Efficiency Proficiency

Zsolt Révay Institute of Isotopes Budapest, Hungary

Why?

- Common
 - Log-log scale
 - One function: continuous, no break-point
- Different functions are being used
 - 2-3 regions, simple polynomial in each
 - 1 region: 5-6-order polynomial
 - 1 region: 6-8-order orthonormal polynomial
 - 1 region: constrained 6-order polynomial

Are these equally good? Same quality data can be derived?

Polynomials

• n-th order polynomial in log-log scale:

log
$$\varepsilon = \Sigma a_i \log E^i$$

pⁱ – i-th order polynomial
opⁱ -- i-th order orthonormal polynomial

Difficult..., because

- If there are systematic errors in nuclear data,
- and everybody makes the
 - standardization (i.e. determination of k_0 -s)
 - calibration, and
 - analysis
- in the same way, using the same procedures,
- then the results are OK, and
- Mistakes will be never uncovered

Difficult..., because

- Old data based on old methods appear mixed with
- New data based on new methods

• Hard to follow the consistency

Semi-empirical approach

Calculate the contribution to full energy peaks

- Absorption in window, dead layer
- All physical effects considered in the active volume of the Ge crystal
 - Photoeffect
 - Single and multiple Compton scattering
 - Pair production

Semi-empirical efficiency for the 25% Budapest CS-HPGe detector

Fitted function to measured values

The middle region is not a straight line!

The fit of the middle region

It can be fitted acceptably with a straight line

- $-1 \rightarrow 100 \text{ keV}$
- $0 \rightarrow 1000 \text{ keV}$
- $1 \rightarrow 10000 \text{ keV}$

15-% HPGe contact counting

Efficiency proficiency test

- Two trials
 - 1st failed, because of using wrong lit data
 - 2nd test: It. Data approved by R.B. Firestone
- Three sets: ¹³³Ba, ¹⁵²Eu, ²²⁶Ra
- Data circulated:
 - Activity ± uncertainty
 - Energies
 - Emission probabilities ± uncertainty
 - Peak area ± uncertainty

Functions used

Number of points: 56 (except D)

A:

method: Hypermet function: 8-order orthonormal polynomial

B:

method: Excel Function: 50-250 3-order poly, 250- 1-order poly (straight line)

C: method: Excel function: 6-order poly D:

method: k0-IAEA function: ? number of points: 21

E:

method: kayzero function: 50-250: 3-order (?), 250-1-order (?)

F: method: Excel

function: 5-order poly

Results

- Most data arrived without uncertainties!!!
- Incompatibility problems

Results

	calc/meas	average Z-sc	st. dev	chi^2
A	1.0002	-0.0018	0.89	0.77
В	1.0042	0.41	1.36	2.0
С	1.0204	2.94	3.81	23
D	1.07	11	4.5	150
Dmo	^{od} 1.02	4.61		
D ^{m2}	² 0.995	-0.86		54
Е	0.996	-0.55	1.21	1.7
F	1.0002	0.061	1.13	1.3

Conclusion

- There were methods with systematic errors
- For most methods X²<2, i.e. acceptable

Recommendations

- Use uncertainties!!!
- Any function can be used
- Though the statistical tests were not very sensitive to this:
- Avoid straight line for the middle region (2nd, or 3rd-order polynomial??)