (see for instance the "blind benchmark" from SKB)

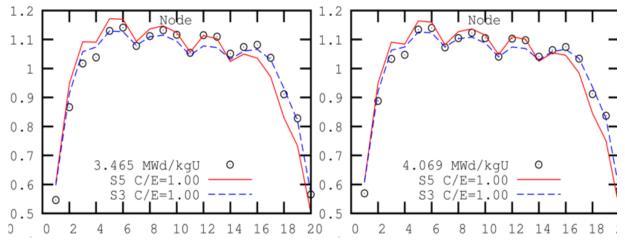

Our experience:

- The European industry is interested in better characterization of the SNF, and a quantification of the impact of key parameters (including nuclear data)
- The current knowledge of nuclear data, **combined** with a variety of calculation methods, need to be improved for better understanding and cost reduction

- The ICSBEP or IRPhe databases are mostly used for $k_{\rm eff}$ calculations,
- Nuclear data are (too) often validated primarily on \mathbf{k}_{eff}

- Not many benchmarks include reaction rates
- Large experience in NEA subgroups for data adjustments (SG-26,33,39,46):

(Jezebel)	F28/F25, F49/F25, F37/F25
(Jezebel-240)	F28/F25, F37/F25
(Flattop Pu)	F28/F25, F37/F25
(Godiva)	F28/F25, F49/F25, F37/F25
(Flattop)	F28/F25, F49/F25, F37/F25
(Bigten)	F28/F25, F49/F25, F37/F25, C28/F25
	F28/F25, F49/F25, C28/F25
	F28/F25, F49/F25, C28/F25
	F28/F25, F49/F25, C28/F25
	F28/F25, F49/F25, C28/F25
	(Jezebel-240) (Flattop Pu) (Godiva) (Flattop)


• Additionally, many activation measurements are also provided

Reaction rates (fission and activation ratios)

- Uncertainties for the reaction rates are often larger than for $k_{\rm eff,}$ therefore an adjustment procedure will be driven mainly by $k_{\rm eff}$
- Some questions arise due to poor descriptions (type of fission chambers, fissile contents and impurities, possible calibration)
- For reactor applications, fission chamber and aerobal measurements (⁵¹V(n,g)+beta decay) are of prime importance (local and possible tilts)
- Many corrections are necessary (deadtime, geometry, photons...)
- "How far" better nuclear data are needed ?

- From the nuclear data point of view, k_{eff} validation is not enough,
- From the application side, many important cross sections and uncertainties do not depend on k_{eff},
- There is a need for a common compiled database for integral quantities other than keff
 - thermal cross sections,
 - resonance integral,
 - reaction rates (fission and activation),
 - MACS...
 - Spectra averaged cross sections,
 - Integral measurements from shutdown (to be) NPP ?
- Such database needs to include covariance information (not only recommended, but also all experimental details),
- There is also a need to quantify the impact of other parameters and of the methods of validation.

Wir schaffen Wissen – heute für morgen

