

Consultant Meeting on the on Compilation of Nuclear Data Experiments for Radiation Characterization (CoNDERC)

J.-C. Sublet

International Atomic Energy Agency Nuclear Data Section

- The purpose of the project on Compilation of Nuclear Data Experiments for Radiation Characterization (CoNDERC) is to transfer into technology the experimental integral radiation information that can be used as part of the Validation and Verification processes of nuclear model and code systems, and to provide various schema to perform the V&V
- The IAEA will task, organize institutions to construct several of these databases based on their own extensive V&V activities associated with inventory and source term codes.

- Identify and compile a comprehensive set of experimental integral radiation characterization benchmark information: spectral indices, reaction rates, decay heat, resonance integral, particle counts and fluxes, etc...
- Evaluate the data, quantify, compute rank their overall uncertainties then compile the data into computer format for dissemination
- Perform simulations of each experiment with the suitable code system and selected nuclear libraries and produce a database/repository of the necessary input files to repeat those simulations for other nuclear data libraries.

Data mining: from raw to shaped diamond

Blue Zoe

Nuclear Atomic Molecular Material **Sciences NAMMS** Aluminum Alumin 538 26.981 538

() Ga

Bar

 dN_{i}

dt

Depletion

silicon 28.0855

Germanium

50 **S**ľ Tin 118.710

Lead

207.2

Ununquadium

81 TI

Thallium

204.3833

113

Uut

Ununtrium

DV Dysprosium 162.50

286

Hg Mercury

200.59

Uub

277

Ununbium

Au

Uuu

Verification & Validation exercises in support of radiation characterisation

J.-Ch. Sublet, M. Fleming* and M Gilbert*

*UKAEA-OECD/NEA

International Atomic Energy Agency

Nuclear Data Section

Validation with FISPACT-II & Libraries

Benchmarking ENDF/B-VIII.0, JEFF-3.3, JENDL-4.0 and TENDL-2017 (and others)

- Decay heat validation against (Japan-FNS) fusion experiments
- Integral & differential xs validation against EXFOR
- Fission events
- Astrophysics MACS (KADoNiS)

Fission events

Author, Institute	${ m Nuclide(s)}$	Method	Irrad. (s)	Year
Fisher, LANL	$^{232}\mathrm{Th}_{f},^{233}\mathrm{U}_{f},^{235}\mathrm{U}_{f},^{238}\mathrm{U}_{f},^{239}\mathrm{Pu}_{f}$	γ	< 1	1964
McNair, UKAWRE	$^{235}\mathrm{U_{th}},^{239}\mathrm{Pu_{th}}$	β	10-1E5	1969
MacMahon, SRRC	$^{235}\mathrm{U_{th}}$	β	10-1E4	1970
Scobie, SRRC	$^{235}\mathrm{U_{th}}$	β	1E4-1E5	1971
Lott, CEA	$^{235}\mathrm{U_{th}}$	Total	1E2-5E3	1973
Yarnell, LANL	$^{233}\mathrm{U_{th}},^{235}\mathrm{U_{th}},^{239}\mathrm{Pu_{th}}$	Total	2E4	1978
Jurney, LANL	$^{233}\mathrm{U_{th}},^{235}\mathrm{U_{th}},^{239}\mathrm{Pu_{th}}$	γ	2E4	1979
Murphy, UKAEA	$^{235}\mathrm{U_{f}},^{239}\mathrm{Pu_{f}}$	β	1E5	1979
Dickens, ORNL	$^{235}\mathrm{U_{th}},^{239}\mathrm{Pu_{th}},^{241}\mathrm{Pu_{th}}$	$\gamma \& \beta$	1-100	1980
Baumung, Karlsruhe	$^{235}\mathrm{U_{th}}$	Total	200	1981
Akiyama, JAEA	$^{233}\mathrm{U}_{\mathrm{f}},^{235}\mathrm{U}_{\mathrm{f}},^{238}\mathrm{U}_{\mathrm{f}},^{239}\mathrm{Pu}_{\mathrm{f}}$	$\gamma \& \beta$	10-300	1982
Akiyama, JAEA	$^{232}\mathrm{Th}_{\mathrm{f}},^{\mathrm{nat}}\mathrm{U}_{\mathrm{f}}$	γ	10-300	1983
Johansson, Uppsala	$^{235}\mathrm{U_{th}}$	$\gamma \& \beta$	4-120	1987
Tobias Berkeley NL	$^{235}\mathrm{U_{th}},^{239}\mathrm{Pu_{th}}$	Stat.	-	1989
Schier, UM Lowell	$^{235}\mathrm{U_{th}},^{238}\mathrm{Pu}_{\mathrm{f}},^{239}\mathrm{Pu}_{\mathrm{th}}$	$\gamma \& \beta$	<1	1997
Ohkawachi, JAEA	$^{235}\mathrm{U_{f}},^{237}\mathrm{Np_{f}}$	$\gamma \& \beta$	10-300	2002

²⁴¹Pu irradiations against the burst function and Dickens results

The burst function calculated using a 1E²¹ flux over 1 ns and the experimental results from Dickens are included for comparison, capture decay excluded, chain not

ΙΑΕΑ

• Various fissiles, fast and thermal burst

Decay heat burst functions of ²³⁵U for various neutron energies

²³⁸U fast pulse

Total (solid) and gamma (dash) decay heat from fast pulse ²³⁸U

²³⁸U fast pulse

Total (solid) and beta (dash) decay heat from fast pulse ²³⁸U

Beta decay heat from 4-120s irradiation of ²³⁵U

14

Gamma decay heat from 4-120s irradiation of ²³⁵U

• Nb102 !!

• Too perfect agreement ?? cumulative FY uncertainty

Probe the data: Decay Data

 Fix the nFY and vary the decay data to probe for differences (ENDF/B-VII.1 decay reference)

- Right: ²³⁹Pu beta (top) and gamma (bottom) heat at 100 s cooling – note large variation in decay files
 - Nominal values and ratio to one, here ENDF/B-VII.1
- Useful check to see what evaluations have been performed and where some libraries lag behind (or make different evaluations)

Probe the data: nFission Yields

- Other option: use the same DD and vary the nFY
- Right: ²³³U fast fission pulse beta (top) and gamma (bottom) at 10 s cooling
 - Nominal values and ratio to an example, here JEFF-3.1.1
- This is all over the place! *Note* that the same DD is used in each simulation, but varied independent fission yields
- Minor actinides all show the same pattern

- Underestimation of high-energy gamma feeding due to poor detector efficiency: Pandemonium effect
- Better simulation with TAGS results, recently added in JENDL 4.0 and ENDF/B-VII.1, not JEFF-3.1.1 decay files !!

Compensation \rightarrow too high beta for "fixed" total

MeV/fission of ²³⁹Pu_{th} pulse total gamma and C/E

Total (solid) and gamma (dash) decay heat from thermal pulse on ²³⁹Pu. Fixed but Tobias metadata @ 1-10 seconds !!

U²³³ nFy examples: yield and uncertainty

Too far? Manmade bondaries?

N=Z Diagonals?

Far enough?

Maxwellian Averaged CS and uncertainty

Fe55 capture 660 group differential cross sections (b) and uncertainties (variances shown) with the kT=30 keV Maxwellian spectrum and resulting, energy-dependent reaction rate with uncertainty

T-dependent MACS for ⁵⁵Fe + T-dependent uncertainty

s-Process nucleosynthesis

- TENDL adds targets to fully compare against KADoNiS
- A few problematic differences, and several observations from temperature-dep studies
- Often, winner or loser resonance takes it all, ²⁸Si but in that case it is certainly the direct capture competition!!

TENDL 2813 targets @ 30 KeV MACS

In red statistical Kadonis

TENDL-2014: ²¹Ne, ²⁶Al, ^{36,38}Ar, ⁶⁰Fe, ⁶³Ni, ^{74,76}Ge, ⁷⁸Se, ¹²⁶Sn JENDL-4.0: ¹⁴⁰Ce, ^{206,207,208}Pb ENDF/B-VIII.0: ¹³⁹La, ²⁰⁵Tl JEFF-3.3: ¹⁹²Pt EAF-2010: ²⁸Si, ³⁶S

against TENDL-2017

RR time evolution

Integro-differential

Integro-differential

- Uniform, open set of experimental data tables
- Distributed, shared set of inputs decks
- Better, more inquisitive data analytics
- Novel, repeatable visualization techniques
- UQP, uncertainty quantification and propagation
- Open source development
- User's orientated, but shared by institutions

Spectral indices

J.-Ch. Sublet

International Atomic Energy Agency Nuclear Data Section

- Spectral indices embodies direct measurement made in a defined environment
 - Reference source: Cf-252,
 - Experimental reactor, pile: Zoe, Minerve, ZPR, EBR-2...
 - Beam/target experiments: D-Be, D-T, D-Li, P-x,...
 - Astrophysical metrics: MACS
 - Reference input spectra: 1/4 RPV, PWRs, FBRs, SMRs,...Phenix, Paluel, SGHWR, NIF,, etc.

- The collapsed cross-sections depend strongly on the nature of the projectile spectra, and so it is important to use the appropriate spectrum together with the appropriatelyweighted cross-section data. With the advances of modern simulation software and high resolution spectra the user is reminded of the importance of the tails, low or high-energy ones, on the reaction rates.
- In essence the particle spectrum profile, through the collapsing process, emphasises the energy region of most importance for each application. Transferring data from one application or energy range to another should be done with great care as it can easily lead to misleading and inappropriate numerical results.

36

http://fispact.ukaea.uk/wiki/Reference_input_spectra

Reference incident particle spectra								
Name +	Group +	Particle +	arb_flux file	Figure +	Description +			
Bigten	407	n	Media:407 Bigten.txt	Bigten	International Criticality Safety Benchmark Experiment, Bigten			
BWR-MOX- Gd-0	1102	n	Media:1102 BWR-MOX- Gd-0.txt	BWR-MOX- Gd-0	BWR MOX fuel with Gd, 0 GWd/THM			
BWR-MOX- Gd-15	1102	n	Media:1102 BWR-MOX- Gd-15.txt	BWR-MOX- Gd-15	BWR MOX fuel with Gd, 15 GWd/THM			
BWR-MOX- Gd-40	1102	n	Media:1102 BWR-MOX- Gd-40.txt	BWR-MOX- Gd-40	BWR MOX fuel with Gd, 40 GWd/THM			
BWR-RPV	198	n	Media:198 BWR-RPV.txt	BWR-RPV	Boiling water reactor, 1/4 Thickness reactor pressure vessel			
BWR-UO2-Gd-0	1102	n	Media:1102 BWR-UO2- Gd-0.txt	BWR-UO2-Gd-0	BWR UO2 fuel with Gd, 0 GWd/THM			
BWR-UO2- Gd-15	1102	n	Media:1102 BWR-UO2- Gd-15.txt	BWR-UO2- Gd-15	BWR UO2 fuel with Gd, 15 GWd/THM			
BWR-UO2- Gd-40	1102	n	Media:1102 BWR-UO2- Gd-40.txt	BWR-UO2- Gd-40	BWR UO2 fuel with Gd, 40 GWd/THM			
CERN- H4IRRAD	288	n	Media:288 CERN- H4IRRAD.txt	CERN- H4IRRAD	CERN H4IRRAD experiment			
Cf252	070	n	Media:070 Cf252.txt	Cf252	Californium-252 spontaneous fission source			
DEMO-HCPB- BP	616	n	Media:616 DEMO-HCPB- BP.txt	DEMO-HCPB- BP	DEMO fusion concept He-cooled pebble bed, backplate			
DEMO-HCPB- FW	616	n	Media:616 DEMO-HCPB- FW.txt	DEMO-HCPB- FW	DEMO fusion concept He-cooled pebble bed, first wall			

Reference spectra

Background 1/4 RPV reference

Assuming a 40-year plant operation and a load factor of 0.8, giving an effective lifetime of 32 years, FISPACT-II results

PWR 1.3E-3 x 32 = 0.0416 dpa, total fluence 1.136E+20, > 1 MeV 2.387E+19 n/cm² BWR 2.3E-4 x 32 = 0.0073 dpa, total fluence 1.798E+19, > 1 MeV 4.469E+18 n/cm²

An end-of-life fluence value of 3.0E+19 n/cm², is quoted to produces about 0.045+/-0.05 dpa in *G. R. Odette and G. E Lucas, Embrittlement of Nuclear Reactor Pressure Vessels, JOM, 53 (7) (2001), pp 18-22*

Tails: low and high energy

- FBR superphenix Fast Breeder Reactor
- HFR High Flux Reactor, Petten
- PWR Pressurized Water-cooled Reactor

Variation in He production (in atomic parts per million or appm) per fpy as afunction of element and irradiation environment

Variation in H appm per fpy as a function of element and irradiation environment.

Variation in He production per fpy under the DEMO-FW spectrum as a function of element and choice of nuclear data library

- Even in first 0.1 mm the flux depletions due to the giant resonances are present
 - suggesting that self-shielding occurs at all depths because neutron backscattering populates all neutron energies
- Flux depletions are reduced in W layers close to the moderator & thermal component of spectrum is higher
 - potential change in transmutation behaviour

20% drop in total flux across
 2 cm depth

¹⁸⁶W (n, γ) (70% of RR)

• Probability Table (PT) SSFs used to account for dilution effects associated with both resolved and un-resolved ($>\sim 20$ keV) resonances

resonance

Cumulative RR

 Probability Table (PT) SSFs used to account for dilution effects associated with both resolved and un-resolved (>~ 20 keV) resonances

- total SSF: 0.64
- giant resonance dominates RR of ¹⁸⁶W (n,γ) (70% of RR)

 minor contribution from giant resonance

total SSF: 0.55

- For all target nuclides
- 1102 energy groups for all applications alike

- 378 fine groups in the resonance range
- Resonance shielded data available in the RRR (0.1 eV) up to the end of the URR for all nuclides IDs
- Fast fine structure for accurate threshold reaction rate

Group structures

Group structure: 1102

IAEA

Group structure: 1102

Peak and trough are well described

- Clearly spell out the pitfalls
 - Collapsing process
 - Flux tails, high and low, influence on RR
 - It is much more difficult to converge a RR than a Keff
- Reference input spectra database
- UQP reaction rates uncertainty quantification
 - Cross section
 - Effective cross section and SSF (the forgotten factor)
 - Binned flux, standard deviation