Comparison of Neutron Activation Analysis k0 Data: Preliminary Results

Richard B. Firestone Lawrence Berkeley National Laboratory, Berkeley CA

Second Co-ordination Meeting on Reference Database for Neutron Activation Analysis May 7-9, 2007 IAEA, Vienna Austria

Data Sources

IUPAC

- [1] F. De Corte and A. Simonits, At. Data Nucl. Data Tables 85, 47-67 (2003).
- [2] V.P. Kolotov and F. De Corte, Pure Appl. Chem. **76**, 1921-1925 (2004).

Atlas of Neutron Resonances

[3] S.F. Mughabghab, *Atlas of Neutron Resonances*, Elsevier, Amsterdam (2006).

PGAA Handbook

[4] Handbook of Prompt Gamma Activation Analysis, ed. G.L. Molnar, Kluwer Academic Publishers, Dordrecht (2004).

DECAY DATA

- [5] *Table of Radionuclides*, ed. M.-M. Be et al, Bureau International des Poids et Measures, Pavillon de Breteuil, F-92310 Sevres (2004).
- [6] Evaluated Nuclear Structure Data File (ENSDF), a computer file of evaluated experimental nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory.
- [7] R.B. Firestone et al, *Table of Isotopes, 8th Edition,* John Wiley & Sons, New York, 1996,1998,1999.

Relationship between k_0 and σ_0

$$(k_{0,Au})x = [M_{Au}\theta_{x}\sigma_{0,x}P_{x}]/[M_{x}\theta_{Au}\sigma_{0,Au}P_{Au}]$$

Where M is the atomic mass (M_{Au} =196.96655), θ is the isotopic abundance (θ_{Au} =100), σ_{θ} is the total thermal radiative cross section ($\sigma_{\theta,Au}$ =98.65 b), and P_x is the γ -ray transition probability (P_{Au} =0.9554).

 k_0 and σ_0 data are compiled independently and can be compared.

k₀ comparison (415 values)

	-	_	•	_		IUPAC/Atl IUPAC/Bud		
Isotope	Half-life		Eγ (keV)	Atlas	±(%)	IUPAC ±(%	Budapest ±(%)	1
20F	11.07 ± 0.06	s	1633.602 ± 0.015	0.001046096	0.9	0.000998 1.2	0.001014.0	0.95 ± 0.02 0.99 ± 0.04
24Na	14.9574±0.002	h	1368.626 ± 0.005	0.046993505	0.8	0.0468 0.6	0.04602954 1.5	1.00 ± 0.01 1.02 ± 0.02
24Na	14.9574±0.002	h	2754.007 ± 0.011	0.046936404	0.8	0.0462 0.9	0.04602954 1.5	0.98±0.01 1.00±0.02
27Mg	9.458±0.012	m	170.686 ± 0.15	2.90819E-06	12.6	0.00000302 1.0	0.0000027 14.8	1.04 ± 0.13 1.12 ± 0.15
27Mg	9.458 ± 0.012	m	843.76 ± 0.03	0.00026101	1.7	0.000253 0.4	0.0002454.9	0.97±0.02 1.03±0.05
27Mg	9.458±0.012	m	1014.44 ± 0.04	0.000101787	2.1	0.000098 2.0	0.0000965.2	0.96±0.03 1.02±0.06
28AI	2.2414 ± 0.0012	m	1778.85 ± 0.03	0.017891857	1.3	0.0175 0.6	0.0172 1.2	0.98±0.01 1.02±0.01
31Si	157.3 ± 0.3	m	1266.15 ± 0.1	1.72058E-07	28.6	0.0000001450.7		0.84 ± 0.29
37S	5.05 ± 0.02	m	3103.36 ± 0.02	2.89158E-06	6.9	0.00000196 1.8	0.000014 0.5	0.68 ± 0.07 0.14 ± 0.02
38CI	37.24 ± 0.05	m	1642.714 ± 0.016	0.00197203	3.4	0.00197 1.5	0.0014 21.4	1.00 ± 0.04 1.41 ± 0.21
38CI	37.24 ± 0.05	m	2167.405 ± 0.009	0.002621131	2.9	0.00266 1.1	0.0018 11.1	1.01 ± 0.03 1.48 ± 0.11
41Ar	109.61 ± 0.04	m	1293.64 ± 0.04	0.034389011	1.5	0.0332 0.0		0.97±0.02
42K	12.36 ± 0.012	h	312.6 ± 0.25	1.76471E-05	6.3	0.0000159 1.3		0.90 ± 0.06
42K	12.36±0.012	h	1524.6 ± 0.3	0.00094958	2.1	0.000946 0.6	0.001021333 0.1	1.00 ± 0.02 0.93 ± 0.01
47Ca	4.536±0.003	d	489.23 ± 0.1	9.56946E-08	23.0	9.14E-08 1.8		0.96±0.23
47Ca	4.536 ± 0.003	d	807.86 ± 0.1	9.56946E-08	23.0	0.0000000920.2		0.96±0.23
47Ca	4.536±0.003	d	1297.09 ± 0.1	1.09586E-06	13.7	0.0000009540.2		0.87±0.14

σ_0 comparison

Target	tisotope	Energy Mode	Half-life		σ₀(Atlas)	σ ₀ (IUPAC)	σ ₀ (Budapest)
19F	20F	0 B-	11.07 ± 0.06	s	0.00951±0.00009	0.00907 ± 0.00011	0.0096 ± 0.0008
22Ne	23Ne	0 B-	37.24 ± 0.12	s	0.0455 ± 0.0006		0.046 ± 0.001
23Na	24Na	0 B-	14.9574 ± 0.002	h	0.517 ± 0.004	0.515 ± 0.003	0.53 ± 0.008
23Na	24Na	472.2 IT	20.2 ± 0.07	ms	0.4 ± 0.03		0.478 ± 0.004
26Mg	27Mg	0 B-	9.458 ± 0.012	m	0.0384 ± 0.0006	0.0371 ± 0.0005	0.0378 ± 0.0013
27AI	28AI	0 B-	2.2414 ± 0.0012	m	0.231 ± 0.003	0.226 ± 0.002	0.232 ± 0.003
30Si	31Si	0 B-	157.3 ± 0.3	m	0.107 ± 0.002	0.0902 ± 0.0006	
36S	37S	0 B-	5.05 ± 0.02	m	0.236 ± 0.006	0.16 ± 0.003	1.22 ± 0.33
37CI	38CI	0 B-	37.24 ± 0.05	m	0.433 ± 0.006	0.436 ± 0.008	0.553 ± 0.016
37CI	38CI	671.4 IT	715 ± 3	ms	0.047 ± 0.01		0.05 ± 0.003
40Ar	41Ar	0 B-	109.61 ± 0.04	m	0.66 ± 0.01	0.637 ± 0.001	
41K	42K	0 B-	12.36±0.012	h	1.46 ± 0.03	1.417 ± 0.017	1.644 ± 0.008
46Ca	47Ca	0 B-	4.536±0.003	d	0.74 ± 0.07	0.71 ± 0.017	
48Ca	49Ca	0 B-	8.718 ± 0.006	m	1.09 ± 0.14	1.125 ± 0.01	1.22 ± 0.29
45Sc	46Sc	0 B-	83.788 ± 0.00022	2d	27.2 ± 0.2	26.2 ± 0.3	
46Ca	47Sc	0 B-	3.3492 ± 0.0006	d	0.74 ± 0.07	0.602 ± 0.01	
45Sc	46Sc	142.5 IT	18.75 ± 0.04	s	9.8 ± 1.1		7.9 ± 0.3

Complete k₀ database (4659 values)

Target	Half-life	Eγ(keV	k0(BNL)	Target	Half-life	Eγ(keV)	k0(BNL)	Target	Half-life	Eγ(keV)	k0(BNL)
98Mo	2.7479 d	2.17	4.78E-14	98Mo	2.7479 d	40.58	6.98E-06	150Nd	28.4 h	64.88	1.59E-05
98Mo	6.0067 h	2.17	5.06E-14	186W	23.72 h	40.75	2.45E-06	148Nd	1.728 h	65.23	3.31E-07
150Nd	28.4 h	4.82	5.13E-07	46Ca	4.536 d	41.06	9.11E-11	148Nd	1.728 h	65.42	6.62E-07
100Mo	14.61 m	6.28	2.27E-06	232Th	26.975 d	41.66	9.27E-06	181Ta	114.43 d	65.72	6.92E-03
180Hf	42.39 d	6.30	6.17E-06	1900s	15.4 d	41.85	1.94E-06	150Nd	28.4 h	65.83	9.68E-06
186W	23.72 h	7.10	4.20E-06	102Ru	39.26 d	42.63	4.30E-07	1920s	30.11 h	65.87	3.31E-07
168Yb	32.018 d	8.41	1.25E-04	181Ta	114.43 d	42.72	6.57E-04	74Ge	82.78 m	66.00	4.29E-06
100Mo	14.61 m	9.32	8.79E-06	238U	23.45 m	43.53	9.50E-04	74Ge	82.78 m	66.00	6.19E-06
82Kr	1.83 h	9.41	2.41E-03	186W	23.72 h	43.66	2.49E-06	74Se	119.79 d	66.05	1.37E-04
136Ce	9.0 h	10.61	1.43E-06	238U	2.356 d	44.66	3.04E-05	150Nd	12.44 m	67.02	1.57E-07
123Sb	93 s	10.86	9.31E-11	108Pd	13.7012 h	44.70	4.34E-07	148Nd	1.728 h	67.20	9.38E-07
133Cs	2.912 h	11.24	4.43E-04	81Br	6.13 m	45.95	6.64E-05	164Dy	2.334 h	67.71	1.35E-03
132Ba	38.9 h	12.33	1.18E-07	1900s	15.4 d	47.05	1.02E-06	181Ta	114.43 d	67.75	9.76E-02
170Er	7.516 h	12.39	5.04E-06	238U	2.356 d	49.41	2.80E-05	238U	2.356 d	67.86	2.34E-05
151Eu	96 m	12.60	7.54E-05	198Pt	3.139 d	49.83	9.98E-06	164Dy	1.257 m	67.90	7.00E-04
72Ge	0.499s	13.06	3.54E-06	71Ga	14.10 h	50.88	5.53E-06	152Sm	1.92855 d	68.26	9.96E-06
152Gd	240.4 d	14.06	3.91E-06	168Yb	32.018 d	51.51	1.23E-06	139La	1.6785 d	68.92	1.04E-04
74Se	119.79 d	14.88	1.48E-07	232Th	26.975 d	51.80	2.65E-07	150Nd	12.44 m	68.98	1.07E-05
100Mo	14.61 m	15.61	5.59E-09	154Sm	22.3 m	53.10	3.92E-06	148Nd	1.728 h	69.51	1.38E-06
71Ga	39.68 ms	s 16.40	1.32E-04	102Ru	39.26 d	53.28	3.67E-05	152Sm	1.92855 d	69.67	3.62E-02

Problem isotopes

- 36 S k_0 (3103) varies from 68% (IUPAC) to 14% (Budapest) of the Atlas value. This may be due to variations in the 36S isotopic abundance, which is known to be significant for this isotope.
- 70 Zn k_0 (122) and k0(512) (IUPAC) are only 22% and 29%, respectively, of the Atlas value.
- 110 Pd $k_0(172)$ is 41% (IUPAC) of the Atlas value. Other evaluated Atlas cross sections for palladium also appear to be systematically too high [8].
- ¹¹²Sn − k_0 (255) for ¹¹²Sn(n,γ)¹¹³Sn and k_0 (392) for ¹¹²Sn(n,γ)¹¹³Sn→¹¹³In are both 68% of the Atlas value.
- ¹²⁴Sn − all k_0 values for ¹²⁴Sn(n,g)¹²⁵Sn→¹²⁵Sb are only 3% of the Atlas value.
- 132 Ba $k_0(276)$ is 66% (IUPAC) higher than the Atlas value. The total 132 Ba cross section is not well known and was reported with no uncertainty.
- 190 **Os** $k_0(129)$ is 27% (IUPAC) of the Atlas value.

Future plans

- Address discrepancies in the data
- Combine k_0 data using standard statistical methods to obtain a recommended set of k_0 factors for all activation product γ -rays
- Include the results in the Evaluated Gamma-ray Activation
 File (EGAF) disseminated by the IAEA and LBNL