# Role of event reconstruction algorithm and new radiation sources

Tatsuhiko Ogawa (Japan Atomic Energy Agency)

Special thanks to Y.Iwamoto, S.Abe, (JAEA) and K.Niita (RIST)

## Structure

## Who am I ?

- Experiment: GeV neutron shielding, Fragment yield
- Calculation: FLUKA & MCNP5 user, PHITS development
- Proposals on radiation characterization
  - Comparison of event reconstruction algorithm
  - Source-term evaluation of new-type sources
    - Secondary radiation of polarized photon sources
    - (p,n) reactions for neutron sources

# My background (experiment)



**Concrete shielding experiment** at heavy ion accelerator (HIMAC)



Heavy ion fragmentation cross section measurement at heavy ion accelerator (HIMAC)



3

\* T.Ogawa, et al., PHYSICAL REVIEW C, 92, 024614 (2015), \*\* T.Ogawa et al., NIM B, 269, 1929–1939 (2011)

# My background (simulation)

- Heavy ion reaction model (JQMD)
- Statistical γ-decay, multi-fragmentation
- Event reconstruction from inclusive data

Nuclear Physics 90% + Mathematics 10%  $\rightarrow$  New reaction models





\* Jiji.com, https://www.jiji.com/jc/d4?p=hig705&d=d4\_acs \* PHITS official lecture note

\* T.Ogawa, et al., PHYSICAL REVIEW C, 92, 024614 (2015),

## My proposals on radiation characterization

#### Comparison of event reconstruction algorithm

- Reconstruction from inclusive data to event-by-event data
- Damage (displacement per atom) evaluation
- Semiconductor soft error
- Heat of thin materials
- Source-term evaluation of new-type sources
  - Polarized photon source
  - (p,n) reactions for neutron source

Event reconstruction, why?

Let's think about (n,2n) reaction + detector simulation



6

# Event reconstruction, why?



## Event reconstruction, how?

- High energy reaction models (Bertini, INCL, CEM, etc.)
  - Event generators
  - No need to think of reconstruction



Nuclear data (Inclusive data)





# Who needs event reconstruction?

- Neutron-induced radiation damage
- Semiconductor error
- Heat

# Neutron-induced damage

- Neutrons induce damages in metals, ceramics, etc.
- Problem in heavy-irradiation facilities
  - e.g. MYRRHA



Displacement per atom distribution 72 times displaced



\* Aït Abderrahim H. (2016) MYRRHA: A Flexible and Fast-Spectrum Irradiation Facility. In: Revol JP., et al., Thorium Energy for the World. Springer, Cham

# Neutron induced damage

## Recoil of target



Kinematics (energy, species) of reaction products are important



#### Your laptop, iphone, and TV are facing soft errors.

- Total dose error (those induced by coincident multiple quants) is unlikely (except inside nuclear reactors)
- Single event error (those induced by single quant) is know to induce soft errors
- Cosmic ray neutrons are the most responsible for soft errors
  - ► Neutrons  $\rightarrow$  (**n**,**p**), (**n**,**α**) reactions  $\rightarrow$  Energy deposition  $\rightarrow$  Error !

Single event error

Neutrons above 10 MeV are said to be the most important



 Verification of event reconstruction algorithm and soft error benchmark are ongoing

# Heat

- Heating is normally calculated by KERMA but ...
  - Overestimates heat in thin materials
    - KERMA is approximation for thick targets
    - Problem for neutron-induced heat

- KERMA is nuclear-data dependent
  - KERMA factor is based on energybalance in some nuclear data
    Kinematics method is better
  - KERMA depends on considered reaction channels





# Proposal on event reconstruction

#### Compare and evaluate event reconstruction algorithms

- PHITS event generator mode "Rakic"
- Geant4 event reconstruction
- MCNP6 event reconstruction
- Something else? (HEATR of NJOY, FRENDY)

## Clarify which algorithm is the best for

- Neutron-induced radiation damage
- Semiconductor single event errors
- Heat

Who can do better ?

## Source-term evaluation of new-type sources

#### Emerging new-type sources

- Laser Compton scattering (LCS) photons
  - Energy selectivity
  - Polarization



#### Laser Compton scattering y-ray source

Accelerator-based neutron sources

- Compact (not reactor-based)
- Light target (Li, Be)



Accelerator-based neutron source

## Laser Compton scattering photons

#### Inverse of Compton scattering

- Compton : Photon kicks electron
- Inverse : Electron kicks photon

18



▶ Polarized photon  $\rightarrow$  Anisotropic secondary radiation



\* A.Takemoto et al., Proceedings of the 12th Annual Meeting of Particle Accelerator Society of Japan, 2015, Chiba, Japan

# Secondary particles of LCS photons

#### Secondary neutron distribution is anisotropic

- Some experimental data exists
  - H, He, C, V, Mn, Fe, Co, Ni, Kr, Sr, Ba, Th, U, Pu (acc. to Exfor)
- Distribution is  $I = a + b \cos(2\theta)$
- where a and b are target dependent parameters
- Neutron come out from giant-dipole resonance or Quasideuteron decay
- No code (official release) can consider it ?

## My proposals

- Evaluation of a and b
- Model development
- Benchmarking against experiment

## Accelerator-based neutron sources



20

\* RANS project official website (http://rans.riken.jp/)

# Accelerator-based neutron sources

#### Li(p,n), Be(p,n) reactions are suitable for neutron sources

- Low threshold (Li : I.8 MeV, Be : 2.06 MeV)
- High neutron yield
- Theories cannot predict them
  - INCL, Bertini, QMD...
  - Energy is too low (cascade picture does not apply)
- Evaluated nuclear data is the only way
  - JENDL, TENDL, what else?



## Accelerator-based neutron sources

#### Double-differential secondary neutron yield

Some experimental data exists (Li, Be)

## My proposals

Competition of evaluated data (JENDL, TENDL, something else?)

- Some reaction models could also work well (DWBA, CDCC...)
- Thick target integral benchmark
  - Neutron yield double-differential yield

# Summary

## Proposals for radiation characterization benchmark

- Event reconstruction algorithm
  - Important for radiation damage, soft error, heating
  - List up available algorithms  $\rightarrow$  Compare which is better
- Secondary radiation by polarized photon sources
  - Neutrons by laser-Compton scattering photons are anisotropic
  - Evaluate distribution parameters
- (p,n) reactions for neutron sources
  - A few evaluated X-section data exist
  - Need for integral benchmark
    - (e.g., thick target yield)

23